Linux Media Documentation

The kernel development community

Dec 03, 2021

CONTENTS

1 Media subsystem admin and user guide 3
1.1 The media subsystem 3
1.1.1 Introduction @ @ e e e e e e 3
1.1.2 Building support for a mediadevice, 4
1.1.2.1 Configuring the LinuxKernel 4
1.1.2.2 Building and installinganew Kernel 8
1.1.2.3 Building just the new media driversandcore 9
1.1.3 Infrared remote control support in video4linux drivers 10
1.1.3.1 BasiCs o i e e e e e e e e e e e e e e e e 10
1.1.3.2 Howitworks e e e e 10
1.1.4 Digital TV e e e e e e e e e 11
1.1.4.1 Using the Digital TV Framework 11
1.1.4.2 Digital TV Conditional Access Interface 22
1.1.4.3 FAQ . . . e e e e e e 23
1.1.4.4 References i i i i i it e e e e e e 26
1.1.5 Cards List o e e e e e e e e e 26
1.1.5.1 USBArivers i i i it i e e e e e e e e 27
1.1.5.2 PCIArIivers i i e e e e e e e e e e e e e e e e 62
1.1.5.3 Platform drivers e e e e 83
1.1.5.4 Radiodrivers. i i i i i i e e e e e e e 85
1.1.5.5 T2C AIVEIS . . . v v v i et e e e e e e e e 86
1.1.5.6 Firewire driver @ i i e e 98
1.1.5.7 Testdrivers i v i i i e e e e e e e e e e e e e e e 98
1.1.6 Video4Linux (V4L) driver-specific documentation 99
1.1.6.1 The bttvdriver. e e 99
1.1.6.2 The cafe ccicdriver, 132
1.1.6.3 Thecpia2 driver i i i i e e e e e e e e 133
1.1.6.4 Thecx88driver ittt ie e 136
1.1.6.5 The VPBE V4L2 driverdesign 137
1.1.6.6 The Samsung S5P/Exynos4 FIMC driver 138
1.1.6.7 i.MX Video Capture Driver 140
1.1.6.8 i.MX7 Video Capture Driver, 153
1.1.6.9 Intel Image Processing Unit 3 (IPU3) Imaging Unit (ImgU) driver . 157
1.1.6.10The ivtvdriver it e e e e e 166
1.1.6.11Vaio Picturebook Motion Eye Camera Driver 170
1.1.6.120MAP 3 Image Signal Processor (ISP) driver 171
1.1.6.130MAP4 ISS Driver i v v it i i e e e e e e e 173
1.1.6.14Philips webcams (pwcdriver) 174
1.1.6.15Qualcomm Camera Subsystem driver 178

1.1.6.16Renesas R-Car Fine Display Processor (FDP1) Driver 182
1.1.6.17Rockchip Image Signal Processor (rkispl) 183
1.1.6.18The saa7134 driver i i i e e e e 187
1.1.6.19The Silicon Labs Si470x FM Radio Receivers driver 188
1.1.6.20The Silicon Labs Si4713 FM Radio Transmitter Driver 191
1.1.6.21The SIA76xX Driver. o i i i e e e e e e e e e e e e 195
1.1.6.22The Virtual Media Controller Driver (vimc) 198
1.1.6.23The Virtual Video Test Driver (vivid) 199

1.1.7 Digital TV driver-specific documentation 222
1.1.7.1 Avermedia DVB-T on BT878 Release Notes 222
1.1.7.2 How to get the bt8xx cardsworking 224
1.1.7.3 Firmware files for ImedmO4 cards 227
1.1.7.4 Operafirmware i i i i it it it e e e e e 228
1.1.7.5 How to set up the Technisat/B2C2 Flexcop devices 229
1.1.7.6 TechnoTrend/Hauppauge DEC USB Driver. 230
1.1.7.7 Zoran 364xx based USB webcam module 231

1.1.8 CEC driver-specific documentation 233
1.1.8.1 Pulse-Eight CEC Adapterdriver 233

2 Media subsystem kernel internal API 235
2.1 Media Subsystem Profile e 235
2.1.1 OVEIVIEW . . . ot e e e e e e e e e e e e e e e 235
2.1.1.1 Media maintainers e e 236
2.1.2 Submit Checklist Addendum, 236
2.1.2.1 Style Cleanup Patches, 237
2.1.2.2 Coding Style Addendum 237

2.1.3 KeyCycleDates i i i i e e e e e 238
2.1.4 Review Cadence i i i i e e e e 238
2.2 VideodLinux deviCes i i i e e e e e e e e e e e e e 238
2.2.1 Introduction e e e e 238
2.2.2 Structure of a VAL driver. e e e 239
2.2.3 Structure of the VAL2 framework 239
2.2.4 Video device’ s internal representation 239
2.2.4.1 ioctlsand locking e e e 241
2.2.4.2 Video device registration, 242
2.2.4.3 video device debugging o e 243
2.2.4.4 Videodevicecleanup i e e e e e e 244
2.2.4.5 helperfunctions e 244
2.2.4.6 video device functions and data structures 245

2.2.5 V4L2 deviceinstance i e e e 254
2.2.5.1 v412 device functions and data structures 256

2.2.6 V4L2 File handlers @ 0 i e e e 264
2.2.6.1 V4L2 fh functions and data structures 266

2.2.7 VAL2 sub-devices i e e e e e e e e e e 268
2.2.7.1 Subdevregistration. e 270
2.2.7.2 Calling subdev operations 272

2.2.8 V4L2 sub-device userspace API e 273
2.2.9 Read-only sub-device userspace API, 274
2.2.10 I2C sub-device drivers i i i e e e e e e e 274
2.2.11 V4L2 sub-device functions and data structures 276
2212 VAL2 eventsS. . . . o o i e e e e e e e e e e e e e 294

2.3

2.2.12.1Event subscription 295

2.2.12.2Unsubscribinganevent 0. 296
2.2.12.3Check if there’ sapendingevent 296
2.2.12.4How events work e e e e e e e e 296
2.2.13V4L2 Controls e e e e e e e e 300
2.2.13.1Introduction e e e e 300
2.2.13.20bjects in the framework, 301
2.2.13.3Basic usage for VAL2 and sub-device drivers 301
2.2.13.4Inheriting Sub-device Controls 304
2.2.13.5Accessing Control Values 305
2.2.13.6Menu Controls e e e e e 306
2.2.13.7Custom Controls. o e e e e e e 307
2.2.13.8Active and Grabbed Controls 307
2.2.13.9Control Clusters o i i e e e e e e e 307
2.2.13.18landling autogain/gain-type Controls with Auto Clusters. 309
2.2.13.1VIDIOC LOG STATUS Support v v v it it e e e e e 310
2.2.13.1Different Handlers for Different Video Nodes 310
2.2.13.1Binding Controlso 311
2.2.13.1Breventing Controls inheritance 311
2.2.13.1¥4L2 CTRL TYPE CTRL CLASS Controls 312
2.2.13.1Adding Notify Callbacks 312
2.2.13.1V412 ctrl functions and data structures 312
2.2.14 Videobuf Framework e 337
2.2.14. 1Introduction e e e e e e e 337
2.2.14.2Buffer types e e e e e e e e e e 337
2.2.14.3Data structures, callbacks, and initialization 338
2.2.14.4File operations e e e e e 339
2.2.14.5ioctl() operations e 341
2.2.14.6Buffer allocationo 341
2.2.14.7Filling the buffers oL 342
2.2.15 V4L2 videobuf2 functions and data structures 343
2.2.16 VAL2 DV Timings functions 368
2.2.17 V4L2 flash functions and data structures 372
2.2.18 V4L2 Media Controller functions and data structures 375
2.2.19 V4L2 Media Bus functions and data structures 378
2.2.20 V4L2 Memory to Memory functions and data structures. 379
2.2.21V4AL2 async KAPT e e e e e e 392
2.2.22 V4L2 fwnode KAPI e e e e 397
2.2.23 V4L2 rect helperfunctions e 406
2.2.24 Tuner functions and data structures, 408
2.2.25 V4L2 common functions and data structures 412
2.2.26 Hauppauge TV EEPROM functions and data structures 428
Digital TV (DVB) devices o i i i it e e e e e e e e e e 430
2.3.1 Digital TV Common functions 430
2.3.1.1 Math functions. e 430
2.3.1.2 DVB deviCes i i e e e e e e e e e 431
2.3.1.3 Digital TVRing buffer 438
2.3.1.4 Digital TVVB2 handler., 443
2.3.2 Digital TV Frontend KABI 447
2.3.2.1 Digital TVFrontend e 447
2.3.2.2 Digital TV Frontend statistics 450

2.4

2.5

2.6

2.7

2.8

2.3.2.3 Digital TV Frontend functionsand types 455

2.3.3 Digital TVDemux KABI e e 468
2.3.3.1 Digital TV Demux i it it e e e e e e e e e 468
2.3.3.2 Demux Callback API i 469
2.3.3.3 Digital TV Demux device registration functions and data structures 469
2.3.3.4 High-level Digital TV demux interface 472
2.3.3.5 Driver-internal low-level hardware specific driver demux interface . 477

2.3.4 Digital TV Conditional AccesskABI 485

2.3.5 Digital TV Network KABI 487

Remote Controller devices 0 i i i it e e e e e 488

2.4.1 Remote Controllercore. ittt 488
2.4.1.1 Remote controller data structures and functions 489

Media Controller devices o i i i i e e e e e e e e e e 495

2.5.1 Media Controller. e e e 495
2.5.1.1 Abstract media devicemodel 495
2.5.1.2 Mediadevice e e e e e e e 496
2.5.1.3 Entities e e e e e e 496
2.5.1.4 Interfaces e e e e 496
2.5.1.5 Pads e e e e e e e e 496
2.5.1.6 Links e e e e e e e e 497
2.5.1.7 Graph traversal e 497
2.5.1.8 Use count and power handling 498
2.5.1.9 Linkssetup e e e e e 498
2.5.1.10Pipelines and media streams 498
2.5.1.11Link validation e 499
2.5.1.12Media Controller Device Allocator API 499
2.5.1.13API Definitions e 500

CEC Kernel Support o e e e e e e e e e e e 533

2.6.1 The CEC Protocol e e e e 533

2.6.2 CEC Adapter Interface 533

2.6.3 Implementing the Low-Level CEC Adapter 534

2.6.4 Implementing the interrupt handler 537

2.6.5 Optional: Implementing Error Injection Support 537

2.6.6 Implementing the High-Level CEC Adapter 538

2.6.7 CEC framework functions e 538

2.6.8 CEC Pinframework e e e 539

2.6.9 CEC Notifier framework ittt 541

Pixel data transmitter and receiverdrivers 543

2.7.1 BUSETYDPES . . . i i e e e e e e e e e e e e e e e e e e e 543
2.7.1.1 MIPICSI-2 e e e e e e e e e e e e e e 543
2.7.1.2 Parallel e e e e 543

2.7.2 Transmitterdrivers e e e 543
2.7.2.1 Mediabuspixelcode e 543
2.7.2.2 Linkfrequency e e e e e e e 543
2.7.2.3 .s stream() callback e 543

2.7.3 CSI-2 transmitterdrivers. e e 544
2.7.3.1 Pixelrate e 544
2.7.3.2 LP-11and LP-111modes i v i i it it et e e e 544
2.7.3.3 Stopping the transmitter 0. 545

Writing camera sensor drivers o i it e e e e e e e e e e e e e 545

2.8.1 CSI-2 and parallel (BT.601 and BT.656) busses 545

iv

2.8.2 Handling clocks e e e e 545

2.8.2.1 ACPI e e e e e 545
2.8.2.2 Devicetree e e e e e e e e e 545
2.8.3 Frame size e e e e e e e e e 546
2.8.3.1 Freely configurable camera sensordrivers. 546
2.8.3.2 Registerlistbaseddrivers., 546
2.8.4 Frame interval configuration, 546
2.8.4.1 Raw CaAmMeEra SENSOTS . . « + v v v v v et e e e e e e e e e e e e 546
2.8.4.2 USB camerasetc. devices i v v i i v i e e e 547
2.8.5 Power management e 547
2.8.5.1 Control framework e 547
2.9 Media driver-specific documentation L L L. 547
2.9.1 VideodLinux (VAL) drivers v i i i e e e e e e e e e 547
2.9.1.1 Thebttvdriver. e e 547
2.9.1.2 Thecpia2 driver i i i e e e e e e e e e e e e e e 550
2.9.1.3 The cx2341xdriver v i i i e e e e e e 551
2.9.1.4 The cx88 driver i i i i ittt e e 621
2.9.1.5 The VPBE V4L2 driverdesign 623
2.9.1.6 The Samsung S5P/EXYNOS4 FIMC driver 624
2.9.1.7 The pvrusb2 driver i e i e 624
2.9.1.8 PXA-Camera Host Driver 628
2.9.1.9 The Radiotrack radiodriver. 631
2.9.1.10The Rockchip Image Signal Processor Driver (rkispl) 633
2.9.1.11The saa7134 driver i i i e it e e e e e e e e 634
2.9.1.12Cropping and Scaling algorithm, used in the sh mobile ceu camera
driver e e e e e e e e e e 636
2.9.1.13Tuner drivers o v v i i e e e e e e e e e e e e e e e 638
2.9.1.14The Virtual Media Controller Driver (vimc) 640
2.9.1.15The Zoran driver @ i i i i it i e i e et e 642
2.9.1.16MIPI CCS camera sensor driver« .o o v v v ... 653
2.9.1.17CCS PLL calculator e 654
2.9.2 Digital TV Arivers i i e e e e e e 658
2.9.2.1 Idea behind the dvb-usb-framework 658
2.9.2.2 Frontend drivers @ i i e e e 664
2.9.2.3 vidtv: Virtual Digital TV driver 678
2.9.2.4 Contributors e e 710
3 Linux Media Infrastructure userspace API 713
3.1 Introduction e e e e e e e 713
3.2 PartI-Video for Linux API @ e e e 715
3.2.1 Common API Elements 715
3.2.1.1 Opening and Closing Devices 715
3.2.1.2 Querying Capabilities 718
3.2.1.3 Application Priority e 719
3.2.1.4 Video Inputsand Outputs 719
3.2.1.5 Audio Inputsand Outputs 720
3.2.1.6 Tuners and Modulators, 722
3.2.1.7 Video Standards e e e e e 723
3.2.1.8 Digital Video (DV) Timings 726
3.2.1.9 User Controls i ittt 726
3.2.1.10Extended Controls API, 733

3.2.1.11Camera Control Reference 736

3.2.1.12Flash Control Reference 744
3.2.1.13Image Source Control Reference. 746
3.2.1.14Image Process Control Reference 747
3.2.1.15Codec Control Reference 748
3.2.1.16Stateless Codec Control Reference 779
3.2.1.17JPEG Control Reference 797
3.2.1.18Digital Video Control Reference 798
3.2.1.19RF Tuner Control Reference 800
3.2.1.20FM Transmitter Control Reference 802
3.2.1.21FM Receiver Control Reference 804
3.2.1.22Detect Control Reference 805
3.2.1.23Colorimetry Control Reference 806
3.2.1.24Guidelines for Video4Linux pixel format 4CCs 806
3.2.1.25Data Formats. e e 807
3.2.1.26Single- and multi-planar APIs Lo oL, 808
3.2.1.27Cropping, composing and scaling - the SELECTION API 809
3.2.1.28Image Cropping, Insertion and Scaling - the CROPAPI 814
3.2.1.29Streaming Parameters L o oL 819
3.2.2 Image Formats e e 820
3.2.2.1 Single-planar format structure, 820
3.2.2.2 Multi-planar format structures 825
3.2.2.3 Standard Image Formats 826
3.2.2.4 Indexed Format e 827
3.2.2.5 RGBFormats e e e 827
3.2.2.6 Raw BayerFormats 830
3.2.2.7 YUV Formats e e e e e e e e e e 837
3.2.2.8 HSVFormats e 851
3.2.2.9 Depth Formats e 851
3.2.2.10Compressed Formats, 853
3.2.2.11SDR Formats e e e e e 856
3.2.2.12Touch Formats e e 860
3.2.2.13Metadata Formats. 861
3.2.2.14Reserved Format Identifiers 945
3.2.2.15C0l0TSPaces i e e e e e e e e e e e e e e e e e e 947
3.2.2.16Defining Colorspaces in VAL2 949
3.2.2.17Detailed Colorspace Descriptions 952
3.2.2.18Detailed Transfer Function Descriptions 960
3.2.3 Input/Output e e e e e e e e 961
3.2.3.1 Read/Write @ i e e e e e e e 961
3.2.3.2 Streaming I/O (Memory Mapping)« . oo v .. 962
3.2.3.3 Streaming I/O (User Pointers) 966
3.2.3.4 Streaming I/O (DMA buffer importing) 968
3.2.3.5 Asynchronous I/O 970
3.2.3.6 Buffers e e e e 970
3.2.3.7 Field Order e e e e e 981
3.2.4 Interfaces e e e e e 983
3.2.4.1 Video Capture Interface 983
3.2.4.2 Video Overlay Interface 986
3.2.4.3 Video Output Interface 990

3.2.4.4 Video Output Overlay Interface 992

3.2.4.5 Video Memory-To-Memory Interface 994

3.2.4.6 Raw VBI DatalInterface 1027
3.2.4.7 Sliced VBI Data Interface 1032
3.2.4.8 Radio Interface e 1039
3.2.4.9 RDS Interface @ @ i i i e 1040
3.2.4.10Software Defined Radio Interface (SDR) 1042
3.2.4.11Touch Devices o v i i i e e e e e e e e e 1043
3.2.4.12Event Interface e 1044
3.2.4.13Sub-device Interface e 1044
3.2.4.14Metadata Interface e 1063
3.2.5 Libv4l Userspace Library, 1064
3.2.5.1 Introduction e e e e e 1064
3.2.6 Changes i i i e e e e e e e e e e e e e 1066
3.2.6.1 Differences between V4L and V4L2 1066
3.2.6.2 Changes of the VAL2 API 1075
3.2.7 Function Reference e 1094
3.2.7.1 VAL2 close() i i i e e e e e 1094
3.2.7.2 VAL2ioctl) e e e 1095
3.2.7.3 ioctl VIDIOC CREATE BUFS 1096
3.2.7.4 ioctl VIDIOC CROPCAP i it i e e e e e e 1099
3.2.7.5 ioctl VIDIOC DBG G CHIP INFO 1101
3.2.7.6 ioctl VIDIOC DBG G REGISTER, VIDIOC DBG S REGISTER 1103
3.2.7.7 ioctl VIDIOC DECODER CMD, VIDIOC TRY DECODER CMD ... 1105
3.2.7.8 ioctl VIDIOC DQEVENT i it 1108
3.2.7.9 ioctl VIDIOC DV TIMINGS CAP, VIDIOC SUBDEV DV TIMINGS CAP1113
3.2.7.10ioctl VIDIOC ENCODER CMD, VIDIOC TRY ENCODER CMD ... 1115
3.2.7.11ioctl VIDIOC ENUMAUDIO i et e et ie e 1118
3.2.7.12ioctl VIDIOC ENUMAUDOUT 1119
3.2.7.13ioctl VIDIOC ENUM DV TIMINGS, VID-

IOC SUBDEV ENUM DV TIMINGS. 1120
3.2.7.14ioctl VIDIOC ENUM FMT i it i e et i 1121
3.2.7.15ioctl VIDIOC ENUM FRAMESIZES 1126
3.2.7.16ioctl VIDIOC ENUM FRAMEINTERVALS 1129
3.2.7.17ioctl VIDIOC ENUM FREQ BANDS 1131
3.2.7.18ioctl VIDIOC ENUMINPUT i, 1134
3.2.7.19ioctl VIDIOC ENUMOUTPUT it it 1137
3.2.7.20ioctl VIDIOC ENUMSTD, VIDIOC SUBDEV ENUMSTD 1139
3.2.7.21ioctl VIDIOC EXPBUF it i e it ie e 1144
3.2.7.22ioctl VIDIOC G AUDIO, VIDIOC S AUDIO. 1146
3.2.7.23ioctl VIDIOC G AUDOUT, VIDIOC S AUDOUT 1148
3.2.7.24ioctl VIDIOC G CROP, VIDIOC S CROP 1149
3.2.7.25ioctl VIDIOC G CTRL, VIDIOC S CTRL 1151
3.2.7.26ioctl VIDIOC G DV TIMINGS, VIDIOC S DV TIMINGS 1152
3.2.7.27ioctl VIDIOC G EDID, VIDIOC S EDID, VIDIOC SUBDEV G EDID,

VIDIOC SUBDEV S EDID ittt ie 1157
3.2.7.28ioctl VIDIOC G ENC INDEX it 1159
3.2.7.29ioctl VIDIOC G EXT CTRLS, VIDIOC S EXT CTRLS, VID-

IOC TRY EXT CTRLS e e i e e e i e 1161
3.2.7.30ioctl VIDIOC G FBUF, VIDIOC S FBUF 1167
3.2.7.31ioctl VIDIOC G FMT, VIDIOC S FMT, VIDIOC TRY FMT 1173
3.2.7.32ioctl VIDIOC G FREQUENCY, VIDIOC S FREQUENCY. 1176

vii

3.2.7.33ioctl VIDIOC G INPUT, VIDIOC S INPUT 1177

3.2.7.34ioctl VIDIOC G JPEGCOMP VIDIOC S JPEGCOMP 1178
3.2.7.35ioctl VIDIOC G MODULATOR, VIDIOC S MODULATOR 1180
3.2.7.36ioctl VIDIOC G OUTPUT, VIDIOC S OUTPUT 1183
3.2.7.37ioctl VIDIOC G PARM, VIDIOC SPARM 1184
3.2.7.38ioctl VIDIOC G PRIORITY, VIDIOC S PRIORITY 1188
3.2.7.39ioctl VIDIOC G SELECTION, VIDIOC S SELECTION 1189
3.2.7.40ioctl VIDIOC G SLICED VBI CAP 1192
3.2.7.41ioctl VIDIOC G STD, VIDIOC S STD, VIDIOC SUBDEV G STD,
VIDIOC SUBDEV S STD it ie i 1194
3.2.7.42ioctl VIDIOC G TUNER, VIDIOC S TUNER 1195
3.2.7.43ioctl VIDIOC LOG STATUS e it e i e 1202
3.2.7.44ioctl VIDIOC OVERLAY i i e et i e 1203
3.2.7.45ioctl VIDIOC PREPARE BUF 1204
3.2.7.46ioctl VIDIOC QBUF, VIDIOC DQBUF 1205
3.2.7.47ioctl VIDIOC QUERYBUF i, 1207
3.2.7.48ioctl VIDIOC QUERYCAP i it ie e 1208
3.2.7.49ioctls VIDIOC QUERYCTRL, VIDIOC QUERY EXT CTRL and VID-
IOC QUERYMENU e e e e e e e e 1213
3.2.7.50ioctl VIDIOC QUERY DV TIMINGS 1221
3.2.7.51ioctl VIDIOC QUERYSTD, VIDIOC SUBDEV QUERYSTD 1222
3.2.7.52ioctl VIDIOC REQBUFS it 1224
3.2.7.53ioctl VIDIOC S HW FREQ SEEK 1226
3.2.7.54ioctl VIDIOC STREAMON, VIDIOC STREAMOFF 1228
3.2.7.55ioctl VIDIOC SUBDEV ENUM FRAME INTERVAL 1230
3.2.7.56ioctl VIDIOC SUBDEV ENUM FRAME SIZE 1231
3.2.7.57ioctl VIDIOC SUBDEV ENUM MBUS CODE 1233
3.2.7.58ioctl VIDIOC SUBDEV G CROP VIDIOC SUBDEV S CROP 1235
3.2.7.59ioctl VIDIOC SUBDEV G FMT, VIDIOC SUBDEV S FMT 1236
3.2.7.60ioctl VIDIOC SUBDEV G FRAME INTERVAL, VID-
IOC SUBDEV S FRAME INTERVAL 1238
3.2.7.61ioctl VIDIOC SUBDEV G SELECTION, VID-
IOC SUBDEV S SELECTION ittt it 1240
3.2.7.62ioctl VIDIOC SUBDEV QUERYCAP 1242
3.2.7.63ioctl VIDIOC SUBSCRIBE EVENT, VIDIOC UNSUBSCRIBE EVENT 1243
3.2.7.64VAL2 mmap() e e e e e e e e e e e e e 1245
3.2.7.65VAL2 munmap()t e e e e e e e e e e e e e e e e e e e 1247
3.2.7.66VAL2 0pen() i i e e e e e e e e e e e e e e e 1248
3.2.7.67VAL2 poll() e e e e e e e e 1249
3.2.7.68V4L2read() e e e e e 1251
3.2.7.69V4L2 select() e e e e e 1252
3.2.7.70VAL2 write() e e e e e e 1254
3.2.8 Common definitions for V4L2 and V4L2 subdev interfaces 1255
3.2.8.1 Common selection definitions 1255
3.2.9 Video For Linux Two Header File 1256
3.2.9.1 videodev2.h e e 1256
3.2.10 Video Capture Example e 1313
3.2.10.1file: media/v4l/capture.c L e 1313
3.2.11 Video Grabber example using libv4l 1325
3.2.11.1file: media/v4l/v4l2grab.c 1325
3.2.12 References i e e e e e e e 1328

viii

3.2.12.1ICEAGO8-E o e 1328

3.2.12.2EN 300 294 o e e e e e e 1328
3.2.12.3ETS 300 231 o e e e e e e e e 1328
3.2.124ETS 300 706 o o i i e e e e e e e e e e e e 1328
3.2.12.5ISO 13818-1 o o e e e e e e e e e 1328
3.2.12.6ISO 13818-2 e e e e e 1328
3.2.12.7ITU BTA70 o e 1329
3.2.12.8ITU BT.601 e e e e e e e e 1329
3.2.12.9ITU BT.653 o ot e e e e e e e e e e e e e e e 1329
3.2.12.10TU BT.709 o e e e e e e e e e 1329
3.2.12.1ITU BT.1119 . . . e e e e e e e e e e e e e e 1329
3.2.12.1PTU-T Rec. H.264 Specification (04/2017 Edition) 1329
3.2.12.1BI'U H.265/HEVC e e e e e e e e e e e 1329
3.2.12.1FFIF e e e e e e e e e e e e e 1330
3.2.12.1BIU-T.81 . . . e o e e e e e e e e e e e e 1330
3.2.12.1W3C JPEG JFIF o e e e e e e e e e e e 1330
3.2.12.13MPTE 12M e e e e e e e e 1330
3.2.12.18MPTE 170M o i e e e e e e e e e e e e e e 1330
3.2.12.19MPTE 240M e e e e e e e e e e e 1330
3.2.12.28MPTE RP 431-2 e e e e e e e e 1330
3.2.12.28MPTE ST 2084 e e e e e 1331
3.2.12.28RGB e e e e e e 1331
3.2.12.28YCC e e e e e e e e e 1331
3.2.12.28VYCC . . L . e e e e e e e e e e e e e 1331
3.2.12.26pRGB e e e e e e e e 1331
3.2.12.2BI'U BT.2020 o o e e e e e e e e e e e e e e e e 1331
3.2.12.2EBU Tech 3213 e e e e 1332
3.2.12.2BBU Tech 3321 e e e e 1332
3.2.12.2BEC 62106 o e e e e e e e e e 1332
3.2.12.30RSC-4-B e e e e 1332
3.2.12.31SO 12232:2006 i i e e e e e e e e e e 1332
3.2.12.3ZEA-861-E e e e 1332
3.2.12.3FESA DMT e e e e e e 1332
3.2.12.3BDID e e e e e e e e 1333
3.2.12.3HDCP e e e e e e e e 1333
3.2.12.3BDMI e e e e e e e e 1333
3.2.12.3ADMI2 . . . e e e e e e e e e 1333
3.2.12.3BP . . . e e e e e e 1333
3.2.12.3Poynton e e e e e e e e e 1333
3.2.12.400limg e e e e e e e e 1334
3.2.124VP8 . L e e e e e e e e e 1334
3.2.12.4YP9 . . L e e e e e e 1334
3.2.13 Revision and Copyright o 1334
3.2.14 Revision History e e e e e 1335
3.3 PartIl-Digital TV APIL. e e e e e e e e e e 1339
3.3.1 Introduction e e e 1339
3.3.1.1 Whatyouneedtoknow 1339
3.3.1.2 History e e e e e e 1340
3.3.1.3 OVEIVIEW . . . o i ittt e e e e e e e e e e e e e e e e e 1340
3.3.1.4 Linux Digital TV Devices i i i i ittt 1341
3.3.1.5 APlinclude files e 1342

3.4

3.3.2 Digital TV Frontend API i 1342

3.3.2.1 Querying frontend information 1343
3.3.2.2 Querying frontend status and statistics 1343
3.3.2.3 Property types e e e e e e e e e 1343
3.3.2.4 Frontend FunctionCalls 1380
3.3.3 Digital TVDemux Device ittt 1391
3.3.3.1 Demux Data Types @ i i i i ittt ittt e e 1392
3.3.3.2 Demux Function Calls 1396
3.3.4 Digital TVCA Device i e e e e e 1415
3.34.1 CADataTypes i v i i i it e e e e e e e e 1415
3.34.2 CAFunction Calls e 1418
3.3.4.3 The Highlevel CTIAPI 1425
3.3.5 Digital TV Network API e e e e e et 1427
3.3.5.1 Digital TVnet FunctionCalls 1428
3.3.6 Digital TV Deprecated APIs, 1431
3.3.6.1 Digital TV Frontend legacy API (a. k. a. DVBv3) 1431
3.3.7 Examples e e e e e e e e 1441
3.3.8 Digital TVuAPI headerfiles 1441
3.3.8.1 Digital TVuAPI headers 1441
3.3.9 Revision and Copyright e 1472
3.3.10 Revision History e e 1473
Part III - Remote Controller APT it i .. 1473
3.4.1 Introduction e e e e e 1473
3.4.2 Remote Controller’ ssysfsnodeso........ 1474
3.4.2.1 /sys/Class/TC/ e e e e e e e e e 1474
3.4.2.2 /[sys/class/TC/TCN/ e e e e e e 1474
3.4.2.3 /sys/class/rc/rcN/protocols oo oL 1474
3.4.2.4 /sys/class/rc/rcN/filter 1474
3.4.2.5 /sys/class/rc/rcN/filter mask 0., 1475
3.4.2.6 /sys/class/rc/rcN/wakeup protocols 1475
3.4.2.7 /sys/class/rc/rcN/wakeup filter, 1475
3.4.2.8 /sys/class/rc/rcN/wakeup filter mask 1475
3.4.3 Remote Controller Protocols and Scancodes 1476
3.4.3.1 rc-5(RC PROTO RC5) ittt e e e e e e e e e 1476
3.4.3.2 rc-5-sz(RC_ PROTO RC5 SZ) i ittt e it 1476
3.4.3.3 rc-5x-20 (RC PROTO RC5X 20) i i i i it i i 1477
3.4.3.4 jvc (RC_ PROTO JVC) o v it et e e e e e e e e e e e 1477
3.4.3.5 sony-12 (RC PROTO SONY12) it 1477
3.4.3.6 sony-15 (RC PROTO SONY15) v i iii i .. 1477
3.4.3.7 sony-20 (RC PROTO SONY20) v v i ittt e i e 1478
3.4.3.8 nec (RC_ PROTO NEC) ittt 1478
3.4.3.9 nec-x (RC_ PROTO NECX) it it 1478
3.4.3.10nec-32 (RC_ PROTO NEC32) 1478
3.4.3.11sanyo (RC PROTO SANYO) i i i v it e i e et e 1479
3.4.3.12mcir2-kbd (RC PROTO MCIR2 KBD) 1479
3.4.3.13mcir2-mse (RC PROTO MCIR2 MSE) 1479
3.4.3.14rc-6-0 (RC PROTO RC6 0) i v ittt e et 1479
3.4.3.15rc-6-6a-20 (RC_ PROTO RC6 6A 20). v v i 1479
3.4.3.16rc-6-6a-24 (RC PROTO RC6 6A 24). i, 1479
3.4.3.17rc-6-6a-32 (RC_ PROTO RC6 6A 32). v, 1479

3.4.3.18rc-6-mce (RC PROTO RC6 MCE) 1480

3.5

3.4.3.19sharp (RC PROTO SHARP) 1480

3.4.3.20xmp (RC PROTO XMP) it i e et e e 1480
3.4.3.21cec (RC PROTO CEC) i ittt i e e e e e e e e 1480
3.4.3.22imon (RC PROTO IMON) it e et 1480
3.4.3.23rc-mm-12 (RC PROTO RCMM12) 1480
3.4.3.24rc-mm-24 (RC PROTO RCMM24) 1480
3.4.3.25rc-mm-32 (RC PROTO RCMM32) i iii i, 1481
3.4.3.26xbox-dvd (RC PROTO XBOX DVD) 1481
3.4.4 Remote controllertables, 1481
3.4.5 Changing default Remote Controller mappings 1484
3.4.5.1 file: vapi/v4l/keytable.c o . 1484
3.4.6 LIRC Device Interface 1488
3.4.6.1 Introduction e e 1488
3.4.6.2 LIRCmoOdes i i ittt it e e e e e e e e e 1488
3.4.6.3 Data types used by LIRC MODE SCANCODE 1489
3.4.6.4 BPFbasedIRdecoder, 1491
3.4.6.5 LIRC Function Reference 1491
3.4.6.6 LIRCHeader File 1506
3.4.7 Revision and Copyright o e 1511
3.4.8 Revision History e e e e 1511
Part IV - Media Controller APT e e e e 1511
3.5.1 Introduction e e 1511
3.5.2 Mediadevicemodel e e 1512
3.5.3 Types and flags used to represent the media graph elements. 1512
3.5.4 Request API. e e e e e e e 1517
3.5.4.1 General Usage i i i i i i ittt e e e e e e 1518
3.5.4.2 Request Allocation 1518
3.5.4.3 Request Preparation 1518
3.5.4.4 Request Submission, 1518
3.5.4.5 Recycling and Destruction. 1519
3.5.4.6 Example fora Codec Device 1519
3.5.4.7 Example for a Simple Capture Device 1521
3.5.5 Function Reference e 1521
3.5.5.1 mediaopen() e e e e e e 1521
3.5.5.2 mediaclose() e e e e e e 1522
3.5.5.3 mediaioctl() e e e e e 1523
3.5.5.4 ioctl MEDIA IOC DEVICE INFO 1524
3.5.5.5 ioctl MEDIA IOC G TOPOLOGY i i it .. 1526
3.5.5.6 ioctl MEDIA IOC ENUM ENTITIES. 1529
3.5.5.7 ioctl MEDIA IOC ENUM LINKS 1531
3.5.5.8 ioctl MEDIA IOC SETUP LINK 1532
3.5.5.9 ioctl MEDIA IOC REQUEST ALLOCo..... 1533
3.5.5.10request close() e e e 1534
3.5.5.11requestioctl() e 1535
3.5.5.12request poll() e e e e 1536
3.5.5.13ioctl MEDIA REQUEST IOC QUEUE 1537
3.5.5.14ioctl MEDIA REQUEST IOC REINIT 1538
3.5.6 Media Controller Header File 1539
3.5.6.1 media.h e e 1539
3.5.7 Revision and Copyright 1548
3.5.8 Revision History e e e 1548

Xi

3.6

Part V - Consumer Electronics Control API 1549

3.6.1 Introduction @ . . e e e e e 1549
3.6.2 Function Reference e 1549
3.6.2.1 cecopen() i e e e e e e e 1549
3.6.2.2 cecclose() i e e e e e e e 1550
3.6.2.3 cecioctl() o e e e e e 1551
3.6.2.4 cecpoll() e e e e e 1552
3.6.2.5 ioctl CEC ADAP G CAPS i 1553

3.6.2.6 ioctls CEC ADAP G LOG ADDRS and CEC ADAP S LOG ADDRS . 1556
3.6.2.7 ioctls CEC ADAP G PHYS ADDR and CEC ADAP S PHYS ADDR . 1561

3.6.2.8 ioctl CEC ADAP G CONNECTOR INFO 1562
3.6.2.9 ioctl CEC DQEVENT it it iie e 1563
3.6.2.10ioctls CEC G MODE and CEC S MODE 1568
3.6.2.11ioctls CEC RECEIVE and CEC TRANSMIT 1573

3.6.3 CEC Pin Framework Error Injection 1579
3.6.3.1 BasicSyntax e e e e 1580
3.6.3.2 Clear Error Injections, 1581
3.6.3.3 Receive Messages o v i i i i i e e e e e e e e e 1581
3.6.3.4 Transmit Messages i i i it it it 1582
3.6.3.5 Custom Pulses e 1583
3.6.4 CECHeaderFile i e it 1584
3.6.4.1 cec.h e e e e 1584

3.6.5 Revision and Copyright 1607
3.6.6 Revision History e e e e 1607
3.7 Generic Error Codes e e e e e e e e e e 1607
3.8 GloSSary i e e e e e e e e e e e e e e e e e e 1608
3.9 GNU Free Documentation License 1610
3.9.1 0. PREAMBLE e e e e e e e 1610
3.9.2 1. APPLICABILITY AND DEFINITIONS 1611
3.9.3 2. VERBATIM COPYING e e e e e e e e e e 1612
3.9.4 3. COPYING IN QUANTITY o e e e e e e e e e 1612
3.9.5 4. MODIFICATIONS e e e e e e e e e e s e e 1612
3.9.6 5. COMBINING DOCUMENTS ittt 1614
3.9.7 6. COLLECTIONS OF DOCUMENTS, 1614
3.9.8 7. AGGREGATION WITH INDEPENDENT WORKS 1614
3.9.9 8. TRANSLATION e e e e e e e e e e s e e 1615
3.9.10 9. TERMINATION e e e e e e e e e e e s e e 1615
3.9.11 10. FUTURE REVISIONS OF THISLICENSE 1615
3.9.12 Addendum e e e e e e e e e e e 1615
3.10 Video4Linux (V4L) driver-specific documentation 1616
3.10.1 MIPI CCS camera sensor driver v v v v v i vt e i e e 1616
3.10.1.1Pixel Array sub-device e 1616
3.10.1.2BInner e e e e e e e e e e e e e e e e 1616
3.10.1.3Scaler e e e e e e e 1617
3.10.1.4Digital and analogue crop 1617
3.10.1.5Private controls e 1617
3.10.2 The cx2341x driver i e e e e e e e e e 1618
3.10.2.1Non-compressed fileformat 1618
3.10.2.2Format of embedded V4L2 MPEG STREAM VBI FMT IVTV VBI datal620
3.10.3 Hantro video decoderdriver. 1621
3.10.4 i.MX Video Capture Driver i it 1621

Xii

3.104.1Eventso 1621

3.10.4.2C0oNntrols e e e e e e e e 1621
3.10.5 Maxim Integrated MAX2175 RF to bits tunerdriver 1623
3.10.5.1v4L2 CID MAX2175 I2S ENABLE 1623
3.10.5.2V4L2 CID MAX2175 HSLS @ . it ettt 1623
3.10.5.3v4L2 CID MAX2175 RX MODE (menu) 1623
3.10.6 Vaio Picturebook Motion Eye Camera Driver 1624
3.10.6.1Private API e e e e e 1624
3.10.7 OMAP 3 Image Signal Processor (ISP) driver 1625
3.10.7.1Events e e e e e e e e e e e e 1625
3.10.7.2Private IOCTLS i it e e e e e e e e e e e e 1625
3.10.7.3CCDC and preview block IOCTLs 1626
3.10.7.4Statistic blocks IOCTLs i ... 1627
3.10.7.5VIDIOC OMAP3ISP STAT EN it 1627
3.10.7.6VIDIOC _OMAP3ISP AEWB CFG, VIDIOC OMAP3ISP HIST CFG
and VIDIOC OMAP3ISP AF CFG 1627
3.10.7.7VIDIOC OMAP3ISP STAT REQ 1628
3.10.7.8References e e e e e e e e 1628
3.10.8 The Linux USB Video Class (UVC) driver 1628
3.10.8.1Extension Unit (XU) support 1628
Index 1633

Xiii

Linux Media Documentation

Copyright © 1991-: LinuxTV Developers

CONTENTS 1

Linux Media Documentation

2 CONTENTS

CHAPTER
ONE

MEDIA SUBSYSTEM ADMIN AND USER GUIDE

This section contains usage information about media subsystem and its supported drivers.
Please see:
Documentation/userspace-api/media/index.rst

» for the userspace APIs used on media devices.
Documentation/driver-api/media/index.rst

* for driver development information and Kernel APIs used by media devices;

1.1 The media subsystem

1.1.1 Introduction

The media subsystem consists on Linux support for several different types of devices:
* Audio and video grabbers;
* PC and Laptop Cameras;
* Complex cameras found on Embedded hardware;
* Analog and digital TV;
e HDMI Customer Electronics Control (CEC);
* Multi-touch input devices;
* Remote Controllers;
* Media encoders and decoders.
Due to the diversity of devices, the subsystem provides several different APIs:
e Remote Controller API;
« HDMI CEC API;
* Video4Linux API;
e Media controller API;
* Video4Linux Request API (experimental);
* Digital TV API (also known as DVB API).

Linux Media Documentation

1.1.2 Building support for a media device
The first step is to download the Kernel’s source code, either via a distribution-specific source
file or via the Kernel’s main git tree!.
Please notice, however, that, if:
* you're a braveheart and want to experiment with new stuff;
* if you want to report a bug;
* if you're developing new patches
you should use the main media development tree master branch:
https://git.linuxtv.org/media tree.git/
In this case, you may find some useful information at the LinuxTv wiki pages:

https://linuxtv.org/wiki/index.php/How to Obtain, Build and Install VAL-DVB
Device Drivers

1.1.2.1 Configuring the Linux Kernel

You can access a menu of Kernel building options with:

$ make menuconfig

Then, select all desired options and exit it, saving the configuration.

The changed configuration will be at the .config file. It would look like:

CONFIG RC CORE is not set

CONFIG _CEC CORE is not set
CONFIG _MEDIA SUPPORT=m
CONFIG_MEDIA SUPPORT_FILTER=y

The media subsystem is controlled by those menu configuration options:

Device Drivers --->
<M> Remote Controller support --->
[] HDMI CEC RC integration
[1 Enable CEC error injection support
[*] HDMI CEC drivers --->
<*> Multimedia support --->

The Remote Controller support option enables the core support for remote controllers?.

The HDMI CEC RC integration option enables integration of HDMI CEC with Linux, allowing
to receive data via HDMI CEC as if it were produced by a remote controller directly connected
to the machine.

! The upstream Linux Kernel development tree is located at

https://git.kernel.org/pub/scm/li nux/kernel/git/torvalds/linux.git/

2 Remote Controller support should also be enabled if you want to use some TV card drivers that may depend
on the remote controller core support.

4 Chapter 1. Media subsystem admin and user guide

https://git.linuxtv.org/media_tree.git/
https://linuxtv.org/wiki
https://linuxtv.org/wiki/index.php/How_to_Obtain,_Build_and_Install_V4L-DVB_Device_Drivers
https://linuxtv.org/wiki/index.php/How_to_Obtain,_Build_and_Install_V4L-DVB_Device_Drivers
https://git.kernel.org/pub/scm/li

Linux Media Documentation

The HDMI CEC drivers option allow selecting platform and USB drivers that receives and/or
transmits CEC codes via HDMI interfaces?.

The last option (Multimedia support) enables support for cameras, audio/video grabbers and
TV.

The media subsystem support can either be built together with the main Kernel or as a module.
For most use cases, it is preferred to have it built as modules.

Note: Instead of using a menu, the Kernel provides a script with allows enabling configuration
options directly. To enable media support and remote controller support using Kernel modules,
you could use:

$ scripts/config -m RC_CORE
$ scripts/config -m MEDIA SUPPORT

Media dependencies

It should be noticed that enabling the above from a clean config is usually not enough. The
media subsystem depends on several other Linux core support in order to work.

For example, most media devices use a serial communication bus in order to talk with some
peripherals. Such bus is called I2C (Inter-Integrated Circuit). In order to be able to build
support for such hardware, the I2C bus support should be enabled, either via menu or with:

./scripts/config -m I2C

Another example: the remote controller core requires support for input devices, with can be
enabled with:

./scripts/config -m INPUT

Other core functionality may also be needed (like PCI and/or USB support), depending on the
specific driver(s) you would like to enable.

Enabling Remote Controller Support

The remote controller menu allows selecting drivers for specific devices. It’s menu looks like
this:

--- Remote Controller support
<M> Compile Remote Controller keymap modules
[*] LIRC user interface

[*] Support for eBPF programs attached to lirc devices
[*] Remote controller decoders --->
[*] Remote Controller devices --->

3 Please notice that the DRM subsystem also have drivers for GPUs that use the media HDMI CEC support.
Those GPU-specific drivers are selected via the Graphics support menu, under Device Drivers.
When a GPU driver supports HDMI CEC, it will automatically enable the CEC core support at the media subsystem.

1.1. The media subsystem 5

Linux Media Documentation

The Compile Remote Controller keymap modules option creates key maps for several popu-
lar remote controllers.

The LIRC user interface option adds enhanced functionality when using the lirc program,
by enabling an API that allows userspace to receive raw data from remote controllers.

The Support for eBPF programs attached to lirc devices option allows the usage of spe-
cial programs (called eBPF) that would allow aplications to add extra remote controller decod-
ing functionality to the Linux Kernel.

The Remote controller decoders option allows selecting the protocols that will be recognized
by the Linux Kernel. Except if you want to disable some specific decoder, it is suggested to keep
all sub-options enabled.

The Remote Controller devices allows you to select the drivers that would be needed to sup-
port your device.

The same configuration can also be set via the script/config script. So, for instance, in or-
der to support the ITE remote controller driver (found on Intel NUCs and on some ASUS x86
desktops), you could do:

scripts/config -e INPUT
scripts/config -e ACPI
scripts/config -e MODULES
scripts/config -m RC CORE
scripts/config -e RC DEVICES
scripts/config -e RC _DECODERS
scripts/config -m IR RC5 DECODER
scripts/config -m IR ITE CIR

A A A A A A A

Enabling HDMI CEC Support

The HDMI CEC support is set automatically when a driver requires it. So, all you need to do
is to enable support either for a graphics card that needs it or by one of the existing HDMI
drivers.

The HDMI-specific drivers are available at the HDMI CEC drivers menu®:

-- HDMI CEC drivers
> ChromeOS EC CEC driver
Amlogic Meson A0 CEC driver
Amlogic Meson G12A A0 CEC driver
Generic GPIO-based CEC driver
Samsung S5P CEC driver
STMicroelectronics STiH4xx HDMI CEC driver
STMicroelectronics STM32 HDMI CEC driver
Tegra HDMI CEC driver
SECO Boards HDMI CEC driver
SECO Boards IR RC5 support
Pulse Eight HDMI CEC
RainShadow Tech HDMI CEC

ANN—ANANNANNMANANNANANNAN
VV—VVVVVYVVYV

4 The above contents is just an example. The actual options for HDMI devices depends on the system’s architec-
ture and may vary on new Kernels.

6 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Enabling Media Support

The Media menu has a lot more options than the remote controller menu. Once selected, you
should see the following options:

--- Media support
[1 Filter media drivers
[*] Autoselect ancillary drivers

Media device types --->
Media core support --->
Video4Linux options --->
Media controller options --->

Digital TV options --->

HDMI CEC options --->

Media drivers --->

Media ancillary drivers --->

Except if you know exactly what you’'re doing, or if you want to build a driver for a SoC platform,
it is strongly recommended to keep the Autoselect ancillary drivers option turned on, as
it will auto-select the needed I?C ancillary drivers.

There are now two ways to select media device drivers, as described below.

Filter media drivers menu

This menu is meant to easy setup for PC and Laptop hardware. It works by letting the user to
specify what kind of media drivers are desired, with those options:

Cameras and video grabbers

Analog TV

Digital TV

AM/FM radio receivers/transmitters
Software defined radio
Platform-specific devices

Test drivers

— e, —,—
[y S S S By S S [_—)

So, if you want to add support to a camera or video grabber only, select just the first option.
Multiple options are allowed.

Once the options on this menu are selected, the building system will auto-select the needed
core drivers in order to support the selected functionality.

Note: Most TV cards are hybrid: they support both Analog TV and Digital TV.

If you have an hybrid card, you may need to enable both Analog TV and Digital TV at the
menu.

When using this option, the defaults for the media support core functionality are usually good
enough to provide the basic functionality for the driver. Yet, you could manually enable some de-
sired extra (optional) functionality using the settings under each of the following Media support
sub-menus:

1.1. The media subsystem 7

Linux Media Documentation

Media core support --->
Video4Linux options --->
Media controller options --->

Digital TV options --->
HDMI CEC options --->

Once you select the desired filters, the drivers that matches the filtering criteria will be available
at the Media support->Media drivers sub-menu.

Media Core Support menu without filtering

If you disable the Filter media drivers menu, all drivers available for your system whose
dependencies are met should be shown at the Media drivers menu.

Please notice, however, that you should first ensure that the Media Core Support menu has all
the core functionality your drivers would need, as otherwise the corresponding device drivers
won’t be shown.

Example

In order to enable modular support for one of the boards listed on this table, with modular
media core modules, the .config file should contain those lines:

CONFIG_MODULES=y

CONFIG_USB=y

CONFIG_I2C=y

CONFIG INPUT=y

CONFIG_RC_CORE=m

CONFIG_MEDIA SUPPORT=m
CONFIG_MEDIA SUPPORT FILTER=y
CONFIG_MEDIA ANALOG TV SUPPORT=y
CONFIG_MEDIA DIGITAL TV SUPPORT=y
CONFIG MEDIA USB_SUPPORT=y
CONFIG_VIDEO CX231XX=y
CONFIG_VIDEO CX231XX DVB=y

1.1.2.2 Building and installing a new Kernel

Once the .config file has everything needed, all it takes to build is to run the make command:

$ make

And then install the new Kernel and its modules:

$ sudo make modules install
$ sudo make install

8 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

1.1.2.3 Building just the new media drivers and core

Running a new development Kernel from the development tree is usually risky, because it may
have experimental changes that may have bugs. So, there are some ways to build just the new
drivers, using alternative trees.

There is the Linux Kernel backports project, with contains newer drivers meant to be compiled
against stable Kernels.

The LinuxTV developers, with are responsible for maintaining the media subsystem also main-
tains a backport tree, with just the media drivers daily updated from the newest kernel. Such
tree is available at:

https://git.linuxtv.org/media_build.git/

It should be noticed that, while it should be relatively safe to use the media build tree for
testing purposes, there are not warranties that it would work (or even build) on a random
Kernel. This tree is maintained using a “best-efforts” principle, as time permits us to fix issues
there.

If you notice anything wrong on it, feel free to submit patches at the Linux media subsystem’s
mailing list: media@vger.kernel.org. Please add [PATCH media-build] at the e-mail’s subject
if you submit a new patch for the media-build.

Before using it, you should run:

$./build

Note:
1) you may need to run it twice if the media-build tree gets updated;

2) you may need to do a make distclean if you had built it in the past for a different Kernel
version than the one you’re currently using;

3) by default, it will use the same config options for media as the ones defined on the Kernel
you're running.

In order to select different drivers or different config options, use:

$ make menuconfig

Then, you can build and install the new drivers:

$ make && sudo make install

This will override the previous media drivers that your Kernel were using.

1.1. The media subsystem 9

https://backports.wiki.kernel.org/index.php/Main_Page
https://git.linuxtv.org/media_build.git/
mailto:media@vger.kernel.org

Linux Media Documentation

1.1.3 Infrared remote control support in video4linux drivers

Authors: Gerd Hoffmann, Mauro Carvalho Chehab

1.1.3.1 Basics

Most analog and digital TV boards support remote controllers. Several of them have a micro-
processor that receives the IR carriers, convert into pulse/space sequences and then to scan
codes, returning such codes to userspace (“scancode mode”). Other boards return just the
pulse/space sequences (“raw mode”).

The support for remote controller in scancode mode is provided by the standard Linux input
layer. The support for raw mode is provided via LIRC.

In order to check the support and test it, it is suggested to download the v4l-utils. It provides
two tools to handle remote controllers:

* ir-keytable: provides a way to query the remote controller, list the protocols it supports,
enable in-kernel support for IR decoder or switch the protocol and to test the reception of
scan codes;

* ir-ctl: provide tools to handle remote controllers that support raw mode via LIRC interface.

Usually, the remote controller module is auto-loaded when the TV card is detected. However,
for a few devices, you need to manually load the ir-kbd-i2c module.

1.1.3.2 How it works

The modules register the remote as keyboard within the linux input layer, i.e. you’ll see the
keys of the remote as normal key strokes (if CONFIG INPUT KEYBOARD is enabled).

Using the event devices (CONFIG INPUT EVDEV) it is possible for applications to access the
remote via /dev/input/event<n> devices. The udev/systemd will automatically create the de-
vices. If you install the v4l-utils, it may also automatically load a different keytable than the
default one. Please see v4l-utils ir-keytable.1 man page for details.

The ir-keytable tool is nice for trouble shooting, i.e. to check whenever the input device is
really present, which of the devices it is, check whenever pressing keys on the remote actually
generates events and the like. You can also use any other input utility that changes the keymaps,
like the input kbd utility.

Using with lircd

The latest versions of the lircd daemon supports reading events from the linux input layer (via
event device). It also supports receiving IR codes in lirc mode.

10 Chapter 1. Media subsystem admin and user guide

https://git.linuxtv.org/v4l-utils.git/
https://git.linuxtv.org/v4l-utils.git/
https://git.linuxtv.org/v4l-utils.git/

Linux Media Documentation

Using without lircd

Xorg recognizes several IR keycodes that have its numerical value lower than 247. With the
advent of Wayland, the input driver got updated too, and should now accept all keycodes. Yet,
you may want to just reassign the keycodes to something that your favorite media application
likes.

This can be done by setting v4l-utils to load your own keytable in runtime. Please read ir-
keytable.1 man page for details.

1.1.4 Digital TV

1.1.4.1 Using the Digital TV Framework

Introduction

One significant difference between Digital TV and Analogue TV that the unwary (like myself)
should consider is that, although the component structure of DVB-T cards are substantially
similar to Analogue TV cards, they function in substantially different ways.

The purpose of an Analogue TV is to receive and display an Analogue Television signal. An Ana-
logue TV signal (otherwise known as composite video) is an analogue encoding of a sequence
of image frames (25 frames per second in Europe) rasterised using an interlacing technique.
Interlacing takes two fields to represent one frame. Therefore, an Analogue TV card for a PC
has the following purpose:

* Tune the receiver to receive a broadcast signal
* demodulate the broadcast signal

* demultiplex the analogue video signal and analogue audio signal.

Note: some countries employ a digital audio signal embedded within the modulated
composite analogue signal - using NICAM signaling.)

 digitize the analogue video signal and make the resulting datastream available to the data
bus.

The digital datastream from an Analogue TV card is generated by circuitry on the card and is
often presented uncompressed. For a PAL TV signal encoded at a resolution of 768x576 24-
bit color pixels over 25 frames per second - a fair amount of data is generated and must be
processed by the PC before it can be displayed on the video monitor screen. Some Analogue
TV cards for PCs have onboard MPEG2 encoders which permit the raw digital data stream to
be presented to the PC in an encoded and compressed form - similar to the form that is used in
Digital TV.

The purpose of a simple budget digital TV card (DVB-T,C or S) is to simply:

* Tune the received to receive a broadcast signal. * Extract the encoded digital datastream
from the broadcast signal.

* Make the encoded digital datastream (MPEGZ2) available to the data bus.

1.1. The media subsystem 11

https://git.linuxtv.org/v4l-utils.git/

Linux Media Documentation

The significant difference between the two is that the tuner on the analogue TV card spits out
an Analogue signal, whereas the tuner on the digital TV card spits out a compressed encoded
digital datastream. As the signal is already digitised, it is trivial to pass this datastream to the
PC databus with minimal additional processing and then extract the digital video and audio
datastreams passing them to the appropriate software or hardware for decoding and viewing.

Getting the card going

The Device Driver API for DVB under Linux will the following device nodes via the devfs filesys-
tem:

* /dev/dvb/adapter0/demux0
* /dev/dvb/adapter0/dvr0
* /dev/dvb/adapter0Q/frontendQ

The /dev/dvb/adapter0/dvr0 device node is used to read the MPEG2 Data Stream and the
/dev/dvb/adapter0/frontend® device node is used to tune the frontend tuner module. The
/dev/dvb/adapter0/demux0 is used to control what programs will be received.

Depending on the card’s feature set, the Device Driver API could also expose other device
nodes:

* /dev/dvb/adapter0/ca0
/dev/dvb/adapterO/audio0
/dev/dvb/adapter0/net0
/dev/dvb/adapter0/osd0
/dev/dvb/adapter0/videoO

The /dev/dvb/adapter0/ca0 is used to decode encrypted channels. The other device nodes
are found only on devices that use the av7110 driver, with is now obsoleted, together with the
extra API whose such devices use.

Receiving a digital TV channel

This section attempts to explain how it works and how this affects the configuration of a Digital
TV card.

On this example, we’re considering tuning into DVB-T channels in Australia, at the Melbourne
region.

The frequencies broadcast by Mount Dandenong transmitters are, currently:

Table 1. Transponder Frequencies Mount Dandenong, Vic, Aus.

12 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Broadcaster | Frequency

Seven 177.500 Mhz
SBS 184.500 Mhz
Nine 191.625 Mhz
Ten 219.500 Mhz
ABC 226.500 Mhz
Channel 31 | 557.625 Mhz

The digital TV Scan utilities (like dvbv5-scan) have use a set of compiled-in defaults for various
countries and regions. Those are currently provided as a separate package, called dtv-scan-
tables. It’s git tree is located at LinuxTV.org:

https://git.linuxtv.org/dtv-scan-tables.git/

If none of the tables there suit, you can specify a data file on the command line which contains
the transponder frequencies. Here is a sample file for the above channel transponders, in the
old “channel” format:

Data file for DVB scan program

C Frequency SymbolRate FEC QAM
S Frequency Polarisation SymbolRate FEC
T Frequency Bandwidth FEC FEC2 QAM Mode Guard Hier

H R HHH®

177500000
184500000
191625000
219500000
226500000
557625000

7MHz
7MHz
7MHz
7MHz
7MHz
7MHz

AUTO
AUTO
AUTO
AUTO
AUTO
AUTO

AUTO
AUTO
AUTO
AUTO
AUTO
AUTO

QAM64 8k 1/16 NONE
QAM64 8k 1/8 NONE
QAM64 8k 1/16 NONE
QAM64 8k 1/16 NONE
QAM64 8k 1/16 NONE
QPSK 8k 1/16 NONE

B

Nowadays, we prefer to use a newer format, with is more verbose and easier to understand.
With the new format, the “Seven” channel transponder’s data is represented by:

[Seven]
DELIVERY SYSTEM = DVBT
FREQUENCY = 177500000

BANDWIDTH HZ = 7000000
CODE_RATE_HP = AUTO
CODE_RATE_LP = AUTO
MODULATION = QAM/64

TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/16
HIERARCHY = NONE
INVERSION = AUTO

For an updated version of the complete table, please see:
https://git.linuxtv.org/dtv-scan-tables.git/tree/dvb-t/au-Melbourne

When the Digital TV scanning utility runs, it will output a file containing the information for
all the audio and video programs that exists into each channel’s transponders which the card’s
frontend can lock onto. (i.e. any whose signal is strong enough at your antenna).

Here’s the output of the dvbv5 tools from a channel scan took from Melburne:

1.1. The media subsystem 13

https://git.linuxtv.org/dtv-scan-tables.git/
https://git.linuxtv.org/dtv-scan-tables.git/tree/dvb-t/au-Melbourne

Linux Media Documentation

[ABC HDTV]
SERVICE ID = 560
VIDEO PID = 2307

AUDIO PID = 0

DELIVERY SYSTEM = DVBT
FREQUENCY = 226500000
INVERSION = OFF
BANDWIDTH HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 3/4
MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/16
HIERARCHY = NONE

[ABC TV Melbourne]
SERVICE ID = 561
VIDEO PID = 512
AUDIO PID = 650
DELIVERY SYSTEM = DVBT
FREQUENCY = 226500000
INVERSION = OFF

BANDWIDTH HZ = 7000000
CODE_RATE HP = 3/4
CODE_RATE LP = 3/4

MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/16
HIERARCHY = NONE

[ABC TV 2]
SERVICE ID = 562
VIDEO PID = 512
AUDIO PID = 650
DELIVERY_ SYSTEM = DVBT
FREQUENCY = 226500000
INVERSION = OFF

BANDWIDTH HZ = 7000000
CODE_RATE HP = 3/4
CODE_RATE LP = 3/4

MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/16
HIERARCHY = NONE

[ABC TV 3]
SERVICE ID = 563
VIDEO PID = 512
AUDIO PID = 650

DELIVERY SYSTEM = DVBT
FREQUENCY = 226500000
INVERSION = OFF

BANDWIDTH HZ = 7000000
CODE_RATE _HP = 3/4
CODE_RATE LP = 3/4

MODULATION = QAM/64
TRANSMISSION MODE = 8K

14

Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

GUARD INTERVAL = 1/16
HIERARCHY = NONE

[ABC TV 4]
SERVICE ID = 564
VIDEO PID = 512

AUDIO PID = 650
DELIVERY SYSTEM = DVBT
FREQUENCY = 226500000
INVERSION = OFF
BANDWIDTH HZ = 7000000
CODE_RATE HP = 3/4
CODE_RATE LP = 3/4
MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/16
HIERARCHY = NONE

[ABC DiG Radio]
SERVICE ID = 566
VIDEO PID 0
AUDIO PID = 2311
DELIVERY SYSTEM = DVBT
FREQUENCY = 226500000
INVERSION = OFF

BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 3/4

MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/16
HIERARCHY = NONE

[TEN Digital]
SERVICE ID = 1585
VIDEO PID = 512
AUDIO PID = 650
DELIVERY SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF

BANDWIDTH _HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2

MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/16
HIERARCHY = NONE

[TEN Digital 1]
SERVICE ID = 1586
VIDEO PID = 512
AUDIO PID = 650
DELIVERY SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH HZ
CODE_RATE_HP

7000000
3/4

1.1. The media subsystem

15

Linux Media Documentation

CODE_RATE LP = 1/2
MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/16
HIERARCHY = NONE

[TEN Digital 2]

SERVICE ID = 1587

VIDEO PID = 512

AUDIO PID = 650
DELIVERY SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF

BANDWIDTH HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/16
HIERARCHY = NONE

[TEN Digital 3]

SERVICE ID = 1588
VIDEO PID = 512

AUDIO PID = 650
DELIVERY SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/16
HIERARCHY = NONE

[TEN Digital]

SERVICE ID = 1589
VIDEO PID = 512

AUDIO PID = 650
DELIVERY SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH HZ = 7000000
CODE_RATE HP = 3/4
CODE_RATE LP = 1/2
MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/16
HIERARCHY = NONE

[TEN Digital 4]

SERVICE_ID = 1590
VIDEO PID = 512

AUDIO PID = 650
DELIVERY SYSTEM = DVBT
FREQUENCY = 219500000

16

Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

INVERSION = OFF

BANDWIDTH HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2

MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/16
HIERARCHY = NONE

[TEN Digital]
SERVICE ID = 1591
VIDEO PID 512
AUDIO PID 650
DELIVERY SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF

BANDWIDTH HZ = 7000000
CODE_RATE HP = 3/4
CODE_RATE LP = 1/2

MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/16
HIERARCHY = NONE

[TEN HD]
SERVICE ID = 1592
VIDEO PID = 514
AUDIO PID = 0
DELIVERY SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF

BANDWIDTH HZ = 7000000
CODE_RATE HP = 3/4
CODE_RATE LP = 1/2
MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/16
HIERARCHY = NONE

[TEN Digital]
SERVICE ID = 1593
VIDEO PID = 512
AUDIO PID = 650
DELIVERY SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH HZ = 7000000
CODE_RATE HP = 3/4
CODE_RATE LP = 1/2
MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/16
HIERARCHY = NONE

[Nine Digitall]
SERVICE _ID = 1072
VIDEO PID = 513

1.1. The media subsystem 17

Linux Media Documentation

AUDIO PID = 660
DELIVERY SYSTEM = DVBT
FREQUENCY = 191625000
INVERSION = OFF

BANDWIDTH HZ = 7000000
CODE_RATE HP = 3/4
CODE_RATE LP = 1/2

MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/16
HIERARCHY = NONE

[Nine Digital HD]

SERVICE _ID = 1073
VIDEO PID = 512

AUDIO PID = 0

DELIVERY SYSTEM = DVBT
FREQUENCY = 191625000
INVERSION = OFF

BANDWIDTH HZ = 7000000
CODE_RATE HP = 3/4
CODE_RATE LP = 1/2

MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/16
HIERARCHY = NONE

[Nine Guide]

SERVICE ID = 1074
VIDEO PID = 514

AUDIO PID = 670
DELIVERY SYSTEM = DVBT
FREQUENCY = 191625000
INVERSION = OFF

BANDWIDTH HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2

MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/16
HIERARCHY = NONE

[7 Digital]

SERVICE ID = 1328
VIDEO PID = 769

AUDIO PID = 770
DELIVERY SYSTEM = DVBT
FREQUENCY = 177500000
INVERSION = OFF
BANDWIDTH HZ = 7000000
CODE_RATE HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/8
HIERARCHY = NONE

18

Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

[7 Digital 1]
SERVICE ID = 1329
VIDEO PID = 769
AUDIO PID = 770
DELIVERY SYSTEM = DVBT
FREQUENCY = 177500000
INVERSION = OFF
BANDWIDTH HZ = 7000000
CODE_RATE HP = 2/3
CODE_RATE LP = 2/3
MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/8
HIERARCHY = NONE

[7 Digital 2]
SERVICE ID = 1330
VIDEO PID = 769
AUDIO PID = 770
DELIVERY SYSTEM = DVBT
FREQUENCY = 177500000
INVERSION = OFF

BANDWIDTH HZ = 7000000
CODE_RATE HP = 2/3
CODE_RATE LP = 2/3

MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/8
HIERARCHY = NONE

[7 Digital 3]
SERVICE ID = 1331
VIDEO PID = 769
AUDIO PID = 770
DELIVERY SYSTEM = DVBT
FREQUENCY = 177500000
INVERSION = OFF

BANDWIDTH HZ = 7000000
CODE_RATE HP = 2/3
CODE_RATE LP = 2/3

MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/8
HIERARCHY = NONE

[7 HD Digital]
SERVICE ID = 1332
VIDEO PID 833
AUDIO PID 834
DELIVERY SYSTEM = DVBT
FREQUENCY = 177500000
INVERSION = OFF

BANDWIDTH HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE LP = 2/3

MODULATION = QAM/64
TRANSMISSION MODE = 8K

1.1. The media subsystem

19

Linux Media Documentation

GUARD INTERVAL = 1/8
HIERARCHY = NONE

[7 Program Guide]

[SBS HD]

SERVICE ID = 1334
VIDEO PID = 865

AUDIO PID = 866
DELIVERY SYSTEM = DVBT
FREQUENCY = 177500000
INVERSION = OFF
BANDWIDTH HZ = 7000000
CODE_RATE HP = 2/3
CODE_RATE LP = 2/3
MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/8
HIERARCHY = NONE

SERVICE ID = 784

VIDEO PID = 102

AUDIO PID = 103
DELIVERY SYSTEM = DVBT
FREQUENCY = 536500000
INVERSION = OFF

BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3

MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/8
HIERARCHY = NONE

[SBS DIGITAL 1]

SERVICE ID = 785

VIDEO PID = 161

AUDIO PID = 81
DELIVERY SYSTEM = DVBT
FREQUENCY = 536500000
INVERSION = OFF

BANDWIDTH _HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3

MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/8
HIERARCHY = NONE

[SBS DIGITAL 2]

SERVICE ID = 786

VIDEO PID = 162

AUDIO PID = 83
DELIVERY SYSTEM = DVBT
FREQUENCY = 536500000
INVERSION = OFF
BANDWIDTH HZ
CODE_RATE_HP

7000000
2/3

20

Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

CODE_RATE LP = 2/3
MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/8
HIERARCHY = NONE

[SBS EPG]
SERVICE ID = 787
VIDEO PID = 163
AUDIO PID = 85
DELIVERY SYSTEM = DVBT
FREQUENCY = 536500000
INVERSION = OFF

BANDWIDTH HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/8
HIERARCHY = NONE

[SBS RADIO 1]
SERVICE ID = 798
VIDEO PID = 0
AUDIO PID = 201
DELIVERY SYSTEM = DVBT
FREQUENCY = 536500000
INVERSION = OFF
BANDWIDTH HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/8
HIERARCHY = NONE

[SBS RADIO 2]
SERVICE ID = 799
VIDEO PID = 0
AUDIO PID = 202
DELIVERY SYSTEM = DVBT
FREQUENCY = 536500000
INVERSION = OFF
BANDWIDTH HZ = 7000000
CODE_RATE HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION MODE = 8K
GUARD INTERVAL = 1/8
HIERARCHY = NONE

1.1. The media subsystem

21

Linux Media Documentation

1.1.4.2 Digital TV Conditional Access Interface

Note: This documentation is outdated.

This document describes the usage of the high level CI API as in accordance to the Linux DVB
API. This is a not a documentation for the, existing low level CI API.

Note: For the Twinhan/Twinhan clones, the dst ca module handles the CI hardware handling.
This module is loaded automatically if a CI (Common Interface, that holds the CAM (Conditional
Access Module) is detected.

ca_zap

A userspace application, like ca zap is required to handle encrypted MPEG-TS streams.

The ca_ zap userland application is in charge of sending the descrambling related information
to the Conditional Access Module (CAM).

This application requires the following to function properly as of now.
a) Tune to a valid channel, with szap.
eg: $ szap -c channels.conf -r “TMC” -x
b) a channels.conf containing a valid PMT PID
eg: TMC:11996:h:0:27500:278:512:650:321
here 278 is a valid PMT PID. the rest of the values are the same ones that szap uses.
c) after running a szap, you have to run ca zap, for the descrambler to function,
eg: $ ca zap channels.conf “TMC”

d) Hopefully enjoy your favourite subscribed channel as you do with a FTA card.

Note: Currently ca zap, and dst test, both are meant for demonstration purposes only, they
can become full fledged applications if necessary.

Cards that fall in this category

At present the cards that fall in this category are the Twinhan and its clones, these cards are
available as VVMER, Tomato, Hercules, Orange and so on.

22 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Cl modules that are supported

The CI module support is largely dependent upon the firmware on the cards Some cards do
support almost all of the available CI modules. There is nothing much that can be done in order
to make additional CI modules working with these cards.

Modules that have been tested by this driver at present are
(1) Irdeto 1 and 2 from SCM
(2) Viaccess from SCM

(3) Dragoncam

1.1.4.3 FAQ

Note:

1. With Digital TV, a single physical channel may have different contents inside it. The specs
call each one as a service. This is what a TV user would call “channel”. So, in order to avoid
confusion, we’re calling transponders as the physical channel on this FAQ, and services for
the logical channel.

2. The LinuxTV community maintains some Wiki pages with contain a lot of information re-
lated to the media subsystem. If you don’t find an answer for your needs here, it is likely
that you’ll be able to get something useful there. It is hosted at:

https://www.linuxtv.org/wiki/

Some very frequently asked questions about Linux Digital TV support
1. The signal seems to die a few seconds after tuning.

It’s not a bug, it's a feature. Because the frontends have significant power re-
quirements (and hence get very hot), they are powered down if they are un-
used (i.e. if the frontend device is closed). The dvb-core module parameter
dvb shutdown timeout allow you to change the timeout (default 5 seconds). Set-
ting the timeout to O disables the timeout feature.

2. How can I watch TV?

Together with the Linux Kernel, the Digital TV developers support some sim-
ple utilities which are mainly intended for testing and to demonstrate how the
DVB API works. This is called DVB v5 tools and are grouped together with the
v41l-utils git repository:

https://git.linuxtv.org/v4l-utils.git/
You can find more information at the LinuxTV wiki:
https://www.linuxtv.org/wiki/index.php/DVBv5 Tools
The first step is to get a list of services that are transmitted.

This is done by using several existing tools. You can use for example the
dvbv5-scan tool. You can find more information about it at:

1.1. The media subsystem 23

https://www.linuxtv.org/wiki/
https://git.linuxtv.org/v4l-utils.git/
https://www.linuxtv.org/wiki/index.php/DVBv5_Tools

Linux Media Documentation

https://www.linuxtv.org/wiki/index.php/Dvbv5-scan

There are some other applications like w_scan1 that do a blind scan, trying hard
to find all possible channels, but those consumes a large amount of time to run.

Also, some applications like kaffeine have their own code to scan for services.
So, you don’t need to use an external application to obtain such list.

Most of such tools need a file containing a list of channel transponders avail-
able on your area. So, LinuxTV developers maintain tables of Digital TV channel
transponders, receiving patches from the community to keep them updated.

This list is hosted at:
https://git.linuxtv.org/dtv-scan-tables.git
And packaged on several distributions.

Kaffeine has some blind scan support for some terrestrial standards. It also relies
on DTV scan tables, although it contains a copy of it internally (and, if requested
by the user, it will download newer versions of it).

If you are lucky you can just use one of the supplied channel transponders. If not,
you may need to seek for such info at the Internet and create a new file. There are
several sites with contains physical channel lists. For cable and satellite, usually
knowing how to tune into a single channel is enough for the scanning tool to
identify the other channels. On some places, this could also work for terrestrial
transmissions.

Once you have a transponders list, you need to generate a services list with a tool
like dvbv5-scan.

Almost all modern Digital TV cards don’t have built-in hardware MPEG-decoders.
So, it is up to the application to get a MPEG-TS stream provided by the board,
split it into audio, video and other data and decode.

3. Which Digital TV applications exist?

Several media player applications are capable of tuning into digital TV channels,
including Kaffeine, Vlc, mplayer and MythTV.

Kaffeine aims to be very user-friendly, and it is maintained by one of the Kernel
driver developers.

A comprehensive list of those and other apps can be found at:
https://www.linuxtv.org/wiki/index.php/TV_Related Software
Some of the most popular ones are linked below:

https://kde.org/applications/multimedia/org.kde.kaffeine KDE media
player, focused on Digital TV support

https://www.linuxtv.org/vdrwiki/index.php/Main_Page Klaus Schmidinger’s
Video Disk Recorder

https://linuxtv.org/downloads and https://git.linuxtv.org/ Digital TV and
other media-related applications and Kernel drivers. The v41l-utils package
there contains several swiss knife tools for using with Digital TV.

! https://www.linuxtv.org/wiki/index.php/W_scan

24 Chapter 1. Media subsystem admin and user guide

https://www.linuxtv.org/wiki/index.php/Dvbv5-scan
https://git.linuxtv.org/dtv-scan-tables.git
https://www.linuxtv.org/wiki/index.php/TV_Related_Software
https://kde.org/applications/multimedia/org.kde.kaffeine
https://www.linuxtv.org/vdrwiki/index.php/Main_Page
https://linuxtv.org/downloads
https://git.linuxtv.org/
https://www.linuxtv.org/wiki/index.php/W_scan

Linux Media Documentation

http://sourceforge.net/projects/dvbtools/ Dave Chapman’s dvbtools package,
including dvbstream and dvbtune

http://www.dbox2.info/ LinuxDVB on the dBox2

http://www.tuxbox.org/ the TuxBox CVS many interesting DVB applications and
the dBox2 DVB source

http://www.nenie.org/misc/mpsys/ MPSYS: a MPEG2 system library and tools
https://www.videolan.org/vlc/index.pt.html Vic

http://mplayerhq.hu/ MPlayer

http://xine.sourceforge.net/ and http://xinehq.de/ Xine
http://www.mythtv.org/ MythTV - analog TV and digital TV PVR

http://dvbsnoop.sourceforge.net/ DVB sniffer program to monitor, analyze,
debug, dump or view dvb/mpeg/dsm-cc/mhp stream information (TS, PES,
SECTION)

4. Can’t get a signal tuned correctly

That could be due to a lot of problems. On my personal experience, usually TV
cards need stronger signals than TV sets, and are more sensitive to noise. So,
perhaps you just need a better antenna or cabling. Yet, it could also be some
hardware or driver issue.

For example, if you are using a Technotrend/Hauppauge DVB-C card without ana-
log module, you might have to use module parameter adac=-1 (dvb-ttpci.o).

Please see the FAQ page at linuxtv.org, as it could contain some valuable infor-
mation:

https://www.linuxtv.org/wiki/index.php/FAQ %26 Troubleshooting

If that doesn’t work, check at the linux-media ML archives, to see if someone else
had a similar problem with your hardware and/or digital TV service provider:

https://lore.kernel.org/linux-media/

If none of this works, you can try sending an e-mail to the linux-media ML and see if
someone else could shed some light. The e-mail is linux-media AT vger.kernel.org.

5. The dvb net device doesn’t give me any packets at all

Run tcpdump on the dvb0 0 interface. This sets the interface into promiscuous
mode so it accepts any packets from the PID you have configured with the dvbnet
utility. Check if there are any packets with the IP addr and MAC addr you have
configured with ifconfig or with ip addr.

If tcpdump doesn’t give you any output, check the statistics which ifconfig or
netstat -ni outputs. (Note: If the MAC address is wrong, dvb net won’t get
any input; thus you have to run tcpdump before checking the statistics.) If there
are no packets at all then maybe the PID is wrong. If there are error packets, then
either the PID is wrong or the stream does not conform to the MPE standard (EN
301 192, http://www.etsi.org/). You can use e.g. dvbsnoop for debugging.

6. The dvb net device doesn’t give me any multicast packets

1.1. The media subsystem 25

http://sourceforge.net/projects/dvbtools/
http://www.dbox2.info/
http://www.tuxbox.org/
http://www.nenie.org/misc/mpsys/
https://www.videolan.org/vlc/index.pt.html
http://mplayerhq.hu/
http://xine.sourceforge.net/
http://xinehq.de/
http://www.mythtv.org/
http://dvbsnoop.sourceforge.net/
https://www.linuxtv.org/wiki/index.php/FAQ_%26_Troubleshooting
https://lore.kernel.org/linux-media/
http://www.etsi.org/

Linux Media Documentation

Check your routes if they include the multicast address range. Additionally make
sure that “source validation by reversed path lookup” is disabled:

$ "echo 0 > /proc/sys/net/ipv4/conf/dvbO/rp filter"

7. What are all those modules that need to be loaded?

In order to make it more flexible and support different hardware combinations,
the media subsystem is written on a modular way.

So, besides the Digital TV hardware module for the main chipset, it also needs
to load a frontend driver, plus the Digital TV core. If the board also has remote
controller, it will also need the remote controller core and the remote controller
tables. The same happens if the board has support for analog TV: the core support
for video4linux need to be loaded.

The actual module names are Linux-kernel version specific, as, from time to time,
things change, in order to make the media support more flexible.

1.1.4.4 References

The main development site and GIT repository for Digital TV drivers is https://linuxtv.org.

The DVB mailing list linux-dvb is hosted at vger. Please see htip://vger.kernel.org/vger-lists.
html#linux-media for details.

There are also some other old lists hosted at: https://linuxtv.org/lists.php. If you're interested
on that for historic reasons, please check the archive at https://linuxtv.org/pipermail/linux-dvb/.

The media subsystem Wiki is hosted at https://linuxtv.org/wiki/. There, you’ll find lots of in-
formation, from both development and usage of media boards. Please check it before asking
newbie questions on the mailing list or IRC channels.

The API documentation is documented at the Kernel tree. You can find it in both html and pdf
formats, together with other useful documentation at:

* https://linuxtv.org/docs.php.
You may also find useful material at https://linuxtv.org/downloads/.

In order to get the needed firmware for some drivers to work, there’s a script at the kernel tree,
at scripts/get dvb firmware.

1.1.5 Cards List

The media subsystem provide support for lots of PCI and USB drivers, plus platform-specific
drivers. It also contains several ancillary I°C drivers.

The platform-specific drivers are usually present on embedded systems, or are supported by
the main board. Usually, setting them is done via OpenFirmware or ACPI.

The PCI and USB drivers, however, are independent of the system’s board, and may be
added/removed by the user.

You may also take a look at https://linuxtv.org/wiki/index.php/Hardware Device Information for
more details about supported cards.

26 Chapter 1. Media subsystem admin and user guide

https://linuxtv.org
http://vger.kernel.org/vger-lists.html#linux-media
http://vger.kernel.org/vger-lists.html#linux-media
https://linuxtv.org/lists.php
https://linuxtv.org/pipermail/linux-dvb/
https://linuxtv.org/wiki/
https://linuxtv.org/docs.php
https://linuxtv.org/downloads/
https://linuxtv.org/wiki/index.php/Hardware_Device_Information

Linux Media Documentation

1.1.5.1 USB drivers

The USB boards are identified by an identification called USB ID.
The lsusb command allows identifying the USB IDs:

$ lsusb

Bus 001 Device 015: ID 046d:082d Logitech, Inc. HD Pro Webcam C920
Bus 001 Device 074: ID 2040:b131 Hauppauge
Bus 001 Device 075: ID 2013:024f PCTV Systems nanoStick T2 290e

Newer camera devices use a standard way to expose themselves as such, via USB Video Class.
Those cameras are automatically supported by the uvc-driver.

Older cameras and TV USB devices uses USB Vendor Classes: each vendor defines its own way
to access the device. This section contains card lists for such vendor-class devices.

While this is not as common as on PCI, sometimes the same USB ID is used by different products.
So, several media drivers allow passing a card= parameter, in order to setup a card number
that would match the correct settings for an specific product type.

The current supported USB cards (not including staging drivers) are listed below!.

Driver Name

airspy AirSpy

au0828 Auvitek AU0828

b2c2-flexcop-usb Technisat/B2C2 Air/Sky/Cable2PC USB
cpia2 CPiA2 Video For Linux

cx231xx Conexant cx231xx USB video capture
dvb-as102 Abilis AS102 DVB receiver

dvb-ttusb-budget Technotrend/Hauppauge Nova - USB devices
dvb-usb-a800 AVerMedia AverTV DVB-T USB 2.0 (A800)

dvb-usb-af9005 Afatech AF9005 DVB-T USB1.1

dvb-usb-af9015

Afatech AF9015 DVB-T USB2.0

dvb-usb-af9035

Afatech AF9035 DVB-T USB2.0

dvb-usb-anysee

Anysee DVB-T/C USB2.0

dvb-usb-au6610

Alcor Micro AU6610 USB2.0

dvb-usb-az6007

AzureWave 6007 and clones DVB-T/C USB2.0

dvb-usb-az6027

Azurewave DVB-S/S2 USB2.0 AZ6027

dvb-usb-ce6230

Intel CE6230 DVB-T USB2.0

dvb-usb-cinergyT2

Terratec CinergyT2/qanu USB 2.0 DVB-T

dvb-usb-cxusb

Conexant USB2.0 hybrid

dvb-usb-dib0700

DiBcom DiB0700

dvb-usb-dibusb-common

DiBcom DiB3000M-B

dvb-usb-dibusb-mc

DiBcom DiB3000M-C/P

dvb-usb-digitv

Nebula Electronics uDigiTV DVB-T USB2.0

dvb-usb-dtt200u

WideView WT-200U and WT-220U (pen) DVB-T

dvb-usb-dtv5100

AME DTV-5100 USB2.0 DVB-T

Continued on next page

! some of the drivers have sub-drivers, not shown at this table. In particular, gspca driver has lots of sub-drivers,

for cameras not supported by the USB Video Class (UVC) driver, as shown at gspca card list.

1.1. The media subsystem

27

Linux Media Documentation

Table 1 - continued from previous page

Driver

Name

dvb-usb-dvbsky

DVBSky USB

dvb-usb-dw2102

DvbWorld & TeVii DVB-S/S2 USB2.0

dvb-usb-ec168

E3C EC168 DVB-T USB2.0

dvb-usb-gl861

Genesys Logic GL861 USB2.0

dvb-usb-gp8psk

GENPIX 8PSK->USB module

dvb-usb-lmedm04

LME DM04/QQBOX DVB-S USB2.0

dvb-usb-m920x

Uli m920x DVB-T USB2.0

dvb-usb-nova-t-usb2

Hauppauge WinTV-NOVA-T usb2 DVB-T USB2.0

dvb-usb-opera

Operal DVB-S USB2.0 receiver

dvb-usb-pctv4d52e

Pinnacle PCTV HDTV Pro USB device/TT Connect S2-3600

dvb-usb-rt]28xxu

Realtek RTL28xxU DVB USB

dvb-usb-technisat-usb?2

Technisat DVB-S/S2 USB2.0

dvb-usb-ttusb2

Pinnacle 400e DVB-S USB2.0

dvb-usb-umt-010

HanfTek UMT-010 DVB-T USB2.0

dvb usb v2

Support for various USB DVB devices v2

dvb-usb-vp702x

TwinhanDTV StarBox and clones DVB-S USB2.0

dvb-usb-vp7045

TwinhanDTV Alpha/MagicBoxII, DNTV tinyUSB2, Beetle USB2.0

em28xx Empia EM28xx USB devices
go7007 WIS GO7007 MPEG encoder
gspca Drivers for several USB Cameras
hackrf HackRF
hdpvr Hauppauge HD PVR
msi2500 Mirics MSi2500
mxI111sf-tuner MxL111SF DTV USB2.0
pvrusb?2 Hauppauge WinTV-PVR USB2
pwc USB Philips Cameras
s2250 Sensoray 2250/2251
$2255drv USB Sensoray 2255 video capture device
smsusb Siano SMS1xxx based MDTV receiver
stkwebcam USB Syntek DC1125 Camera
tm6000-alsa TV Master TM5600/6000/6010 audio
tm6000-dvb DVB Support for tm6000 based TV cards
tm6000 TV Master TM5600/6000/6010 driver
ttusb dec Technotrend/Hauppauge USB DEC devices
usbtv USBTV007 video capture
uvcvideo USB Video Class (UVC)
zd1301 ZyDAS 7ZD1301
zr364xx USB ZR364XX Camera

28 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

AU0828 cards list

Card Card name USB IDs

num-

ber

0 Unknown board

1 Hauppauge HVR950Q 2040:7200, 2040:7210, 2040:7217, 2040:721b,
2040:721e, 2040:721f 2040:7280, 0£fd9:0008,
2040:7260, 2040:7213, 2040:7270

2 Hauppauge HVR850 2040:7240

3 DViCO FusionHDTV USB 0fe9:d620

4 Hauppauge HVR950Q rev xxF8 2040:7201, 2040:7211, 2040:7281

5 Hauppauge Woodbury 05e1:0480, 2040:8200

1.1. The media subsystem

29

Linux Media Documentation

cx231xx cards list

Card Card name USB IDs

num-

ber

0 Unknown CX231xx video grabber 0572:5A3C

1 Conexant Hybrid TV - CARRAERA 0572:58A2

2 Conexant Hybrid TV - SHELBY 0572:58A1

3 Conexant Hybrid TV - RDE253S 0572:58A4

4 Conexant Hybrid TV - RDU253S 0572:58A5

5 Conexant VIDEO GRABBER 0572:58A6, 07ca:c039

6 Conexant Hybrid TV - rde 250 0572:589E

7 Conexant Hybrid TV - RDU 250 0572:58A0

8 Hauppauge EXETER 2040:b120, 2040:b140

9 Hauppauge USB Live 2 2040:c200

10 Pixelview PlayTV USB Hybrid 4000:4001

11 Pixelview Xcapture USB 1D19:6109, 4000:4001

12 Kworld UB430 USB Hybrid 1b80:e424

13 Iconbit Analog Stick U100 FM 1f4d:0237

14 Hauppauge WinTV USB2 FM (PAL) 2040:b110

15 Hauppauge WinTV USB2 FM (NTSC) 2040:b111

16 Elgato Video Capture V2 0£fd9:0037

17 Geniatech OTG102 1f4d:0102

18 Kworld UB445 USB Hybrid 1b80:e421

19 Hauppauge WinTV 930C-HD (1113xx) / HVR-900H | 2040:b130, 2040:b138,
(111xxx) / PCTV QuatroStick 521e 2013:0259

20 Hauppauge WinTV 930C-HD (1114xx) / HVR-901H | 2040:b131, 2040:b139,
(1114xx) / PCTV QuatroStick 522e 2013:025e

21 Hauppauge WinTV-HVR-955Q (111401) 2040:b123, 2040:b124

22 Terratec Grabby 1f4d:0102

23 Evromedia USB Full Hybrid Full HD 1b80:d3b2

24 Astrometa T2hybrid 15f4:0135

25 The Imaging Source DFG/USB2pro 199e:8002

26 Hauppauge WinTV-HVR-935C 2040:b151

27 Hauppauge WinTV-HVR-975 2040:b150

EM28xx cards list

Card Card name Empia USB IDs

num- Chip

ber

0 Unknown EM2800 video grabber em2800 eb1a:2800

Continued on next page
30 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 2 - continued from previous page

Card Card name Empia USB IDs
num- Chip
ber
1 Unknown EM2750/28xx video grabber em2820 ebla:2710,
or eb1a:2820,
em2840 ebla:2821,
eb1a:2860,
ebla:2861,
ebla:2862,
eb1a:2863,
ebla:2870,
eb1a:2881,
eb1a:2883,
eb1a:2868,
ebla:2875
2 Terratec Cinergy 250 USB em2820 Occd:0036
or
em2840
3 Pinnacle PCTV USB 2 em2820 2304:0208
or
em2840
4 Hauppauge WinTV USB 2 em2820 2040:4200,
or 2040:4201
em2840
5 MSI VOX USB 2.0 em2820
or
em2840
6 Terratec Cinergy 200 USB em2800
7 Leadtek Winfast USB II em2800 0413:6023
8 Kworld USB2800 em2800
9 Pinnacle Dazzle DVC 90/100/101/107 / Kaiser Baas | em2820 1b80:e302,
Video to DVD maker / Kworld DVD Maker 2 / Plextor | or 1b80:e304,
ConvertX PX-AV100U em2840 2304:0207,
2304:021a,
093b:a003
10 Hauppauge WinTV HVR 900 em2880 2040:6500
11 Terratec Hybrid XS em2880
12 Kworld PVR TV 2800 RF em?2820
or
em2840
13 Terratec Prodigy XS em2880
14 SIIG AVTuner-PVR / Pixelview Prolink PlayTV USB | em2820
2.0 or
em2840
15 V-Gear PocketTV em2800
16 Hauppauge WinTV HVR 950 em2883 2040:6513,
2040:6517,
2040:651b
17 Pinnacle PCTV HD Pro Stick em2880 2304:0227

Continued on next page

1.1. The media subsystem 31

Linux Media Documentation

Table 2 - continued from previous page

Card Card name Empia USB IDs
num- Chip
ber
18 Hauppauge WinTV HVR 900 (R2) em?2880 2040:6502
19 EM2860/SAA711X Reference Design em2860
20 AMD ATI TV Wonder HD 600 em2880 0438:b002
21 eMPIA Technology, Inc. GrabBeeX+ Video Encoder | em2800 ebla:2801
22 EM2710/EM2750/EM2751 webcam grabber em2750 ebla:2750,
ebla:2751
23 Huaqi DLCW-130 em?2750
24 D-Link DUB-T210 TV Tuner em2820 2001:f112
or
em2840
25 Gadmei UTV310 em2820
or
em2840
26 Hercules Smart TV USB 2.0 em2820
or
em2840
27 Pinnacle PCTV USB 2 (Philips FM1216ME) em2820
or
em2840
28 Leadtek Winfast USB II Deluxe em2820
or
em2840
29 EM2860/TVP5150 Reference Design em2860 ebla:5051
30 Videology 20K14XUSB USB2.0 em2820
or
em2840
31 Usbgear VD204v9 em2821
32 Supercomp USB 2.0 TV em2821
33 Elgato Video Capture em2860 0fd9:0033
34 Terratec Cinergy A Hybrid XS em2860 Occd:004f
35 Typhoon DVD Maker em2860
36 NetGMBH Cam em2860
37 Gadmei UTV330 em2860 ebla:50a6
38 Yakumo MovieMixer em2861
39 KWorld PVRTV 300U em2861 ebla:e300
40 Plextor ConvertX PX-TV100U em2861 093b:a005
41 Kworld 350 U DVB-T em2870 ebla:e350
42 Kworld 355 U DVB-T em2870 ebla:e355,
ebla:e357,
ebla:e359
43 Terratec Cinergy T XS em2870
44 Terratec Cinergy T XS (MT2060) em2870 Occd:0043
45 Pinnacle PCTV DVB-T em2870
46 Compro, VideoMate U3 em2870 185b:2870
47 KWorld DVB-T 305U em2880 ebla:e305

Continued on next page

32 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 2 - continued from previous page

Card Card name Empia USB IDs
num- Chip
ber
48 KWorld DVB-T 310U em2880
49 MSI DigiVox A/D em2880 ebla:e310
50 MSI DigiVox A/D II em2880 ebla:e320
51 Terratec Hybrid XS Secam em2880 Occd:004c
52 DNT DA2 Hybrid em2881
53 Pinnacle Hybrid Pro em2881
54 Kworld VS-DVB-T 323UR em2882 ebla:e323
55 Terratec Cinergy Hybrid T USB XS (em2882) em2882 0ccd:005e,
Occd:0042
56 Pinnacle Hybrid Pro (330e€) em?2882 2304:0226
57 Kworld PlusTV HD Hybrid 330 em2883 ebla:a316
58 Compro VideoMate ForYou/Stereo em2820 185b:2041
or
em2840
59 Pinnacle PCTV HD Mini em2874 2304:023f
60 Hauppauge WinTV HVR 850 em2883 2040:651f
61 Pixelview PlayTV Box 4 USB 2.0 em2820
or
em2840
62 Gadmei TVR200 em2820
or
em2840
63 Kaiomy TVnPC U2 em2860 ebla:e303
64 Easy Cap Capture DC-60 em2860 1b80:e309
65 I0-DATA GV-MVP/SZ em2820 04bb:0515
or
em2840
66 Empire dual TV em2880
67 Terratec Grabby em2860 Occd:0096,
Occd:10AF
68 Terratec AV350 em2860 Occd:0084
69 KWorld ATSC 315U HDTV TV Box em2882 ebla:a313
70 Evga inDtube em2882
71 Silvercrest Webcam 1.3mpix em2820
or
em2840
72 Gadmei UTV330+ em2861
73 Reddo DVB-C USB TV Box em2870
74 Actionmaster/LinXcel/Digitus VC211A em2800
75 Dikom DK300 em2882
76 KWorld PlusTV 340U or UB435-Q (ATSC) em2870 1b80:a340
77 EM2874 Leadership ISDBT em2874
78 PCTV nanoStick T2 290e em28174 | 2013:024f

Continued on next page

1.1. The media subsystem 33

Linux Media Documentation

Table 2 - continued from previous page

Card Card name Empia USB IDs
num- Chip
ber
79 Terratec Cinergy H5 em2884 ebla:2885,
Occd:10a2,
Occd:10ad,
Occd:10b6
80 PCTV DVB-S2 Stick (460e) em28174 | 2013:024c
81 Hauppauge WinTV HVR 930C em2884 2040:1605
82 Terratec Cinergy HTC Stick em2884 Occd:00b2
83 Honestech Vidbox NW03 em2860 ebla:5006
84 MaxMedia UB425-TC em2874 1b80:e425
85 PCTV QuatroStick (510e) em2884 2304:0242
86 PCTV QuatroStick nano (520e) em2884 2013:0251
87 Terratec Cinergy HTC USB XS em2884 Occd:008e,
Occd:00ac
88 C3 Tech Digital Duo HDTV/SDTV USB em2884 1b80:e755
89 Delock 61959 em2874 1b80:elcc
90 KWorld USB ATSC TV Stick UB435-Q V2 em2874 1b80:e346
91 SpeedLink Vicious And Devine Laplace webcam em2765 1ae7:9003,
lae7:9004
92 PCTV DVB-S2 Stick (461e) em28178 | 2013:0258
93 KWorld USB ATSC TV Stick UB435-Q V3 em2874 1b80:e34c
94 PCTV tripleStick (292e) em28178 | 2013:025f,
2013:0264,
2040:0264,
2040:8264,
2040:8268
95 Leadtek VC100 em2861 0413:6f07
96 Terratec Cinergy T2 Stick HD em28178 | ebla:8179
97 Elgato EyeTV Hybrid 2008 INT em2884 0£d9:0018
98 PLEX PX-BCUD em28178 | 3275:0085
99 Hauppauge WinTV-dualHD DVB em28174 | 2040:0265,
2040:8265
100 Hauppauge WinTV-dualHD 01595 ATSC/QAM em28174 | 2040:026d,
2040:826d
101 Terratec Cinergy H6 rev. 2 em2884 Occd:10b2
102 :ZOLID HYBRID TV STICK em2882
103 Magix USB Videowandler-2 em2861 1b80:e349
104 PCTV DVB-S2 Stick (461e v2) em28178 | 2013:0461,
2013:0259
105 MyGica iGrabber em2860 1f4d:1abe
34 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

TM6000 cards list

Card Card name USB IDs

num-

ber

0 Unknown tm6000 video grabber

1 Generic tm5600 board 6000:0001

2 Generic tm6000 board

3 Generic tm6010 board 6000:0002

4 10Moons UT 821

5 10Moons UT 330

6 ADSTECH Dual TV USB 06e1:f332

7 Freecom Hybrid Stick / Moka DVB-T Receiver Dual 14aa:0620

8 ADSTECH Mini Dual TV USB 06e1:b339

9 Hauppauge WinTV HVR-900H / WinTV USB2-Stick 2040:6600,
2040:6601,
2040:6610,
2040:6611

10 Beholder Wander DVB-T/TV/FM USB2.0 6000:decO

11 Beholder Voyager TV/FM USB2.0 6000:decl

12 Terratec Cinergy Hybrid XE / Cinergy Hybrid-Stick Occd: 0086,
Occd:00Ab5

13 Twinhan TU501(704D1) 13d3:3240,
13d3:3241,
13d3:3243,
13d3:3264

14 Beholder Wander Lite DVB-T/TV/FM USB2.0 6000:dec2

15 Beholder Voyager Lite TV/FM USB2.0 6000:dec3

16 Terratec Grabster AV 150/250 MX Occd:0079

1.1. The media subsystem

35

Linux Media Documentation

Siano cards list

Card name USB IDs
Hauppauge Catamount 2040:1700
Hauppauge Okemo-A 2040:1800
Hauppauge Okemo-B 2040:1801
Hauppauge WinTV MiniCard 2040:2000,
2040:200a,
2040:2010,
2040:2011,
2040:2019
Hauppauge WinTV MiniCard Rev 2 2040:2009
Hauppauge WinTV MiniStick 2040:5500,
2040:5510,
2040:5520,
2040:5530,
2040:5580,
2040:5590,
2040:b900,
2040:b910,
2040:b980,
2040:b990,
2040:c000,
2040:c010,
2040:c080,
2040:c090,
2040:c0a0,
2040:f5a0
Hauppauge microStick 77e 2013:0257
ONDA Data Card Digital Receiver 19D2:0078
Siano Denver (ATSC-M/H) Digital Receiver 187£:0800
Siano Denver (TDMB) Digital Receiver 187£:0700
Siano Ming Digital Receiver 187£:0310
Siano Nice Digital Receiver 187£:0202, 187f:0202
Siano Nova A Digital Receiver 187£:0200
Siano Nova B Digital Receiver 187£:0201
Siano Pele Digital Receiver 187£:0500
Siano Rio Digital Receiver 187£:0600,
3275:0080
Siano Stellar Digital Receiver 187£:0100
Siano Stellar Digital Receiver ROM 187£:0010
Siano Vega Digital Receiver 187£:0300
Siano Venice Digital Receiver 187£:0301,
187£:0301, 187£:0302
ZTE Data Card Digital Receiver 19D2:0086

36 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

The gspca cards list

The modules for the gspca webcam drivers are:

* gspca main: main driver

* gspca_driver: subdriver module with driver as follows

driver vend:prod | Device

spca501 0000:0000 | MystFromOri Unknown Camera
spca508 0130:0130 | Clone Digital Webcam 11043
se401 03e8:0004 | Endpoints/AoxSE401

ZC3XX 03f0:1b07 | HP Premium Starter Cam

mb5602 0402:5602 | ALi Video Camera Controller
spca501 040a:0002 | Kodak DVC-325

spca500 040a:0300 | Kodak EZ200

ZC3XX 041e:041e | Creative WebCam Live!

ovb19 041e:4003 | Video Blaster WebCam Go Plus
stv0680 041e:4007 | Go Mini

spca500 041e:400a | Creative PC-CAM 300

sunplus 041e:400b | Creative PC-CAM 600

sunplus 041e:4012 | PC-Cam350

sunplus 041e:4013 | Creative Pccam750

ZC3XX 041e:4017 | Creative Webcam Mobile PD1090
spca508 041e:4018 | Creative Webcam Vista (PD1100)
spcab61 041e:401a | Creative Webcam Vista (PD1100)
ZC3XX 041e:401c | Creative NX

spca505 041e:401d | Creative Webcam NX ULTRA
ZC3XX 041e:401e | Creative Nx Pro

ZC3XX 041e:401f | Creative Webcam Notebook PD1171
ZC3XX 041e:4022 | Webcam NX Pro

pac207 041e:4028 | Creative Webcam Vista Plus
ZC3XX 041e:4029 | Creative WebCam Vista Pro
ZC3XX 041e:4034 | Creative Instant P0620

ZC3XX 041e:4035 | Creative Instant P0620D

ZC3XX 041e:4036 | Creative Live !

sq930x 041e:4038 | Creative Joy-IT

ZC3XX 041e:403a | Creative Nx Pro 2

spca561 041e:403b | Creative Webcam Vista (VF0010)
sq930x 041e:403c | Creative Live! Ultra

sq930x 041e:403d | Creative Live! Ultra for Notebooks
sq930x 041e:4041 | Creative Live! Motion

zZCc3xxX 041e:4051 | Creative Live!Cam Notebook Pro (VF0250)
ovb19 041e:4052 | Creative Live! VISTA IM

ZC3XX 041e:4053 | Creative Live!Cam Video IM
vc032x 041e:405b | Creative Live! Cam Notebook Ultra (VC0130)
ovb19 041e:405f | Creative Live! VISTA VF0330
ovb19 041e:4060 | Creative Live! VISTA VF0350
ov519 041e:4061 | Creative Live! VISTA VF0400

Continued on next page

1.1. The media subsystem

37

Linux Media Documentation

Table 3 - continued from previous page

driver vend:prod | Device

ovb19 041e:4064 | Creative Live! VISTA VF0420

ovb19 041e:4067 | Creative Live! Cam Video IM (VF0350)

ovb19 041e:4068 | Creative Live! VISTA VF0470

sn9c2028 | 0458:7003 | GeniusVideocam Live v2

spca561 0458:7004 | Genius VideoCAM Express V2

sn9c2028 | 0458:7005 | Genius Smart 300, version 2

sunplus 0458:7006 | Genius Dsc 1.3 Smart

ZC3XX 0458:7007 | Genius VideoCam V2

ZC3XX 0458:700c | Genius VideoCam V3

ZC3XX 0458:700f | Genius VideoCam Web V2

Sonixj 0458:7025 | Genius Eye 311Q

sn9c20x 0458:7029 | Genius Look 320s

SOnNixj 0458:702e | Genius Slim 310 NB

sn9c20x 0458:7045 | Genius Look 1320 V2

sn9c20x 0458:704a | Genius Slim 1320

sn9c20x 0458:704c | Genius i-Look 1321

sn9c20x 045e:00f4 | LifeCam VX-6000 (SN9C20x + OV9650)

SOnNixj 045e:00f5 | MicroSoft VX3000

sonixj 045e:00f7 | MicroSoft VX1000

ov519 045e:028c | Micro$oft xbox cam

kinect 045e:02ae | Xbox NUI Camera

kinect 045e:02bf | Kinect for Windows NUI Camera

spcab561 0461:0815 | Micro Innovations IC200 Webcam

sunplus 0461:0821 | Fujifilm MV-1

ZC3XX 0461:0a00 | MicroIlnnovation WebCam320

stv06xx 046D:08F0 | QuickCamMessenger

stv06xx 046D:08F5 | QuickCamCommunicate

stv06xx 046D:08F6 | QuickCamMessenger (new)

stv06xx 046d:0840 | QuickCamExpress

stv06xx 046d:0850 | LEGOcam / QuickCam Web

stv06xx 046d:0870 | DexxaWebCam USB

spca500 046d:0890 | Logitech QuickCam traveler

vc032x 046d:0892 | Logitech Orbicam

vc032x 046d:0896 | Logitech Orbicam

vc032x 046d:0897 | Logitech QuickCam for Dell notebooks

ZC3XX 046d:089d | Logitech QuickCam E2500

ZC3XX 046d:08a0 | Logitech QC IM

ZC3XX 046d:08al | Logitech QC IM 0x08A1 +sound

ZC3XX 046d:08a2 | Labtec Webcam Pro

ZC3xXX 046d:08a3 | Logitech QC Chat

ZC3XX 046d:08a6 | Logitech QCim

ZC3XX 046d:08a7 | Logitech QuickCam Image

ZC3XX 046d:08a9 | Logitech Notebook Deluxe

ZC3XX 046d:08aa | Labtec Webcam Notebook

ZC3XX 046d:08ac | Logitech QuickCam Cool

ZC3XX 046d:08ad | Logitech QCCommunicate STX

ZC3XX 046d:08ae | Logitech QuickCam for Notebooks

Continued on next page

38 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 3 - continued from previous page

driver vend:prod | Device

ZC3xXX 046d:08af | Logitech QuickCam Cool

ZC3XX 046d:08b9 | Logitech QuickCam Express
ZC3XX 046d:08d7 | Logitech QCam STX

ZC3XX 046d:08d8 | Logitech Notebook Deluxe
ZC3xXX 046d:08d9 | Logitech QuickCam IM/Connect
ZC3xXX 046d:08da | Logitech QuickCam Messenger
ZC3XX 046d:08dd | Logitech QuickCam for Notebooks
spca500 046d:0900 | Logitech Inc. ClickSmart 310
spca500 046d:0901 | Logitech Inc. ClickSmart 510
sunplus 046d:0905 | Logitech ClickSmart 820
tv8532 046d:0920 | Logitech QuickCam Express
tv8532 046d:0921 | Labtec Webcam

spcab61 046d:0928 | Logitech QC Express Etch2
spca561 046d:0929 | Labtec Webcam Elch2

spca561 046d:092a | Logitech QC for Notebook
spca561 046d:092b | Labtec Webcam Plus

spca561 046d:092c | Logitech QC chat Elch2
spca561 046d:092d | Logitech QC Elch2

spcab61 046d:092e | Logitech QC Elch2

spcab561 046d:092f | Logitech QuickCam Express Plus
sunplus 046d:0960 | Logitech ClickSmart 420
nw80x 046d:d001 | Logitech QuickCam Pro (dark focus ring)
se401 0471:030b | PhilipsPCVC665K

sunplus 0471:0322 | Philips DMVC1300K

ZC3xX 0471:0325 | Philips SPC 200 NC

ZC3xX 0471:0326 | Philips SPC 300 NC

sonixj 0471:0327 | Philips SPC 600 NC

sonixj 0471:0328 | Philips SPC 700 NC

ZC3XX 0471:032d | Philips SPC 210 NC

Zc3xx 0471:032e | Philips SPC 315 NC

sonixj 0471:0330 | Philips SPC 710 NC

se401 047d:5001 | Kensington67014

se401 047d:5002 | Kensington6701(5/7)

se401 047d:5003 | Kensington67016

spca501 0497:c001 | Smile International

sunplus 04a5:3003 | Beng DC 1300

sunplus 04a5:3008 | Benqg DC 1500

sunplus 04a5:300a | Benq DC 3410

spca500 04a5:300c | Beng DC 1016

benqg 04a5:3035 | Benq DC E300

vicam 04c1:009d | HomeConnect Webcam [vicam]
konica 04c8:0720 | IntelYC 76

finepix 04cb:0104 | Fujifilm FinePix 4800

finepix 04cb:0109 | Fuyjifilm FinePix A202

finepix 04cb:010b | Fujifilm FinePix A203

finepix 04cb:010f | Fujifilm FinePix A204

finepix 04cb:0111 | Fujifilm FinePix A205

Continued on next page

1.1. The media subsystem

39

Linux Media Documentation

Table 3 - continued from previous page

driver vend:prod | Device

finepix 04cb:0113 | Fuyjifilm FinePix A210

finepix 04cb:0115 | Fujifilm FinePix A303

finepix 04cb:0117 | Fujifilm FinePix A310

finepix 04cb:0119 | Fujifilm FinePix F401

finepix 04cb:011b | Fuyjifilm FinePix F402

finepix 04cb:011d | Fujifilm FinePix F410

finepix 04cb:0121 | Fuyjifilm FinePix F601

finepix 04cb:0123 | Fuyjifilm FinePix F700

finepix 04cb:0125 | Fuyjifilm FinePix M603

finepix 04cb:0127 | Fujifilm FinePix S300

finepix 04cb:0129 | Fujifilm FinePix S304

finepix 04cb:012b | Fujifilm FinePix S500

finepix 04cb:012d | Fuyjifilm FinePix S602

finepix 04cb:012f | Fuyjifilm FinePix S700

finepix 04cb:0131 | Fujifilm FinePix unknown model

finepix 04cb:013b | Fyjifilm FinePix unknown model

finepix 04cb:013d | Fujifilm FinePix unknown model

finepix 04cb:013f | Fujifilm FinePix F420

sunplus 04f1:1001 | JvC GC A50

spca561 04fc:0561 | Flexcam 100

spcalb28 | 04fc:1528 | Sunplus MD80 clone

sunplus 04fc:500c | Sunplus CA500C

sunplus 04fc:504a | Aiptek Mini PenCam 1.3

sunplus 04fc:504b | Maxell MaxPocket LE 1.3

sunplus 04fc:5330 | Digitrex 2110

sunplus 04fc:5360 | Sunplus Generic

spca500 04fc:7333 | PalmPixDC85

sunplus 04fc:ffff Pure DigitalDakota

nw80x 0502:d001 | DVC V6

spca501 0506:00df | 3Com HomeConnect Lite

sunplus 052b:1507 | Megapixel 5 Pretec DC-1007

sunplus 052b:1513 | Megapix V4

sunplus 052b:1803 | Megalmage VI

nw80x 052b:d001 | EZCam Pro p35u

tv8532 0545:808b | Veo Stingray

tv8532 0545:8333 | Veo Stingray

sunplus 0546:3155 | Polaroid PDC3070

sunplus 0546:3191 | Polaroid Ion 80

sunplus 0546:3273 | Polaroid PDC2030

touptek 0547:6801 | TTUCMOS08000KPB, AS MU800

dtcs033 0547:7303 | Anchor Chips, Inc

ov519 054c¢:0154 | Sonny toy4

ov519 054c¢:0155 | Sonny toyS

cpial 0553:0002 | CPIA CPiA (versionl) based cameras

stv0680 0553:0202 | STV0O680 Camera

Zc3xx 055£:c005 | Mustek Wcam300A

spca500 055f:c200 | Mustek Gsmart 300

Continued on next page

40 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 3 - continued from previous page

driver vend:prod | Device

sunplus 055f:c211 | Kowa Bs888e Microcamera
spcab00 055f:c220 | Gsmart Mini

sunplus 055f:c230 | Mustek Digicam 330K

sunplus 055f:c232 | Mustek MDC3500

sunplus 055f:c360 | Mustek DV4000 Mpeg4

sunplus 055f:c420 | Mustek gSmart Mini 2

sunplus 055f:c430 | Mustek Gsmart LCD 2

sunplus 055f:c440 | Mustek DV 3000

sunplus 055f:c520 | Mustek gSmart Mini 3

sunplus 055f:¢530 | Mustek Gsmart LCD 3

sunplus 055f:c540 | Gsmart D30

sunplus 055f:c630 | Mustek MDC4000

sunplus 055f:c650 | Mustek MDC5500Z

nw80x 055f:d001 | Mustek Wcam 300 mini

ZC3xX 055f:d003 | Mustek WCam300A

ZC3xX 055f:d004 | Mustek WCam300 AN

conex 0572:0041 | Creative Notebook cx11646
ovb19 05a9:0511 | Video Blaster WebCam 3/WebCam Plus, D-Link USB Digital Video Camera
ov519 05a9:0518 | Creative WebCam

ov519 05a9:0519 | OV519 Microphone

ov519 05a9:0530 | OmniVision

ov534 9 05a9:1550 | OmniVision VEHO Filmscanner
ov519 05a9:2800 | OmniVision SuperCAM

ov519 05a9:4519 | Webcam Classic

ovb34 9 05a9:8065 | OmniVision test kit ov538+0v9712
ov519 05a9:8519 | OmniVision

ov519 05a9:a511 | D-Link USB Digital Video Camera
ov519 05a9:a518 | D-Link DSB-C310 Webcam
sunplus 05da:1018 | Digital Dream Enigma 1.3

stk014 05e1:0893 | Syntek DV4000

gl860 05e3:0503 | Genesys Logic PC Camera

gl860 05e3:f191 | Genesys Logic PC Camera

vicam 0602:1001 | ViCam Webcam

spca561 060b:a001 | Maxell Compact Pc PM3

ZC3xXX 0698:2003 | CTX M730V built in

topro 06a2:0003 | TP6800 PC Camera, CmoX CX0342 webcam
topro 06a2:6810 | Creative Qmax

nw80x 06a5:0000 | Typhoon Webcam 100 USB
nw80x 06a5:d001 | Divio based webcams

nw80x 06a5:d800 | Divio Chicony TwinkleCam, Trust SpaceCam
spcad500 06bd:0404 | Agfa CL20

spca500 06be:0800 | Optimedia

nw80x 06be:d001 | EZCam Pro p35u

sunplus 06d6:0031 | Trust 610 LCD PowerC@m Zoom
sunplus 06d6:0041 | Aashima Technology B.V.

spcab06 06e1:a190 | ADS Instant VCD

ovb34 06f8:3002 | Hercules Blog Webcam

Continued on next page

1.1. The media subsystem

41

Linux Media Documentation

Table 3 - continued from previous page

driver vend:prod | Device

ovb34 9 06£8:3003 | Hercules Dualpix HD Weblog

sonixj 06£8:3004 | Hercules Classic Silver

sonixj 06£8:3008 | Hercules Deluxe Optical Glass

pac7302 06f8:3009 | Hercules Classic Link

pac7302 06f8:301b | Hercules Link

nw80x 0728:d001 | AVerMedia Camguard

spca508 0733:0110 | ViewQuest VQ110

spca501 0733:0401 | Intel Create and Share

spca501 0733:0402 | ViewQuest M318B

spca505 0733:0430 | Intel PC Camera Pro

sunplus 0733:1311 | Digital Dream Epsilon 1.3

sunplus 0733:1314 | Mercury 2.1MEG Deluxe Classic Cam

sunplus 0733:2211 | Jenoptik jdc 21 LCD

sunplus 0733:2221 | Mercury Digital Pro 3.1p

sunplus 0733:3261 | Concord 3045 spca536a

sunplus 0733:3281 | Cyberpix S550V

spca506 0734:043b | 3DeMon USB Capture aka

cpial 0813:0001 | QX3 camera

ov519 0813:0002 | Dual Mode USB Camera Plus

spca500 084d:0003 | D-Link DSC-350

spca500 08ca:0103 | Aiptek PocketDV

sunplus 08ca:0104 | Aiptek PocketDVII 1.3

sunplus 08ca:0106 | Aiptek Pocket DV3100+

mr97310a | 08ca:0110 | Trust Spyc@m 100

mr97310a | 08ca:0111 | Aiptek PenCam VGA+

sunplus 08ca:2008 | Aiptek Mini PenCam 2 M

sunplus 08ca:2010 | Aiptek PocketCam 3M

sunplus 08ca:2016 | Aiptek PocketCam 2 Mega

sunplus 08ca:2018 | Aiptek Pencam SD 2M

sunplus 08ca:2020 | Aiptek Slim 3000F

sunplus 08ca:2022 | Aiptek Slim 3200

sunplus 08ca:2024 | Aiptek DV3500 Mpeg4

sunplus 08ca:2028 | Aiptek PocketCam4M

sunplus 08ca:2040 | Aiptek PocketDV4100M

sunplus 08ca:2042 | Aiptek PocketDV5100

sunplus 08ca:2050 | Medion MD 41437

sunplus 08ca:2060 | Aiptek PocketDV5300

tv8532 0923:010f | ICMb532 cams

mr97310a | 093a:010e | All known CIF cams with this ID

mr97310a | 093a:010f | All known VGA cams with this ID

mars 093a:050f | Mars-Semi Pc-Camera

pac207 093a:2460 | Qtec Webcam 100

pac207 093a:2461 | HP Webcam

pac207 093a:2463 | Philips SPC 220 NC

pac207 093a:2464 | Labtec Webcam 1200

pac207 093a:2468 | Webcam WB-1400T

pac207 093a:2470 | Genius GF112

Continued on next page

42 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 3 - continued from previous page

driver vend:prod | Device

pac207 093a:2471 | Genius VideoCam gelll
pac207 093a:2472 | Genius VideoCam gell0
pac207 093a:2474 | Genius iLook 111

pac207 093a:2476 | Genius e-Messenger 112
pac7311 093a:2600 | PAC7311 Typhoon

pac7311 093a:2601 | Philips SPC 610 NC

pac7311 093a:2603 | Philips SPC 500 NC

pac7311 093a:2608 | Trust WB-3300p

pac7311 093a:260e | Gigaware VGA PC Camera, Trust WB-3350p, SIGMA cam 2350
pac7311 093a:260f | SnakeCam

pac7302 093a:2620 | Apollo AC-905

pac7302 093a:2621 | PAC731x

pac7302 093a:2622 | Genius Eye 312

pac7302 093a:2623 | Pixart Imaging, Inc.

pac7302 093a:2624 | PAC7302

pac7302 093a:2625 | Genius iSlim 310

pac7302 093a:2626 | Labtec 2200

pac7302 093a:2627 | Genius FaceCam 300

pac7302 093a:2628 | Genius iLook 300

pac7302 093a:2629 | Genius iSlim 300

pac7302 093a:262a | Webcam 300k

pac7302 093a:262c | Philips SPC 230 NC
j12005bcd | 0979:0227 | Various brands, 19 known cameras supported
jeilinj 0979:0270 | Sakar 57379

jeilinj 0979:0280 | Sportscam DV15, Sakar 57379
ZC3XX 0ac8:0301 | Web Camera

ZC3xXX 0ac8:0302 | Z-star Vimicro zc0302

vc032x 0ac8:0321 | Vimicro generic vc0321
vc032x 0ac8:0323 | Vimicro Vc0323

vc032x 0ac8:0328 | Ad4Tech PK-130MG

ZC3XX 0ac8:301b | Z-Star zc301b

ZC3xXX 0ac8:303b | Vimicro 0x303b

ZC3XX 0ac8:305b | Z-star Vimicro zc0305b

ZC3xX 0ac8:307b | PC Camera (ZS0211)

vc032x 0ac8:c001 | Sony embedded vimicro
vc032x 0ac8:c002 | Sony embedded vimicro
vc032x 0ac8:c301 | Samsung Q1 Ultra Premium
spca508 0af9:0010 | Hama USB Sightcam 100
spca508 0af9:0011 | Hama USB Sightcam 100
ov519 0b62:0059 | iBOT2 Webcam

sonixb 0c45:6001 | Genius VideoCAM NB

sonixb 0c45:6005 | Microdia Sweex Mini Webcam
sonixb 0c45:6007 | Sonix sn9¢c101 + Tas5110D
sonixb 0c45:6009 | spcaCam@120

sonixb 0c45:600d | spcaCam@120

sonixb 0c45:6011 | Microdia PC Camera (SN9C102)
sonixb 0c45:6019 | Generic Sonix OV7630

Continued on next page

1.1. The media subsystem

43

mailto:spcaCam@120
mailto:spcaCam@120

Linux Media Documentation

Table 3 - continued from previous page

driver vend:prod | Device

sonixb 0c45:6024 | Generic Sonix Tas5130c

sonixb 0c45:6025 | Xcam Shanga

sonixb 0c45:6027 | GeniusEye 310

sonixb 0c45:6028 | Sonix Btc Pc380

sonixb 0c45:6029 | spcaCam@150

sonixb 0c45:602a | Meade ETX-105EC Camera

sonixb 0c45:602¢c | Generic Sonix OV7630

sonixb 0c45:602d | LIC-200 LG

sonixb 0c45:602e | Genius VideoCam Messenger

SONixj 0c45:6040 | Speed NVC 350K

SOnixj 0c45:607c | Sonix sn9c102p Hv7131R

sonixb 0c45:6083 | VideoCAM Look

sonixb 0c45:608c | VideoCAM Look

sonixb 0c45:608f | PC Camera (SN9C103 + OV7630)

sonixb 0c45:60a8 | VideoCAM Look

sonixb 0c45:60aa | VideoCAM Look

sonixb 0c45:60af | VideoCAM Look

sonixb 0c45:60b0 | Genius VideoCam Look

sonixj 0c45:60c0 | Sangha Sn535

Sonixj 0c45:60ce | USB-PC-Camera-168 (TALK-5067)

SOnixj 0c45:60ec | SN9C105+M0O4000

SOnixj 0c45:60fb | Surfer NoName

SOnNixj 0c45:60fc | LG-LIC300

sonixj 0c45:60fe | Microdia Audio

SOnNixj 0c45:6100 | PC Camera (SN9C128)

SONixj 0c45:6102 | PC Camera (SN9C128)

SOnixj 0c45:610a | PC Camera (SN9C128)

SOnixj 0c45:610b | PC Camera (SN9C128)

SOnixj 0c45:610c | PC Camera (SN9C128)

SOnixj 0c45:610e | PC Camera (SN9C128)

SOnNixj 0c45:6128 | Microdia/Sonix SNP325

Sonixj 0c45:612a | Avant Camera

SONixj 0c45:612b | Speed-Link REFLECT2

SOnixj 0c45:612c | Typhoon Rasy Cam 1.3MPix

SONixj 0c45:612e | PC Camera (SN9C110)

SOnixj 0c45:6130 | Sonix Pccam

SOnixj 0c45:6138 | Sn9c120 Mo04000

Sonixj 0c45:613a | Microdia Sonix PC Camera

SOnNixj 0c45:613b | Surfer SN-206

SOnixj 0c45:613c | Sonix Pccam168

SOnixj 0c45:613e | PC Camera (SN9C120)

Sonixj 0c45:6142 | Hama PC-Webcam AC-150

SOnixj 0c45:6143 | Sonix Pccam168

SOnixj 0c45:6148 | Digitus DA-70811/ZSMC USB PC Camera ZS211/Microdia

SOnixj 0c45:614a | Frontech E-Ccam (JIL-2225)

sn9c20x 0c45:6240 | PC Camera (SN9C201 + MT9MO001)

sn9c20x 0c45:6242 | PC Camera (SN9C201 + MTO9M111)

Continued on next page

44 Chapter 1. Media subsystem admin and user guide

mailto:spcaCam@150

Linux Media Documentation

Table 3 - continued from previous page

driver vend:prod | Device

sn9c20x 0c45:6248 | PC Camera (SN9C201 + OV9655)
sn9c20x 0c45:624c | PC Camera (SN9C201 + MT9M112)
sn9c20x 0c45:624e | PC Camera (SN9C201 + SOI968)
sn9c20x 0c45:624f | PC Camera (SN9C201 + OV9650)
sn9c20x 0c45:6251 | PC Camera (SN9C201 + OV9650)
sn9c20x 0c45:6253 | PC Camera (SN9C201 + OV9650)
sn9c20x 0c45:6260 | PC Camera (SN9C201 + OV7670)
sn9c20x 0c45:6270 | PC Camera (SN9C201 + MT9V011/MT9V111/MT9V112)
sn9c20x 0c45:627b | PC Camera (SN9C201 + OV7660)
sn9c20x 0c45:627c | PC Camera (SN9C201 + HV7131R)
sn9c20x 0c45:627f | PC Camera (SN9C201 + OV9650)
sn9c20x 0c45:6280 | PC Camera (SN9C202 + MT9MO001)
sn9c20x 0c45:6282 | PC Camera (SN9C202 + MTO9M111)
sn9c20x 0c45:6288 | PC Camera (SN9C202 + OV9655)
sn9c20x 0c45:628c | PC Camera (SN9C201 + MTOM112)
sn9c20x 0c45:628e | PC Camera (SN9C202 + SOI968)
sn9c20x 0c45:628f | PC Camera (SN9C202 + OV9650)
sn9c20x 0c45:62a0 | PC Camera (SN9C202 + OV7670)
sn9c20x 0c45:62b0 | PC Camera (SN9C202 + MT9V011/MT9V111/MT9V112)
sn9c20x 0c45:62b3 | PC Camera (SN9C202 + OV9655)
sn9c20x 0c45:62bb | PC Camera (SN9C202 + OV7660)
sn9c20x 0c45:62bc | PC Camera (SN9C202 + HV7131R)
sn9c2028 | 0c45:8001 | Wild Planet Digital Spy Camera
sn9c2028 | 0c45:8003 | Sakar #11199, #6637x, #67480 keychain cams
sn9c2028 | 0c45:8008 | Mini-Shotz ms-350

sn9c2028 | 0¢45:800a | Vivitar Vivicam 3350B

sunplus 0d64:0303 | Sunplus FashionCam DXG

ov519 0e96:c001 | TRUST 380 USB2 SPACEC@M

etoms 102c:6151 | Qcam Sangha CIF

etoms 102¢:6251 | Qcam xxxxxx VGA

ovb19 1046:9967 | W9967CF/W9968CF WebCam IC, Video Blaster WebCam Go
ZC3XX 10fd:0128 | Typhoon Webshot IT USB 300k 0x0128
spca561 10fd:7e50 | FlyCam Usb 100

ZC3xX 10fd:804d | Typhoon Webshot II Webcam [zc0301]
ZC3XX 10fd:8050 | Typhoon Webshot II USB 300k

ovb34 1415:2000 | Sony HD Eye for PS3 (SLEH 00201)
pac207 145f:013a | Trust WB-1300N

pac7302 145f:013c | Trust

sn9c20x 145f:013d | Trust WB-3600R

vc032x 15b8:6001 | HP 2.0 Megapixel

vc032x 15b8:6002 | HP 2.0 Megapixel rz406aa

stk1135 174f:6a31 | ASUSlaptop, MT9M112 sensor
spca501 1776:501c | Arowana 300K CMOS Camera

t613 17a1:0128 | TASCORP JPEG Webcam, NGS Cyclops
vc032x 17ef:4802 | Lenovo Vc0323+MI1310 SOC
pac7302 lae7:2001 | SpeedLinkSnappy Mic SL-6825-SBK
pac207 2001:f115 | D-Link DSB-C120

Continued on next page

1.1. The media subsystem

45

Linux Media Documentation

Table 3 - continued from previous page

driver vend:prod | Device

sq905c¢ 2770:9050 | Disney pix micro (CIF)

sq905c¢ 2770:9051 | Lego Bionicle

sq905c¢c 2770:9052 | Disney pix micro 2 (VGA)

sq905¢c 2770:905¢c | All 11 known cameras with this ID

sq905 2770:9120 | All 24 known cameras with this ID

sq905c¢ 2770:913d | All 4 known cameras with this ID

sq930x 2770:930b | Sweex Motion Tracking / I-Tec iCam Tracer

sq930x 2770:930c | Trust WB-3500T / NSG Robbie 2.0

spca500 2899:012c¢ | Toptro Industrial

ovb19 8020:ef04 | ov519

spca508 8086:0110 | Intel Easy PC Camera

spca500 8086:0630 | Intel Pocket PC Camera

spcab06 99fa:8988 | Grandtec V.cap

sn9c20x al68:0610 | Dino-Lite Digital Microscope (SN9C201 + HV7131R)
sn9c20x al68:0611 | Dino-Lite Digital Microscope (SN9C201 + HV7131R)
sn9c20x al68:0613 | Dino-Lite Digital Microscope (SN9C201 + HV7131R)
sn9c20x al68:0614 | Dino-Lite Digital Microscope (SN9C201 + MT9M111)
sn9c20x al68:0615 | Dino-Lite Digital Microscope (SN9C201 + MT9M111)
sn9c20x al68:0617 | Dino-Lite Digital Microscope (SN9C201 + MT9M111)
sn9c20x al68:0618 | Dino-Lite Digital Microscope (SN9C201 + HV7131R)
spcab561 abcd:cdee | Petcam

dvb-usb-dib0700 cards list

Card name USB IDs

ASUS My Cinema U3000 Mini DVBT | 0b05:171f

Tuner

ASUS My Cinema U3100 Mini DVBT | 0b05:173f

Tuner

AVerMedia AVerTV DVB-T Express | 07ca:b568

AVerMedia AVerTV DVB-T Volar 07ca:a807, 07ca:b808
Artec T14BR DVB-T 05d8:810f

Asus My Cinema-U3000Hybrid 0b05:1736

Compro Videomate U500 185b:1e78, 185b:1e80
DiBcom NIM7090 reference design | 10b8:1bb2

DiBcom NIM8096MD reference de- | 10b8:1fa8

sign

DiBcom NIM9090MD reference de- | 10b8:2384

sign

DiBcom STK7070P reference design | 10b8:1ebc

DiBcom STK7070PD reference de- | 10b8:1ebe

sign

DiBcom STK7700D reference de- | 10b8:1ef0

sign

DiBcom STK7700P reference design | 10b8:1e14, 10b8:1e78

Continued on next page

46 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 4 - continued from previous page

Card name USB IDs
DiBcom STK7770P reference design | 10b8:1e80
DiBcom STK807xP reference design | 10b8:1f90
DiBcom STK807xPVR reference de- | 10b8:1f98
sign

DiBcom STK8096-PVR reference | 2013:1faa, 10b8:1faa
design

DiBcom STK8096GP reference de- | 10b8:1fa0
sign

DiBcom STK9090M reference de- | 10b8:2383
sign

DiBcom TFE7090PVR reference de- | 10b8:1bb4
sign

DiBcom TFE7790P reference design | 10b8:1e6e
DiBcom TFE8096P reference design | 10b8:1f9C
Elgato EyeTV DTT 0fd9:0021
Elgato EyeTV DTT rev. 2 0fd9:003f
Elgato EyeTV Diversity 0fd9:0011
Elgato EyeTV Dtt DIx PD378S 0fd9:0020
EvolutePC TVWay+ 1e59:0002
Gigabyte U7000 1044:7001
Gigabyte U8000-RH 1044:7002
Hama DVB=T Hybrid USB Stick 147£:2758
Hauppauge ATSC MiniCard (B200) | 2040:b200
Hauppauge ATSC MiniCard (B210) | 2040:b210
Hauppauge Nova-T 500 Dual DVB-T | 2040:9941, 2040:9950
Hauppauge Nova-T MyTV.t 2040:7080

Hauppauge Nova-T Stick

2040:7050, 2040:7060, 2040:7070

Hauppauge Nova-TD Stick (52009)

2040:5200

Hauppauge Nova-TD Stick/Elgato | 2040:9580
Eye-TV Diversity

Hauppauge Nova-TD-500 (84xxx) 2040:8400
Leadtek WinFast DTV Dongle H 0413:60f6

Leadtek Winfast DTV Dongle
(STK7700P based)

0413:6f00, 0413:6101

Medion CTX1921 DVB-T USB 1660:1921
Microsoft Xbox One Digital TV | 045e:02d5
Tuner

PCTV 2002e 2013:025c¢
PCTV 2002e SE 2013:025d
Pinnacle Expresscard 320cx 2304:022e
Pinnacle PCTV 2000e 2304:022c
Pinnacle PCTV 282e 2013:0248, 2304:0248
Pinnacle PCTV 340e HD Pro USB | 2304:023d
Stick

Pinnacle PCTV 72e 2304:0236
Pinnacle PCTV 73A 2304:0243
Pinnacle PCTV 73e 2304:0237

Continued on next page

1.1. The media subsystem

47

Linux Media Documentation

Table 4 - continued from previous page

Card name USB IDs
Pinnacle PCTV 73e SE 2013:0245, 2304:0245
Pinnacle PCTV DVB-T Flash Stick 2304:0228
Pinnacle PCTV Dual DVB-T Diver- | 2304:0229
sity Stick

Pinnacle PCTV HD Pro USB Stick 2304:023a
Pinnacle PCTV HD USB Stick 2304:023b
Pinnacle PCTV Hybrid Stick Solo 2304:023e
Prolink Pixelview SBTVD 1554:5010
Sony PlayTV 1415:0003
TechniSat AirStar TeleStick 2 14£7:0004

Terratec Cinergy DT USB XS Diver-
sity/ TS

0Occd:0081, Occd:10al

Terratec Cinergy DT XS Diversity Occd:005a
Terratec Cinergy HT Express Occd:0060
Terratec Cinergy HT USB XE Occd:0058
Terratec Cinergy T Express 0ccd:0062

Terratec Cinergy T USB XXS (HD)/
T3

0ccd:0078, Occd:10a0, Occd:00ab

Uniwill STK7700P based (Hama and | 1584:6003
others)

YUAN High-Tech DiBcom | 1164:1e8c
STK7700D

YUAN High-Tech MC770 1164:0871
YUAN High-Tech STK7700D 1164:1efc
YUAN High-Tech STK7700PH 1164:1£08
Yuan EC372S 1164:1edc
Yuan PD378S 1164:2edc

48 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

dvb-usb-dibusb-mb cards list

Card name

USB IDs

AVerMedia AverTV DVBT USB1.1

14aa:0001, 14aa:0002

Artec T1 USB1.1 TVBOX with
AN2135

05d8:8105, 05d8:8106

Artec T1 USB1.1 TVBOX with
AN2235

05d8:8107, 05d8:8108

Artec T1 USB1.1 TVBOX with
AN2235 (faulty USB IDs)

0547:2235

Artec T1 USB2.0

05d8:8109, 05d8:810a

Compro Videomate DVB-U2000 -
DVB-T USB1.1 (please confirm to
linux-dvb)

185b:d000, 145£:010c, 185b:d001

DiBcom USB1.1 DVB-T reference
design (MOD3000)

10b8:0bb8, 10b8:0bb9

Grandtec USB1.1 DVB-T

5032:0fa0, 5032:0bb8, 5032:0fal, 5032:0bb9

KWorld V-Stream XPERT DTV - DVB-
T USB1.1

ebla:17de, ebla:17df

KWorld Xpert DVB-T USB2.0

eb2a:17de

KWorld/ADSTech Instant
USB2.0

DVB-T

06el:a333, 06el:a334

TwinhanDTV USB-Ter USB1.1 /
Magic Box I / HAMA USB1.1 DVB-T
device

13d3:3201, 1822:3201,

13d3:3202, 1822:3202

Unknown USB1.1 DVB-T device
??7?? please report the name to the
author

1025:005e, 1025:005f

VideoWalker DVB-T USB

0458:701e, 0458:701f

dvb-usb-dibusb-mc cards list

Card name

USB IDs

Artec T1 USB2.0 TVBOX (please
check the warm ID)

05d8:8109, 05d8:810a

Artec T14 - USB2.0 DVB-T

05d8:810b, 05d8:810c

DiBcom USB2.0 DVB-T reference
design (MOD3000P)

10b8:0bc6, 10b8:0bc7

GRAND - USB2.0 DVB-T adapter

5032:0bc6, 5032:0bc7

Humax/Coex DVB-T USB Stick 2.0
High Speed

10b9:5000, 10b9:5001

LITE-ON USB2.0 DVB-T Tuner

04ca:f000, 04ca:f001

Leadtek - USB2.0 Winfast DTV don-
gle

0413:6025, 0413:6026

MSI Digivox Mini SL

ebla:e360, ebla:e361

1.1. The media subsystem

49

Linux Media Documentation

dvb-usb-a800 cards list

Card name

USB IDs

AVerMedia AverTV DVB-T USB 2.0
(A800)

07ca:a800, 07ca:a801

dvb-usb-af9005 cards list

Card name USB IDs

Afatech DVB-T USB1.1 stick 15a4:9020

Ansonic DVB-T USB1.1 stick 10b9:6000

TerraTec Cinergy T USB XE 0ccd:0055
dvb-usb-az6027 cards list

Card name USB IDs

AZUREWAVE DVB-S/S2 USB2.0 | 13d3:3275

(AZ6027)

Elgato EyeTV Sat 0fd9:002a, 0£fd9:0025, 0fd9:0036

TERRATEC S7 Occd:10a4

TERRATEC S7 MKII Occd:10ac

Technisat SkyStar USB 2 HD CI 14£7:0001, 14£7:0002

dvb-usb-cinergyT2 cards list

Card name

USB IDs

TerraTec/ganu USB2.0 Highspeed
DVB-T Receiver

0ccd:0x0038

50

Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

dvb-usb-cxusb cards list

Card name

USB IDs

AVerMedia AVerTVHD Volar
(A868R)

Conexant DMB-TH Stick

DViCO FusionHDTV DVB-T Dual
Digital 2

DVIiCO FusionHDTV DVB-T Dual
Digital 4

DViCO FusionHDTV DVB-T Dual
Digital 4 (rev 2)

DViCO FusionHDTV DVB-T Dual
USB

DViCO FusionHDTV DVB-T NANO2

DViCO FusionHDTV DVB-T USB
(LGZ201)

DViCO FusionHDTV DVB-T USB
(TH7579)

DViCO FusionHDTV5 USB Gold

DigitalNow DVB-T Dual USB

Medion MD95700 (MDUSBTV-
HYBRID)

Mygica D689 DMB-TH

dvb-usb-digitv cards list

Card name

USB IDs

Nebula Electronics uDigiTV DVB-T
USB2.0)

0547:0201

dvb-usb-dtt200u cards list

Card name

USB IDs

WideView WT-220U PenType Re-
ceiver (Miglia)

18£3:0220

WideView WT-220U PenType Re-
ceiver (Typhoon/Freecom)

14aa:0222, 14aa:0220, 14aa:0221,
14aa:0226

14aa:0225,

WideView WT-220U PenType Re-
ceiver (based on Z1.353)

14aa:022a, 14aa:022b

DVB-T USB2.0 (WT-200U)

WideView/Yuan/Yakumo/Hama/Typhg

oaa:0201, 14aa:0301

1.1. The media subsystem

51

Linux Media Documentation

dvb-usb-dtv5100 cards list

Card name

USB IDs

AME DTV-5100 USB2.0 DVB-T

0x06be:0xa232

dvb-usb-dw2102 cards list

Card name USB IDs
DVBWorld DVB-C 3101 USB2.0 04b4:3101
DVBWorld DVB-S 2101 USB2.0 04b4:0x2101
DVBWorld DVB-S 2102 USB2.0 04b4:2102
DVBWorld DW2104 USB2.0 04b4:2104

GOTVIEW Satellite HD

0x1FE1:5456

Geniatech T220 DVB-T/T2 USB2.0

0x1f4d:0xD220

SU3000HD DVB-S USB2.0

0x1f4d:0x3000

TeVii S482 (tuner 1)

0x9022:0xd483

TeVii S482 (tuner 2)

0x9022:0xd484

TeVii S630 USB

0x9022:d630

TeVii S650 USB2.0

0x9022:d650

TeVii S662

0x9022:d662

TechnoTrend TT-connect S2-4600

0b48:3011

TerraTec Cinergy S USB

Occd: 0064

Terratec Cinergy S2 PClIe Dual Port
1

153b:1181

Terratec Cinergy S2 PCle Dual Port
2

153b:1182

Terratec Cinergy S2 USB BOX

0ccd:0x0105

Terratec Cinergy S2 USB HD Occd:00a8
Terratec Cinergy S2 USB HD Rev.2 | Occd:00b0
Terratec Cinergy S2 USB HD Rev.3 | Occd:0102

X3M TV SPC1400HD PCI

0x1f4d:0x3100

dvb-usb-gp8psk cards list

Card name

USB IDs

Genpix 8PSK-to-USB2 Rev.1 DVB-S
receiver

09c0:0200, 09c0:0201

Genpix 8PSK-to-USB2 Rev.2 DVB-S
receiver

09c0:0202

Genpix SkyWalker-1 DVB-S receiver

09c0:0203

Genpix SkyWalker-2 DVB-S receiver

09c0:0206

52

Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

dvb-usb-m920x cards list

Card name

USB IDs

DTV-DVB UDTT7049

13d3:3219

Dposh DVB-T USB2.0

1498:9206, 1498:a090

LifeView TV Walker Twin DVB-T
USB2.0

10fd:0514, 10£fd:0513

MSIDIGI VOX mini II DVB-TUSB2.0 | 10fd:1513

MSI Mega Sky 580 DVB-T USB2.0 0db0:5580

Pinnacle PCTV 310e 13d3:3211
dvb-usb-nova-t-usb2 cards list

Card name USB IDs

Hauppauge WinTV-NOVA-T usb2

2040:9300, 2040:9301

dvb-usb-operal cards list

Card name

USB IDs

Operal DVB-S USB2.0

04b4:2830, 695¢:3829

dvb-usb-pctv4a52e cards list

Card name USB IDs
PCTV HDTV USB 2304:021f
Technotrend TT Connect S2-3600 0b48:3007
Technotrend TT Connect S2-3650- | 0b48:300a
CI
dvb-usb-technisat-usb2 cards list

Card name USB IDs
Technisat SkyStar USB HD (DVB- | 14f7:0500

S/S2)

1.1. The media subsystem

53

Linux Media Documentation

dvb-usb-ttusb2 cards list

Card name USB IDs
Pinnacle 400e DVB-S USB2.0 2304:020f
Pinnacle 450e DVB-S USB2.0 2304:0222
Technotrend TT-connect CT-3650 0b48:300d
Technotrend TT-connect S-2400 0b48:3006
Technotrend TT-connect S-2400 | 0b48:3009
(8kB EEPROM)
dvb-usb-umt-010 cards list
Card name USB IDs

Hanftek UMT-010 DVB-T USB2.0

15f4:0001, 15f4:0015

dvb-usb-vp702x cards list

Card name USB IDs
TwinhanDTV StarBox DVB-S | 13d3:3207
USB2.0 (VP7021)

dvb-usb-vp7045 cards list
Card name USB IDs

DigitalNow TinyUSB 2 DVB-t Re-
ceiver

13d3:3223, 13d3:3224

Twinhan USB2.0 DVB-T receiver
(TwinhanDTV Alpha/MagicBox II)

13d3:3205, 13d3:3206

dvb-usb-af9015 cards list

Card name USB IDs
AVerMedia A309 07ca:a309
AVerMedia AVerTV DVB-T Volar X 07ca:a815

Afatech AF9015 reference design

15a4:9015, 15a4:9016

AverMedia AVerTV Red HD+
(A850T)

07ca:850b

AverMedia AVerTV Volar Black HD
(A850)

07ca:850a

AverMedia AVerTV Volar GPS 805
(A805)

07ca:a805

Continued on next page

54 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 5 - continued from previous page

(DVB-T PC160-2T)

Card name USB IDs
AverMedia AVerTV Volar M | 07ca:81b5a
(A815Mac)

Conceptronic USB2.0 DVB-T | 1b80:e397
CTVDIGRCU V3.0

DigitalNow TinyTwin 13d3:3226
DigitalNow TinyTwin v2 1b80:e402
DigitalNow TinyTwin v3 1f4d:9016
Fujitsu-Siemens Slim Mobile USB | 07ca:8150
DVB-T

Genius TVGo DVB-T03 0458:4012
KWorld Digital MC-810 1b80:c810
KWorld PlusTV DVB-T PCI Pro Card | 1b80:c161
(DVB-T PC160-T)

KWorld PlusTV Dual DVB-T PCI | 1b80:c160

KWorld PlusTV Dual DVB-T Stick
(DVB-T 3990U)

1b80:€399, 1b80:e400

KWorld USB DVB-T Stick Mobile
(UB383-T)

1b80:e383

KWorld USB DVB-T TV Stick IT (VS-
DVB-T 395U)

1b80:€396, 1b80:e39b, 1b80:e395, 1b80:e39a

Leadtek WinFast DTV Dongle Gold | 0413:6029
Leadtek WinFast DTV2000DS 0413:6a04
MSI DIGIVOX Duo 1462:8801
MSI Digi VOX mini IIT 1462:8807
Pinnacle PCTV 71e 2304:022b
Sveon STV20 Tuner USB DVB-T | 1b80:e39d
HDTV

Sveon STV22 Dual USB DVB-T | 1b80:e401
Tuner HDTV

Telestar Starstick 2 10b9:8000
TerraTec Cinergy T Stick Dual RC 0ccd:0099
TerraTec Cinergy T Stick RC Occd:0097
TerraTec Cinergy T USB XE Occd:0069
TrekStor DVB-T USB Stick 15a4:901b
TwinHan AzureWave AD- | 13d3:3237
TU700(704])

Xtensions XD-380 1ae7:0381

1.1. The media subsystem

55

Linux Media Documentation

dvb-usb-af9035 cards list

Card name USB IDs
AVerMedia AVerTV Volar HD/PRO | 07ca:a835, 07ca:b835
(A835)
AVerMedia HD Volar (A867) 07ca:1867, 07ca:a867, 07ca:0337
AVerMedia TD310 DVB-T2 07ca:1871
AVerMedia Twinstar (A825) 07ca:0825
Afatech AF9035 reference design 15a4:9035, 15a4:1000, 15a4:1001, 15a4:1002,
15a4:1003
Asus U3100Mini Plus 0b05:1779
Avermedia A835B(1835) 07ca:1835
Avermedia A835B(2835) 07ca:2835
Avermedia A835B(3835) 07ca:3835
Avermedia A835B(4835) 07ca:4835
Avermedia AverTV Volar HD 2 | 07ca:all0
(TD110)
Avermedia H335 07ca:0335
Digital Dual TV Receiver CTVDIG- | 1b80:e410
DUAL V2
EVOLVEO XtraTV stick 1f4d:a115
Hauppauge WinTV-MiniStick 2 2040:f900
ITE 9135 Generic 048d:9135
ITE 9135(9005) Generic 048d:9005
ITE 9135(9006) Generic 048d:9006
ITE 9303 Generic 048d:9306
Kworld UB499-2T T09 1b80:e409
Leadtek WinFast DTV Dongle Dual | 0413:6a05
Logilink VG0022A 1d19:0100
PCTV AndroiDTV (78e) 2013:025a
PCTV microStick (79e) 2013:0262
Sveon STV22 Dual DVB-T HDTV 1b80:e411
TerraTec Cinergy T Stick 0ccd:0093
TerraTec Cinergy T Stick (rev. 2) Occd:00aa
TerraTec Cinergy T Stick Dual RC | 0ccd:0099
(rev. 2)
TerraTec Cinergy TC2 Stick Occd:10b2
TerraTec T1 Occd:10ae

56

Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

dvb-usb-anysee cards list

Card name

USB IDs

Anysee

04b4:861f, 1c73:861f

dvb-usb-au6610 cards list

Card name USB IDs

Sigmatek DVB-110 058f:6610
dvb-usb-az6007 cards list

Card name USB IDs

Azurewave 6007 13d3:0ccd

Technisat CableStar Combo HD CI 14£7:0003

Terratec H7

Occd:10b4, Occd:10a3

dvb-usb-ce6230 cards list

Card name USB IDs
AVerMedia A310 USB 2.0 DVB-T | 07ca:a310
tuner

Intel CE9500 reference design 8086:9500

1.1. The media subsystem

57

Linux Media Documentation

dvb-usb-dvbsky cards list

Card name USB IDs

DVBSky S960/S860 0572:6831

DVBSky S960CI 0572:960c

DVBSky T330 0572:0320

DVBSky T680CI 0572:680c

MyGica Mini DVB-(T/T2/C) USB | 0572:c688

Stick T230

MyGica Mini DVB-(T/T2/C) USB | 0572:c689

Stick T230C

MyGica Mini DVB-(T/T2/C) USB | 0572:c699

Stick T230C Lite

MyGica Mini DVB-(T/T2/C) USB | 0572:c68a

Stick T230C v2

TechnoTrend TT-connect CT2-4650 | 0b48:3012

CI

TechnoTrend TT-connect CT2-4650 | 0b48:3015

CIvl.l

TechnoTrend TT-connect S2-4650 | 0b48:3017

CI

TechnoTrend TVStick CT2-4400 0b48:3014

Terratec Cinergy S2 Rev.4 0ccd:0105

Terratec H7 Rev.4 Occd:10a5

dvb-usb-ecl68 cards list

Card name USB IDs

E3C EC168 reference design 18b4:1689, 18b4.:fffa, 18b4.:fffb, 18b4:1001,
18b4:1002

dvb-usb-gl861 cards list

Card name USB IDs

774 Friio White ISDB-T USB2.0 7a69:0001

A-LINK DTU DVB-T USB2.0 05e3:f170

MSI Mega Sky 55801 DVB-T USB2.0 | 0db0:5581

58

Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

dvb-usb-ImedmO04 cards list

Card name USB IDs

DM04 LME2510C DVB-S 3344:1120

DM04 LME2510C DVB-S RS2000 3344:22f0

DM04 LME2510 DVB-S 3344:1122

dvb-usb-mxI111sf cards list

Card name USB IDs

HCW 117xxx 2040:b702

HCW 126xxx 2040:c602, 2040:c60a

Hauppauge 117xxx ATSC+ 2040:b700, 2040:b703, 2040:b753, 2040:b763,
2040:b757, 2040:b767

Hauppauge 117xxx DVBT 2040:b704, 2040:b764

Hauppauge 126xxx 2040:c612, 2040:c61a

Hauppauge 126xxx ATSC 2040:¢601, 2040:¢c609, 2040:b701

Hauppauge 126xxx ATSC+ 2040:c600, 2040:c603, 2040:c60b, 2040:c653,
2040:c65b

Hauppauge 126xxx DVBT 2040:c604, 2040:c60c

Hauppauge 138xxx DVBT 2040:d854, 2040:d864, 2040:d8d4, 2040:d8e4

Hauppauge Mercury 2040:d853, 2040:d863, 2040:d8d3, 2040:d8e3,
2040:d8ff

Hauppauge WinTV-Aero-M 2040:c613, 2040:¢c61b

dvb-usb-rtI28xxu cards list

Card name USB IDs

ASUS My Cinema-U3100Mini Plus | 1b80:d3a8

V2

Astrometa DVB-T2 15f4:0131

Compro VideoMate U620F 185b:0620

Compro VideoMate U650F 185b:0650

Crypto ReDi PC 50 A 1f4d:a803

Dexatek DK DVB-T Dongle 1d19:1101

Dexatek DK mini DVB-T Dongle 1d19:1102

DigitalNow Quad DVB-T Receiver 0413:6680

Freecom USB2.0 DVB-T 14aa:0160, 14aa:0161

G-Tek Electronics Group Lifeview | 1f4d:b803

LV5TDLX DVB-T

GIGABYTE U7300 1b80:d393

Genius TVGo DVB-T03 0458:707f

GoTView MasterHD 3 5654:cad?2

Leadtek WinFast DTV Dongle mini | 0413:6a03

Continued on next page

1.1. The media subsystem

59

Linux Media Documentation

Table 7 - continued from previous page
Card name USB IDs
Leadtek WinFast DTV2000DS Plus 0413:6f12
Leadtek Winfast DTV Dongle Mini D | 0413:6f0f
MSI DIGIVOX Micro HD 1d19:1104
MaxMedia HU394-T 1b80:d394
PROlectrix DV107669 1f4d:d803
Peak DVB-T USB 1b80:d395
Realtek RTL2831U reference de- | Obda:2831
sign
Realtek RTL2832U reference de- | Obda:2832, 0bda:2838
sign
Sveon STV20 1b80:d39d
Sveon STV21 1b80:d3b0
Sveon STV27 1b80:d3af
TURBO-X Pure TV Tuner DTT-2000 | 1b80:d3a4
TerraTec Cinergy T Stick Black Occd:00a9
TerraTec Cinergy T Stick RC (Rev. | Occd:00d3
3)
TerraTec Cinergy T Stick+ Occd:00d7
TerraTec NOXON DAB Stick Occd:00b3
TerraTec NOXON DAB Stick (rev 2) | Occd:00e0
TerraTec NOXON DAB Stick (rev 3) | Occd:00b4
Trekstor DVB-T Stick Terres 2.0 1f4d:C803
dvb-usb-zd1301 cards list
Card name USB IDs
ZyDAS 7ZD1301 reference design Oace:13al

Other USB cards list

Driver Card name USB IDs

airspy Airspy 1d50:60a1l

dvb-as102 Abilis Systems DVB-Titan 1BA6:0001

dvb-as102 PCTV Systems picoStick (74e) 2013:0246

dvb-as102 Elgato EyeTV DTT Deluxe 0£d9:002c

dvb-as102 nBox DVB-T Dongle 0b89:0007

dvb-as102 Sky IT Digital Key (green led) 2137:0001

b2c2-flexcop-usb | Technisat/B2C2 FlexCop II/IIb/III Digital TV 0af7:0101

cpiaZ2 Vision’s CPiA2 cameras such as the Digital Blue QX5 0553:0100, 0553:014

go7007 WIS GO7007 MPEG encoder 1943:2250, 093b:a0d0

hackrf HackRF Software Decoder Radio 1d50:6089

hdpvr Hauppauge HD PVR 2040:4900, 2040:49C

msi2500 Mirics MSi3101 SDR Dongle 1df7:2500, 2040:d30
60 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Driver Card name USB IDs
pvrusb?2 Hauppauge WinTV-PVR USB2 2040:2900, 2040:295
pwc Creative Webcam 5 041E:400C
pwc Creative Webcam Pro Ex 041E:4011
pwc Logitech QuickCam 3000 Pro 046D:08B0O
pwc Logitech QuickCam Notebook Pro 046D:08B1
pwc Logitech QuickCam 4000 Pro 046D:08B2
pwc Logitech QuickCam Zoom (old model) 046D:08B3
pwc Logitech QuickCam Zoom (new model) 046D:08B4
pwc Logitech QuickCam Orbit/Sphere 046D:08B5
pwc Logitech/Cisco VT Camera 046D:08B6
pwc Logitech ViewPort AV 100 046D:08B7
pwc Logitech QuickCam 046D:08B8
pwc Philips PCA645VC 0471:0302
pwc Philips PCA646VC 0471:0303
pwc Askey VCO010 type 2 0471:0304
pwc Philips PCVC675K (Vesta) 0471:0307
pwc Philips PCVC680K (Vesta Pro) 0471:0308
pwc Philips PCVC690K (Vesta Pro Scan) 0471:030C
pwc Philips PCVC730K (ToUCam Fun), PCVC830 (ToUCam II) | 0471:0310
pwc Philips PCVC740K (ToUCam Pro), PCVC840 (ToUCam II) | 0471:0311
pwc Philips PCVC750K (ToUCam Pro Scan) 0471:0312
pwc Philips PCVC720K/40 (ToUCam XS) 0471:0313
pwc Philips SPC 900NC 0471:0329
pwc Philips SPC 880NC 0471:032C
pwc Sotec Afina Eye 04CC:8116
pwc Samsung MPC-C10 055D:9000
pwc Samsung MPC-C30 055D:9001
pwc Samsung SNC-35E (Ver3.0) 055D:9002
pwc Askey VCO010 type 1 069A:0001
pwc AME Co. Afina Eye 06BE:8116
pwc Visionite VCS-UC300 0d81:1900
pwc Visionite VCS-UM100 0d81:1910
s2255drv Sensoray 2255 1943:2255, 1943:225
stk1160 STK1160 USB video capture dongle 05e1:0408
stkwebcam Syntek DC1125 174f:a311, 05e1:050

dvb-ttusb-budget

Technotrend/Hauppauge Nova-USB devices

0b48:1003, 0b48:10(

dvb-ttusb dec Technotrend/Hauppauge MPEG decoder DEC3000-s 0b48:1006
dvb-ttusb dec Technotrend/Hauppauge MPEG decoder 0b48:1007
dvb-ttusb dec Technotrend/Hauppauge MPEG decoder DEC2000-t 0b48:1008
dvb-ttusb dec Technotrend/Hauppauge MPEG decoder DEC2540-t 0b48:1009

usbtv

Fushicai USBTV007 Audio-Video Grabber

1b71:3002, 1£71:330

Zr364xx

USB ZR364XX Camera

08ca:0109, 041e:402

1.1. The media subsystem

61

Linux Media Documentation

1.1.5.2 PCI drivers
The PCI boards are identified by an identification called PCI ID. The PCI ID is actually composed
by two parts:

e Vendor ID and device ID;

* Subsystem ID and Subsystem device ID;

The 1spci -nn command allows identifying the vendor/device PCI IDs:

$ lspci -nn

00:0a.0 Multimedia controller [0480]: Philips Semiconductors SAA7131/SAA7133/SAA7135,
—Video Broadcast Decoder [1131:7133] (rev dl)

00:0b.0 Multimedia controller [0480]: Brooktree Corporation Bt878 Audio Capture,
»[109e:0878] (rev 11)

01:00.0 Multimedia video controller [0400]: Conexant Systems, Inc. (CX23887/8 PCle,
—Broadcast Audio and Video Decoder with 3D Comb [14f1:8880] (rev 0Of)

02:01.0 Multimedia video controller [0400]: Internext Compression Inc iTVC15,,

-+ (CX23415) Video Decoder [4444:0803] (rev 01)

02:02.0 Multimedia video controller [0400]: Conexant Systems, Inc. CX23418 Single-
—Chip MPEG-2 Encoder with Integrated Analog Video/Broadcast Audio Decoder [14fl:5b7a]
02:03.0 Multimedia video controller [0400]: Brooktree Corporation Bt878 Video Capture,
—[109e:036e] (rev 11)

The subsystem IDs can be obtained using lspci -vn

$ lspci -vn

00:0a.0 0480: 1131:7133 (rev dl)
Subsystem: 1461:f01d
Flags: bus master, medium devsel, latency 32, IRQ 209
Memory at e2002000 (32-bit, non-prefetchable) [size=2K]
Capabilities: [40] Power Management version 2

At the above example, the first card uses the saa7134 driver, and has a vendor/device PCI ID
equal to 1131:7133 and a PCI subsystem ID equal to 1461:f01d (see Saa7134 card list).

Unfortunately, sometimes the same PCI subsystem ID is used by different products. So, several
media drivers allow passing a card= parameter, in order to setup a card number that would
match the correct settings for an specific board.

The current supported PCI/PCle cards (not including staging drivers) are listed below!.

Driver Name

altera-ci Altera FPGA based CI module
b2c2-flexcop-pci | Technisat/B2C2 Air/Sky/Cable2PC PCI

bt878 DVB/ATSC Support for bt878 based TV cards
bttv BT8x8 Video For Linux

cobalt Cisco Cobalt

cx18 Conexant cx23418 MPEG encoder

Continued on next page

1 some of the drivers have sub-drivers, not shown at this table

62 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 9 - continued from previous page

Driver Name

cx23885 Conexant ¢cx23885 (2388x successor)
cx25821 Conexant cx25821

cx88xx Conexant 2388x (bt878 successor)
ddbridge Digital Devices bridge

dm1105 SDMC DM1105 based PCI cards
dt3155 DT3155 frame grabber

dvb-ttpci AV7110 cards

earth-ptl PT1 cards

earth-pt3 Earthsoft PT3 cards

hexium gemini

Hexium Gemini frame grabber

hexium orion

Hexium HV-PCI6 and Orion frame grabber

hopper HOPPER based cards

ipu3-cio2 Intel ipu3-cio2 driver

ivtv Conexant cx23416/cx23415 MPEG encoder/decoder
ivtvfb Conexant ¢x23415 framebuffer

mantis MANTIS based cards

meye Sony Vaio Picturebook Motion Eye

mxb Siemens-Nixdorf ‘Multimedia eXtension Board’
netup-unidvb NetUP Universal DVB card

ngene Micronas nGene

pluto2 Pluto2 cards

saa7134 Philips SAA7134

saa7164 NXP SAA7164

smipcie SMI PClIe DVBSky cards

solo6x10 Bluecherry / Softlogic 6x10 capture cards (MPEG-4/H.264)
sta2x11 vip STA2X11 VIP Video For Linux

tw5864 Techwell TW5864 video/audio grabber and encoder
tw686x Intersil/Techwell TW686x

tw68 Techwell tw68x Video For Linux

zoran Zoran-36057/36067 JPEG codec

Some of those drivers support multiple devices, as shown at the card lists below:

BTTV cards list

Card Card name PCl subsystem IDs
num-

ber

0 * UNKNOWN/GENERIC *

1 MIRO PCTV

2 Hauppauge (bt848)

3 STB, Gateway P/N 6000699 (bt848)

4 Intel Create and Share PCI/ Smart Video Recorder III

5 Diamond DTV2000

6 AVerMedia TVPhone

Continued on next page

1.1. The media subsystem

63

Linux Media Documentation

Table 10 - continued from previous page

Card Card name PCl subsystem IDs
num-
ber
7 MATRIX-Vision MV-Delta
8 Lifeview FlyVideo II (Bt848) LR26 / MAXI TV Video PCI2
LR26
9 IMS/IXmicro TurboTV
10 Hauppauge (bt878) 0070:13eDb,
0070:3900,
2636:10b4
11 MIRO PCTV pro
12 ADS Technologies Channel Surfer TV (bt848)
13 AVerMedia TVCapture 98 1461:0002,
1461:0004,
1461:0300
14 Aimslab Video Highway Xtreme (VHX)
15 Zoltrix TV-Max ala0:a0Ofc
16 Prolink Pixelview PlayTV (bt878)
17 Leadtek WinView 601
18 AVEC Intercapture
19 Lifeview FlyVideo II EZ /FlyKit LR38 Bt848 (capture only)
20 CEI Raffles Card
21 Lifeview FlyVideo 98/ Lucky Star Image World Confer-
enceTV LR50
22 Askey CPHO050/ Phoebe Tv Master + FM 14££:3002
23 Modular Technology MM201/MM202/MM205/MM210/MM24x7:0101
PCTV, bt878
24 Askey CPH05X/06X (bt878) [many vendors] 144f£:3002,
1441£:3005,
144f£:5000, 14ff:3000
25 Terratec TerraTV+ Version 1.0 (Bt848)/ Terra TValue Ver-
sion 1.0/ Vobis TV-Boostar
26 Hauppauge WinCam newer (bt878)
27 Lifeview FlyVideo 98/ MAXI TV Video PCI2 LR50
28 Terratec TerraTV+ Version 1.1 (bt878) 153b:1127,
1852:1852
29 Imagenation PXC200 1295:200a
30 Lifeview FlyVideo 98 LR50 1£7£:1850
31 Formac iProTV, Formac ProTV I (bt848)
32 Intel Create and Share PCI/ Smart Video Recorder III
33 Terratec TerraTValue Version Bt878 153b:1117,
153b:1118,
153b:1119,
153b:111a,
153b:1134,
153b:5018
Continued on next page
64 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 10 - continued from previous page

Card Card name PCl subsystem IDs
num-
ber
34 Leadtek WinFast 2000/ WinFast 2000 XP 107d:6606,
107d:6609,
6606:217d, foff:fff6
35 Lifeview FlyVideo 98 LR50 / Chronos Video Shuttle II 1851:1850,
1851:a050
36 Lifeview FlyVideo 98FM LR50 / Typhoon TView TV/FM | 1852:1852
Tuner
37 Prolink PixelView PlayTV pro
38 Askey CPHO6X TView99 144£:3000,
144f:a005, a04f:a0fc
39 Pinnacle PCTV Studio/Rave 11bd:0012,
bd11:1200,
bd11:ff00, 11bd:ff12
40 STB TV PCI FM, Gateway P/N 6000704 (bt878), 3Dfx | 10b4:2636,
VoodooTV 100 10b4:2645,
121a:3060
41 AVerMedia TVPhone 98 1461:0001,
1461:0003
42 ProVideo PV951 aaOc:146¢
43 Little OnAir TV
44 Sigma TVII-FM
45 MATRIX-Vision MV-Delta 2
46 Zoltrix Genie TV/FM 15b0:4000,
15b0:400a,
15b0:400d,
15b0:4010,
15b0:4016
47 Terratec TV/Radio+ 153b:1123
48 Askey CPHO03x/ Dynalink Magic TView
49 IODATA GV-BCTV3/PCI 10fc:4020
50 Prolink PV-BT878P+4E / PixelView PlayTV PAK / Lenco
MXTV-9578 CP
51 Eagle Wireless Capricorn2 (bt878A)
52 Pinnacle PCTV Studio Pro
53 Typhoon TView RDS + FM Stereo / KNC1 TV Station RDS
54 Lifeview FlyVideo 2000 /FlyVideo A2/ Lifetec LT 9415 TV
[LR90]
55 Askey CPH031/ BESTBUY Easy TV
56 Lifeview FlyVideo 98FM LR50 a051:41a0
57 GrandTec ‘Grand Video Capture’ (Bt848) 4344:4142
58 Askey CPH060/ Phoebe TV Master Only (No FM)
59 Askey CPHO3x TV Capturer
60 Modular Technology MM100PCTV
61 AG Electronics GMV1 15cb:0101
62 Askey CPH061/ BESTBUY Easy TV (bt878)

Continued on next page

1.1. The media subsystem 65

Linux Media Documentation

Table 10 - continued from previous page

Card Card name PCl subsystem IDs
num-
ber
63 ATI TV-Wonder 1002:0001
64 ATI TV-Wonder VE 1002:0003
65 Lifeview FlyVideo 2000S LR90
66 Terratec TValueRadio 153b:1135, 153b:ff3b
67 IODATA GV-BCTV4/PCI 10fc:4050
68 3Dfx VoodooTV FM (Euro) 10b4:2637
69 Active Imaging AIMMS
70 Prolink Pixelview PV-BT878P+ (Rev.4C,8E)
71 Lifeview FlyVideo 98EZ (capture only) LR51 1851:1851
72 Prolink Pixelview PV-BT878P+9B (PlayTV Pro rev.9B | 1554:4011
FM+NICAM)
73 Sensoray 311/611 6000:0311,
6000:0611
74 RemoteVision MX (RV605)
75 Powercolor MTV878/ MTV878R/ MTV878F
76 Canopus WinDVR PCI (COMPAQ Presario 3524]P | 0e11:0079
5112]P)
77 GrandTec Multi Capture Card (Bt878)
78 Jetway TV/Capture JW-TV878-FBK, Kworld KW-TV878RF | 0a01:17de
79 DSP Design TCVIDEO
80 Hauppauge WinTV PVR 0070:4500
81 IODATA GV-BCTV5/PCI 10fc:4070, 10fc:d018
82 Osprey 100/150 (878) 0070:ff00
83 Osprey 100/150 (848)
84 Osprey 101 (848)
85 Osprey 101/151
86 Osprey 101/151 w/ svid
87 Osprey 200/201/250/251
88 Osprey 200/250 0070:ff01
89 Osprey 210/220/230
90 Osprey 500 0070:ff02
91 Osprey 540 0070:ff04
92 Osprey 2000 0070:ff03
93 IDS Eagle
94 Pinnacle PCTV Sat 11bd:001c
95 Formac ProTV II (bt878)
96 MachTV
97 Euresys Picolo
Continued on next page
66 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 10 - continued from previous page

Card Card name PCl subsystem IDs

num-

ber

98 ProVideo PV150 2a00:1460,
aal0l:1461,
aa02:1462,
aa03:1463,
aa04:1464,
aa05:1465,
2a06:1466,
aa07:1467

99 AD-TVK503

100 Hercules Smart TV Stereo

101 Pace TV & Radio Card

102 IVC-200 0000:a155,
0001:a155,
0002:a155,
0003:a155,
0100:a155,
0101:a155,
0102:a155,
0103:a155,
0800:a155,
0801:a155,
0802:a155,
0803:a155

103 Grand X-Guard / Trust 814PCI 0304:0102

104 Nebula Electronics DigiTV 0071:0101

105 ProVideo PV143 aa00:1430,
aa00:1431,
2a00:1432,
aa00:1433,
aa03:1433

106 PHYTEC VD-009-X1 VD-011 MiniDIN (bt878)

107 PHYTEC VD-009-X1 VD-011 Combi (bt878)

108 PHYTEC VD-009 MiniDIN (bt878)

109 PHYTEC VD-009 Combi (bt878)

110 IVC-100 ff00:a132

111 IVC-120G ff00:a182, ff01:a182,
ff02:a182, ff03:a182,
ff04:a182, ff05:a182,
ff06:a182, ff07:a182,
ff08:a182, ff09:a182,
ff0a:a182, ffOb:a182,
ff0c:a182, ff0d:a182,
ffOe:a182, ffOf:a182

112 pcHDTV HD-2000 TV 7063:2000

Continued on next page

1.1. The media subsystem

67

Linux Media Documentation

Table 10 - continued from previous page

Card Card name PCl subsystem IDs

num-

ber

113 Twinhan DST + clones 11bd:0026,
1822:0001,
270f:fc00, 1822:0026

114 Winfast VC100 107d:6607

115 Teppro TEV-560/InterVision IV-560

116 SIMUS GVC1100 aa6a:82b2

117 NGS NGSTV+

118 LMLBT4

119 Tekram M205 PRO

120 Conceptronic CONTVFMi

121 Euresys Picolo Tetra 1805:0105,
1805:0106,
1805:0107,
1805:0108

122 Spirit TV Tuner

123 AVerMedia AVerTV DVB-T 771 1461:0771

124 AverMedia AverTV DVB-T 761 1461:0761

125 MATRIX Vision Sigma-SQ

126 MATRIX Vision Sigma-SLC

127 APAC Viewcomp 878(AMAX)

128 DViCO FusionHDTV DVB-T Lite 18ac:db10,
18ac:dbl11

129 V-Gear MyVCD

130 Super TV Tuner

131 Tibet Systems ‘Progress DVR’ CS16

132 Kodicom 4400R (master)

133 Kodicom 4400R (slave)

134 Adlink RTV24

135 DViCO FusionHDTYV 5 Lite 18ac:d500

136 Acorp Y878F 9511:1540

137 Conceptronic CTVFMi v2 036e:109e

138 Prolink Pixelview PV-BT878P+ (Rev.2E)

139 Prolink PixelView PlayTV MPEG2 PV-M4900

140 Osprey 440 0070:f£07

141 Asound Skyeye PCTV

142 Sabrent TV-FM (bttv version)

143 Hauppauge ImpactVCB (bt878) 0070:13eb

144 MagicTV

145 SSAI Security Video Interface 4149:5353

146 SSAI Ultrasound Video Interface 414a:5353

147 VoodooTV 200 (USA) 121a:3000

148 DViCO FusionHDTV 2 dbc0:d200

149 Typhoon TV-Tuner PCI (50684)

150 Geovision GV-600 008a:763c

151 Kozumi KTV-01C

Continued on next page
68 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 10 - continued from previous page

Card Card name PCl subsystem IDs

num-

ber

152 Encore ENL TV-FM-2 1000:1801

153 PHYTEC VD-012 (bt878)

154 PHYTEC VD-012-X1 (bt878)

155 PHYTEC VD-012-X2 (bt878)

156 IVCE-8784 0000:£050,
0001:f050,

0002:£050, 0003:f050

157 Geovision GV-800(S) (master)

800a:763d

158 Geovision GV-800(S) (slave)

800b:763d,
800c:763d,
800d:763d

159 ProVideo PV183

1830:1540,
1831:1540,
1832:1540,
1833:1540,
1834:1540,
1835:1540,
1836:1540,
1837:1540

160 Tongwei Video Technology TD-3116

f200:3116

161 Aposonic W-DVR

0279:0228

162 Adlink MPG24

163 Bt848 Capture 14MHz

164 CyberVision CV06 (SV)

165 Kworld V-Stream Xpert TV PVR878

166 PCI-8604PW

CX18 cards list

Those cards are supported by cx18 driver:

Hauppauge HVR-1600 (ESMT memory)
Hauppauge HVR-1600 (Samsung memory)
Compro VideoMate H900

Yuan MPC718 MiniPCI DVB-T/Analog
Conexant Raptor PAL/SECAM

Toshiba Qosmio DVB-T/Analog

Leadtek WinFast PVR2100

Leadtek WinFast DVR3100

GoTView PCI DVD3 Hybrid

Hauppauge HVR-1600 (s5h1411/tdal18271)

1.1.

The media subsystem

69

Linux Media Documentation

cx23885 cards list

Card Card name PCl subsystem IDs
num-
ber
0 UNKNOWN/GENERIC 0070:3400
1 Hauppauge WinTV-HVR1800lp 0070:7600
2 Hauppauge WinTV-HVR1800 0070:7800,
0070:7801,
0070:7809
3 Hauppauge WinTV-HVR1250 0070:7911
4 DViCO FusionHDTVS5 Express 18ac:d500
5 Hauppauge WinTV-HVR1500Q 0070:7790,
0070:7797
6 Hauppauge WinTV-HVR1500 0070:7710,
0070:7717
7 Hauppauge WinTV-HVR1200 0070:71d1,
0070:71d3
8 Hauppauge WinTV-HVR1700 0070:8101
9 Hauppauge WinTV-HVR1400 0070:8010
10 DViCO FusionHDTV7 Dual Express 18ac:d618
11 DViCO FusionHDTV DVB-T Dual Express 18ac:db78
12 Leadtek Winfast PxDVR3200 H 107d:6681
13 Compro VideoMate E650F 185b:e800
14 TurboSight TBS 6920 6920:8888
15 TeVii S470 d470:9022
16 DVBWorld DVB-S2 2005 0001:2005
17 NetUP Dual DVB-S2 CI 1b55:2a2c
18 Hauppauge WinTV-HVR1270 0070:2211
19 Hauppauge WinTV-HVR1275 0070:2215,
0070:221d,
0070:22f2
20 Hauppauge WinTV-HVR1255 0070:2251,
0070:22f1
21 Hauppauge WinTV-HVR1210 0070:2291,
0070:2295,
0070:2299,
0070:229d,
0070:22f0,
0070:2213,
0070:22f4, 0070:22£5
22 Mygica X8506 DMB-TH 14£1:8651
23 Magic-Pro ProHDTV Extreme 2 14£1:8657
24 Hauppauge WinTV-HVR1850 0070:8541
25 Compro VideoMate E800 1858:e800
26 Hauppauge WinTV-HVR1290 0070:8551
27 Mygica X8558 PRO DMB-TH 14£1:8578
28 LEADTEK WinFast PxTV1200 107d:6£22
Continued on next page
70 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 11 - continued from previous page

Card Card name PCl subsystem IDs
num-
ber
29 GoTView X5 3D Hybrid 5654:2390
30 NetUP Dual DVB-T/C-CI RF 1b55:e2e4
31 Leadtek Winfast PxDVR3200 H XC4000 107d:6£39
32 MPX-885
33 Mygica X8502/X8507 ISDB-T 14£1:8502
34 TerraTec Cinergy T PCle Dual 153b:117e
35 TeVii S471 d471:9022
36 Hauppauge WinTV-HVR1255 0070:2259
37 Prof Revolution DVB-S2 8000 8000:3034
38 Hauppauge WinTV-HVR4400/HVR5500 0070:c108,
0070:c138,
0070:c1£8
39 AVerTV Hybrid Express Slim HC81R 1461:d939
40 TurboSight TBS 6981 6981:8888
41 TurboSight TBS 6980 6980:8888
42 Leadtek Winfast PxPVR2200 107d:6f21
43 Hauppauge ImpactVCB-e 0070:7133,
0070:7137
44 DViCO FusionHDTV DVB-T Dual Express2 18ac:db98
45 DVBSky T9580 4254:9580
46 DVBSky T980C 4254:980c
47 DVBSky S950C 4254:950c
48 Technotrend TT-budget CT2-4500 CI 13c2:3013
49 DVBSky S950 4254:0950
50 DVBSky S952 4254:0952
51 DVBSky T982 4254:0982
52 Hauppauge WinTV-HVR5525 0070:f038
53 Hauppauge WinTV Starburst 0070:c12a
54 ViewCast 260e 1576:0260
55 ViewCast 460e 1576:0460
56 Hauppauge WinTV-QuadHD-DVB 0070:6a28,
0070:6b28
57 Hauppauge WinTV-QuadHD-ATSC 0070:6a18,
0070:6b18
58 Hauppauge WinTV-HVR-1265(161111) 0070:2a18
59 Hauppauge WinTV-Starburst2 0070:f02a
60 Hauppauge WinTV-QuadHD-DVB(885)
61 Hauppauge WinTV-QuadHD-ATSC(885)
62 AVerMedia CE310B 1461:3100

1.1. The media subsystem

71

Linux Media Documentation

CX88 cards list

Card Card name PCl subsystem IDs
num-
ber
0 UNKNOWN/GENERIC
1 Hauppauge WinTV 34xxx models 0070:3400,
0070:3401
2 GDI Black Gold 14c¢7:0106,
14c¢7:0107
3 PixelView 1554:4811
4 ATI TV Wonder Pro 1002:00£8, 1002:00f9
5 Leadtek Winfast 2000XP Expert 107d:6611,
107d:6613
6 AverTV Studio 303 (M126) 1461:000b
7 MSI TV-@nywhere Master 1462:8606
8 Leadtek Winfast DV2000 107d:6620,
107d:6621
9 Leadtek PVR 2000 107d:663D,
107d:663c,
107d:6632,
107d:6630,
107d:6638,
107d:6631,
107d:6637,
107d:663d
10 IODATA GV-VCP3/PCI 10fc:d003
11 Prolink PlayTV PVR
12 ASUS PVR-416 1043:4823,
1461:c111
13 MSI TV-@nywhere
14 KWorld/VStream XPert DVB-T 17de:08a6
15 DViCO FusionHDTV DVB-T1 18ac:db00
16 KWorld LTV883RF
17 DViCO FusionHDTV 3 Gold-Q 18ac:d810,
18ac:d800
18 Hauppauge Nova-T DVB-T 0070:9002,
0070:9001,
0070:9000
19 Conexant DVB-T reference design 14£1:0187
20 Provideo PV259 1540:2580
21 DViCO FusionHDTV DVB-T Plus 18ac:db10,
18ac:db11
22 pcHDTV HD3000 HDTV 7063:3000
23 digitalnow DNTV Live! DVB-T 17de:a8a6
24 Hauppauge WinTV 28xxx (Roslyn) models 0070:2801
25 Digital-Logic MICROSPACE Entertainment Center (MEC) | 14f1:0342
26 IODATA GV/BCTV7E 10fc:d035

Continued on next page

72 Chapter 1. Media subsystem admin and user guide

mailto:TV-@nywhere
mailto:TV-@nywhere

Linux Media Documentation

Table 12 - continued from previous page

Card Card name PCl subsystem IDs
num-
ber
27 PixelView PlayTV Ultra Pro (Stereo)
28 DViCO FusionHDTV 3 Gold-T 18ac:d820
29 ADS Tech Instant TV DVB-T PCI 1421:0334
30 TerraTec Cinergy 1400 DVB-T 153b:1166
31 DViCO FusionHDTV 5 Gold 18ac:d500
32 AverMedia UltraTV Media Center PCI 550 1461:8011
33 Kworld V-Stream Xpert DVD
34 ATTI HDTV Wonder 1002:a101
35 WinFast DTV1000-T 107d:665f
36 AVerTV 303 (M126) 1461:000a
37 Hauppauge Nova-S-Plus DVB-S 0070:9201,
0070:9202
38 Hauppauge Nova-SE2 DVB-S 0070:9200
39 KWorld DVB-S 100 17de:08b2,
1421:0341
40 Hauppauge WinTV-HVR1100 DVB-T/Hybrid 0070:9400,
0070:9402
41 Hauppauge WinTV-HVR1100 DVB-T/Hybrid (Low Profile) | 0070:9800,
0070:9802
42 digitalnow DNTV Live! DVB-T Pro 1822:0025,
1822:0019
43 KWorld/VStream XPert DVB-T with cx22702 17de:08al,
12ab:2300
44 DViCO FusionHDTV DVB-T Dual Digital 18ac:db50,
18ac:db54
45 KWorld HardwareMpegTV XPert 17de:0840,
1421:0305
46 DViCO FusionHDTV DVB-T Hybrid 18ac:db40,
18ac:db44
47 pcHDTV HD5500 HDTV 7063:5500
48 Kworld MCE 200 Deluxe 17de:0841
49 PixelView PlayTV P7000 1554:4813
50 NPG Tech Real TV FM Top 10 14£1:0842
51 WinFast DTV2000 H 107d:665e
52 Geniatech DVB-S 14f1:0084
53 Hauppauge WinTV-HVR3000 TriMode Analog/DVB- | 0070:1404,
S/DVB-T 0070:1400,
0070:1401,
0070:1402
54 Norwood Micro TV Tuner
55 Shenzhen Tungsten Ages Tech TE-DTV-250 / Swann OEM | ¢180:¢980
56 Hauppauge WinTV-HVR1300 DVB-T/Hybrid MPEG En- | 0070:9600,
coder 0070:9601,
0070:9602
57 ADS Tech Instant Video PCI 1421:0390

Continued on next page

1.1. The media subsystem

73

Linux Media Documentation

Table 12 - continued from previous page

Card Card name PCl subsystem IDs
num-
ber
58 Pinnacle PCTV HD 800i 11bd:0051
59 DViCO FusionHDTV 5 PCI nano 18ac:d530
60 Pinnacle Hybrid PCTV 12ab:1788
61 Leadtek TV2000 XP Global 107d:6f18,
107d:6618,
107d:6619
62 PowerColor RA330 14f1:ea3d
63 Geniatech X8000-MT DVBT 14£1:8852
64 DViCO FusionHDTV DVB-T PRO 18ac:db30
65 DViCO FusionHDTV 7 Gold 18ac:d610
66 Prolink Pixelview MPEG 8000GT 1554:4935
67 Kworld PlusTV HD PCI 120 (ATSC 120) 17de:08cl
68 Hauppauge WinTV-HVR4000 DVB-S/S2/T/Hybrid 0070:6900,
0070:6904,
0070:6902
69 Hauppauge WinTV-HVR4000(Lite) DVB-S/S2 0070:6905,
0070:6906
70 TeVii S460 DVB-S/S2 d460:9022
71 Omicom SS4 DVB-S/S2 PCI A044:2011
72 TBS 8920 DVB-S/S2 8920.8888
73 TeVii S420 DVB-S d420:9022
74 Prolink Pixelview Global Extreme 1554:4976
75 PROF 7300 DVB-S/S2 B033:3033
76 SATTRADE ST4200 DVB-S/S2 b200:4200
77 TBS 8910 DVB-S 8910.8888
78 Prof 6200 DVB-S b022:3022
79 Terratec Cinergy HT PCI MKII 153b:1177
80 Hauppauge WinTV-IR Only 0070:9290
81 Leadtek WinFast DTV1800 Hybrid 107d:6654
82 WinFast DTV2000 H rev.] 107d:6f2b
83 Prof 7301 DVB-S/S2 b034:3034
84 Samsung SMT 7020 DVB-S 18ac:dc00,
18ac:dccd
85 Twinhan VP-1027 DVB-S 1822:0023
86 TeVii S464 DVB-S/S2 d464:9022
87 Leadtek WinFast DTV2000 H PLUS 107d:6f42
88 Leadtek WinFast DTV1800 H (XC4000) 107d:6f38
89 Leadtek TV2000 XP Global (SC4100) 107d:6f36
90 Leadtek TV2000 XP Global (XC4100) 107d:6f43
91 NotOnlyTV LV3H
74 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

IVTV cards list

Card
num-
ber

Card name

PCI subsystem
IDs

0

Hauppauge WinTV PVR-250

IVIV16
104d:813d

1

Hauppauge WinTV PVR-350

IVTV16
104d:813d

2

Hauppauge WinTV PVR-150

IVIV16
104d:813d

AVerMedia M179

IVIV15
1461:a3cf,
IVTV15
1461:a3ce

Yuan MPG600, Kuroutoshikou ITVC16-STVLP

IVITV16
12ab:fff3,
IVTV16 12ab:ffff

YUAN MPG160, Kuroutoshikou ITVC15-STVLP I/O Data GV-
M2TV/PCI

IVTV15
10fc:40a0

Yuan PG600, Diamond PVR-550

IVIV16
ff92:0070,
IVTV16 ffab:0600

Adaptec VideOh! AVC-2410

IVIV16
9005:0093

Adaptec VideOh! AVC-2010

IVIV16
9005:0092

Nagase Transgear 5000TV

IVIV16 1461:bfff

10

AOpen VA2000MAX-SNT6

IVTV16 0000:ff5f

11

Yuan MPG600GR, Kuroutoshikou CX23416GYC-STVLP

IVIV16
12ab:0600,
IVIV16
fbab:0600,
IVTV16
1154:0523

12

I/O Data GV-MVP/RX, GV-MVP/RX2W (dual tuner)

IVTV16
10fc:dO1le,
IVTV16
10fc:d038,
IVTV16
10fc:d039

13

I/O Data GV-MVP/RX2E

IVIV16
10fc:d025

14

GotView PCI DVD

IVTV16
12ab:0600

15

GotView PCI DVD2 Deluxe

IVTV16 ffac:0600

16

Yuan MPC622

IVIV16
ff01:d998

17

Digital Cowboy DCI-MTVP1

IVIV16 1461:bfff

Continued on next page

1.1. The media subsystem

75

Linux Media Documentation

Table 13 - continued from previous page

Card
num-
ber

Card name

PCI
IDs

subsystem

18

Yuan PG600-2, GotView PCI DVD Lite

IVIV16
ffab:0600,
IVTV16 ffad:0600

19

Club3D ZAP-TV1x01

IVTV16 ffab:0600

20

AVerTV MCE 116 Plus

IVIV16
1461:c439

21

ASUS Falcon2

IVTV16
1043:4b66,
IVTV16
1043:462e,
IVTV16
1043:4b2e

22

AVerMedia PVR-150 Plus / AVerTV M113 Partsnic (Daewoo) Tuner

IVIV16
1461:c034,
IVIV16
1461:c035

23

AVerMedia EZMaker PCI Deluxe

IVTV16
1461:c03f

24

AVerMedia M104

IVIV16
1461:c136

25

Buffalo PC-MV5L/PCI

IVIV16
1154:052b

26

AVerMedia UltraTV 1500 MCE / AVerTV M113 Philips Tuner

IVIV16
1461:c019,
IVIV16
1461:c01b

27

Sony VAIO Giga Pocket (ENX Kikyou)

IVTV16
104d:813d

28

Hauppauge WinTV PVR-350 (V1)

IVIV16
104d:813d

29

Yuan MPG600GR, Kuroutoshikou CX23416GYC-STVLP (no GR)

IVIV16
104d:813d

30

Yuan MPG600GR, Kuroutoshikou CX23416GYC-STVLP
GR/YCS)

(no

IVIV16
104d:813d

SAA7134 cards list

Card Card name PCl subsystem IDs
num-
ber
0 UNKNOWN/GENERIC
1 Proteus Pro [philips reference design] 1131:2001,

1131:2001

Continued on next page
76 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 14 - continued from previous page

Card Card name PCl subsystem IDs

num-

ber

2 LifeView FlyVIDEO3000 5168:0138,
4e42:0138

3 LifeView/Typhoon FlyVIDEO2000 5168:0138,
4e42:0138

4 EMPRESS 1131:6752

5 SKNet Monster TV 1131:4e85

6 Tevion MD 9717

7 KNC One TV-Station RDS / Typhoon TV Tuner RDS 1131:fe01, 1894:fe01

8 Terratec Cinergy 400 TV 153b:1142

9 Medion 5044

10 Kworld/KuroutoShikou SAA7130-TVPCI

11 Terratec Cinergy 600 TV 153b:1143

12 Medion 7134 16be:0003,
16be:5000

13 Typhoon TV+Radio 90031

14 ELSA EX-VISION 300TV 1048:226b

15 ELSA EX-VISION 500TV 1048:226a

16 ASUS TV-FM 7134 1043:4842,
1043:4830,
1043:4840

17 AOPEN VA1000 POWER 1131:7133

18 BMK MPEX No Tuner

19 Compro VideoMate TV 185b:c100

20 Matrox CronosPlus 102B:48d0

21 10MOONS PCI TV CAPTURE CARD 1131:2001

22 AverMedia M156 / Medion 2819 1461:a70b

23 BMK MPEX Tuner

24 KNC One TV-Station DVR 1894:a006

25 ASUS TV-FM 7133 1043:4843

26 Pinnacle PCTV Stereo (saa7134) 11bd:002b

27 Manli MuchTV M-TV002

28 Manli MuchTV M-TV001

29 Nagase Sangyo TransGear 3000TV 1461:050c

30 Elitegroup ECS TVP3XP FM1216 Tuner Card(PAL- | 1019:4cb4

BG,FM)

31 Elitegroup ECS TVP3XP FM1236 Tuner Card (NTSC,FM) | 1019:4cb5

32 AVACS SmartTV

33 AVerMedia DVD EZMaker 1461:10ff

34 Noval Prime TV 7133

35 AverMedia AverTV Studio 305 1461:2115

36 UPMOST PURPLE TV 12ab:0800

37 Items MuchTV Plus / IT-005

38 Terratec Cinergy 200 TV 153b:1152

Continued on next page

1.1. The media subsystem

77

Linux Media Documentation

Table 14 - continued from previous page

Card Card name PCl subsystem IDs
num-
ber
39 LifeView FlyTV Platinum Mini 5168:0212,
4e42:0212,
5169:1502
40 Compro VideoMate TV PVR/FM 185b:c100
41 Compro VideoMate TV Gold+ 185b:c100
42 Sabrent SBT-TVFM (saa7130)
43 :Zolid Xpert TV7134
44 Empire PCI TV-Radio LE
45 Avermedia AVerTV Studio 307 1461:9715
46 AVerMedia Cardbus TV/Radio (E500) 1461:d6ee
47 Terratec Cinergy 400 mobile 153b:1162
48 Terratec Cinergy 600 TV MK3 153b:1158
49 Compro VideoMate Gold+ Pal 185b:c200
50 Pinnacle PCTV 300i DVB-T + PAL 11bd:002d
51 ProVideo PV952 1540:9524
52 AverMedia AverTV/305 1461:2108
53 ASUS TV-FM 7135 1043:4845
54 LifeView FlyTV Platinum FM / Gold 5168:0214,
5168:5214,
1489:0214,
5168:0304
55 LifeView FlyDVB-T DUO / MSI TV@nywhere Duo 5168:0306,
4E42:0306
56 Avermedia AVerTV 307 1461:a70a
57 Avermedia AVerTV GO 007 FM 1461:£31f
58 ADS Tech Instant TV (saa7135) 1421:0350,
1421:0351,
1421:0370,
1421:1370
59 Kworld/Tevion V-Stream Xpert TV PVR7134
60 LifeView/Typhoon/Genius FlyDVB-T Duo Cardbus 5168:0502,
4e42:0502,
1489:0502
61 Philips TOUGH DVB-T reference design 1131:2004
62 Compro VideoMate TV Gold+1II
63 Kworld Xpert TV PVR7134
64 FlyTV mini Asus Digimatrix 1043:0210
65 V-Stream Studio TV Terminator
66 Yuan TUN-900 (saa7135)
67 Beholder BeholdTV 409 FM 0000:4091
68 GoTView 7135 PCI 5456:7135
69 Philips EUROPA V3 reference design 1131:2004
70 Compro Videomate DVB-T300 185b:c900
71 Compro Videomate DVB-T200 185b:c901
72 RTD Embedded Technologies VFG7350 1435:7350
Continued on next page
78 Chapter 1. Media subsystem admin and user guide

mailto:TV@nywhere

Linux Media Documentation

Table 14 - continued from previous page

Card Card name PCl subsystem IDs
num-
ber
73 RTD Embedded Technologies VFG7330 1435:7330
74 LifeView FlyTV Platinum Mini2 14c0:1212
75 AVerMedia AVerTVHD MCE A180 1461:1044
76 SKNet MonsterTV Mobile 1131:4ee9
77 Pinnacle PCTV 40i/50i/110i (saa7133) 11bd:002e
78 ASUSTeK P7131 Dual 1043:4862
79 Sedna/MuchTV PC TV Cardbus TV/Radio (ITO25 Rev:2B)
80 ASUS Digimatrix TV 1043:0210
81 Philips Tiger reference design 1131:2018
82 MSI TV@Anywhere plus 1462:6231,
1462:8624
83 Terratec Cinergy 250 PCI TV 153b:1160
84 LifeView FlyDVB Trio 5168:0319
85 AverTV DVB-T 777 1461:2c05,
1461:2c05
86 LifeView FlyDVB-T / Genius VideoWonder DVB-T 5168:0301,
1489:0301
87 ADS Instant TV Duo Cardbus PTV331 0331:1421
88 Tevion/KWorld DVB-T 220RF 17de:7201
89 ELSA EX-VISION 700TV 1048:226¢
90 Kworld ATSC110/115 17de:7350,
17de:7352
91 AVerMedia A169 B 1461:7360
92 AVerMedia A169 B1 1461:6360
93 Medion 7134 Bridge #2 16be:0005
94 LifeView FlyDVB-T Hybrid Cardbus/MSI TV @nywhere | 5168:3306,
A/D NB 5168:3502,
5168:3307,
4e42:3502
95 LifeView FlyVIDEO3000 (NTSC) 5169:0138
96 Medion Md8800 Quadro 16be:0007,
16be:0008,
16be:000d
97 LifeView FlyDVB-S /Acorp TV134DS 5168:0300,
4e42:0300
98 Proteus Pro 2309 0919:2003
99 AVerMedia TV Hybrid A16AR 1461:2c00
100 Asus Europa2 OEM 1043:4860
101 Pinnacle PCTV 310i 11bd:002f
102 Avermedia AVerTV Studio 507 1461:9715
103 Compro Videomate DVB-T200A

Continued on next page

1.1. The media subsystem

79

mailto:TV@Anywhere

Linux Media Documentation

Table 14 - continued from previous page

Card Card name PCl subsystem IDs
num-
ber
104 Hauppauge WinTV-HVR1110 DVB-T/Hybrid 0070:6700,
0070:6701,
0070:6702,
0070:6703,
0070:6704,
0070:6705
105 Terratec Cinergy HT PCMCIA 153b:1172
106 Encore ENLTV 1131:2342,
1131:2341,
3016:2344
107 Encore ENLTV-FM 1131:230f
108 Terratec Cinergy HT PCI 153b:1175
109 Philips Tiger - S Reference design
110 Avermedia M102 1461:f31e
111 ASUS P7131 4871 1043:4871
112 ASUSTeK P7131 Hybrid 1043:4876
113 Elitegroup ECS TVP3XP FM1246 Tuner Card (PAL,FM) 1019:4cb6
114 KWorld DVB-T 210 17de:7250
115 Sabrent PCMCIA TV-PCB05 0919:2003
116 10MOONS TM300 TV Card 1131:2304
117 Avermedia Super 007 1461:f01d
118 Beholder BeholdTV 401 0000:4016
119 Beholder BeholdTV 403 0000:4036
120 Beholder BeholdTV 403 FM 0000:4037
121 Beholder BeholdTV 405 0000:4050
122 Beholder BeholdTV 405 FM 0000:4051
123 Beholder BeholdTV 407 0000:4070
124 Beholder BeholdTV 407 FM 0000:4071
125 Beholder BeholdTV 409 0000:4090
126 Beholder BeholdTV 505 FM 5ace:5050
127 Beholder BeholdTV 507 FM / BeholdTV 509 FM 5ace:5070,
5ace:5090
128 Beholder BeholdTV Columbus TV/FM 0000:5201
129 Beholder BeholdTV 607 FM 5ace:6070
130 Beholder BeholdTV M6 5ace:6190
131 Twinhan Hybrid DTV-DVB 3056 PCI 1822:0022
132 Genius TVGO AM11MCE
133 NXP Snake DVB-S reference design
134 Medion/Creatix CTX953 Hybrid 16be:0010
135 MSI TV@nywhere A/D v1.1 1462:8625
136 AVerMedia Cardbus TV/Radio (E506R) 1461:f436
137 AVerMedia Hybrid TV/Radio (A16D) 1461:f936
138 Avermedia M115 1461:a836
139 Compro VideoMate T750 185b:c900
140 Avermedia DVB-S Pro A700 1461:a7al
Continued on next page
80 Chapter 1. Media subsystem admin and user guide

mailto:TV@nywhere

Linux Media Documentation

Table 14 - continued from previous page

Card Card name PCl subsystem IDs
num-
ber
141 Avermedia DVB-S Hybrid+FM A700 1461:a7a2
142 Beholder BeholdTV H6 5ace:6290
143 Beholder BeholdTV M63 bace:6191
144 Beholder BeholdTV M6 Extra 5ace:6193
145 AVerMedia MiniPCI DVB-T Hybrid M103 1461:f636, 1461:f736
146 ASUSTeK P7131 Analog
147 Asus Tiger 3inl 1043:4878
148 Encore ENLTV-FM v5.3 1a7£:2008
149 Avermedia PCI pure analog (M135A) 1461:f11d
150 Zogis Real Angel 220
151 ADS Tech Instant HDTV 1421:0380
152 Asus Tiger Rev:1.00 1043:4857
153 Kworld Plus TV Analog Lite PCI 17de:7128
154 Avermedia AVerTV GO 007 FM Plus 1461:£31d
155 Hauppauge WinTV-HVR1150 ATSC/QAM-Hybrid 0070:6706,
0070:6708
156 Hauppauge WinTV-HVR1120 DVB-T/Hybrid 0070:6707,
0070:6709,
0070:670a
157 Avermedia AVerTV Studio 507UA 1461:allb
158 AVerMedia Cardbus TV/Radio (E501R) 1461:b7e9
159 Beholder BeholdTV 505 RDS 0000:505B
160 Beholder BeholdTV 507 RDS 0000:5071
161 Beholder BeholdTV 507 RDS 0000:507B
162 Beholder BeholdTV 607 FM 5ace:6071
163 Beholder BeholdTV 609 FM 5ace:6090
164 Beholder BeholdTV 609 FM 5ace:6091
165 Beholder BeholdTV 607 RDS 5ace:6072
166 Beholder BeholdTV 607 RDS 5ace:6073
167 Beholder BeholdTV 609 RDS 5ace:6092
168 Beholder BeholdTV 609 RDS 5ace:6093
169 Compro VideoMate S350/S300 185b:c900
170 AverMedia AverTV Studio 505 1461:a115
171 Beholder BeholdTV X7 5ace:7595
172 RoverMedia TV Link Pro FM 19d1:0138
173 Zolid Hybrid TV Tuner PCI 1131:2004
174 Asus Europa Hybrid OEM 1043:4847
175 Leadtek Winfast DTV1000S 107d:6655
176 Beholder BeholdTV 505 RDS 0000:5051
177 Hawell HW-404M7
178 Beholder BeholdTV H7 5ace:7190
179 Beholder BeholdTV A7 5ace:7090
180 Avermedia PCI M733A 1461:4155,
1461:4255
181 TechoTrend TT-budget T-3000 13¢2:2804

Continued on next page

1.1. The media subsystem

81

Linux Media Documentation

Table 14 - continued from previous page

Card Card name PCl subsystem IDs
num-
ber
182 Kworld PCI SBTVD/ISDB-T Full-Seg Hybrid 17de:b136
183 Compro VideoMate Vista M1F 185b:c900
184 Encore ENLTV-FM 3 1a7f:2108
185 MagicPro ProHDTV Pro2 DMB-TH/Hybrid 17de:d136
186 Beholder BeholdTV 501 5ace:5010
187 Beholder BeholdTV 503 FM 5ace:5030
188 Sensoray 811/911 6000:0811,
6000:0911
189 Kworld PC150-U 17de:al34
190 Asus My Cinema PS3-100 1043:48cd
191 Hawell HW-9004V1
192 AverMedia AverTV Satellite Hybrid+FM A706 1461:2055
193 WIS Voyager or compatible 1905:7007
194 AverMedia AverTV/505 1461:al10a
195 Leadtek Winfast TV2100 FM 107d:6f3a
196 SnaZio* TVPVR PRO 1779:13cf

SAA7164 cards list

Card Card name PCI subsystem IDs

num-

ber

0 Unknown

1 Generic Rev2

2 Generic Rev3

3 Hauppauge WinTV-HVR2250 0070:8880,
0070:8810

4 Hauppauge WinTV-HVR2200 0070:8980

5 Hauppauge WinTV-HVR2200 0070:8900

6 Hauppauge WinTV-HVR2200 0070:8901

7 Hauppauge WinTV-HVR2250 0070:8891,
0070:8851

8 Hauppauge WinTV-HVR2250 0070:88A1

9 Hauppauge WinTV-HVR2200 0070:8940

10 Hauppauge WinTV-HVR2200 0070:8953

11 Hauppauge WinTV-HVR2255(proto) 0070:f111

12 Hauppauge WinTV-HVR2255 0070:f111

13 Hauppauge WinTV-HVR2205 0070:£123, 0070:£f120

82 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Zoran cards list

Card Card name PCI subsystem IDs
num-

ber

0 DC10(old) <any>

1 DC10(new) <any>

2 DC10 PLUS 1031:7efe
3 DC30 <any>

4 DC30 PLUS 1031:d801
5 LML33 <any>

6 LML33R10 12£8:8a02
7 Buz 13ca:4231
8 6-Eyes <any>

1.1.5.3 Platform drivers

There are several drivers that are focused on providing support for functionality that are already
included at the main board, and don’t use neither USB nor PCI bus. Those drivers are called
platform drivers, and are very popular on embedded devices.

The current supported of platform drivers (not including staging drivers) are listed below

Driver Name

am437x-vpfe TI AM437x VPFE

aspeed-video Aspeed AST2400 and AST2500

atmel-isc ATMEL Image Sensor Controller (ISC)

atmel-isi ATMEL Image Sensor Interface (ISI)

c8sectpfe SDR platform devices

c8sectpfe SDR platform devices

cafe ccic Marvell 88ALPO01 (Cafe) CMOS Camera Controller

cdns-csi2rx

Cadence MIPI-CSI2 RX Controller

cdns-csi2tx

Cadence MIPI-CSI2 TX Controller

coda-vpu

Chips&Media Coda multi-standard codec IP

dm355 ccdc

TI DM355 CCDC video capture

dm644x ccdc

TI DM6446 CCDC video capture

exynos-fimc-is

EXYNOS4x12 FIMC-IS (Imaging Subsystem)

exynos-fimc-lite

EXYNOS FIMC-LITE camera interface

€Xynos-gsc Samsung Exynos G-Scaler

exy Samsung S5P/EXYNOS4 SoC series Camera Subsystem
fsl-viu Freescale VIU

imx-pxp i.MX Pixel Pipeline (PXP)

isdf TI DM365 ISIF video capture

mmp camera Marvell Armada 610 integrated camera controller

mtk jpeg Mediatek JPEG Codec

mtk-mdp Mediatek MDP

mtk-vcodec-dec | Mediatek Video Codec

mtk-vpu Mediatek Video Processor Unit

Continued on next page

1.1. The media subsystem

83

Linux Media Documentation

Table 15 - continued from previous page

Driver Name

mx2 emmaprp | MX2 eMMa-PrP

omap3-isp OMAP 3 Camera

omap-vout OMAP2/OMAP3 V4L2-Display

pxa_camera PXA27x Quick Capture Interface

gcom-camss Qualcomm V4L2 Camera Subsystem

rcar-csi2 R-Car MIPI CSI-2 Receiver

rcar drif Renesas Digital Radio Interface (DRIF)
rcar-fcp Renesas Frame Compression Processor

rcar fdpl Renesas Fine Display Processor

rcar jpu Renesas JPEG Processing Unit

rcar-vin R-Car Video Input (VIN)

renesas-ceu Renesas Capture Engine Unit (CEU)
rockchip-rga Rockchip Raster 2d Graphic Acceleration Unit
s3c-camif Samsung S3C24XX/S3C64XX SoC Camera Interface
sbp-csis S5P/EXYNOS MIPI-CSI2 receiver (MIPI-CSIS)
sbp-fimc S5P/EXYNOS4 FIMC/CAMIF camera interface
sSp-g2d Samsung S5P and EXYNOS4 G2D 2d graphics accelerator
sbp-jpeg Samsung S5P/Exynos3250/Exynos4 JPEG codec
sSp-mfc Samsung S5P MFC Video Codec

sh veu SuperH VEU mem2mem video processing

sh vou SuperH VOU video output

stm32-dcmi STM32 Digital Camera Memory Interface (DCMI)
stm32-dma2d STM32 Chrom-Art Accelerator Unit

sun4i-csi Allwinner A10 CMOS Sensor Interface Support
sunbi-csi Allwinner V3s Camera Sensor Interface
sun8i-di Allwinner Deinterlace

sun8i-rotate Allwinner DE2 rotation

ti-cal TI Memory-to-memory multimedia devices
ti-csc TI DVB platform devices

ti-vpe TI VPE (Video Processing Engine)

venus-enc Qualcomm Venus V412 encoder/decoder
via-camera VIAFB camera controller

video-mux Video Multiplexer

vpif display TI DaVinci VPIF V4L2-Display

vpif capture TI DaVinci VPIF video capture

vpss TI DaVinci VPBE V4L2-Display

vspl Renesas VSP1 Video Processing Engine
xilinx-tpg Xilinx Video Test Pattern Generator
xilinx-video Xilinx Video IP (EXPERIMENTAL)

xilinx-vtc Xilinx Video Timing Controller

84 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

MMC/SDIO DVB adapters

Driver

Name

smssdio

Siano SMS1xxx based MDTV via SDIO interface

1.1.5.4 Radio drivers

There is also support for pure AM/FM radio, and even for some FM radio transmitters:

Driver

Name

si4713

Silicon Labs Si4713 FM Radio Transmitter

radio-aztech

Aztech/Packard Bell Radio

radio-cadet

ADS Cadet AM/FM Tuner

radio-gemtek

GemTek Radio card (or compatible)

radio-maxiradio

Guillemot MAXI Radio FM 2000 radio

radio-miropcm?20

miroSOUND PCM20 radio

radio-aimslab

AIMSlab RadioTrack (aka RadioReveal)

radio-rtrack?2

AIMSIlab RadioTrack II

saa7706h

SAA7706H Car Radio DSP

radio-sf16fmi

SF16-FMI/SF16-FMP/SF16-FMD Radio

radio-sfl6fmr?2

SF16-FMR2/SF16-FMD2 Radio

radio-shark

Griffin radioSHARK USB radio receiver

shark?

Griffin radioSHARK?2 USB radio receiver

radio-si470x-common

Silicon Labs Si470x FM Radio Receiver

radio-si476x

Silicon Laboratories Si476x I12C FM Radio

radio-tea5764

TEA5764 12C FM radio

tef6862 TEF6862 Car Radio Enhanced Selectivity Tuner
radio-terratec TerraTec ActiveRadio ISA Standalone
radio-timb Enable the Timberdale radio driver

radio-trust

Trust FM radio card

radio-typhoon

Typhoon Radio (a.k.a. EcoRadio)

radio-wl1273

Texas Instruments WL1273 I2C FM Radio

fm drv ISA radio devices

fm drv ISA radio devices

radio-zoltrix Zoltrix Radio

dsbr100 D-Link/GemTek USB FM radio

radio-keene

Keene FM Transmitter USB

radio-ma901

Masterkit MA901 USB FM radio

radio-mr800

AverMedia MR 800 USB FM radio

radio-raremono

Thanko’s Raremono AM/FM/SW radio

radio-si470x-usb

Silicon Labs Si470x FM Radio Receiver support with USB

radio-usb-si4713

Silicon Labs Si4713 FM Radio Transmitter support with USB

1.1. The media subsystem

85

Linux Media Documentation

1.1.5.5 12C drivers

The I2C (Inter-Integrated Circuit) bus is a three-wires bus used internally at the media cards
for communication between different chips. While the bus is not visible to the Linux Kernel,
drivers need to send and receive commands via the bus. The Linux Kernel driver abstraction
has support to implement different drivers for each component inside an I°C bus, as if the bus
were visible to the main system board.

One of the problems with I2C devices is that sometimes the same device may work with different
I2C hardware. This is common, for example, on devices that comes with a tuner for North
America market, and another one for Europe. Some drivers have a tuner= modprobe parameter
to allow using a different tuner number in order to address such issue.

The current supported of I2C drivers (not including staging drivers) are listed below.

Audio decoders, processors and mixers

Driver Name

cs3308 Cirrus Logic CS3308 audio ADC

cs5345 Cirrus Logic CS5345 audio ADC

cs53132a Cirrus Logic CS53L32A audio ADC

msp3400 Micronas MSP34xx audio decoders

sony-btf-mpx | Sony BTF’s internal MPX

tda1997x NXP TDA1997x HDMI receiver

tda7432 Philips TDA7432 audio processor

tda9840 Philips TDA9840 audio processor

tea6415c Philips TEA6415C audio processor

tea6420 Philips TEA6420 audio processor

tlv320aic23b | Texas Instruments TLV320AIC23B audio codec
tvaudio Simple audio decoder chips

udal342 Philips UDA1342 audio codec

vp27smpx Panasonic VP27’s internal MPX

wm8739 Wolfson Microelectronics WM8739 stereo audio ADC
wm8775 Wolfson Microelectronics WM8775 audio ADC with input mixer

Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Audio/Video compression chips

Driver

Name

saab6752hs

Philips SAA6752HS MPEG-2 Audio/Video Encoder

Camera sensor devices

Driver Name

ccs MIPI CCS compliant camera sensors (also SMIA++ and SMIA)
et8ek8 ET8EKS8 camera sensor

hi556 Hynix Hi-556 sensor

hi846 Hynix Hi-846 sensor

imx208 Sony IMX208 sensor

imx214 Sony IMX214 sensor

imx219 Sony IMX219 sensor

imx258 Sony IMX258 sensor

imx274 Sony IMX274 sensor

imx290 Sony IMX290 sensor

imx319 Sony IMX319 sensor

imx334 Sony IMX334 sensor

imx355 Sony IMX355 sensor

imx412 Sony IMX412 sensor

mbmols Fujitsu M-5MOLS 8MP sensor
mt9mO001 mt9mO001

mt9mO032 MTO9MO032 camera sensor
mt9m111 mt9m111, mt9m112 and mt9m131
mt9p031 Aptina MT9P031

mt9t001 Aptina MT9T001

mtotl112 Aptina MT9T111/MT9T112
mtov011 Micron mt9v011 sensor
mt9v032 Micron MT9V032 sensor
mtovlll Aptina MT9V111 sensor
noon010pc30 | Siliconfile NOONO10PC30 sensor
ov13858 OmniVision OV13858 sensor
ovl13b10 OmniVision OV13B10 sensor
ov2640 OmniVision OV2640 sensor
ov2659 OmniVision OV2659 sensor
ov2680 OmniVision OV2680 sensor
ov2685 OmniVision OV2685 sensor
ov5640 OmniVision OV5640 sensor
ovb645 OmniVision OV5645 sensor
ovb647 OmniVision OV5647 sensor
ovb670 OmniVision OV5670 sensor
ovb675 OmniVision OV5675 sensor
ov5695 OmniVision OV5695 sensor
ov6650 OmniVision OV6650 sensor

Continued on next page

1.1. The media subsystem

87

Linux Media Documentation

Table 17 - continued from previous page

Driver Name

ov7251 OmniVision OV7251 sensor
ov7640 OmniVision OV7640 sensor
ov7670 OmniVision OV7670 sensor
ov772x OmniVision OV772x sensor
ov7740 OmniVision OV7740 sensor
ov8856 OmniVision OV8856 sensor
ov9640 OmniVision OV9640 sensor
ov9650 OmniVision OV9650/0V9652 sensor
rj54nlcbOc Sharp RJ54N1CBOC sensor
s5c73m3 Samsung S5C73M3 sensor
sSkdecgx Samsung S5K4ECGX sensor
sS5kbbaf Samsung S5K5BAF sensor
sbkba3 Samsung S5K6A3 sensor
sbkbaa Samsung S5K6AAFX sensor
sr030pc30 Siliconfile SRO30PC30 sensor
vs6624 ST VS6624 sensor

Flash devices

Driver Name

adp1653 | ADP1653 flash

Im3560 | LM3560 dual flash driver
Im3646 LM3646 dual flash driver

IR 12C driver

Driver Name
ir-kbd-i2c | I2C module for IR

Lens drivers

Driver Name

ad5820 AD5820 lens voice coil
ak7375 AK7375 lens voice coil
dw9714 DW9714 lens voice coil
dw9768 DW9768 lens voice coil
dw9807-vcm | DW9807 lens voice coil

88 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Miscellaneous helper chips

Driver Name

video-i2c I2C transport video

mb52790 Mitsubishi M52790 A/V switch

st-mipid02 | STMicroelectronics MIPID02 CSI-2 to PARALLEL bridge

ths7303 THS7303/53 Video Amplifier

RDS decoders

Driver Name
saa6588 | SAA6588 Radio Chip RDS decoder

SDR tuner chips

Driver Name
max2175 | Maxim 2175 RF to Bits tuner

Video and audio decoders

Driver Name
cx25840 | Conexant CX2584x audio/video decoders
saa717x | Philips SAA7171/3/4 audio/video decoders

1.1. The media subsystem

89

Linux Media Documentation

Video decoders

Driver Name

adv7180 Analog Devices ADV7180 decoder
adv7183 Analog Devices ADV7183 decoder
adv748x Analog Devices ADV748x decoder
adv7604 Analog Devices ADV7604 decoder
adv7842 Analog Devices ADV7842 decoder

bt819 BT819A VideoStream decoder

bt856 BT856 VideoStream decoder

bt866 BT866 VideoStream decoder

ks0127 KS0127 video decoder

ml86v7667 | OKI ML86V7667 video decoder

saa7110 Philips SAA7110 video decoder

saa7115 Philips SAA7111/3/4/5 video decoders
tc358743 Toshiba TC358743 decoder

tvp514x Texas Instruments TVP514x video decoder
tvp5150 Texas Instruments TVP5150 video decoder
tvp7002 Texas Instruments TVP7002 video decoder
tw2804 Techwell TW2804 multiple video decoder
tw9903 Techwell TW9903 video decoder

tw9906 Techwell TW9906 video decoder

tw9910 Techwell TW9910 video decoder

vpx3220 vpx3220a, vpx3216b & vpx3214c video decoders

Video encoders

Driver Name

ad9389b Analog Devices AD9389B encoder
adv7170 Analog Devices ADV7170 video encoder
adv7175 Analog Devices ADV7175 video encoder
adv7343 ADV7343 video encoder

adv7393 ADV7393 video encoder

adv7511-v412 | Analog Devices ADV7511 encoder

ak881x AK8813/AK8814 video encoders

saa7127 Philips SAA7127/9 digital video encoders
saa7185 Philips SAA7185 video encoder

ths8200 Texas Instruments THS8200 video encoder

20

Chapter 1. Media subsystem admin

and user guide

Linux Media Documentation

Video improvement chips

Driver Name
upd64031a | NEC Electronics uPD64031A Ghost Reduction
upd64083 | NEC Electronics uPD64083 3-Dimensional Y/C separation

Tuner drivers

Driver Name

e4000 Elonics E4000 silicon tuner

fc0011 Fitipower FC0011 silicon tuner
fc0012 Fitipower FC0012 silicon tuner
fc0013 Fitipower FC0013 silicon tuner
fc2580 FCI FC2580 silicon tuner

it913x ITE Tech IT913x silicon tuner
m88rs6000t | Montage M88RS6000 internal tuner
max2165 Maxim MAX2165 silicon tuner
mc44s803 Freescale MC44S803 Low Power CMOS Broadband tuners
msi001 Mirics MSi001

mt2060 Microtune MT2060 silicon IF tuner
mt2063 Microtune MT2063 silicon IF tuner
mt20xx Microtune 2032 / 2050 tuners
mt2131 Microtune MT2131 silicon tuner
mt2266 Microtune MT2266 silicon tuner
mx1301rf MaxLinear MxL301RF tuner
mx15005s MaxLinear MSL5005S silicon tuner
mx15007t MaxLinear MxL5007T silicon tuner

gqm1d1b0004 | Sharp QM1D1B0004 tuner
gqm1d1c0042 | Sharp QM1D1C0042 tuner

qt1010 Quantek QT1010 silicon tuner

r820t Rafael Micro R820T silicon tuner
si2157 Silicon Labs Si2157 silicon tuner
tuner-types Simple tuner support

tdal18212 NXP TDA18212 silicon tuner
tda18218 NXP TDA18218 silicon tuner
tda18250 NXP TDA18250 silicon tuner
tdal18271 NXP TDA18271 silicon tuner
tda827x Philips TDA827X silicon tuner
tda8290 TDA 8290/8295 + 8275(a)/18271 tuner combo
tda9887 TDA 9885/6/7 analog IF demodulator
teab761 TEA 5761 radio tuner

teab767 TEA 5767 radio tuner

tua9001 Infineon TUA9001 silicon tuner
tuner-xc2028 | XCeive xc2028/xc3028 tuners
xc4000 Xceive XC4000 silicon tuner

xc5000 Xceive XC5000 silicon tuner

1.1. The media subsystem 91

Linux Media Documentation

Tuner cards list

Tuner number | Card name

0 Temic PAL (4002 FH5)

1 Philips PAL I (FI1246 and compatibles)

2 Philips NTSC (FI1236,FM1236 and compatibles)
3 Philips (SECAM+PAL BG) (FI1216MF, FM1216MF, FR1216MF)
4 NoTuner

5 Philips PAL BG (FI1216 and compatibles)

6 Temic NTSC (4032 FYb5)

7 Temic PAL I (4062 FY5)

8 Temic NTSC (4036 FYb5)

9 Alps HSBH1

10 Alps TSBE1

11 Alps TSBB5

12 Alps TSBES

13 Alps TSBC5

14 Temic PAL BG (4006FH5)

15 Alps TSCHG6

16 Temic PAL DK (4016 FY5)

17 Philips NTSC M (MK2)

18 Temic PAL I (4066 FY5)

19 Temic PAL* auto (4006 FN5)

20 Temic PAL BG (4009 FR5) or PAL I (4069 FR5)
21 Temic NTSC (4039 FRb5)

22 Temic PAL/SECAM multi (4046 FM5)

23 Philips PAL DK (FI1256 and compatibles)

24 Philips PAL/SECAM multi (FQ1216ME)

25 LG PAL I+FM (TAPC-1001D)

26 LG PAL I (TAPC-1701D)

27 LG NTSC+FM (TPIBNSRO1F)

28 LG PAL BG+FM (TPI8PSB01D)

29 LG PAL BG (TPI8PSB11D)

30 Temic PAL* auto + FM (4009 FNb5)

31 SHARP NTSC JP (2U5JF5540)

32 Samsung PAL TCPM9091PD27

33 MT?20xx universal

34 Temic PAL BG (4106 FH5)

35 Temic PAL DK/SECAM L (4012 FY5)

36 Temic NTSC (4136 FY5)

37 LG PAL (newer TAPC series)

38 Philips PAL/SECAM multi (FM1216ME MK3)
39 LG NTSC (newer TAPC series)

40 HITACHI V7-J180AT

41 Philips PAL MK (FI1216 MK)

42 Philips FCV1236D ATSC/NTSC dual in

43 Philips NTSC MK3 (FM1236MK3 or FM1236/F)
44 Philips 4 in 1 (ATI TV Wonder Pro/Conexant)

Continued on next page

92 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 19 - continued from previous page

Tuner number | Card name

45 Microtune 4049 FM5

46 Panasonic VP27s/ENGE4324D

47 LG NTSC (TAPE series)

48 Tenna TNF 8831 BGFF)

49 Microtune 4042 FI5 ATSC/NTSC dual in
50 TCL 2002N

51 Philips PAL/SECAM D (FM 1256 I-H3)

52 Thomson DTT 7610 (ATSC/NTSC)

53 Philips FQ1286

54 Philips/NXP TDA 8290/8295 + 8275/8275A/18271
55 TCL 2002MB

56 Philips PAL/SECAM multi (FQ1216AME MK4)
57 Philips FQ1236A MK4

58 Ymec TVision TVF-8531MF/8831MF/8731MF
59 Ymec TVision TVF-5533MF

60 Thomson DTT 761X (ATSC/NTSC)

61 Tena TNF9533-D/IF/TNF9533-B/DF

62 Philips TEA5767HN FM Radio

63 Philips FMD1216ME MK3 Hybrid Tuner
64 LG TDVS-HO6xF

65 Ymec TVF66T5-B/DFF

66 LG TALN series

67 Philips TD1316 Hybrid Tuner

68 Philips TUV1236D ATSC/NTSC dual in

69 Tena TNF 5335 and similar models

70 Samsung TCPN 2121P30A

71 Xceive xc2028/xc3028 tuner

72 Thomson FE6600

73 Samsung TCPG 6121P30A

75 Philips TEA5761 FM Radio

76 Xceive 5000 tuner

77 TCL tuner MF02GIP-5N-E

78 Philips FMD1216MEX MKS3 Hybrid Tuner
79 Philips PAL/SECAM multi (FM1216 MK5)
80 Philips FQ1216LME MK3 PAL/SECAM w/active loopthrough
81 Partsnic (Daewoo) PTI-5NF05

82 Philips CU1216L

83 NXP TDA18271

84 Sony BTF-Pxn01Z

85 Philips FQ1236 MK5

86 Tena TNF5337 MFD

87 Xceive 4000 tuner

88 Xceive 5000C tuner

89 Sony BTF-PG472Z PAL/SECAM

90 Sony BTF-PK467Z NTSC-M-]JP

91 Sony BTF-PB463Z NTSC-M

1.1. The media subsystem

93

Linux Media Documentation

Frontend drivers

Note:

1) There is no guarantee that every frontend driver works out of the box with every card,
because of different wiring.

2) The demodulator chips can be used with a variety of tuner/PLL chips, and not all combi-
nations are supported. Often the demodulator and tuner/PLL chip are inside a metal box
for shielding, and the whole metal box has its own part number.

Common Interface (EN50221) controller drivers

Driver Name
cxd2099 | Sony CXD2099AR Common Interface driver
sp2 CIMaX SP2

ATSC (North American/Korean Terrestrial/Cable DTV) frontends

Driver Name

au8522 dig Auvitek AU8522 based DTV demod

au8522 decoder | Auvitek AU8522 based ATV demod

bcm3510 Broadcom BCM3510

1g2160 LG Electronics LG216x based

1gdt3305 LG Electronics LGDT3304 and LGDT3305 based
lgdt3306a LG Electronics LGDT3306A based

1gdt330x LG Electronics LGDT3302/LGDT3303 based
nxt200x NxtWave Communications NXT2002/NXT2004 based
or51132 Oren OR51132 based

or51211 Oren OR51211 based

s5h1409 Samsung S5H1409 based

sS5h1411 Samsung S5H1411 based

DVB-C (cable) frontends

Driver Name

stv0297 ST STV0297 based
tda10021 | Philips TDA10021 based
tda10023 | Philips TDA10023 based
ves1820 | VLSI VES1820 based

94 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

DVB-S (satellite) frontends

Driver

Name

cx24110

Conexant CX24110 based

cx24116

Conexant CX24116 based

cx24117

Conexant CX24117 based

cx24120

Conexant CX24120 based

cx24123

Conexant CX24123 based

ds3000

Montage Technology DS3000 based

mb86al6

Fujitsu MB86A16 based

mt312

Zarlink VP310/MT312/Z1.10313 based

s5h1420

Samsung S5H1420 based

si21xx

Silicon Labs SI21XX based

stb6000

ST STB6000 silicon tuner

stv0288

ST STV0288 based

stv0299

ST STV0299 based

stv0900

ST STV0900 based

stve110

ST STV6110 silicon tuner

tdal10071

NXP TDA10071

tdal0086

Philips TDA10086 based

tda8083

Philips TDA8083 based

tda8261

Philips TDA8261 based

tda826x

Philips TDA826X silicon tuner

ts2020

Montage Technology TS2020 based tuners

tua6100

Infineon TUA6100 PLL

cx24113

Conexant CX24113/CX24128 tuner for DVB-S/DSS

itd1000

Integrant ITD1000 Zero IF tuner for DVB-S/DSS

ves1x93

VLSI VES1893 or VES1993 based

z110036

Zarlink 7Z1.10036 silicon tuner

z110039

Zarlink 71.10039 silicon tuner

1.1. The media subsystem

95

Linux Media Documentation

DVB-T (terrestrial) frontends

Driver Name

af9013 Afatech AF9013 demodulator

cx22700 Conexant CX22700 based

cx22702 Conexant ¢cx22702 demodulator (OFDM)
cxd2820r Sony CXD2820R

cxd2841ler Sony CXD2841ER

cxd2880 Sony CXD2880 DVB-T2/T tuner + demodulator
dib3000mb DiBcom 3000M-B

dib3000mc DiBcom 3000P/M-C

dib7000m DiBcom 7000MA/MB/PA/PB/MC
dib7000p DiBcom 7000PC

dib9000 DiBcom 9000

drxd Micronas DRXD driver

ec100 E3C EC100

164781 LSI 164781

mt352 Zarlink MT352 based

nxt6000 NxtWave Communications NXT6000 based
rtl12830 Realtek RTL2830 DVB-T

rtl12832 Realtek RTL2832 DVB-T

rtl12832 sdr Realtek RTL2832 SDR

sbh1432 Samsung s5h1432 demodulator (OFDM)
si2168 Silicon Labs Si2168

sp8870 Spase sp8870 based

sp887x Spase sp887x based

stv0367 ST STV0367 based

tda10048 Philips TDA10048HN based

tdal004x Philips TDA10045H/TDA10046H based
zd1301 demod | ZyDAS ZD1301

7110353 Zarlink Z1.10353 based

Digital terrestrial only tuners/PLL

Driver Name

dvb-pll | Generic I2C PLL based tuners

dib0070 | DiBcom DiB0070 silicon base-band tuner
dib0090 | DiBcom DiB0090 silicon base-band tuner

96 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

ISDB-S (satellite) & ISDB-T (terrestrial) frontends

Driver Name
mn88443x | Socionext MN88443x
tc90522 Toshiba TC90522

ISDB-T (terrestrial) frontends

Driver Name

dib8000 DiBcom 8000MB/MC
mb86a20s | Fujitsu mb86a20s
s921 Sharp S921 frontend

Multistandard (cable + terrestrial) frontends

Driver Name

drxk Micronas DRXK based
mn88472 Panasonic MN88472

mn88473 Panasonic MN88473

si2165 Silicon Labs si2165 based
tdal8271c2dd | NXP TDA18271C2 silicon tuner

Multistandard (satellite) frontends

Driver Name

m88ds3103 | Montage Technology M88DS3103

mx15xx MaxLinear MxL5xx based tuner-demodulators
stb0899 STB0899 based

stb6100 STB6100 based tuners

stv090x STV0900/STV0903(A/B) based

stv0910 STV0910 based

stv6110x STV6110/(A) based tuners

stvel11 STV6111 based tuners

1.1. The media subsystem 97

Linux Media Documentation

SEC control devices for DVB-S

Driver Name

a8293 Allegro A8293

af9033 Afatech AF9033 DVB-T demodulator

ascot2e Sony Ascot2E tuner

atbm8830 | AltoBeam ATBM8830/8831 DMB-TH demodulator
drx39xyj Micronas DRX-] demodulator

helene Sony HELENE Sat/Ter tuner (CXD2858ER)
horus3a Sony Horus3A tuner

is16405 ISL.6405 SEC controller

isl6421 ISL.6421 SEC controller

isl6423 ISL.6423 SEC controller

ix2505v Sharp IX2505V silicon tuner

1gs8gl5 Silicon Legend LGS-8GL5 demodulator (OFDM)
lgs8gxx Legend Silicon LGS8913/LGS8GL5/LGS8GXX DMB-TH demodulator
Inbh25 LNBH25 SEC controller

Inbh29 LNBH29 SEC controller

Inbp21 LNBP21/LNBH24 SEC controllers

Inbp22 LNBP22 SEC controllers

m88rs2000 | M88RS2000 DVB-S demodulator and tuner
tda665x TDA665x tuner

Tools to develop new frontends

Name
Dummy frontend driver

Driver
dvb dummy fe

1.1.5.6 Firewire driver

The media subsystem also provides a firewire driver for digital TV:

Name
FireDTV and FloppyDTV

Driver
firedtv

1.1.5.7 Test drivers

In order to test userspace applications, there’s a number of virtual drivers, with provide test

functionality, simulating real hardware devices:

Driver Name

vicodec | Virtual Codec Driver

vim2m | Virtual Memory-to-Memory Driver
vimc Virtual Media Controller Driver (VIMC)
vivid Virtual Video Test Driver

98

Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

1.1.6 Video4Linux (V4L) driver-specific documentation
1.1.6.1 The bttv driver

Release notes for bttv

You'll need at least these config options for bttv:

./scripts/config -e PCI

./scripts/config -m I2C

./scripts/config -m INPUT

./scripts/config -m MEDIA SUPPORT
./scripts/config -e MEDIA PCI SUPPORT
./scripts/config -e MEDIA ANALOG TV SUPPORT
./scripts/config -e MEDIA DIGITAL TV _SUPPORT
./scripts/config -e MEDIA RADIO_SUPPORT
./scripts/config -e RC_CORE

./scripts/config -m VIDEO BT848

If your board has digital TV, you’ll also need:

./scripts/config -m DVB BT8XX

In this case, please see Documentation/admin-guide/media/bt8xx.rst for additional notes.

Make bttv work with your card

If you have bttv compiled and installed, just booting the Kernel should be enough for it to try
probing it. However, depending on the model, the Kernel may require additional information
about the hardware, as the device may not be able to provide such info directly to the Kernel.

If it doesn’t bttv likely could not autodetect your card and needs some insmod options. The
most important insmod option for bttv is “card=n" to select the correct card type. If you get
video but no sound you’ve very likely specified the wrong (or no) card type. A list of supported
cards is in Documentation/admin-guide/media/bttv-cardlist.rst.

If bttv takes very long to load (happens sometimes with the cheap cards which have no tuner),
try adding this to your modules configuration file (usually, it is either /etc/modules.conf or
some file at /etc/modules-1load.d/, but the actual place depends on your distribution):

options i2c-algo-bit bit test=1

Some cards may require an extra firmware file to work. For example, for the WinTV/PVR you
need one firmware file from its driver CD, called: hcwamc. rbf. It is inside a self-extracting zip
file called pvr45xxx.exe. Just placing it at the /etc/firmware directory should be enough for
it to be autoload during the driver’s probing mode (e. g. when the Kernel boots or when the
driver is manually loaded via modprobe command).

If your card isn’t listed in Documentation/admin-guide/media/bttv-cardlist.rst or if you have
trouble making audio work, please read Still doesn’t work?.

1.1. The media subsystem 929

Linux Media Documentation

Autodetecting cards

bttv uses the PCI Subsystem ID to autodetect the card type. lspci lists the Subsystem ID in the
second line, looks like this:

00:0a.0 Multimedia video controller: Brooktree Corporation Bt878 (rev 02)
Subsystem: Hauppauge computer works Inc. WinTV/GO
Flags: bus master, medium devsel, latency 32, IRQ 5
Memory at e2000000 (32-bit, prefetchable) [size=4K]

only bt878-based cards can have a subsystem ID (which does not mean that every card really
has one). bt848 cards can’t have a Subsystem ID and therefore can’t be autodetected. There
is a list with the ID’s at Documentation/admin-guide/media/bttv-cardlist.rst (in case you are
interested or want to mail patches with updates).

Still doesn’t work?

I do NOT have a lab with 30+ different grabber boards and a PAL/NTSC/SECAM test signal
generator at home, so I often can’t reproduce your problems. This makes debugging very
difficult for me.

If you have some knowledge and spare time, please try to fix this yourself (patches very welcome
of course...) You know: The linux slogan is “Do it yourself”.

There is a mailing list at http://vger.kernel.org/vger-lists.html#linux-media

If you have trouble with some specific TV card, try to ask there instead of mailing me directly.
The chance that someone with the same card listens there is much higher...

For problems with sound: There are a lot of different systems used for TV sound all over the
world. And there are also different chips which decode the audio signal. Reports about sound
problems (“stereo doesn’t work”) are pretty useless unless you include some details about your
hardware and the TV sound scheme used in your country (or at least the country you are living
in).

Modprobe options

Note: The following argument list can be outdated, as we might add more options if ever
needed. In case of doubt, please check with modinfo <module>.

This command prints various information about a kernel module, among them a complete and
up-to-date list of insmod options.

bttv
The bt848/878 (grabber chip) driver

insmod args:

card=n card type, see CARDLIST for a list.
tuner=n tuner type, see CARDLIST for a list.
radio=0/1 card supports radio

100 Chapter 1. Media subsystem admin and user guide

http://vger.kernel.org/vger-lists.html#linux-media

Linux Media Documentation

pll=0/1/2 pll settings

0: don't use PLL
1: 28 MHz crystal installed
2: 35 MHz crystal installed

tritonl=0/1 for Tritonl (+others) compatibility
vsfx=0/1 yet another chipset bug compatibility bit
see README.quirks for details on these two.

bigendian=n Set the endianness of the gfx framebuffer.
Default is native endian.

fieldnr=0/1 Count fields. Some TV descrambling software
needs this, for others it only generates
50 useless IRQs/sec. default is 0 (off).

autoload=0/1 autoload helper modules (tuner, audio).
default is 1 (on).

bttv_verbose=0/1/2 verbose level (at insmod time, while
looking at the hardware). default is 1.

bttv _debug=0/1 debug messages (for capture).
default is 0 (off).
irq debug=0/1 irg handler debug messages.
default is 0 (off).
gbuffers=2-32 number of capture buffers for mmap'ed capture.
default is 4.
gbufsize= size of capture buffers. default and
maximum value is 0x208000 (~2MB)
no_overlay=0 Enable overlay on broken hardware. There

are some chipsets (SIS for example) which

are known to have problems with the PCI DMA
push used by bttv. bttv will disable overlay
by default on this hardware to avoid crashes.
With this insmod option you can override this.

no overlay=1 Disable overlay. It should be used by broken
hardware that doesn't support PCI2PCI direct
transfers.

automute=0/1 Automatically mutes the sound if there is

no TV signal, on by default. You might try
to disable this if you have bad input signal
gquality which leading to unwanted sound

dropouts.
chroma_agc=0/1 AGC of chroma signal, off by default.
adc_crush=0/1 Luminance ADC crush, on by default.
i2c_udelay= Allow reduce I2C speed. Default is 5 usecs

(meaning 66,67 Kbps). The default is the
maximum supported speed by kernel bitbang
algorithm. You may use lower numbers, if I2C
messages are lost (16 is known to work on
all supported cards).

bttv gpio=0/1
gpiomask=
audioall=
audiomux=
See Sound-FAQ for a detailed description.

remap, card, radio and pll accept up to four comma-separated arguments

1.1. The media subsystem 101

Linux Media Documentation

(for multiple boards).

tuner The tuner driver. You need this unless you want to use only with a camera or the board
doesn’t provide analog TV tuning.

insmod args:

debug=1 print some debug info to the syslog

type=n type of the tuner chip. n as follows:
see CARDLIST for a complete list.

pal=[bdgil] select PAL variant (used for some tuners
only, important for the audio carrier).

tvaudio Provide a single driver for all simple i2c audio control chips (tda/tea*).

insmod args:

tda8425 =1 enable/disable the support for the
tda9840 =1 various chips.
tda9850 =1 The tea6300 can't be autodetected and is
tda9855 =1 therefore off by default, if you have
tda9873 =1 this one on your card (STB uses these)
tda9874a =1 you have to enable it explicitly.
teab300 =0 The two tda985x chips use the same i2c
tea6420 =1 address and can't be disturgished from
piclec54 =1 each other, you might have to disable
the wrong one.
debug =1 print debug messages

msp3400 The driver for the msp34xx sound processor chips. If you have a stereo card, you
probably want to insmod this one.

insmod args:

debug=1/2 print some debug info to the syslog,
2 is more verbose.
simple=1 Use the "short programming" method. Newer

msp34xx versions support this. You need this
for dbx stereo. Default is on if supported by
the chip.

once=1 Don't check the TV-stations Audio mode
every few seconds, but only once after
channel switches.

amsound=1 Audio carrier is AM/NICAM at 6.5 Mhz. This
should improve things for french people, the
carrier autoscan seems to work with FM only...

102 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

If the box freezes hard with bttv

It might be a bttv driver bug. It also might be bad hardware. It also might be something else ...

Just mailing me “bttv freezes” isn’t going to help much. This README has a few hints how you
can help to pin down the problem.

bttv bugs

If some version works and another doesn’t it is likely to be a driver bug. It is very helpful if you
can tell where exactly it broke (i.e. the last working and the first broken version).

With a hard freeze you probably doesn’t find anything in the logfiles. The only way to capture
any kernel messages is to hook up a serial console and let some terminal application log the
messages. /me uses screen. See Documentation/admin-guide/serial-console.rst for details on
setting up a serial console.

Read Documentation/admin-guide/bug-hunting.rst to learn how to get any useful information
out of a register+stack dump printed by the kernel on protection faults (so-called “kernel oops”).

If you run into some kind of deadlock, you can try to dump a call trace for each process us-
ing sysrq-t (see Documentation/admin-guide/sysrq.rst). This way it is possible to figure where
exactly some process in “D” state is stuck.

I've seen reports that bttv 0.7.x crashes whereas 0.8.x works rock solid for some people. Thus
probably a small buglet left somewhere in bttv 0.7.x. I have no idea where exactly, it works
stable for me and a lot of other people. But in case you have problems with the 0.7.x versions
you can give 0.8.x a try ...

hardware bugs

Some hardware can’t deal with PCI-PCI transfers (i.e. grabber => vga). Sometimes problems
show up with bttv just because of the high load on the PCI bus. The bt848/878 chips have a few
workarounds for known incompatibilities, see README.quirks.

Some folks report that increasing the pci latency helps too, althrought I’'m not sure whenever
this really fixes the problems or only makes it less likely to happen. Both bttv and btaudio have
a insmod option to set the PCI latency of the device.

Some mainboard have problems to deal correctly with multiple devices doing DMA at the same
time. bttv + ide seems to cause this sometimes, if this is the case you likely see freezes only
with video and hard disk access at the same time. Updating the IDE driver to get the latest and
greatest workarounds for hardware bugs might fix these problems.

1.1. The media subsystem 103

Linux Media Documentation

other

If you use some binary-only yunk (like nvidia module) try to reproduce the problem without.

IRQ sharing is known to cause problems in some cases. It works just fine in theory and many
configurations. Neverless it might be worth a try to shuffle around the PCI cards to give bttv
another IRQ or make it share the IRQ with some other piece of hardware. IRQ sharing with
VGA cards seems to cause trouble sometimes. I've also seen funny effects with bttv sharing the
IRQ with the ACPI bridge (and apci-enabled kernel).

Bttv quirks

Below is what the bt878 data book says about the PCI bug compatibility modes of the bt878
chip.

The tritonl insmod option sets the EN TBFX bit in the control register. The vsfx insmod option
does the same for EN_VSFX bit. If you have stability problems you can try if one of these options
makes your box work solid.

drivers/pci/quirks.c knows about these issues, this way these bits are enabled automagically
for known-buggy chipsets (look at the kernel messages, bttv tells you).

Normal PCI Mode

The PCI REQ signal is the logical-or of the incoming function requests. The inter-nal GNT[0:1]
signals are gated asynchronously with GNT and demultiplexed by the audio request signal.
Thus the arbiter defaults to the video function at power-up and parks there during no requests
for bus access. This is desirable since the video will request the bus more often. However, the
audio will have highest bus access priority. Thus the audio will have first access to the bus even
when issuing a request after the video request but before the PCI external arbiter has granted
access to the Bt879. Neither function can preempt the other once on the bus. The duration
to empty the entire video PCI FIFO onto the PCI bus is very short compared to the bus access
latency the audio PCI FIFO can tolerate.

430FX Compatibility Mode

When using the 430FX PCI, the following rules will ensure compatibility:
(1) Deassert REQ at the same time as asserting FRAME.

(2) Do not reassert REQ to request another bus transaction until after finish-ing the previous
transaction.

Since the individual bus masters do not have direct control of REQ, a simple logical-or of video
and audio requests would violate the rules. Thus, both the arbiter and the initiator contain
430FX compatibility mode logic. To enable 430FX mode, set the EN TBFX bit as indicated in
Device Control Register on page 104.

When EN TBFX is enabled, the arbiter ensures that the two compatibility rules are satisfied.
Before GNT is asserted by the PCI arbiter, this internal arbiter may still logical-or the two
requests. However, once the GNT is issued, this arbiter must lock in its decision and now route
only the granted request to the REQ pin. The arbiter decision lock happens regardless of the

104 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

state of FRAME because it does not know when FRAME will be asserted (typically - each initiator
will assert FRAME on the cycle following GNT). When FRAME is asserted, it is the initiator s
responsibility to remove its request at the same time. It is the arbiters responsibility to allow
this request to flow through to REQ and not allow the other request to hold REQ asserted. The
decision lock may be removed at the end of the transaction: for example, when the bus is idle
(FRAME and IRDY). The arbiter decision may then continue asynchronously until GNT is again
asserted.

Interfacing with Non-PCl 2.1 Compliant Core Logic

A small percentage of core logic devices may start a bus transaction during the same cycle that
GNT is de-asserted. This is non PCI 2.1 compliant. To ensure compatibility when using PCs
with these PCI controllers, the EN VSFX bit must be enabled (refer to Device Control Register
on page 104). When in this mode, the arbiter does not pass GNT to the internal functions
unless REQ is asserted. This prevents a bus transaction from starting the same cycle as GNT
is de-asserted. This also has the side effect of not being able to take advantage of bus parking,
thus lowering arbitration performance. The Bt879 drivers must query for these non-compliant
devices, and set the EN_VSFX bit only if required.

Other elements of the tvcards array

If you are trying to make a new card work you might find it useful to know what the other
elements in the tvcards array are good for:

video inputs - # of video inputs the card has

audio inputs - historical cruft, not used any more.

tuner - which input is the tuner

svhs - which input is svhs (all others are labeled composite)

muxsel - video mux, input->registervalue mapping

pll - same as pll= insmod option

tuner type - same as tuner= insmod option

* modulename hint whenever some card needs this or that audio
module loaded to work properly.

has radio - whenever this TV card has a radio tuner.

no_msp34xx - "1" disables loading of msp3400.0 module

no_tda9875 - "1" disables loading of tda9875.0 module

needs tvaudio - set to "1" to load tvaudio.o module

If some config item is specified both from the tvcards array and as insmod option, the insmod
option takes precedence.

Cards

Note: For a more updated list, please check https://linuxtv.org/wiki/index.php/Hardware
Device Information

1.1. The media subsystem 105

https://linuxtv.org/wiki/index.php/Hardware_Device_Information
https://linuxtv.org/wiki/index.php/Hardware_Device_Information

Linux Media Documentation

Supported cards: Bt848/Bt848a/Bt849/Bt878/Bt879 cards

All cards with Bt848/Bt848a/Bt849/Bt878/Bt879 and normal Composite/S-VHS inputs are sup-
ported. Teletext and Intercast support (PAL only) for ALL cards via VBI sample decoding in
software.

Some cards with additional multiplexing of inputs or other additional fancy chips are only par-
tially supported (unless specifications by the card manufacturer are given). When a card is
listed here it isn’t necessarily fully supported.

All other cards only differ by additional components as tuners, sound decoders, EEPROMs,
teletext decoders ...

MATRIX Vision

MV-Delta - Bt848A - 4 Composite inputs, 1 S-VHS input (shared with 4th composite) - EEPROM
http://www.matrix-vision.de/

This card has no tuner but supports all 4 composite (1 shared with an S-VHS input) of the
Bt848A. Very nice card if you only have satellite TV but several tuners connected to the card
via composite.

Many thanks to Matrix-Vision for giving us 2 cards for free which made Bt848a/Bt849 single
crystal operation support possible!!!

Miro/Pinnacle PCTV

* Bt848 some (all??) come with 2 crystals for PAL/SECAM and NTSC
* PAL, SECAM or NTSC TV tuner (Philips or TEMIC)

* MSP34xx sound decoder on add on board decoder is supported but AFAIK does not yet
work (other sound MUX setting in GPIO port needed??? somebody who fixed this???)

* 1 tuner, 1 composite and 1 S-VHS input
* tuner type is autodetected
http://www.miro.de/ http://www.miro.com/

Many thanks for the free card which made first NTSC support possible back in 1997!

Hauppauge Win/TV pci

There are many different versions of the Hauppauge cards with different tuners (TV+Radio ...),
teletext decoders. Note that even cards with same model numbers have (depending on the
revision) different chips on it.

* Bt848 (and others but always in 2 crystal operation???) newer cards have a Bt878
* PAL, SECAM, NTSC or tuner with or without Radio support

e.g.:
* PAL:

106 Chapter 1. Media subsystem admin and user guide

http://www.matrix-vision.de/
http://www.miro.de/
http://www.miro.com/

Linux Media Documentation

- TDA5737: VHE, hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners
- TSA5522: 1.4 GHz I12C-bus controlled synthesizer, I2C 0xc2-0xc3

* NTSC:
- TDA5731: VHE hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners
- TSA5518: no datasheet available on Philips site

* Philips SAA5246 or SAA5284 (or no) Teletext decoder chip with buffer RAM (e.g. Winbond
W24257AS-35: 32Kx8 CMOS static RAM) SAA5246 (I2C 0x22) is supported

* 256 bytes EEPROM: Microchip 24L.C02B or Philips 8582E2Y with configuration informa-
tion I12C address 0xa0 (24LCO02B also responds to Oxa2-0xaf)

* 1 tuner, 1 composite and (depending on model) 1 S-VHS input
* 14052B: mux for selection of sound source
e sound decoder: TDA9800, MSP34xx (stereo cards)

Askey CPH-Series

Developed by TelSignal(?), OEMed by many vendors (Typhoon, Anubis, Dynalink)

* Card series: - CPHO1x: BT848 capture only - CPHO3x: BT848 - CPHO5x: BT878 with FM
- CPHO6x: BT878 (w/o FM) - CPHO7x: BT878 capture only

* TV standards: - CPHOx0: NTSC-M/M - CPHOx1: PAL-B/G - CPHOx2: PAL-I/I - CPHOx3:
PAL-D/K - CPHOx4: SECAM-L/L - CPHOx5: SECAM-B/G - CPHO0x6: SECAM-D/K - CPHOx7:
PAL-N/N - CPHOx8: PAL-B/H - CPHO0x9: PAL-M/M

* CPHO03x was often sold as “TV capturer”.
Identifying:

1) 878 cards can be identified by PCI Subsystem-ID: - 144f:3000 = CPHO06x -
144F:3002 = CPHO5x w/ FM - 144F:3005 = CPHO06x_LC (w/o remote control)

2) The cards have a sticker with “CPH”-model on the back.

3) These cards have a number printed on the PCB just above the tuner metal box: -
“80-CP2000300-x” = CPHO03X - “80-CP2000500-x” = CPHO05X - “80-CP2000600-
x” = CPHO6X / CPHO6x LC

Askey sells these cards as “Magic TView series”, Brand “MagicXpress”. Other OEM

no

often call these “Tview”, “TView99” or else.

1.1. The media subsystem 107

Linux Media Documentation

Lifeview Flyvideo Series:

The naming of these series differs in time and space.

Identifying:

1) Some models can be identified by PCI subsystem ID:

1852:1852 = Flyvideo 98 FM
1851:1850 = Flyvideo 98
1851:1851 = Flyvideo 98 EZ (capture only)

2) There is a print on the PCB:

LR25 = Flyvideo (Zoran ZR36120, SAA7110A)

LR26 Rev.N = Flyvideo II (Bt848)

LR26 Rev.O = Flyvideo II (Bt878)

LR37 Rev.C = Flyvideo EZ (Capture only, ZR36120 + SAA7110)

LR38 Rev.Al= Flyvideo II EZ (Bt848 capture only)

LR50 Rev.Q = Flyvideo 98 (w/eeprom and PCI subsystem ID)

LR50 Rev.W = Flyvideo 98 (no eeprom)

LR51 Rev.E = Flyvideo 98 EZ (capture only)

LR90 = Flyvideo 2000 (Bt878)

LR90 Flyvideo 2000S (Bt878) w/Stereo TV (Package incl. LR91 daughterboard)
LR91 = Stereo daughter card for LR90

LR97 = Flyvideo DVBS

LR99 Rev.E = Low profile card for OEM integration (only internal audio!) bt878
LR136 = Flyvideo 2100/3100 (Low profile, SAA7130/SAA7134)

LR137 = Flyvideo DV2000/DV3000 (SAA7130/SAA7134 + IEEE1394)

LR138 Rev.C= Flyvideo 2000 (SAA7130)

LR138 Flyvideo 3000 (SAA7134) w/Stereo TV

- These exist in variations w/FM and w/Remote sometimes denoted by suffixes
IIFMII and IIRII.

3) You have a laptop (miniPCI card):

Product = FlyTV Platinum Mini
Model/Chip = LR212/saa7135

Lifeview.com.tw states (Feb. 2002): “The FlyVideo2000 and FlyVideo2000s prod-
uct name have renamed to FlyVideo98.” Their Bt8x8 cards are listed as discontin-
ued.

Flyvideo 2000S was probably sold as Flyvideo 3000 in some countries(Europe?).
The new Flyvideo 2000/3000 are SAA7130/SAA7134 based.

108

Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

“Flyvideo II” had been the name for the 848 cards, nowadays (in Germany) this name is re-used
for LR50 Rev.W.

The Lifeview website mentioned Flyvideo III at some time, but such a card has not yet been
seen (perhaps it was the german name for LR90 [stereo]). These cards are sold by many OEMs

too.

FlyVideo A2 (Elta 8680)= LR90 Rev.F (w/Remote, w/o FM, stereo TV by tda9821) {Germany}
Lifeview 3000 (Elta 8681) as sold by Plus(April 2002), Germany = LR138 w/ saa7134

lifeview config coding on gpio pins 0-9

* LR50 rev. Q (“PARTS: 7031505116), Tuner wurde als Nr. 5 erkannt, Eingange SVideo, TV,
Composite, Audio, Remote:

* CP9..1=100001001 (1: 0-Ohm-Widerstand gegen GND unbestuckt; 0: bestuckt)

Typhoon TV card series:

These can be CPH, Flyvideo, Pixelview or KNC1 series.

Typhoon is the brand of Anubis.

Model 50680 got re-used, some model no. had different contents over time.

Models:

50680 “TV Tuner PCI Pal BG”(old,red package)=can be CPHO03x(bt848) or
CPHO06x(bt878)

50680 “TV Tuner Pal BG” (blue package)= Pixelview PV-BT878P+ (Rev 9B)
50681 “TV Tuner PCI Pal I” (variant of 50680)
50682 “TView TV/FM Tuner Pal BG” = Flyvideo 98FM (LR50 Rev.Q)

Note: The package has a picture of CPHO05x (which would be a real TView)

50683 “TV Tuner PCI SECAM” (variant of 50680)

50684 “TV Tuner Pal BG” = Pixelview 878TV(Rev.3D)

50686 “TV Tuner” = KNC1 TV Station

50687 “TV Tuner stereo” = KNC1 TV Station pro

50688 “TV Tuner RDS” (black package) = KNC1 TV Station RDS

50689 TV SAT DVB-S CARD CI PCI (SAA7146AH, SU1278?) = “KNC1 TV Station
DVB-S”

50692 “TV/FM Tuner” (small PCB)
50694 TV TUNER CARD RDS (PHILIPS CHIPSET SAA7134HL)
50696 TV TUNER STEREO (PHILIPS CHIPSET SAA7134HL, MK3ME Tuner)

1.1. The media subsystem

109

Linux Media Documentation

50804 PC-SAT TV/Audio Karte = Techni-PC-Sat (ZORAN 36120PQC, Tuner:Alps)
50866 TVIEW SAT RECEIVER+ADR

50868 “TV/FM Tuner Pal I” (variant of 50682)

50999 “TV/FM Tuner Secam” (variant of 50682)

Guillemot

Models:

* Maxi-TV PCI (ZR36120)

* Maxi TV Video 2 = LR50 Rev.Q (FI1216MF, PAL BG+SECAM)
* Maxi TV Video 3 = CPH064 (PAL BG + SECAM)

Mentor

Mentor TV card (“55-878TV-U1”) = Pixelview 878TV(Rev.3F) (w/FM w/Remote)

Prolink

* TV cards:
PixelView Play TV pro - (Model: PV-BT878P+ REV 8E)

PixelView Play TV pro - (Model: PV-BT878P+ REV 9D)

PixelView Play TV pro - (Model: PV-BT878P+ REV 4C /8D / 10A)

PixelView Play TV - (Model: PV-BT848P+)

878TV - (Model: PV-BT878TV)

* Multimedia TV packages (card + software pack):

PixelView Play TV Theater - (Model: PV-M4200) = PixelView Play TV pro + Software
PixelView Play TV PAK - (Model: PV-BT878P+ REV 4E)

PixelView Play TV/VCR - (Model: PV-M3200 REV 4C /8D / 10A)

PixelView Studio PAK - (Model: M2200 REV 4C /8D / 10A)

PixelView PowerStudio PAK - (Model: PV-M3600 REV 4E)

PixelView DigitalVCR PAK - (Model: PV-M2400 REV 4C /8D / 10A)

PixelView PlayTV PAK II (TV/FM card + usb camera) PV-M3800

PixelView PlayTV XP PV-M4700,PV-M4700(w/FM)

PixelView PlayTV DVR PV-M4600 package contents:PixelView PlayTV pro, windvr &

videoMail s/w

¢ Further Cards:
- PV-BT878P+rev.9B (Play TV Pro, opt. w/FM w/NICAM)

110

Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

PV-BT878P+rev.2F
PV-BT878P Rev.1D (bt878, capture only)
XCapture PV-CX881P (cx23881)
PlayTV HD PV-CX881PL+, PV-CX881PL+(w/FM) (cx23881)
DTV3000 PV-DTV3000P+ DVB-S CI = Twinhan VP-1030
DTV2000 DVB-S = Twinhan VP-1020
* Video Conferencing:

- PixelView Meeting PAK - (Model: PV-BT878P)
PixelView Meeting PAK Lite - (Model: PV-BT878P)
PixelView Meeting PAK plus - (Model: PV-BT878P+rev 4C/8D/10A)
PixelView Capture - (Model: PV-BT848P)
PixelView PlayTV USB pro

Model No. PV-NT1004+, PV-NT1004+ (w/FM) = NT1004 USB decoder chip +
SAA7113 video decoder chip

Dynalink

These are CPH series.

Phoebemicro

e TV Master = CPHO030 or CPHO60
e TV Master FM = CPHO050

Genius/Kye

* Video Wonder/Genius Internet Video Kit = LR37 Rev.C
¢ Video Wonder Pro II (848 or 878) = LR26

Tekram

* VideoCap C205 (Bt848)

VideoCap C210 (zr36120 +Philips)
CaptureTV M200 (ISA)

CaptureTV M205 (Bt8438)

1.1. The media subsystem 111

Linux Media Documentation

Lucky Star

* Image World Conference TV = LR50 Rev. Q

Leadtek

WinView 601 (Bt848)
WinView 610 (Zoran)
WinFast2000
WinFast2000 XP

Support for the Leadtek WinView 601 TV/FM

Author of this section: Jon Tombs <jon@gte.esi.us.es>

This card is basically the same as all the rest (Bt484A, Philips tuner), the main difference is that
they have attached a programmable attenuator to 3 GPIO lines in order to give some volume
control. They have also stuck an infra-red remote control decoded on the board, I will add
support for this when I get time (it simple generates an interrupt for each key press, with the
key code is placed in the GPIO port).

I don’t yet have any application to test the radio support. The tuner frequency setting should
work but it is possible that the audio multiplexer is wrong. If it doesn’t work, send me email.

* No Thanks to Leadtek they refused to answer any questions about their hardware. The
driver was written by visual inspection of the card. If you use this driver, send an email
insult to them, and tell them you won’t continue buying their hardware unless they support
Linux.

» Little thanks to Princeton Technology Corp (http://www.princeton.com.tw) who make the
audio attenuator. Their publicly available data-sheet available on their web site doesn’t
include the chip programming information! Hidden on their server are the full data-sheets,
but don’t ask how I found it.

To use the driver I use the following options, the tuner and pll settings might be different in
your country. You can force it via modprobe parameters. For example:

modprobe bttv tuner=1 pll=28 radio=1 card=17

Sets tuner type 1 (Philips PAL 1), PLL with a 28 MHz crystal, enables FM radio and selects bttv
card ID 17 (Leadtek WinView 601).

112 Chapter 1. Media subsystem admin and user guide

mailto:jon@gte.esi.us.es
http://www.princeton.com.tw

Linux Media Documentation

KNC One

TV-Station

TV-Station SE (+Software Bundle)
TV-Station pro (+TV stereo)
TV-Station FM (+Radio)
TV-Station RDS (+RDS)

TV Station SAT (analog satellite)
TV-Station DVB-S

Note: newer Cards have saa7134, but model name stayed the same?

Provideo

* PV951 or PV-951, now named PV-951T (also are sold as: Boeder TV-FM Video Capture
Card, Titanmedia Supervision TV-2400, Provideo PV951 TF, 3DeMon PV951, MediaForte
TV-Vision PV951, Yoko PV951, Vivanco Tuner Card PCI Art.-Nr.: 68404)

* Surveillance Series:

* PV-141

* PV-143

* PV-147

* PV-148 (capture only)

* PV-150

* PV-151

e TV-FM Tuner Series:

e PV-951TDV (tv tuner + 1394)
 PV.951T/TF

* PV-951PT/TF

* PV-956T/TF Low Profile
* PV-911

1.1. The media subsystem 113

Linux Media Documentation

Highscreen

Models:

e TV Karte = LR50 Rev.S
* TV-Boostar = Terratec Terra TV+ Version 1.0 (Bt848, tda9821) “ceb105.pcb”

Zoltrix

Models:

» Face to Face Capture (Bt848 capture only) (PCB “VP-2848")
e Face To Face TV MAX (Bt848) (PCB “VP-8482 Rev1.3”)
e Genie TV (Bt878) (PCB “VP-8790 Rev 2.1")

¢ Genie Wonder Pro

AVerMedia

* AVer FunTV Lite (ISA, AV3001 chipset) “M101.C”

AVerTV
e AVerTV

Stereo

e AVerTV Studio (w/FM)

* AVerMedia TV98 with Remote
* AVerMedia TV/FM98 Stereo

* AVerMedia TVCAM98

* TVCapture (Bt848)

e TVPhone (Bt848)
* TVCapture98 (="AVerMedia TV98” in USA) (Bt878)
e TVPhone98 (Bt878, w/FM)

PCB PCI-ID Model-Name Eeprom | Tuner Sound Country

M101.C ISA'!

M108-B Bt848 - FR1236 USs?,3

M1A8-A Bt848 AVer TV-Phone FM1216 | -

M168-T 1461:0003 | AVerTV Studio | 48:17 FM1216 | TDA9840T | D! w/FM

w/Remote

M168-U 1461:0004 | TVCapture98 | 40:11 FI1216 | - D w/Remote

M168II-B | 1461:0003 | Medion 48:16 FM1216 | TDA9873H | D w/FM
MD9592

2 Sony NE41S soldered (stereo sound?)
3 Daughterboard M118-A w/ pic 16¢c54 and 4 MHz quartz
1 Daughterboard MB68-A with TDA9820T and TDA9840T

114

Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

US site has different drivers for (as of 09/2002):
EZ Capture/InterCam PCI (BT-848 chip)
EZ Capture/InterCam PCI (BT-878 chip)
TV-Phone (BT-848 chip)

TV98 (BT-848 chip)

TV98 With Remote (BT-848 chip)

TV98 (BT-878 chip)

TV98 With Remote (BT-878)

TV/FM98 (BT-878 chip)

AVerTV

- AverTV Stereo

- AVerTV Studio

DE hat diverse Treiber fuer diese Modelle (Stand 09/2002):

TVPhone (848) mit Philips tuner FR12X6 (w/ FM radio)
TVPhone (848) mit Philips tuner FM12X6 (w/ FM radio)
TVCapture (848) w/Philips tuner FI12X6

TVCapture (848) non-Philips tuner

TVCapture98 (Bt878)

TVPhone98 (Bt878)

AVerTV und TVCapture98 w/VCR (Bt 878)
AVerTVStudio und TVPhone98 w/VCR (Bt878)

AVerTV GO Serie (Kein SVideo Input)

AVerTV98 (BT-878 chip)

AVerTV98 mit Fernbedienung (BT-878 chip)
AVerTV/FM98 (BT-878 chip)

VDOmate (www.averm.com.cn) = M168U ?

Aimslab

Models:

Video Highway or “Video Highway TR200” (ISA)
Video Highway Xtreme (aka “VHX”) (Bt848, FM w/ TEA5757)

1.1.

The media subsystem

115

Linux Media Documentation

IXMicro (former: IMS=Integrated Micro Solutions)

Models:

IXTV BT848 (=TurboTV)
IXTV BT878
IMS TurboTV (Bt848)

Lifetec/Medion/Tevion/Aldi

Models:

LT9306/MD9306 = CPHO61
LT9415/MD9415 = LR90 Rev.F or Rev.G

MD9592 = Avermedia TVphone98 (PCI ID=1461:0003), PCB-Rev=M168II-B
(w/TDA9873H)

MD9717 = KNC One (Rev D4, saa7134, FM1216 MK2 tuner)
MD5044 = KNC One (Rev D4, saa7134, FM1216ME MK3 tuner)

Modular Technologies (www.modulartech.com) UK

Models:

MM100 PCTV (Bt848)

MM201 PCTV (Bt878, Bt832) w/ Quartzsight camera
MM202 PCTV (Bt878, Bt832, tda9874)

MM?205 PCTV (Bt878)

MM210 PCTV (Bt878) (Galaxy TV, Galaxymedia ?)

Terratec

Models:

Terra TV+ Version 1.0 (Bt848), “ceb105.PCB” printed on the PCB, TDA9821
Terra TV+ Version 1.1 (Bt878), “LR74 Rev.E” printed on the PCB, TDA9821
Terra TValueRadio, “LR102 Rev.C” printed on the PCB

Terra TV/Radio+ Version 1.0, “80-CP2830100-0” TTTV3 printed on the PCB, “CPH010-
E83” on the back, SAA6588T, TDA9873H

Terra TValue Version BT878, “80-CP2830110-0 TTTV4” printed on the PCB, “CPH011-D83”
on back

Terra TValue Version 1.0 “ceb105.PCB” (really identical to Terra TV+ Version 1.0)
Terra TValue New Revision “LR102 Rec.C”

116

Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Terra Active Radio Upgrade (tea5757h, saa6588t)

LR74 is a newer PCB revision of ceb105 (both incl. connector for Active Radio Upgrade)
Cinergy 400 (saa7134), “E877 11(S)”, “PM820092D” printed on PCB
Cinergy 600 (saa7134)

Technisat

Models:
¢ Discos ADR PC-Karte ISA (no TV!)
* Discos ADR PC-Karte PCI (probably no TV?)
* Techni-PC-Sat (Sat. analog) Rev 1.2 (zr36120, vpx3220, stv0030, saa5246, BSJE3-494A)
* Mediafocus I (zr36120/zr36125, drp3510, Sat. analog + ADR Radio)
* Mediafocus II (saa7146, Sat. analog)
* SatADR Rev 2.1 (saa7146a, saa7113h, stv0056a, msp3400c, drp3510a, BSKE3-307A)
» SkyStar 1 DVB (AV7110) = Technotrend Premium
» SkyStar 2 DVB (B2C2) (=Sky2PC)

Siemens

Multimedia eXtension Board (MXB) (SAA7146, SAA7111)

Powercolor

Models:
* MTV878 Package comes with different contents:
a) pcb “MTV878” (CARD=75)
b) Pixelview Rev. 4
* MTV878R w/Remote Control
« MTV878F w/Remote Control w/FM radio

Pinnacle

PCTV models:
e Mirovideo PCTV (Bt848)
* Mirovideo PCTV SE (Bt848)
* Mirovideo PCTV Pro (Bt848 + Daughterboard for TV Stereo and FM)
e Studio PCTV Rave (Bt848 Version = Mirovideo PCTV)

1.1. The media subsystem 117

Linux Media Documentation

* Studio PCTV Rave (Bt878 package w/o infrared)
» Studio PCTV (Bt878)

e Studio PCTV Pro (Bt878 stereo w/ FM)

e Pinnacle PCTV (Bt878, MT2032)

¢ Pinnacle PCTV Pro (Bt878, MT2032)

e Pinncale PCTV Sat (bt878a, HM1821/1221) [“Conexant CX24110 with CX24108 tuner, aka
HM1221/HM1811”]

* Pinnacle PCTV Sat XE
M(J)PEG capture and playback models:
*« DC1+ (ISA)
* DC10 (zr36057, zr36060, saa7110, adv7176)
e DC10+ (zr36067, zr36060, saa7110, adv7176)
* DC20 (ql16x24b,zr36050, zr36016, saa7110, saa7187 ...)
* DC30 (zr36057, zr36050, zr36016, vpx3220, adv7176, ad1843, tea6415, miro FST97A1)
* DC30+ (zr36067, zr36050, zr36016, vpx3220, adv7176)

* DC50 (zr36067, zr36050, zr36016, saa7112, adv7176 (2 pcs.?), ad1843, miro FST97A1,
Lattice ??7?)

Lenco

Models:
e MXR-9565 (=Technisat Mediafocus?)
MXR-9571 (Bt848) (=CPH0317?)
MXR-9575
MXR-9577 (Bt878) (=Prolink 878TV Rev.3x)
MXTV-9578CP (Bt878) (= Prolink PV-BT878P+4E)

lomega

Buz (zr36067, zr36060, saa7111, saa7185)

118 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

LML

LML33 (zr36067, zr36060, bt819, bt856)

Grandtec

Models:
* Grand Video Capture (Bt848)
e Multi Capture Card (Bt878)

Koutech

Models:
*« KW-606 (Bt848)
KW-607 (Bt848 capture only)
KW-606RSF
KW-607A (capture only)

KW-608 (Zoran capture only)

IODATA (jp)

Models:

* GV-BCTV/PCI
GV-BCTV2/PCI
GV-BCTV3/PCI
GV-BCTV4/PCI
GV-VCP/PCI (capture only)
GV-VCP2/PCI (capture only)

Canopus (jp)

WinDVR = Kworld “KW-TVL878RF”

1.1. The media subsystem 119

Linux Media Documentation

www.sigmacom.co.kr

Sigma Cyber TV II

www.sasem.co.kr

Litte OnAir TV

hama

TV/Radio-Tuner Card, PCI (Model 44677) = CPHO051

Sigma Designs

Hollywood plus (em8300, em9010, adv7175), (PCB “M340-10”) MPEG DVD decoder

Formac

Models:

¢ iProTV (Card for iMac Mezzanine slot, Bt848+SCSI)

* ProTV (Bt848)

e ProTV II = ProTV Stereo (Bt878) [“stereo” means FM stereo, tv is still mono]

ATI

Models:
e TV-Wonder
e TV-Wonder VE

Diamond Multimedia

DTV2000 (Bt848, tda9875)

Aopen

* VA1000 Plus (w/ Stereo)
* VA1000 Lite
e VA1000 (=LR90)

120

Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Intel

Models:
* Smart Video Recorder (ISA full-length)
* Smart Video Recorder pro (ISA half-length)
e Smart Video Recorder III (Bt848)

STB

Models:
» STB Gateway 6000704 (bt878)
» STB Gateway 6000699 (bt848)
» STB Gateway 6000402 (bt848)
« STBTV130 PCI

Videologic

Models:
* Captivator Pro/TV (ISA?)

» Captivator PCI/VC (Bt848 bundled with camera) (capture only)

Technotrend

Models:

* TT-SAT PCI (PCB “Sat-PCI Rev.:1.3.1”; zr36125, vpx3225d, stc0056a, Tuner:BSKE6-155A

« TI-DVB-Sat
revisions 1.1, 1.3, 1.5, 1.6 and 2.1
This card is sold as OEM from:

* Siemens DVB-s Card

* Hauppauge WinTV DVB-S

* Technisat SkyStar 1 DVB

* Galaxis DVB Sat

* Hauppauge WinTV Nova
* Satelco Standard PCI (DVB-S)
TT-DVB-C PCI

Now this card is called TT-PCline Premium Family

TT-Budget (saa7146, bsru6-701a) This card is sold as OEM from:

1.1. The media subsystem

121

Linux Media Documentation

Teles

DVB-s (Rev. 2.2, BSRV2-301A, data only?)

Remote Vision

MX RV605 (Bt848 capture only)

Boeder

Models:
* PC ChatCam (Model 68252) (Bt848 capture only)
* Tv/Fm Capture Card (Model 68404) = PV951

Media-Surfer (esc-kathrein.de)

Models:

e Sat-Surfer (ISA)
Sat-Surfer PCI = Techni-PC-Sat
Cable-Surfer 1
Cable-Surfer 2
Cable-Surfer PCI (zr36120)
Audio-Surfer (ISA Radio card)

Jetway (www.jetway.com.tw)

Models:
* JW-TV 878M
* JW-TV 878 = KWorld KW-TV878RF

Galaxis

Models:
* Galaxis DVB Card S CI
Galaxis DVB Card C CI
Galaxis DVB Card S
Galaxis DVB Card C
Galaxis plug.in S [neuer Name: Galaxis DVB Card S CI

122 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Hauppauge

Models:
* many many WinTV models ...
* WinTV DVBs = Technotrend Premium 1.3
* WinTV NOVA = Technotrend Budget 1.1 “S-DVB DATA”
* WinTV NOVA-CI “SDVBACI”
e WinTV Nova USB (=Technotrend USB 1.0)
e WinTV-Nexus-s (=Technotrend Premium 2.1 or 2.2)
* WinTV PVR
* WinTV PVR 250
* WinTV PVR 450
US models

-990 WinTV-PVR-350 (249USD) (iTVC15 chipset + radio) -980 WinTV-PVR-250 (149USD)
(iTVC15 chipset) -880 WinTV-PVR-PCI (199USD) (KFIR chipset + bt878) -881 WinTV-PVR-USB
-190 WinTV-GO -191 WinTV-GO-FM -404 WinTV -401 WinTV-radio -495 WinTV-Theater -602
WinTV-USB -621 WinTV-USB-FM -600 USB-Live -698 WinTV-HD -697 WinTV-D -564 WinTV-
Nexus-S

Deutsche Modelle:

-603 WinTV GO -719 WiIinTV Primio-FM -718 WinTV PCI-FM -497 WinTV Theater -569 WinTV
USB -568 WinTV USB-FM -882 WinTV PVR -981 WinTV PVR 250 -891 WinTV-PVR-USB -541
WinTV Nova -488 WinTV Nova-Ci -564 WinTV-Nexus-s -727 WinTV-DVB-c -545 Common Inter-
face -898 WinTV-Nova-USB

UK models:

-607 WiIinTV Go -693,793 WinTV Primio FM -647,747 WinTV PCI FM -498 WinTV Theater -883
WinTV PVR -893 WinTV PVR USB (Duplicate entry) -566 WinTV USB (UK) -573 WinTV USB FM
-429 Impact VCB (bt848) -600 USB Live (Video-In 1x Comp, 1xSVHS) -542 WinTV Nova -717
WinTV DVB-S -909 Nova-t PCI -893 Nova-t USB (Duplicate entry) -802 MyTV -804 MyView -809
MyVideo -872 MyTV2Go FM -546 WinTV Nova-S CI -543 WinTV Nova -907 Nova-S USB -908
Nova-T USB -717 WinTV Nexus-S -157 DEC3000-s Standalone + USB

Spain:

-685 WinTV-Go -690 WinTV-PrimioFM -416 WinTV-PCI Nicam Estereo -677 WinTV-PCI-FM -699
WinTV-Theater -683 WinTV-USB -678 WinTV-USB-FM -983 WinTV-PVR-250 -883 WinTV-PVR-
PCI -993 WinTV-PVR-350 -893 WinTV-PVR-USB -728 WinTV-DVB-C PCI -832 MyTV2Go -869
MyTV2Go-FM -805 MyVideo (USB)

1.1. The media subsystem 123

Linux Media Documentation

Matrix-Vision

Models:
* MATRIX-Vision MV-Delta
* MATRIX-Vision MV-Delta 2
* MVsigma-SLC (Bt848)

Conceptronic (.net)

Models:
e TVCON FM, TV card w/ FM = CPHO05x
« TVCON = CPHO6x

BestData

Models:
* HCC100 = VCC100revl + camera
* VCC100 revl (bt848)
* VCC100 rev2 (bt878)

Gallant (www.gallantcom.com) www.minton.com.tw

Models:
* Intervision IV-510 (capture only bt8x8)
* Intervision IV-550 (bt8x8)
¢ Intervision IV-100 (zoran)
e Intervision IV-1000 (bt8x8)

Asonic (www.asonic.com.cn) (website down)

SkyEye tv 878

124 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Hoontech

878TV/FM

Teppro (www.itcteppro.com.tw)

Models:
* ITC PCITV (Card Ver 1.0) “Teppro TV1/TVFM1 Card”
e ITC PCITV (Card Ver 2.0)
e ITC PCITV (Card Ver 3.0) = “PV-BT878P+ (REV.9D)”
* ITC PCITV (Card Ver 4.0)
 TEPPRO IV-550 (For BT848 Main Chip)
e ITC DSTTV (bt878, satellite)
e ITC VideoMaker (saa7146, StreamMachine sm2110, tvtuner) “PV-SM2210P+ (REV:1C)”

Kworld (www.kworld.com.tw)

PC TV Station:
* KWORLD KW-TV878R TV (no radio)
* KWORLD KW-TV878RF TV (w/ radio)
« KWORLD KW-TVL878RF (low profile)
* KWORLD KW-TV713XRF (saa7134)
MPEG TV Station (same cards as above plus WinDVR Software MPEG en/decoder)
e KWORLD KW-TV878R -Pro TV (no Radio)
* KWORLD KW-TV878RF-Pro TV (w/ Radio)
« KWORLD KW-TV878R -Ultra TV (no Radio)
* KWORLD KW-TV878RF-Ultra TV (w/ Radio)

JTT/ Justy Corp.(http://www.jtt.ne.jp/)

JTT-02 (JTT TV) “TV watchmate pro” (bt848)

1.1. The media subsystem 125

Linux Media Documentation

ADS www.adstech.com

Models:
e Channel Surfer TV (CHX-950)
e Channel Surfer TV+FM (CHX-960FM)

AVEC www.prochips.com

AVEC Intercapture (bt848, tea6320)

NoBrand

TV Excel = Australian Name for “PV-BT878P+ 8E” or “878TV Rev.3 ”

Mach www.machspeed.com

Mach TV 878

Eline www.eline-net.com/

Models:
e Eline Vision TVMaster / TVMaster FM (ELV-TVM/ ELV-TVM-FM) = LR26 (bt878)
¢ Eline Vision TVMaster-2000 (ELV-TVM-2000, ELV-TVM-2000-FM)= LR138 (saa713x)

Spirit

* Spirit TV Tuner/Video Capture Card (bt848)

Boser www.boser.com.tw

Models:
* HS-878 Mini PCI Capture Add-on Card
* HS-879 Mini PCI 3D Audio and Capture Add-on Card (w/ ES1938 Solo-1)

126 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Satelco www.citycom-gmbh.de, www.satelco.de

Models:
* TV-FM =KNC1 saa7134
* Standard PCI (DVB-S) = Technotrend Budget
» Standard PCI (DVB-S) w/ CI
* Satelco Highend PCI (DVB-S) = Technotrend Premium

Sensoray www.sensoray.com

Models:
* Sensoray 311 (PC/104 bus)
* Sensoray 611 (PCI)

CEIl (Chartered Electronics Industries Pte Ltd [CEI] [FCC ID HBY])

Models:
e TV Tuner - HBY-33A-RAFFLES Brooktree Bt848KPF + Philips

e TV Tuner MG9910 - HBY33A-TVO CEI + Philips SAA7110 + OKI Mb548262 + ST
STV8438CV

e Primetime TV (ISA)
- acquired by Singapore Technologies
- now operating as Chartered Semiconductor Manufacturing
- Manufacturer of video cards is listed as:

* Cogent Electronics Industries [CEI]

AlTech

Models:
» Wavewatcher TV (ISA)
¢ AlTech WaveWatcher TV-PCI = can be LR26 (Bt848) or LR50 (BT878)
e WaveWatcher TVR-202 TV/FM Radio Card (ISA)

1.1. The media subsystem 127

Linux Media Documentation

MAXRON

Maxron MaxTV/FM Radio (KW-TV878-FNT) = Kworld or JW-TV878-FBK

www.ids-imaging.de

Models:
* Falcon Series (capture only)

In USA: http://www.theimagingsource.com/ - DFG/LC1

www.sknet-web.co.jp

SKnet Monster TV (saa7134)

A-Max www.amaxhk.com (Colormax, Amax, Napa)

APAC Viewcomp 878

Cybertainment

Models:
* CyberMail AV Video Email Kit w/ PCI Capture Card (capture only)
* CyberMail Xtreme

These are Flyvideo

VCR (http://www.vcrinc.com/)

Video Catcher 16

Twinhan

Models:
e DST Card/DST-IP (bt878, twinhan asic) VP-1020 - Sold as:
- KWorld DVBS Satellite TV-Card
- Powercolor DSTV Satellite Tuner Card
- Prolink Pixelview DTV2000
- Provideo PV-911 Digital Satellite TV Tuner Card With Common Interface ?
* DST-CI Card (DVB Satellite) VP-1030
e DCT Card (DVB cable)

128 Chapter 1. Media subsystem admin and user guide

http://www.theimagingsource.com/

Linux Media Documentation

MSI

Models:
* MSI TV@nywhere Tuner Card (MS-8876) (CX23881/883) Not Bt878 compatible.
e MS-8401 DVB-S

Focus www.focusinfo.com

InVideo PCI (bt878)

Sdisilk www.sdisilk.com/

Models:
e SDI Silk 100
» SDI Silk 200 SDI Input Card

www.euresys.com

PICOLO series

PMC/Pace

www.pacecom.co.uk website closed

Mercury www.kobian.com (UK and FR)

Models:
e L.R50
* LR138RBG-Rx == LR138

TEC sound

TV-Mate = Zoltrix VP-8482
Though educated googling found: www.techmakers.com

(package and manuals don’t have any other manufacturer info) TecSound

1.1. The media subsystem 129

mailto:TV@nywhere

Linux Media Documentation

Lorenzen www.lorenzen.de

SL DVB-S PCI = Technotrend Budget PCI (sul278 or bsru version)

Origo (.uk) www.origo2000.com

PC TV Card = LR50

I/0 Magic www.iomagic.com

PC PVR - Desktop TV Personal Video Recorder DR-PCTV100 = Pinnacle ROB2D-51009464 4.0
+ Cyberlink PowerVCR II

Arowana

TV-Karte / Poso Power TV (?) = Zoltrix VP-8482 (?)

iTVC15 boards

kuroutoshikou.com ITVC15 yuan.com MPG160 PCI TV (Internal PCI MPEG2 encoder card plus
TV-tuner)

Asus www.asuscom.com

Models:
* Asus TV Tuner Card 880 NTSC (low profile, cx23880)
e Asus TV (saa7134)

Hoontech

http://www.hoontech.de/
* HART Vision 848 (H-ART Vision 848)
e HART Vision 878 (H-Art Vision 878)

130 Chapter 1. Media subsystem admin and user guide

http://www.hoontech.de/

Linux Media Documentation

Chips used at bttv devices

* all boards:
- Brooktree Bt848/848A/849/878/879: video capture chip
* Board specific
- Miro PCTV:
* Philips or Temic Tuner
- Hauppauge Win/TV pci (version 405):
* Microchip 241.C02B or Philips 8582E2Y:
- 256 Byte EEPROM with configuration information
- I2C 0xa0-0xal, (24LC02B also responds to Oxa2-0xaf)
Philips SAA5246AGP/E: Videotext decoder chip, I2C 0x22-0x23
TDA9800: sound decoder
Winbond W24257AS-35: 32Kx8 CMOS static RAM (Videotext buffer mem)

*

*

*

*

14052B: analog switch for selection of sound source

* PAL:
- TDA5737: VHEF, hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners
- TSA5522: 1.4 GHz I2C-bus controlled synthesizer, I2C 0xc2-0xc3

* NTSC:
- TDA5731: VHEFE hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners
- TSA5518: no datasheet available on Philips site

« STB TV pci:
- 7?7

- if you want better support for STB cards send me info! Look at the board! What chips
are on it?

Specs

Philips http://www.Semiconductors.COM/pip/
Conexant http://www.conexant.com/

Micronas http://www.micronas.com/en/home/index.html

1.1. The media subsystem 131

http://www.Semiconductors.COM/pip/
http://www.conexant.com/
http://www.micronas.com/en/home/index.html

Linux Media Documentation

Thanks

Many thanks to:

e Markus Schroeder <schroedm@uni-duesseldorf.de> for information on the Bt848 and
tuner programming and his control program xtvc.

* Martin Buck <martin-2.buck@student.uni-ulm.de> for his great Videotext package.
* Gerd Hoffmann for the MSP3400 support and the modular I2C, tuner, ... support.

* MATRIX Vision for giving us 2 cards for free, which made support of single crystal opera-
tion possible.

* MIRO for providing a free PCTV card and detailed information about the components on
their cards. (E.g. how the tuner type is detected) Without their card I could not have
debugged the NTSC mode.

* Hauppauge for telling how the sound input is selected and what components they do and
will use on their radio cards. Also many thanks for faxing me the FM1216 data sheet.

Contributors

Michael Chu <mmchu@pobox.com> AverMedia fix and more flexible card recognition
Alan Cox <alan@Ilxorguk.ukuu.org.uk> Video4Linux interface and 2.1.x kernel adaptation
Chris Kleitsch Hardware 12C

Gerd Hoffmann Radio card (ITT sound processor)

bigfoot <bigfoot@net-way.net>

Ragnar Hojland Espinosa <ragnar@macula.net> ConferenceTV card

* many more (please mail me if you are missing in this list and would like to be
mentioned)

1.1.6.2 The cafe_ccic driver

Author: Jonathan Corbet <corbet@lwn.net>

Introduction

“cafe ccic” is a driver for the Marvell 88ALP01 “cafe” CMOS camera controller. This is the
controller found in first-generation OLPC systems, and this driver was written with support
from the OLPC project.

Current status: the core driver works. It can generate data in YUV422, RGB565, and RGB444
formats. (Anybody looking at the code will see RGB32 as well, but that is a debugging aid which
will be removed shortly). VGA and QVGA modes work; CIF is there but the colors remain funky.
Only the OV7670 sensor is known to work with this controller at this time.

To try it out: either of these commands will work:

132 Chapter 1. Media subsystem admin and user guide

mailto:schroedm@uni-duesseldorf.de
mailto:martin-2.buck@student.uni-ulm.de
mailto:mmchu@pobox.com
mailto:alan@lxorguk.ukuu.org.uk
mailto:bigfoot@net-way.net
mailto:ragnar@macula.net
mailto:corbet@lwn.net

Linux Media Documentation

$ mplayer tv:// -tv driver=v412:width=640:height=480 -nosound
$ mplayer tv:// -tv driver=v412:width=640:height=480:0utfmt=bgrlé -nosound

The “xawtv” utility also works; ggcam does not, for unknown reasons.

Load time options

There are a few load-time options, most of which can be changed after loading via sysfs as well:

* alloc bufs at load: Normally, the driver will not allocate any DMA buffers until the time
comes to transfer data. If this option is set, then worst-case-sized buffers will be allocated
at module load time. This option nails down the memory for the life of the module, but
perhaps decreases the chances of an allocation failure later on.

* dma buf size: The size of DMA buffers to allocate. Note that this option is only consulted
for load-time allocation; when buffers are allocated at run time, they will be sized appro-
priately for the current camera settings.

* n dma bufs: The controller can cycle through either two or three DMA buffers. Normally,
the driver tries to use three buffers; on faster systems, however, it will work well with only
two.

* min buffers: The minimum number of streaming I/O buffers that the driver will consent
to work with. Default is one, but, on slower systems, better behavior with mplayer can be
achieved by setting to a higher value (like six).

* max buffers: The maximum number of streaming I/O buffers; default is ten. That number
was carefully picked out of a hat and should not be assumed to actually mean much of
anything.

 flip: If this boolean parameter is set, the sensor will be instructed to invert the video image.
Whether it makes sense is determined by how your particular camera is mounted.

1.1.6.3 The cpia2 driver

Authors: Peter Pregler <Peter Pregler@email.com>, Scott J. Bertin <scot-
tbertin@yahoo.com>, and Jarl Totland <Jarl.Totland@bdc.no> for the original cpia driver,
which this one was modelled from.

Introduction

This is a driver for STMicroelectronics’s CPiA2 (second generation Colour Processor Interface
ASIC) based cameras. This camera outputs an MJPEG stream at up to vga size. It implements
the Video4Linux interface as much as possible. Since the V4L interface does not support com-
pressed formats, only an mjpeg enabled application can be used with the camera. We have
modified the gqcam application to view this stream.

The driver is implemented as two kernel modules. The cpia2 module contains the camera func-
tions and the V4L interface. The cpia2 usb module contains usb specific functions. The main
reason for this was the size of the module was getting out of hand, so I separated them. It is
not likely that there will be a parallel port version.

1.1. The media subsystem 133

mailto:Peter_Pregler@email.com
mailto:scottbertin@yahoo.com
mailto:scottbertin@yahoo.com
mailto:Jarl.Totland@bdc.no

Linux Media Documentation

Features

* Supports cameras with the Vision stv6410 (CIF) and stv6500 (VGA) cmos sensors. I only
have the vga sensor, so can’t test the other.

* Image formats: VGA, QVGA, CIF, QCIF, and a number of sizes in between. VGA and QVGA
are the native image sizes for the VGA camera. CIF is done in the coprocessor by scaling
QVGA. All other sizes are done by clipping.

» Palette: YCrCb, compressed with MJPEG.

* Some compression parameters are settable.

* Sensor framerate is adjustable (up to 30 fps CIF, 15 fps VGA).

* Adjust brightness, color, contrast while streaming.

» Flicker control settable for 50 or 60 Hz mains frequency.

Making and installing the stv672 driver modules

Requirements

Video4Linux must be either compiled into the kernel or available as a module. Video4Linux?2 is
automatically detected and made available at compile time.

Setup

Use modprobe cpia2 to load and modprobe -r cpia2 to unload. This may be done automati-
cally by your distribution.

Driver options

Option Description

video nr video device to register (0=/dev/videoO, etc) range -1 to 64. default is -1
(first available) If you have more than 1 camera, this MUST be -1.

buffer size Size for each frame buffer in bytes (default 68k)

num buffers | Number of frame buffers (1-32, default 3)

alternate USB Alternate (2-7, default 7)

flicker freq Frequency for flicker reduction(50 or 60, default 60)

flicker mode | O to disable, or 1 to enable flicker reduction. (default 0). This is only
effective if the camera uses a stv0672 coprocessor.

134

Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Setting the options

If you are using modules, edit /etc/modules.conf and add an options line like this:

options cpia2 num buffers=3 buffer size=65535

If the driver is compiled into the kernel, at boot time specify them like this:

cpia2.num _buffers=3 cpia2.buffer size=65535

What buffer size should | use?

The maximum image size depends on the alternate you choose, and the frame rate achieved by
the camera. If the compression engine is able to keep up with the frame rate, the maximum
image size is given by the table below.

The compression engine starts out at maximum compression, and will increase image quality
until it is close to the size in the table. As long as the compression engine can keep up with the
frame rate, after a short time the images will all be about the size in the table, regardless of
resolution.

At low alternate settings, the compression engine may not be able to compress the image
enough and will reduce the frame rate by producing larger images.

The default of 68k should be good for most users. This will handle any alternate at frame rates
down to 15fps. For lower frame rates, it may be necessary to increase the buffer size to avoid
having frames dropped due to insufficient space.

Alternate | bytes/ms | 15fps | 30fps
2 128 8533 | 4267

3 384 25600 | 12800
4 640 42667 | 21333
5 768 51200 | 25600
6 896 59733 | 29867
7 1023 68200 | 34100

Table: Image size(bytes)

How many buffers should | use?

For normal streaming, 3 should give the best results. With only 2, it is possible for the camera
to finish sending one image just after a program has started reading the other. If this happens,
the driver must drop a frame. The exception to this is if you have a heavily loaded machine. In
this case use 2 buffers. You are probably not reading at the full frame rate. If the camera can
send multiple images before a read finishes, it could overwrite the third buffer before the read
finishes, leading to a corrupt image. Single and double buffering have extra checks to avoid
overwriting.

1.1. The media subsystem 135

Linux Media Documentation

Using the camera

We are providing a modified gqcam application to view the output. In order to avoid confusion,
here it is called mview. There is also the qx5view program which can also control the lights
on the x5 microscope. MJPEG Tools (http://mjpeg.sourceforge.net) can also be used to record
from the camera.

1.1.6.4 The cx88 driver

Author: Gerd Hoffmann
This is a v412 device driver for the ¢cx2388x chip.

Current status

video

* Works.

* Overlay isn’t supported.
audio

* Works. The TV standard detection is made by the driver, as the hardware has bugs to
auto-detect.

* audio data dma (i.e. recording without loopback cable to the sound card) is supported
via cx88-alsa.

vbi
e Works.

How to add support for new cards

The driver needs some config info for the TV cards. This stuff is in cx88-cards.c. If the driver
doesn’t work well you likely need a new entry for your card in that file. Check the kernel log
(using dmesg) to see whenever the driver knows your card or not. There is a line like this one:

cx8800[0]: subsystem: 0070:3400, board: Hauppauge WinTV \
34xxx models [card=1,autodetected]

If your card is listed as “board: UNKNOWN/GENERIC” it is unknown to the driver. What to do
then?

1) Try upgrading to the latest snapshot, maybe it has been added meanwhile.

2) You can try to create a new entry yourself, have a look at cx88-cards.c. If that worked,
mail me your changes as unified diff (“diff -u”).

3) Or you can mail me the config information. We need at least the following information to
add the card:

* the PCI Subsystem ID (“0070:3400” from the line above, “Ispci -v” output is fine too).

136 Chapter 1. Media subsystem admin and user guide

http://mjpeg.sourceforge.net

Linux Media Documentation

* the tuner type used by the card. You can try to find one by trial-and-error using the
tuner=<n> insmod option. If you know which one the card has you can also have a
look at the list in CARDLIST.tuner

1.1.6.5 The VPBE V4L2 driver design

Functional partitioning

Consists of the following:
1. V412 display driver

Implements creation of video2 and video3 device nodes and provides v412 device interface
to manage VIDO and VID1 layers.

2. Display controller

Loads up VENC, OSD and external encoders such as ths8200. It provides a set of API
calls to V412 drivers to set the output/standards in the VENC or external sub devices. It
also provides a device object to access the services from OSD subdevice using sub device
ops. The connection of external encoders to VENC LCD controller port is done at init time
based on default output and standard selection or at run time when application change
the output through V4L2 IOCTLs.

When connected to an external encoder, vpbe controller is also responsible for setting
up the interface between VENC and external encoders based on board specific settings
(specified in board-xxx-evm.c). This allows interfacing external encoders such as ths8200.
The setup if config() is implemented for this as well as configure venc() (part of the next
patch) API to set timings in VENC for a specific display resolution. As of this patch series,
the interconnection and enabling and setting of the external encoders is not present, and
would be a part of the next patch series.

3. VENC subdevice module

Responsible for setting outputs provided through internal DACs and also setting timings
at LCD controller port when external encoders are connected at the port or LCD panel
timings required. When external encoder/LCD panel is connected, the timings for a spe-
cific standard/preset is retrieved from the board specific table and the values are used to
set the timings in venc using non-standard timing mode.

Support LCD Panel displays using the VENC. For example to support a Logic PD display,
it requires setting up the LCD controller port with a set of timings for the resolution sup-
ported and setting the dot clock. So we could add the available outputs as a board specific
entry (i.e add the “LogicPD” output name to board-xxx-evm.c). A table of timings for vari-
ous LCDs supported can be maintained in the board specific setup file to support various
LCD displays.As of this patch a basic driver is present, and this support for external en-
coders and displays forms a part of the next patch series.

4. OSD module

OSD module implements all OSD layer management and hardware specific features. The
VPBE module interacts with the OSD for enabling and disabling appropriate features of
the OSD.

1.1. The media subsystem 137

Linux Media Documentation

Current status

A fully functional working version of the VAL2 driver is available. This driver has been tested
with NTSC and PAL standards and buffer streaming.

1.1.6.6 The Samsung S5P/Exynos4 FIMC driver

Copyright © 2012 - 2013 Samsung Electronics Co., Ltd.

The FIMC (Fully Interactive Mobile Camera) device available in Samsung SoC Application Pro-
cessors is an integrated camera host interface, color space converter, image resizer and rota-
tor. It’s also capable of capturing data from LCD controller (FIMD) through the SoC internal
writeback data path. There are multiple FIMC instances in the SoCs (up to 4), having slightly
different capabilities, like pixel alignment constraints, rotator availability, LCD writeback sup-
port, etc. The driver is located at drivers/media/platform/exynos4-is directory.

Supported SoCs

S5PC100 (mem-to-mem only), S5PV210, Exynos4210

Supported features

* camera parallel interface capture (ITU-R.BT601/565);
* camera serial interface capture (MIPI-CSI2);
* memory-to-memory processing (color space conversion, scaling, mirror and rotation);

* dynamic pipeline re-configuration at runtime (re-attachment of any FIMC instance to any
parallel video input or any MIPI-CSI front-end);

* runtime PM and system wide suspend/resume

Not currently supported

* LCD writeback input

* per frame clock gating (mem-to-mem)

User space interfaces
Media device interface

The driver supports Media Controller API as defined at Part IV - Media Controller API. The
media device driver name is “Samsung S5P FIMC”.

The purpose of this interface is to allow changing assignment of FIMC instances to the SoC
peripheral camera input at runtime and optionally to control internal connections of the MIPI-
CSIS device(s) to the FIMC entities.

138 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

The media device interface allows to configure the SoC for capturing image data from the sensor
through more than one FIMC instance (e.g. for simultaneous viewfinder and still capture setup).

Reconfiguration is done by enabling/disabling media links created by the driver during initial-
ization. The internal device topology can be easily discovered through media entity and links
enumeration.

Memory-to-memory video node

V4L2 memory-to-memory interface at /dev/video? device node. This is standalone video device,
it has no media pads. However please note the mem-to-mem and capture video node operation
on same FIMC instance is not allowed. The driver detects such cases but the applications should
prevent them to avoid an undefined behaviour.

Capture video node

The driver supports V4L2 Video Capture Interface as defined at Interfaces.

At the capture and mem-to-mem video nodes only the multi-planar API is supported. For more
details see: Single- and multi-planar APIs.

Camera capture subdevs

Each FIMC instance exports a sub-device node (/dev/v4l-subdev?), a sub-device node is also
created per each available and enabled at the platform level MIPI-CSI receiver device (currently
up to two).

sysfs

In order to enable more precise camera pipeline control through the sub-device API the
driver creates a sysfs entry associated with “s5p-fimc-md” platform device. The entry path
is: /sys/platform/devices/s5p-fimc-md/subdev conf mode.

In typical use case there could be a following capture pipeline configuration: sensor subdev ->
mipi-csi subdev -> fimc subdev -> video node

When we configure these devices through sub-device API at user space, the configuration flow
must be from left to right, and the video node is configured as last one.

When we don’t use sub-device user space API the whole configuration of all devices belonging
to the pipeline is done at the video node driver. The sysfs entry allows to instruct the capture
node driver not to configure the sub-devices (format, crop), to avoid resetting the subdevs’
configuration when the last configuration steps at the video node is performed.

For full sub-device control support (subdevs configured at user space before starting stream-
ing):

echo "sub-dev" > /sys/platform/devices/s5p-fimc-md/subdev_conf mode

For VAL2 video node control only (subdevs configured internally by the host driver):

1.1. The media subsystem 139

Linux Media Documentation

echo "vid-dev" > /sys/platform/devices/s5p-fimc-md/subdev_conf mode

This is a default option.

5. Device mapping to video and subdev device nodes

There are associated two video device nodes with each device instance in hardware - video
capture and mem-to-mem and additionally a subdev node for more precise FIMC capture sub-
system control. In addition a separate v4l2 sub-device node is created per each MIPI-CSIS
device.

How to find out which /dev/video? or /dev/v4l-subdev? is assigned to which device?

You can either grep through the kernel log to find relevant information, i.e.

dmesg | grep -i fimc

(note that udev, if present, might still have rearranged the video nodes),

or retrieve the information from /dev/media? with help of the media-ctl tool:

media-ctl -p

7. Build

If the driver is built as a loadable kernel module (CONFIG VIDEO SAMSUNG S5P FIMC=m)
two modules are created (in addition to the core v412 modules): s5p-fimc.ko and optional s5p-
csis.ko (MIPI-CSI receiver subdev).

1.1.6.7 i.MX Video Capture Driver

Introduction

The Freescale i.MX5/6 contains an Image Processing Unit (IPU), which handles the flow of
image frames to and from capture devices and display devices.

For image capture, the IPU contains the following internal subunits:
* Image DMA Controller (IDMAC)
e Camera Serial Interface (CSI)
* Image Converter (IC)
e Sensor Multi-FIFO Controller (SMFC)
Image Rotator (IRT)
Video De-Interlacing or Combining Block (VDIC)

The IDMAC is the DMA controller for transfer of image frames to and from memory. Various
dedicated DMA channels exist for both video capture and display paths. During transfer, the
IDMAC is also capable of vertical image flip, 8x8 block transfer (see IRT description), pixel
component re-ordering (for example UYVY to YUYV) within the same colorspace, and packed

140 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

<-> planar conversion. The IDMAC can also perform a simple de-interlacing by interweaving
even and odd lines during transfer (without motion compensation which requires the VDIC).

The CSI is the backend capture unit that interfaces directly with camera sensors over Parallel,
BT.656/1120, and MIPI CSI-2 buses.

The IC handles color-space conversion, resizing (downscaling and upscaling), horizontal flip,
and 90/270 degree rotation operations.

There are three independent “tasks” within the IC that can carry out conversions concurrently:
pre-process encoding, pre-process viewfinder, and post-processing. Within each task, conver-
sions are split into three sections: downsizing section, main section (upsizing, flip, colorspace
conversion, and graphics plane combining), and rotation section.

The IPU time-shares the IC task operations. The time-slice granularity is one burst of eight
pixels in the downsizing section, one image line in the main processing section, one image
frame in the rotation section.

The SMFC is composed of four independent FIFOs that each can transfer captured frames from
sensors directly to memory concurrently via four IDMAC channels.

The IRT carries out 90 and 270 degree image rotation operations. The rotation operation is
carried out on 8x8 pixel blocks at a time. This operation is supported by the IDMAC which
handles the 8x8 block transfer along with block reordering, in coordination with vertical flip.

The VDIC handles the conversion of interlaced video to progressive, with support for different
motion compensation modes (low, medium, and high motion). The deinterlaced output frames
from the VDIC can be sent to the IC pre-process viewfinder task for further conversions. The
VDIC also contains a Combiner that combines two image planes, with alpha blending and color
keying.

In addition to the IPU internal subunits, there are also two units outside the IPU that are also
involved in video capture on i.MX:

» MIPI CSI-2 Receiver for camera sensors with the MIPI CSI-2 bus interface. This is a Syn-
opsys DesignWare core.

* Two video multiplexers for selecting among multiple sensor inputs to send to a CSI.

For more info, refer to the latest versions of the i.MX5/6 reference manuals' and?.

Features

Some of the features of this driver include:

* Many different pipelines can be configured via media controller API, that correspond to
the hardware video capture pipelines supported in the i.MX.

* Supports parallel, BT.565, and MIPI CSI-2 interfaces.

* Concurrent independent streams, by configuring pipelines to multiple video capture inter-
faces using independent entities.

* Scaling, color-space conversion, horizontal and vertical flip, and image rotation via IC task
subdevs.

! http://www.nxp.com/assets/documents/data/en/reference-manuals/IMX6DQRM.pdf
2 http://www.nxp.com/assets/documents/data/en/reference-manuals/IMX6SDLRM.pdf

1.1. The media subsystem 141

http://www.nxp.com/assets/documents/data/en/reference-manuals/IMX6DQRM.pdf
http://www.nxp.com/assets/documents/data/en/reference-manuals/IMX6SDLRM.pdf

Linux Media Documentation

* Many pixel formats supported (RGB, packed and planar YUV, partial planar YUV).

* The VDIC subdev supports motion compensated de-interlacing, with three motion com-
pensation modes: low, medium, and high motion. Pipelines are defined that allow sending
frames to the VDIC subdev directly from the CSI. There is also support in the future for
sending frames to the VDIC from memory buffers via a output/mem2mem devices.

* Includes a Frame Interval Monitor (FIM) that can correct vertical sync problems with the
ADV718x video decoders.

Topology

The following shows the media topologies for the i.MX6Q SabreSD and i.MX6Q SabreAuto.
Refer to these diagrams in the entity descriptions in the next section.

The i.MX5/6 topologies can differ upstream from the IPUv3 CSI video multiplexers, but the in-
ternal IPUv3 topology downstream from there is common to all i.MX5/6 platforms. For example,
the SabreSD, with the MIPI CSI-2 OV5640 sensor, requires the i. MX6 MIPI CSI-2 receiver. But
the SabreAuto has only the ADV7180 decoder on a parallel bt.656 bus, and therefore does not
require the MIPI CSI-2 receiver, so it is missing in its graph.

Entities
imx6-mipi-csi2

This is the MIPI CSI-2 receiver entity. It has one sink pad to receive the MIPI CSI-2 stream
(usually from a MIPI CSI-2 camera sensor). It has four source pads, corresponding to the
four MIPI CSI-2 demuxed virtual channel outputs. Multiple source pads can be enabled to
independently stream from multiple virtual channels.

This entity actually consists of two sub-blocks. One is the MIPI CSI-2 core. This is a Synopsys
Designware MIPI CSI-2 core. The other sub-block is a “CSI-2 to IPU gasket”. The gasket acts
as a demultiplexer of the four virtual channels streams, providing four separate parallel buses
containing each virtual channel that are routed to CSls or video multiplexers as described below.

On i.MX6 solo/dual-lite, all four virtual channel buses are routed to two video multiplexers.
Both CSIO and CSI1 can receive any virtual channel, as selected by the video multiplexers.

On i.MX6 Quad, virtual channel 0 is routed to IPU1-CSIO (after selected by a video mux), virtual
channels 1 and 2 are hard-wired to IPU1-CSI1 and IPU2-CSIO, respectively, and virtual channel
3 is routed to IPU2-CSI1 (again selected by a video mux).

ipuX_csiY_mux

These are the video multiplexers. They have two or more sink pads to select from either camera
sensors with a parallel interface, or from MIPI CSI-2 virtual channels from imx6-mipi-csi2 entity.
They have a single source pad that routes to a CSI (ipuX csiY entities).

On i.MX6 solo/dual-lite, there are two video mux entities. One sits in front of IPU1-CSIO to
select between a parallel sensor and any of the four MIPI CSI-2 virtual channels (a total of five
sink pads). The other mux sits in front of IPU1-CSI1, and again has five sink pads to select
between a parallel sensor and any of the four MIPI CSI-2 virtual channels.

142 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

1pu2 csil capture
/dev/v1deo7

1
L Y A O C
I \ 1 -
1 ' 1
1
,' ipul_csil capture | ipu2_ 0510 capture
I /dev/video3 ! /dev/video4
\
II \
1 N
I 1 RS -
/ S~
/ T -
- -
S .
\ | -
1

A |
ipu2_ic_prpvf capture
/dev/video6

ipu2_1c_prpenc capture
/dev/video5

!

| 4 h |
ipul_ic_prpenc capture ipul ic_prpvf capture
/dev/videol /dev/video2

Fig. 1: Media pipeline graph on i. MX6Q SabreSD

143

1.1. The media subsystem

144

Linux Media Documentation

/ R B
! 1
/e . J
/| ipu2_csi0 capture
! /dev/video4
- - \\

1 \

~ 1 \

e \ \

! |
ipul csiO capture ‘\ ipul csil capture
1' /dev/videoO \ /dev/video3
\ \
\
Y |

~ - !
-~ ’
- - __ -
!
| 1
- ,
.
I

1

|
1
| 4 A 4
ipu2 ic prpenc capture ipu2 ic prpvf capture
/dev/video5 /dev/video6

1
A |
ipul_ic_prpenc capture ipul ic prpvf capture
/dev/videol /dev/video2

Fig. 2: Media pipeline graph on i. MX6Q SabreAuto

ipu2 csil capture
/dev/video7

Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

On i.MX6 Quad, there are two video mux entities. One sits in front of IPU1-CSIO to select
between a parallel sensor and MIPI CSI-2 virtual channel 0 (two sink pads). The other mux sits
in front of IPU2-CSI1 to select between a parallel sensor and MIPI CSI-2 virtual channel 3 (two
sink pads).

ipuX_csiY

These are the CSI entities. They have a single sink pad receiving from either a video mux or
from a MIPI CSI-2 virtual channel as described above.

This entity has two source pads. The first source pad can link directly to the ipuX vdic entity
or the ipuX ic prp entity, using hardware links that require no IDMAC memory buffer transfer.

When the direct source pad is routed to the ipuX ic prp entity, frames from the CSI can be
processed by one or both of the IC pre-processing tasks.

When the direct source pad is routed to the ipuX vdic entity, the VDIC will carry out motion-
compensated de-interlace using “high motion” mode (see description of ipuX vdic entity).

The second source pad sends video frames directly to memory buffers via the SMFC and an
IDMAC channel, bypassing IC pre-processing. This source pad is routed to a capture device
node, with a node name of the format “ipuX csiY capture”.

Note that since the IDMAC source pad makes use of an IDMAC channel, pixel reordering within
the same colorspace can be carried out by the IDMAC channel. For example, if the CSI sink
pad is receiving in UYVY order, the capture device linked to the IDMAC source pad can capture
in YUYV order. Also, if the CSI sink pad is receiving a packed YUV format, the capture device
can capture a planar YUV format such as YUV420.

The IDMAC channel at the IDMAC source pad also supports simple interweave without mo-
tion compensation, which is activated if the source pad’s field type is sequential top-bottom
or bottom-top, and the requested capture interface field type is set to interlaced (t-b, b-t, or
unqualified interlaced). The capture interface will enforce the same field order as the source
pad field order (interlaced-bt if source pad is seq-bt, interlaced-tb if source pad is seq-tb).

For events produced by ipuX csiY, see ref:imx_api ipuX csiY.

Cropping in ipuX_csiY

The CSI supports cropping the incoming raw sensor frames. This is implemented in the
ipuX csiY entities at the sink pad, using the crop selection subdev API.

The CSI also supports fixed divide-by-two downscaling independently in width and height. This
is implemented in the ipuX csiY entities at the sink pad, using the compose selection subdev
API.

The output rectangle at the ipuX csiY source pad is the same as the compose rectangle at the
sink pad. So the source pad rectangle cannot be negotiated, it must be set using the compose
selection API at sink pad (if /2 downscale is desired, otherwise source pad rectangle is equal to
incoming rectangle).

To give an example of crop and /2 downscale, this will crop a 1280x960 input frame to
640x480, and then /2 downscale in both dimensions to 320x240 (assumes ipul csiO is linked to
ipul csi0 mux):

1.1. The media subsystem 145

Linux Media Documentation

media-ctl -V "'ipul c¢si@ mux':2[fmt:UYVY2X8/1280x960]"
media-ctl -V "'ipul csi®':0[crop:(0,0)/640x480]"
media-ctl -V "'ipul csiO':0[compose: (0,0)/320x240]1"

Frame Skipping in ipuX_csiY

The CSI supports frame rate decimation, via frame skipping. Frame rate decimation is specified
by setting the frame intervals at sink and source pads. The ipuX csiY entity then applies the
best frame skip setting to the CSI to achieve the desired frame rate at the source pad.

The following example reduces an assumed incoming 60 Hz frame rate by half at the IDMAC
output source pad:

media-ctl -V "'ipul csi@':0[fmt:UYVY2X8/640x480@1/60]"
media-ctl -V "'ipul csi@':2[fmt:UYVY2X8/640x480@1/30]"

Frame Interval Monitor in ipuX_csiY

See ref:imx api FIM.

ipuX_vdic

The VDIC carries out motion compensated de-interlacing, with three motion compensation
modes: low, medium, and high motion. The mode is specified with the menu control
VAL2 CID DEINTERLACING MODE. The VDIC has two sink pads and a single source pad.

The direct sink pad receives from an ipuX csiY direct pad. With this link the VDIC can only
operate in high motion mode.

When the IDMAC sink pad is activated, it receives from an output or mem2mem device node.
With this pipeline, the VDIC can also operate in low and medium modes, because these modes
require receiving frames from memory buffers. Note that an output or mem2mem device is not
implemented yet, so this sink pad currently has no links.

The source pad routes to the IC pre-processing entity ipuX ic prp.

ipuX_ic_prp

This is the IC pre-processing entity. It acts as a router, routing data from its sink pad to one or
both of its source pads.

This entity has a single sink pad. The sink pad can receive from the ipuX csiY direct pad, or
from ipuX vdic.

This entity has two source pads. One source pad routes to the pre-process encode task en-
tity (ipuX ic prpenc), the other to the pre-process viewfinder task entity (ipuX ic prpvf). Both
source pads can be activated at the same time if the sink pad is receiving from ipuX csiY. Only
the source pad to the pre-process viewfinder task entity can be activated if the sink pad is receiv-
ing from ipuX vdic (frames from the VDIC can only be processed by the pre-process viewfinder
task).

146 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

ipuX_ic_prpenc

This is the IC pre-processing encode entity. It has a single sink pad from ipuX ic prp, and a
single source pad. The source pad is routed to a capture device node, with a node name of the
format “ipuX ic_prpenc capture”.

This entity performs the IC pre-process encode task operations: color-space conversion, resiz-
ing (downscaling and upscaling), horizontal and vertical flip, and 90/270 degree rotation. Flip
and rotation are provided via standard V4L2 controls.

Like the ipuX csiY IDMAC source, this entity also supports simple de-interlace without motion
compensation, and pixel reordering.

ipuX_ic_prpvf

This is the IC pre-processing viewfinder entity. It has a single sink pad from ipuX ic prp, and a
single source pad. The source pad is routed to a capture device node, with a node name of the
format “ipuX ic_prpvf capture”.

This entity is identical in operation to ipuX ic prpenc, with the same resizing and CSC op-
erations and flip/rotation controls. It will receive and process de-interlaced frames from the
ipuX vdic if ipuX ic prp is receiving from ipuX vdic.

Like the ipuX csiY IDMAC source, this entity supports simple interweaving without motion
compensation. However, note that if the ipuX vdic is included in the pipeline (ipuX ic prp
is receiving from ipuX vdic), it’s not possible to use interweave in ipuX ic prpvf, since the
ipuX vdic has already carried out de-interlacing (with motion compensation) and therefore the
field type output from ipuX vdic can only be none (progressive).

Capture Pipelines

The following describe the various use-cases supported by the pipelines.

The links shown do not include the backend sensor, video mux, or mipi csi-2 receiver links. This
depends on the type of sensor interface (parallel or mipi csi-2). So these pipelines begin with:

sensor -> ipuX csiY mux -> ...
for parallel sensors, or:
sensor -> imx6-mipi-csi2 -> (ipuX csiY mux) -> ...

for mipi csi-2 sensors. The imx6-mipi-csi2 receiver may need to route to the video mux
(ipuX csiY mux) before sending to the CSI, depending on the mipi csi-2 virtual channel, hence
ipuX csiY mux is shown in parenthesis.

1.1. The media subsystem 147

Linux Media Documentation

Unprocessed Video Capture:

Send frames directly from sensor to camera device interface node, with no conversions, via
ipuX csiY IDMAC source pad:

-> ipuX csiY:2 -> ipuX csiY capture

IC Direct Conversions:

This pipeline uses the preprocess encode entity to route frames directly from the CSI to the IC,
to carry out scaling up to 1024x1024 resolution, CSC, flipping, and image rotation:

-> ipuX csiY:1 -> 0:ipuX ic prp:1 -> 0:ipuX ic prpenc:1 -> ipuX ic prpenc capture

Motion Compensated De-interlace:

This pipeline routes frames from the CSI direct pad to the VDIC entity to support motion-
compensated de-interlacing (high motion mode only), scaling up to 1024x1024, CSC, flip, and
rotation:

-> ipuX csiY:1 -> 0:ipuX vdic:2 -> 0:ipuX ic prp:2 -> 0:ipuX ic prpvf:1 -> ipuX ic prpvf cap-
ture

Usage Notes

To aid in configuration and for backward compatibility with V4L2 applications that access con-
trols only from video device nodes, the capture device interfaces inherit controls from the active
entities in the current pipeline, so controls can be accessed either directly from the subdev or
from the active capture device interface. For example, the FIM controls are available either
from the ipuX csiY subdevs or from the active capture device.

The following are specific usage notes for the Sabre* reference boards:

i.MX6Q SabrelLite with OV5642 and OV5640

This platform requires the OmniVision OV5642 module with a parallel camera interface, and
the OV5640 module with a MIPI CSI-2 interface. Both modules are available from Boundary
Devices:

* https://boundarydevices.com/product/nit6x 5Smp
* https://boundarydevices.com/product/nit6x 5mp mipi

Note that if only one camera module is available, the other sensor node can be disabled in the
device tree.

The OV5642 module is connected to the parallel bus input on the i.MX internal video mux to
IPU1 CSIO. It's i2¢ bus connects to i2c bus 2.

The MIPI CSI-2 OV5640 module is connected to the i.MX internal MIPI CSI-2 receiver, and
the four virtual channel outputs from the receiver are routed as follows: vcO to the IPU1 CSIO
mux, vcl directly to IPU1 CSI1, vc2 directly to IPU2 CSIO, and vc3 to the IPU2 CSI1 mux. The

148 Chapter 1. Media subsystem admin and user guide

https://boundarydevices.com/product/nit6x_5mp
https://boundarydevices.com/product/nit6x_5mp_mipi

Linux Media Documentation

0OV5640 is also connected to i2c bus 2 on the SabrelLite, therefore the OV5642 and OV5640
must not share the same i2c slave address.

The following basic example configures unprocessed video capture pipelines for both sensors.
The OV5642 is routed to ipul csi0O, and the OV5640, transmitting on MIPI CSI-2 virtual channel
1 (which is imx6-mipi-csi2 pad 2), is routed to ipul csil. Both sensors are configured to output
640x480, and the OV5642 outputs YUYV2X8, the OV5640 UYVY2X8:

Setup links for 0V5642

media-ctl -1 "'ov5642 1-0042':0 -> 'ipul csi® mux':1[1]"
media-ctl -1 "'ipul csi@ mux':2 -> 'ipul csi®':0[1]"

media-ctl -1 "'ipul csi®':2 -> 'ipul csi® capture':0[1]"

Setup links for 0V5640

media-ctl -1 "'ov5640 1-0040':0 -> 'imx6-mipi-csi2':0[1]"
media-ctl -1 "'imx6-mipi-csi2':2 -> 'ipul csil':0[1]"

media-ctl -1 "'ipul c¢sil':2 -> 'ipul csil capture':0[1]"

Configure pads for 0V5642 pipeline

media-ctl -V "'ov5642 1-0042':0 [fmt:YUYV2X8/640x480 field:none]"
media-ctl -V "'ipul c¢si@ mux':2 [fmt:YUYV2X8/640x480 field:none]"
media-ctl -V "'ipul csi@':2 [fmt:AYUV32/640x480 field:none]"

Configure pads for 0V5640 pipeline

media-ctl -V "'ov5640 1-0040':0 [fmt:UYVY2X8/640x480 field:none]"
media-ctl -V "'imx6-mipi-csi2':2 [fmt:UYVY2X8/640x480 field:none]"
media-ctl -V "'ipul csil':2 [fmt:AYUV32/640x480 field:none]"

Streaming can then begin independently on the capture device nodes “ipul csiO capture” and
“ipul csil capture”. The v412-ctl tool can be used to select any supported YUV pixelformat on
the capture device nodes, including planar.

i.MX6Q SabreAuto with ADV7180 decoder

On the i.MX6Q SabreAuto, an on-board ADV7180 SD decoder is connected to the parallel bus
input on the internal video mux to IPU1 CSIO.

The following example configures a pipeline to capture from the ADV7180 video decoder, as-
suming NTSC 720x480 input signals, using simple interweave (unconverted and without motion
compensation). The adv7180 must output sequential or alternating fields (field type ‘seq-bt’ for
NTSC, or ‘alternate’):

Setup links

media-ctl -1 "'adv7180 3-0021':0 -> 'ipul csi@ mux':1[1]"

media-ctl -1 "'ipul ¢si@ mux':2 -> 'ipul csi0®':0[1]"

media-ctl -1 "'ipul csi®@':2 -> 'ipul csi® capture':0[1]"

Configure pads

media-ctl -V "'adv7180 3-0021':0 [fmt:UYVY2X8/720x480 field:seq-bt]"
media-ctl -V "'ipul c¢si® mux':2 [fmt:UYVY2X8/720x480]1"

media-ctl -V "'ipul csi@':2 [fmt:AYUV32/720x480]"

Configure "ipul csi@ capture" interface (assumed at /dev/video4)
v4l2-ctl -d4 --set-fmt-video=field=interlaced bt

Streaming can then begin on /dev/video4. The v4l2-ctl tool can also be used to select any
supported YUV pixelformat on /dev/video4.

This example configures a pipeline to capture from the ADV7180 video decoder, assuming PAL
720x576 input signals, with Motion Compensated de-interlacing. The adv7180 must output

1.1. The media subsystem 149

Linux Media Documentation

sequential or alternating fields (field type ‘seq-tb’ for PAL, or ‘alternate’).

Setup links

media-ctl -1 "'adv7180 3-0021':0 -> 'ipul csi®@ mux':1[1]"

media-ctl -1 "'ipul csi@ mux':2 -> 'ipul csi@':0[1]"

media-ctl -1 "'ipul c¢si®':1 -> 'ipul vdic':Q[1]"

media-ctl -1 "'ipul vdic':2 -> 'ipul ic prp':0[1]"

media-ctl -1 "'ipul ic prp':2 -> 'ipul ic prpvf':0[1]"

media-ctl -1 "'ipul ic prpvf':1 -> 'ipul ic prpvf capture':0[1]"

Configure pads

media-ctl -V "'adv7180 3-0021':0 [fmt:UYVY2X8/720x576 field:seq-tb]"
media-ctl -V "'ipul csi® mux':2 [fmt:UYVY2X8/720x576]"

media-ctl -V "'ipul c¢si@':1 [fmt:AYUV32/720x576]"

media-ctl -V "'ipul vdic':2 [fmt:AYUV32/720x576 field:none]"
media-ctl -V "'ipul ic prp':2 [fmt:AYUV32/720x576 field:none]"
media-ctl -V "'ipul ic prpvf':1 [fmt:AYUV32/720x576 field:none]"

Configure "ipul ic prpvf capture" interface (assumed at /dev/video2)
v4l2-ctl -d2 --set-fmt-video=field=none

Streaming can then begin on /dev/video2. The v4l2-ctl tool can also be used to select any
supported YUV pixelformat on /dev/video?2.

This platform accepts Composite Video analog inputs to the ADV7180 on Ainl (connector J42).

i.MX6DL SabreAuto with ADV7180 decoder

On the i.MX6DL SabreAuto, an on-board ADV7180 SD decoder is connected to the parallel bus
input on the internal video mux to IPU1 CSIO.

The following example configures a pipeline to capture from the ADV7180 video decoder, as-
suming NTSC 720x480 input signals, using simple interweave (unconverted and without motion
compensation). The adv7180 must output sequential or alternating fields (field type ‘seq-bt’ for
NTSC, or ‘alternate’):

Setup links

media-ctl -1 "'adv7180 4-0021':0 -> 'ipul csi@ mux':4[1]"

media-ctl -1 "'ipul csi® mux':5 -> 'ipul csi@':0[1]"

media-ctl -1 "'ipul csi®':2 -> 'ipul csi® capture':0[1]"

Configure pads

media-ctl -V "'adv7180 4-0021':0 [fmt:UYVY2X8/720x480 field:seq-bt]"
media-ctl -V "'ipul c¢si@ mux':5 [fmt:UYVY2X8/720x480]"

media-ctl -V "'ipul csi®':2 [fmt:AYUV32/720x480]"

Configure "ipul csi@ capture" interface (assumed at /dev/videoQ)
v4l2-ctl -dO --set-fmt-video=field=interlaced bt

Streaming can then begin on /dev/videoO. The v4l2-ctl tool can also be used to select any
supported YUV pixelformat on /dev/videoO.

This example configures a pipeline to capture from the ADV7180 video decoder, assuming PAL
720x576 input signals, with Motion Compensated de-interlacing. The adv7180 must output
sequential or alternating fields (field type ‘seq-tb’ for PAL, or ‘alternate’).

Setup links

media-ctl -1 "'adv7180 4-0021':0 -> 'ipul csi® mux':4[1]"
media-ctl -1 "'ipul c¢si@ mux':5 -> 'ipul csi®':0[1]"
media-ctl -1 "'ipul csi®':1 -> 'ipul vdic':0[1]"

150 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

media-ctl -1 "'ipul vdic':2 -> 'ipul ic prp':0[1]"

media-ctl -1 "'ipul ic prp':2 -> 'ipul ic prpvf':0[1]"

media-ctl -1 "'ipul ic prpvf':1 -> 'ipul ic prpvf capture':0[1]"

Configure pads

media-ctl -V "'adv7180 4-0021':0 [fmt:UYVY2X8/720x576 field:seq-tb]"
media-ctl -V "'ipul csi® mux':5 [fmt:UYVY2X8/720x576]"

media-ctl -V "'ipul csi@':1 [fmt:AYUV32/720x576]"

media-ctl -V "'ipul vdic':2 [fmt:AYUV32/720x576 field:none]"
media-ctl -V "'ipul ic prp':2 [fmt:AYUV32/720x576 field:none]"
media-ctl -V "'ipul ic prpvf':1 [fmt:AYUV32/720x576 field:none]"

Configure "ipul ic prpvf capture" interface (assumed at /dev/video2)
v4l2-ctl -d2 --set-fmt-video=field=none

Streaming can then begin on /dev/video2. The v4l2-ctl tool can also be used to select any
supported YUV pixelformat on /dev/video2.

This platform accepts Composite Video analog inputs to the ADV7180 on Ainl (connector J42).

i.MX6Q SabreSD with MIPI CSI-2 OV5640

Similarly to i.MX6Q SabrelLite, the i.MX6Q SabreSD supports a parallel interface OV5642 mod-
ule on IPU1 CSIO, and a MIPI CSI-2 OV5640 module. The OV5642 connects to i2c bus 1 and
the OV5640 to i2c bus 2.

The device tree for SabreSD includes OF graphs for both the parallel OV5642 and the MIPI CSI-
2 OV5640, but as of this writing only the MIPI CSI-2 OV5640 has been tested, so the OV5642
node is currently disabled. The OV5640 module connects to MIPI connector J5. The NXP part
number for the OV5640 module that connects to the SabreSD board is H120729.

The following example configures unprocessed video capture pipeline to capture from the
OV5640, transmitting on MIPI CSI-2 virtual channel 0:

Setup links

media-ctl -1 "'ov5640 1-003c':0 -> 'imx6-mipi-csi2':0[1]"
media-ctl -1 "'imx6-mipi-csi2':1 -> 'ipul csi@ mux':0Q[1]"
media-ctl -1 "'ipul c¢si@ mux':2 -> 'ipul csi0®':0[1]"
media-ctl -1 "'ipul csi®@':2 -> 'ipul csi® capture':0[1]"
Configure pads

media-ctl -V "'ov5640 1-003c':0 [fmt:UYVY2X8/640x480]"
media-ctl -V "'imx6-mipi-csi2':1 [fmt:UYVY2X8/640x480]"
media-ctl -V "'ipul c¢si@ mux':0 [fmt:UYVY2X8/640x480]"
media-ctl -V "'ipul csi®':0 [fmt:AYUV32/640x480]"

Streaming can then begin on “ipul csiO capture” node. The v412-ctl tool can be used to select
any supported pixelformat on the capture device node.

To determine what is the /dev/video node correspondent to “ipul csiO capture”:

media-ctl -e "ipul csi® capture"
/dev/video0

/dev/videoO is the streaming element in this case.

Starting the streaming via v412-ctl:

1.1. The media subsystem 151

Linux Media Documentation

v41l2-ctl --stream-mmap -d /dev/videoO

Starting the streaming via Gstreamer and sending the content to the display:

gst-launch-1.0 v41l2src device=/dev/video® ! kmssink

The following example configures a direct conversion pipeline to capture from the OV5640,
transmitting on MIPI CSI-2 virtual channel 0. It also shows colorspace conversion and scaling
at IC output.

Setup links

media-ctl -1 "'ov5640 1-003c':0 -> 'imx6-mipi-csi2':0[1]"
media-ctl -1 "'imx6-mipi-csi2':1 -> 'ipul csi® mux':0[1]"
media-ctl -1 "'ipul c¢si® mux':2 -> 'ipul csi@':0[1]"
media-ctl -1 "'ipul c¢si@':1 -> 'ipul ic prp':0[1]"

media-ctl -1 "'ipul ic prp':1 -> 'ipul ic prpenc':0[1]"
media-ctl -1 "'ipul ic prpenc':1 -> 'ipul ic prpenc capture':0[1]"
Configure pads

media-ctl -V "'ov5640 1-003c':0 [fmt:UYVY2X8/640x480]"
media-ctl -V "'imx6-mipi-csi2':1 [fmt:UYVY2X8/640x480]"
media-ctl -V "'ipul c¢si@ mux':2 [fmt:UYVY2X8/640x480]"
media-ctl -V "'ipul csi@':1 [fmt:AYUV32/640x480]"

media-ctl -V "'ipul ic prp':1 [fmt:AYUV32/640x480]"

media-ctl -V "'ipul ic prpenc':1 [fmt:ARGB8888 1X32/800x600]"
Set a format at the capture interface

v4l2-ctl -d /dev/videol --set-fmt-video=pixelformat=RGB3

Streaming can then begin on “ipul ic prpenc capture” node.

To determine what is the /dev/video node correspondent to “ipul ic prpenc capture”:

media-ctl -e "ipul ic prpenc capture"”
/dev/videol

/dev/videol is the streaming element in this case.

Starting the streaming via v412-ctl:

v412-ctl --stream-mmap -d /dev/videol

Starting the streaming via Gstreamer and sending the content to the display:

gst-launch-1.0 v412src device=/dev/videol ! kmssink

Known Issues

1. When using 90 or 270 degree rotation control at capture resolutions near the IC resizer
limit of 1024x1024, and combined with planar pixel formats (YUV420, YUV422p), frame
capture will often fail with no end-of-frame interrupts from the IDMAC channel. To work
around this, use lower resolution and/or packed formats (YUYV, RGB3, etc.) when 90 or
270 rotations are needed.

152 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

File list

drivers/staging/media/imx/ include/media/imx.h include/linux/imx-media.h

References
Authors

* Steve Longerbeam <steve longerbeam@mentor.com>
» Philipp Zabel <kernel@pengutronix.de>
* Russell King <linux@armlinux.org.uk>

Copyright (C) 2012-2017 Mentor Graphics Inc.

1.1.6.8 i.MX7 Video Capture Driver

Introduction

The i.MX7 contrary to the i.MX5/6 family does not contain an Image Processing Unit (IPU);
because of that the capabilities to perform operations or manipulation of the capture frames
are less feature rich.

For image capture the i.MX7 has three units: - CMOS Sensor Interface (CSI) - Video Multiplexer
- MIPI CSI-2 Receiver

MIPI Camera Input ---> MIPI CSI-2 --- > |\
[\
[\
| M|
| U | ------ > (SI ---> Capture
| X |
| 7/
Parallel Camera Input ---------------- > |/
|/

For additional information, please refer to the latest versions of the i.MX7 reference manual'.

Entities
imx7-mipi-csi2

This is the MIPI CSI-2 receiver entity. It has one sink pad to receive the pixel data from MIPI
CSI-2 camera sensor. It has one source pad, corresponding to the virtual channel 0. This module
is compliant to previous version of Samsung D-phy, and supports two D-PHY Rx Data lanes.

! https://www.nxp.com/docs/en/reference-manual/IMX7SRM.pdf

1.1. The media subsystem 153

mailto:steve_longerbeam@mentor.com
mailto:kernel@pengutronix.de
mailto:linux@armlinux.org.uk
https://www.nxp.com/docs/en/reference-manual/IMX7SRM.pdf

Linux Media Documentation

csi-mux

This is the video multiplexer. It has two sink pads to select from either camera sensor with a
parallel interface or from MIPI CSI-2 virtual channel 0. It has a single source pad that routes
to the CSIL.

csi

The CSI enables the chip to connect directly to external CMOS image sensor. CSI can interface
directly with Parallel and MIPI CSI-2 buses. It has 256 x 64 FIFO to store received image pixel
data and embedded DMA controllers to transfer data from the FIFO through AHB bus.

This entity has one sink pad that receives from the csi-mux entity and a single source pad that
routes video frames directly to memory buffers. This pad is routed to a capture device node.

Usage Notes

To aid in configuration and for backward compatibility with V4L2 applications that access con-
trols only from video device nodes, the capture device interfaces inherit controls from the active
entities in the current pipeline, so controls can be accessed either directly from the subdev or
from the active capture device interface. For example, the sensor controls are available either
from the sensor subdevs or from the active capture device.

Warp7 with OV2680

On this platform an OV2680 MIPI CSI-2 module is connected to the internal MIPI CSI-2 receiver.
The following example configures a video capture pipeline with an output of 800x600, and BGGR
10 bit bayer format:

Setup links

media-ctl -1 "'ov2680 1-0036':0 -> 'imx7-mipi-csis.0':0[1]"
media-ctl -1 "'imx7-mipi-csis.®':1 -> 'csi-mux':1[1]"
media-ctl -1 "'csi-mux':2 -> 'csi':0[1]"

media-ctl -1 "'csi':1 -> 'csi capture':0[1]"

Configure pads for pipeline

media-ctl -V "'ov2680 1-0036':0 [fmt:SBGGR1O 1X10/800x600 field:none]"
media-ctl -V "'csi-mux':1 [fmt:SBGGR1O 1X10/800x600 field:none]"
media-ctl -V "'csi-mux':2 [fmt:SBGGR1O 1X10/800x600 field:none]"
media-ctl -V "'imx7-mipi-csis.0':0 [fmt:SBGGR1O 1X10/800x600 field:none]"
media-ctl -V "'csi':0 [fmt:SBGGR1O 1X10/800x600 field:nonel"

After this streaming can start. The v4l2-ctl tool can be used to select any of the resolutions
supported by the sensor.

media-ctl -p
Media controller API version 5.2.0

Media device information

driver imx7-csi

154 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

model imx-media
serial

bus info

hw revision 0x0

driver version 5.2.0

Device topology
- entity 1: csi (2 pads, 2 links)
type V4L2 subdev subtype Unknown flags 0
device node name /dev/v4l-subdev0®
pad0@: Sink
[fmt:SBGGR10O 1X10/800x600 field:none colorspace:srgb xfer:srgb,
—ycbcr:601 quantization:full-range]
<- "csi-mux":2 [ENABLED]
padl: Source
[fmt:SBGGR1O 1X10/800x600 field:none colorspace:srgb xfer:srgb,
—ycbcr:601 quantization:full-range]
-> "csi capture":0 [ENABLED]

- entity 4: csi capture (1 pad, 1 link)
type Node subtype V4L flags 0
device node name /dev/video0

pad@: Sink
<- "csi":1 [ENABLED]

- entity 10: csi-mux (3 pads, 2 links)
type V4L2 subdev subtype Unknown flags ©
device node name /dev/v4l-subdevl
pad@: Sink
[fmt:Y8 1X8/1x1 field:nonel
padl: Sink
[fmt:SBGGR10O 1X10/800x600 field:none]
<- "imx7-mipi-csis.0":1 [ENABLED]
pad2: Source
[fmt:SBGGR10O 1X10/800x600 field:nonel
-> "csi":0 [ENABLED]

- entity 14: imx7-mipi-csis.0 (2 pads, 2 1links)
type V4L2 subdev subtype Unknown flags 0
device node name /dev/v4l-subdev?2
pad0@: Sink
[fmt:SBGGR10O 1X10/800x600 field:none]
<- "ov2680 1-0036":0 [ENABLED]
padl: Source
[fmt:SBGGR10O 1X10/800x600 field:none]
-> "csi-mux":1 [ENABLED]

- entity 17: ov2680 1-0036 (1 pad, 1 link)
type V4L2 subdev subtype Sensor flags 0
device node name /dev/v4l-subdev3
pad@: Source
[fmt:SBGGR10O 1X10/800x600@1/30 field:none colorspace:srgbl
-> "imx7-mipi-csis.0":0 [ENABLED]

1.1. The media subsystem 155

Linux Media Documentation

i.MX6ULL-EVK with OV5640

On this platform a parallel OV5640 sensor is connected to the CSI port. The following example
configures a video capture pipeline with an output of 640x480 and UYVY8 2X8 format:

Setup links
media-ctl -1 "'ov5640 1-003c':0 -> 'csi':0[1]"
media-ctl -1 "'csi':1 -> 'csi capture':0[1]"

Configure pads for pipeline
media-ctl -v -V "'ov5640 1-003c':0 [fmt:UYVY8 2X8/640x480 field:none]"

After this streaming can start:

gst-launch-1.0 -v v412src device=/dev/videol ! video/x-raw, format=UYVY,width=640,
—height=480 ! v412convert ! fbdevsink

media-ctl -p
Media controller API version 5.14.0

Media device information

driver imx7-csi
model imx-media
serial

bus info

hw revision 0x0

driver version 5.14.0

Device topology
- entity 1: csi (2 pads, 2 links)
type V4L2 subdev subtype Unknown flags 0
device node name /dev/v4l-subdev0
pad@: Sink
[fmt:UYVY8 2X8/640x480 field:none colorspace:srgb xfer:srgb ycbcr:601,
—quantization:full-range]
<- "ov5640 1-003c":0 [ENABLED,IMMUTABLE]
padl: Source
[fmt:UYVY8 2X8/640x480 field:none colorspace:srgb xfer:srgb ycbcr:601,
—quantization:full-range]
-> "csi capture":0 [ENABLED,IMMUTABLE]

- entity 4: csi capture (1 pad, 1 link)
type Node subtype V4L flags 0O
device node name /dev/videol
pad@: Sink
<- "csi":1 [ENABLED, IMMUTABLE]

- entity 10: ov5640 1-003c (1 pad, 1 link)
type V4L2 subdev subtype Sensor flags 0
device node name /dev/v4l-subdevl
pad@: Source
[fmt:UYVY8 2X8/640x480@1/30 field:none colorspace:srgb xfer:srgb,
—ycbcr:601 quantization:full-rangel
-> "csi":0 [ENABLED,IMMUTABLE]

156 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

References

1.1.6.9 Intel Image Processing Unit 3 (IPU3) Imaging Unit (ImgU) driver

Copyright © 2018 Intel Corporation

Introduction

This file documents the Intel IPU3 (3rd generation Image Processing Unit) Imaging Unit drivers
located under drivers/media/pci/intel/ipu3 (CIO2) as well as under drivers/staging/media/ipu3
(ImgU).

The Intel IPU3 found in certain Kaby Lake (as well as certain Sky Lake) platforms (U/Y processor
lines) is made up of two parts namely the Imaging Unit (ImgU) and the CIO2 device (MIPI CSI2
receiver).

The CIO2 device receives the raw Bayer data from the sensors and outputs the frames
in a format that is specific to the IPU3 (for consumption by the IPU3 ImgU). The CIO2
driver is available as drivers/media/pci/intel/ipu3/ipu3-cio2* and is enabled through the CON-
FIG VIDEO IPU3 CIO2 config option.

The Imaging Unit (ImgU) is responsible for processing images captured by the IPU3 CIO2 de-
vice. The ImgU driver sources can be found under drivers/staging/media/ipu3 directory. The
driver is enabled through the CONFIG VIDEO IPU3 IMGU config option.

The two driver modules are named ipu3 csi2 and ipu3 imgu, respectively.
The drivers has been tested on Kaby Lake platforms (U/Y processor lines).

Both of the drivers implement V4L2, Media Controller and V4L2 sub-device interfaces. The
IPU3 CIO2 driver supports camera sensors connected to the CIO2 MIPI CSI-2 interfaces through
VA4L2 sub-device sensor drivers.

Clo2

The CIO2 is represented as a single V4L2 subdev, which provides a V4L2 subdev interface to
the user space. There is a video node for each CSI-2 receiver, with a single media controller
interface for the entire device.

The CIO2 contains four independent capture channel, each with its own MIPI CSI-2 receiver
and DMA engine. Each channel is modelled as a V4L2 sub-device exposed to userspace as a
V4L2 sub-device node and has two pads:

Pad | Direction Purpose

0 sink MIPI CSI-2 input,
connected to the
sensor subdev

1 source Raw video capture,
connected to the
V412 video inter-
face

1.1. The media subsystem 157

Linux Media Documentation

The V4L2 video interfaces model the DMA engines. They are exposed to userspace as V4L2
video device nodes.

Capturing frames in raw Bayer format

CIO2 MIPI CSI2 receiver is used to capture frames (in packed raw Bayer format) from the raw
sensors connected to the CSI2 ports. The captured frames are used as input to the ImgU driver.

Image processing using IPU3 ImgU requires tools such as raw2pnm?, and yavta® due to the
following unique requirements and / or features specific to IPU3.

- The IPU3 CSI2 receiver outputs the captured frames from the sensor in packed raw Bayer
format that is specific to IPU3.

- Multiple video nodes have to be operated simultaneously.

Let us take the example of ov5670 sensor connected to CSI2 port 0, for a 2592x1944 image
capture.

Using the media controller APIs, the ov5670 sensor is configured to send frames in packed raw
Bayer format to IPU3 CSI2 receiver.

This example assumes /dev/media®@ as the CIO02 media device
export MDEV=/dev/media0

and that ov5670 sensor is connected to i2c bus 10 with address 0x36
export SDEV=$(media-ctl -d $MDEV -e "ov5670 10-0036")

Establish the link for the media devices using media-ctl [#f3]
media-ctl -d $MDEV -1 "ov5670:0 -> ipu3-csi2 0:0[1]"

Set the format for the media devices

media-ctl -d $MDEV -V "ov5670:0 [fmt:SGRBG10/2592x1944]"
media-ctl -d $MDEV -V "ipu3-csi2 0:0 [fmt:SGRBG10/2592x1944]"
media-ctl -d $MDEV -V "ipu3-csi2 0:1 [fmt:SGRBG10/2592x1944]1"

Once the media pipeline is configured, desired sensor specific settings (such as exposure and
gain settings) can be set, using the yavta tool.

e.g

yavta -w 0x009e0903 444 $SDEV
yavta -w 0x009e0913 1024 $SDEV
yavta -w 0x009e0911 2046 $SDEV

Once the desired sensor settings are set, frame captures can be done as below.

e.g

yavta --data-prefix -u -cl® -n5 -I -s2592x1944 --file=/tmp/frame-#.bin \
-f IPU3 SGRBG1O $(media-ctl -d $MDEV -e "ipu3-cio2 0")

With the above command, 10 frames are captured at 2592x1944 resolution, with sGRBG10
format and output as IPU3 SGRBG10 format.

2 https://github.com/intel/nvt
3 http://git.ideasonboard.org/yavta.git

158 Chapter 1. Media subsystem admin and user guide

https://github.com/intel/nvt
http://git.ideasonboard.org/yavta.git

Linux Media Documentation

The captured frames are available as /tmp/frame-#.bin files.

ImgU

The ImgU is represented as two V4L2 subdevs, each of which provides a V4L2 subdev interface
to the user space.

Each V4L2 subdev represents a pipe, which can support a maximum of 2 streams. This helps
to support advanced camera features like Continuous View Finder (CVF) and Snapshot During
Video(SDV).

The ImgU contains two independent pipes, each modelled as a V4L2 sub-device exposed to
userspace as a V4L2 sub-device node.

Each pipe has two sink pads and three source pads for the following purpose:

Pad | Direction Purpose

0 sink Input raw video
stream

1 sink Processing parame-
ters

2 source Output processed
video stream

3 source Output viewfinder
video stream

4 source 3A statistics

Each pad is connected to a corresponding V412 video interface, exposed to userspace as a V412
video device node.

Device operation

With ImgU, once the input video node (“ipu3-imgu 0/1”:0, in <entity>:<pad-number> format)
is queued with buffer (in packed raw Bayer format), ImgU starts processing the buffer and
produces the video output in YUV format and statistics output on respective output nodes. The
driver is expected to have buffers ready for all of parameter, output and statistics nodes, when
input video node is queued with buffer.

At a minimum, all of input, main output, 3A statistics and viewfinder video nodes should be
enabled for IPU3 to start image processing.

Each ImgU V4L2 subdev has the following set of video nodes.

1.1. The media subsystem 159

Linux Media Documentation

input, output and viewfinder video nodes

The frames (in packed raw Bayer format specific to the IPU3) received by the input video node
is processed by the IPU3 Imaging Unit and are output to 2 video nodes, with each targeting a
different purpose (main output and viewfinder output).

Details onand the Bayer format specific to the IPU3 <can be found in
V4L2 PIX FMT IPU3 SBGGR10 (‘ip3b’), V4L2 PIX FMT IPU3 SGBRG10 (‘ip3g’),
V4L2 PIX FMT IPU3 SGRBGI10 (‘ip3G’), V4L2 PIX FMT IPU3 SRGGBI10 (‘ip3r’).

The driver supports V4L2 Video Capture Interface as defined at Interfaces.

Only the multi-planar API is supported. More details can be found at Single- and multi-planar
APIs.

Parameters video node

The parameters video node receives the ImgU algorithm parameters that are used to configure
how the ImgU algorithms process the image.

Details on processing parameters specific to the IPU3 can be found in
V4L2 META FMT IPU3 PARAMS (‘ip3p’), V4L2 META FMT IPU3 3A (‘ip3s’).

3A statistics video node

3A statistics video node is used by the ImgU driver to output the 3A (auto focus, auto exposure
and auto white balance) statistics for the frames that are being processed by the ImgU to user
space applications. User space applications can use this statistics data to compute the desired
algorithm parameters for the ImgU.

Configuring the Intel IPU3

The TIPU3 ImgU pipelines can be configured using the Media Controller, defined at Part IV -
Media Controller API.

Running mode and firmware binary selection

ImgU works based on firmware, currently the ImgU firmware support run 2 pipes in time-
sharing with single input frame data. Each pipe can run at certain mode - “VIDEO” or “STILL”,
“VIDEO” mode is commonly used for video frames capture, and “STILL’ is used for still frame
capture. However, you can also select “VIDEO” to capture still frames if you want to capture
images with less system load and power. For “STILL’ mode, ImgU will try to use smaller BDS
factor and output larger bayer frame for further YUV processing than “VIDEO” mode to get
high quality images. Besides, “STILLY mode need XNR3 to do noise reduction, hence “STILL’
mode will need more power and memory bandwidth than “VIDEO” mode. TNR will be en-
abled in “VIDEO” mode and bypassed by “STILL’ mode. ImgU is running at “VIDEO” mode
by default, the user can use v412 control V4L2 CID INTEL IPU3 MODE (currently defined in
drivers/staging/media/ipu3/include/uapi/intel-ipu3.h) to query and set the running mode. For
user, there is no difference for buffer queueing between the “VIDEO” and “STILL’ mode,

160 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

mandatory input and main output node should be enabled and buffers need be queued, the
statistics and the view-finder queues are optional.

The firmware binary will be selected according to current running mode, such log “using binary
if to osys striped ” or “using binary if to osys primary striped” could be observed if you enable
the ImgU dynamic debug, the binary if to osys striped is selected for “VIDEO” and the binary
“if to osys primary striped” is selected for “STILL".

Processing the image in raw Bayer format
Configuring ImgU V4L2 subdev for image processing

The ImgU V4L2 subdevs have to be configured with media controller APIs to have all the video
nodes setup correctly.

Let us take “ipu3-imgu 0” subdev as an example.

media-ctl -d $MDEV -r

media-ctl -d $MDEV -1 "ipu3-imgu O input":0 -> "ipu3-imgu 0":0[1]
media-ctl -d $MDEV -1 "ipu3-imgu 0":2 -> "ipu3-imgu O output":0[1]
media-ctl -d $MDEV -1 "ipu3-imgu 0":3 -> "ipu3-imgu O viewfinder":0[1]
media-ctl -d $MDEV -1 "ipu3-imgu 0":4 -> "ipu3-imgu 0 3a stat":0[1]

Also the pipe mode of the corresponding V4L2 subdev should be set as desired (e.g 0 for video
mode or 1 for still mode) through the control id 0x009819a1 as below.

yavta -w "0x009819A1 1" /dev/v4l-subdev7

Certain hardware blocks in ImgU pipeline can change the frame resolution by cropping or scal-
ing, these hardware blocks include Input Feeder(IF), Bayer Down Scaler (BDS) and Geometric
Distortion Correction (GDC). There is also a block which can change the frame resolution - YUV
Scaler, it is only applicable to the secondary output.

RAW Bayer frames go through these ImgU pipeline hardware blocks and the final processed
image output to the DDR memory.

Output Formatter System
binning crop scale ; scale

Sensor |—p IF —» BDS |M—» GDC ; P vuv Downscaling —»| Secondary Output

» Main Output

Fig. 3: IPU3 resolution change hardware blocks

Input Feeder

Input Feeder gets the Bayer frame data from the sensor, it can enable cropping of lines and
columns from the frame and then store pixels into device’s internal pixel buffer which are ready
to readout by following blocks.

Bayer Down Scaler

1.1. The media subsystem 161

Linux Media Documentation

Bayer Down Scaler is capable of performing image scaling in Bayer domain, the downscale
factor can be configured from 1X to 1/4X in each axis with configuration steps of 0.03125 (1/32).

Geometric Distortion Correction

Geometric Distortion Correction is used to perform correction of distortions and image filtering.
It needs some extra filter and envelope padding pixels to work, so the input resolution of GDC
should be larger than the output resolution.

YUV Scaler

YUYV Scaler which similar with BDS, but it is mainly do image down scaling in YUV domain, it
can support up to 1/12X down scaling, but it can not be applied to the main output.

The ImgU V4L2 subdev has to be configured with the supported resolutions in all the above
hardware blocks, for a given input resolution. For a given supported resolution for an input
frame, the Input Feeder, Bayer Down Scaler and GDC blocks should be configured with the
supported resolutions as each hardware block has its own alignment requirement.

You must configure the output resolution of the hardware blocks smartly to meet the hardware
requirement along with keeping the maximum field of view. The intermediate resolutions can
be generated by specific tool -

https://github.com/intel/intel-ipu3-pipecfqg

This tool can be used to generate intermediate resolutions. More information can be obtained
by looking at the following IPU3 ImgU configuration table.

https://chromium.googlesource.com/chromiumos/overlays/board-overlays/+/master

Under baseboard-poppy/media-libs/cros-camera-hal-configs-poppy/files/gcss directory,
graph settings ov5670.xml can be used as an example.

The following steps prepare the ImgU pipeline for the image processing.

1. The ImgU V4L2 subdev data format should be set by using the VIDIOC SUBDEV S FMT on
pad 0, using the GDC width and height obtained above.

2. The ImgU V4L2 subdev cropping should be set by using the VIDIOC SUBDEV S SELECTION
on pad 0, with V4L2 SEL TGT CROP as the target, using the input feeder height and width.

3. The ImgU V4L2 subdev composing should be set by wusing the VID-
IOC SUBDEV S SELECTION on pad 0, with V4L2 SEL TGT COMPOSE as the target,
using the BDS height and width.

For the ovb670 example, for an input frame with a resolution of 2592x1944 (which is input
to the ImgU subdev pad 0), the corresponding resolutions for input feeder, BDS and GDC are
2592x1944, 2592x1944 and 2560x1920 respectively.

Once this is done, the received raw Bayer frames can be input to the ImgU V4L2 subdev as
below, using the open source application val2n?.

For an image captured with 2592x1 944° resolution, with desired output resolution as
2560x1920 and viewfinder resolution as 2560x1920, the following v412n command can be used.
This helps process the raw Bayer frames and produces the desired results for the main output
image and the viewfinder output, in NV12 format.

> ImgU limitation requires an additional 16x16 for all input resolutions

162 Chapter 1. Media subsystem admin and user guide

https://github.com/intel/intel-ipu3-pipecfg
https://chromium.googlesource.com/chromiumos/overlays/board-overlays/+/master

Linux Media Documentation

v4l2n --pipe=4 --load=/tmp/frame-#.bin --open=/dev/video4
- -fmt=type:VIDEO OUTPUT MPLANE,width=2592,height=1944,pixelformat=0X47337069 \
--regbufs=type:VIDEO OUTPUT MPLANE,count:1 --pipe=1 \
--output=/tmp/frames.out --open=/dev/video5 \
--fmt=type:VIDEO CAPTURE MPLANE,width=2560,height=1920,pixelformat=NV12 \
--regbufs=type:VIDEO CAPTURE MPLANE,count:1 --pipe=2 \
--output=/tmp/frames.vf --open=/dev/video6 \
--fmt=type:VIDEO CAPTURE MPLANE,width=2560,height=1920,pixelformat=NV12 \
--reqbufs=type:VIDEO CAPTURE MPLANE,count:1 --pipe=3 --open=/dev/video7 \
--output=/tmp/frames.3A --fmt=type:META CAPTURE,? \
--regbufs=count:1,type:META CAPTURE --pipe=1,2,3,4 --stream=5

You can also use yavta3 command to do same thing as above:

yavta --data-prefix -Bcapture-mplane -cl0 -n5 -I -s52592x1944 \
--file=frame-#.out-f NV12 /dev/video5 & \

yavta --data-prefix -Bcapture-mplane -cl0 -n5 -I -s2592x1944 \
--file=frame-#.vf -f NV12 /dev/video6 & \

yavta --data-prefix -Bmeta-capture -cl® -n5 -I \
--file=frame-#.3a /dev/video7 & \

yavta --data-prefix -Boutput-mplane -cl® -n5 -I -s2592x1944 \
--file=/tmp/frame-in.cio2 -f IPU3 SGRBG10O /dev/video4

where /dev/video4, /dev/video5, /dev/video6 and /dev/video7 devices point to input, output,
viewfinder and 3A statistics video nodes respectively.

Converting the raw Bayer image into YUV domain

The processed images after the above step, can be converted to YUV domain as below.

Main output frames

raw2pnm -x2560 -y1920 -fNV12 /tmp/frames.out /tmp/frames.out.ppm

where 2560x1920 is output resolution, NV12 is the video format, followed by input frame and
output PNM file.

Viewfinder output frames

raw2pnm -x2560 -y1920 -fNV12 /tmp/frames.vf /tmp/frames.vf.ppm

where 2560x1920 is output resolution, NV12 is the video format, followed by input frame and
output PNM file.

1.1. The media subsystem 163

Linux Media Documentation

Example user space code for IPU3

User space code that configures and uses IPU3 is available here.

https://chromium.googlesource.com/chromiumos/platform/arc-camera/+/master/

The source can be located under hal/intel directory.

Overview of IPU3 pipeline

IPU3 pipeline has a number of image processing stages, each of which takes a set of parameters
as input. The major stages of pipelines are shown here:

Raw pixels

Y

Bayer Downscaling

v

Optical Black Correction

v

Linearization

v

Lens Shading Correction

v

Color Correction Matrix

v

Gamma correction

Y

Color Space Conversion

Y

Chroma Down Scaling

Y

Chromatic Noise Reduction

White Balance / Exposure / Focus Apply

v

Bayer Noise Reduction

v

ANR

Y

Demosaicing

Y

Total Color Correction

Y

XNR3

TNR

v

YUV Downscaling

Fig. 4: IPU3 ImgU Pipeline Diagram

The table below presents a description of the above algorithms.

164 Chapter 1. Media subsystem admin and user guide

https://chromium.googlesource.com/chromiumos/platform/arc-camera/+/master/

Linux Media Documentation

Name

Description

Optical Black Correction

Optical Black Correction block subtracts a pre-defined value from
the respective pixel values to obtain better image quality. Defined
in struct ipu3 uapi obgrid param.

Linearization

This algo block uses linearization parameters to address non-
linearity sensor effects. The Lookup table table is defined in
struct ipu3 uapi isp lin_vmem params.

SHD

Lens shading correction is used to correct spatial non-uniformity
of the pixel response due to optical lens shading. This is done by
applying a different gain for each pixel. The gain, black level etc
are configured in struct ipu3 vapi shd config static.

BNR

Bayer noise reduction block removes image noise by applying a
bilateral filter. See struct ipu3 uapi bnr static config for
details.

ANR

Advanced Noise Reduction is a block based algorithm that per-
forms noise reduction in the Bayer domain. The convolution ma-
trix etc can be found in struct ipu3 uvapi anr config.

DM

Demosaicing converts raw sensor data in Bayer format into RGB
(Red, Green, Blue) presentation. Then add outputs of estimation
of Y channel for following stream processing by Firmware. The
struct is defined as struct ipu3 vapi dm config.

Color Correction

Color Correction algo transforms sensor specific color space to
the standard “sRGB” color space. This is done by applying 3x3
matrix defined in struct ipu3 uvapi ccm mat config.

Gamma correction

Gamma correction struct ipu3 uapi gamma config is a basic
non-linear tone mapping correction that is applied per pixel for
each pixel component.

CSC

Color space conversion transforms each pixel from the RGB pri-
mary presentation to YUV (Y: brightness, UV: Luminance) presen-
tation. This is done by applying a 3x3 matrix defined in struct
ipu3 uapi csc mat config

CDS

Chroma down sampling After the CSC is performed, the Chroma
Down Sampling is applied for a UV plane down sampling by a
factor of 2 in each direction for YUV 4:2:0 using a 4x2 configurable
filter struct ipu3 uapi cds params.

CHNR

Chroma noise reduction This block processes only the chromi-
nance pixels and performs noise reduction by cleaning the high
frequency noise. See struct struct ipu3 uapi yuvpl chnr config.

TCC

Total color correction as defined in struct struct
ipu3 uapi yuvp2 tcc static_config.

XNR3

eXtreme Noise Reduction V3 is the third revision of noise reduc-
tion algorithm used to improve image quality. This removes the
low frequency noise in the captured image. Two related structs
are being defined, struct ipu3 uapi isp xnr3 params for ISP
data memory and struct ipu3 vapi isp xnr3 vmem params for
vector memory.

TNR

Temporal Noise Reduction block compares successive
frames in time to remove anomalies / noise in pixel val-
ues. struct ipu3 uapi isp tnr3 vmem params and struct
ipu3 uapi isp tnr3 params are defined for ISP vector and data
memory respectively.

1.1. The media subsystem 165

Linux Media Documentation

Other often encountered acronyms not listed in above table:
ACC Accelerator cluster
AWB_FR Auto white balance filter response statistics
BDS Bayer downscaler parameters
CCM Color correction matrix coefficients
IEFd Image enhancement filter directed
Obgrid Optical black level compensation
OSYS Output system configuration
ROI Region of interest
YDS Y down sampling
YTM Y-tone mapping

A few stages of the pipeline will be executed by firmware running on the ISP processor, while
many others will use a set of fixed hardware blocks also called accelerator cluster (ACC) to
crunch pixel data and produce statistics.

ACC parameters of individual algorithms, as defined by struct ipu3 vapi acc param, can
be chosen to be applied by the user space through struct struct ipu3 uapi flags embedded in
struct ipu3 uapi params structure. For parameters that are configured as not enabled by
the user space, the corresponding structs are ignored by the driver, in which case the existing
configuration of the algorithm will be preserved.

References

1.1.6.10 The ivtv driver

Author: Hans Verkuil <hverkuil@xs4all.nl>

This is a v412 device driver for the Conexant cx23415/6 MPEG encoder/decoder. The cx23415
can do both encoding and decoding, the cx23416 can only do MPEG encoding. Currently the
only card featuring full decoding support is the Hauppauge PVR-350.

Note:

1) This driver requires the latest encoder firmware (version 2.06.039, size 376836 bytes).
Get the firmware from here:

https://linuxtv.org/downloads/firmware/#conexant

2) ‘mnormal’ TV applications do not work with this driver, you need an application that can
handle MPEG input such as mplayer, xine, MythTV, etc.

The primary goal of the IVTV project is to provide a “clean room” Linux Open Source driver
implementation for video capture cards based on the iCompression iTVC15 or Conexant
CX23415/CX23416 MPEG Codec.

166 Chapter 1. Media subsystem admin and user guide

mailto:hverkuil@xs4all.nl
https://linuxtv.org/downloads/firmware/#conexant

Linux Media Documentation

Features

* Hardware mpeg2 capture of broadcast video (and sound) via the tuner or S-
Video/Composite and audio line-in.

* Hardware mpeg?2 capture of FM radio where hardware support exists
* Supports NTSC, PAL, SECAM with stereo sound

* Supports SAP and bilingual transmissions.

* Supports raw VBI (closed captions and teletext).

* Supports sliced VBI (closed captions and teletext) and is able to insert this into the captured
MPEG stream.

* Supports raw YUV and PCM input.

Additional features for the PVR-350 (CX23415 based)

* Provides hardware mpeg?2 playback

* Provides comprehensive OSD (On Screen Display: ie. graphics overlaying the video signal)
* Provides a framebuffer (allowing X applications to appear on the video device)

* Supports raw YUV output.

IMPORTANT: In case of problems first read this page: https://help.ubuntu.com/
community/Install IVTV Troubleshooting

See also

https://linuxtv.org

IRC

irc://irc.freenode.net/#v4l

Devices

A maximum of 12 ivtv boards are allowed at the moment.

Cards that don’t have a video output capability (i.e. non PVR350 cards) lack the vbi8, vbilo6,
video16 and video48 devices. They also do not support the framebuffer device /dev/fbx for OSD.

The radio0O device may or may not be present, depending on whether the card has a radio tuner
or not.

Here is a list of the base v4l devices:

1.1. The media subsystem 167

https://help.ubuntu.com/community/Install_IVTV_Troubleshooting
https://help.ubuntu.com/community/Install_IVTV_Troubleshooting
https://linuxtv.org
irc://irc.freenode.net/#v4l

Linux Media Documentation

Crw-rw---- 1 root video 81, 0 Jun 19 22:22 /dev/video0
Crw-rw---- 1 root video 81, 16 Jun 19 22:22 /dev/videol6
Crw-rw---- 1 root video 81, 24 Jun 19 22:22 /dev/video24
Crw-rw---- 1 root video 81, 32 Jun 19 22:22 /dev/video32
Crw-rw---- 1 root video 81, 48 Jun 19 22:22 /dev/video48
Crw-rw---- 1 root video 81, 64 Jun 19 22:22 /dev/radio0
Crw-rw---- 1 root video 81, 224 Jun 19 22:22 /dev/vbi0
Crw-rw---- 1 root video 81, 228 Jun 19 22:22 /dev/vbi8
Crw-rw---- 1 root video 81, 232 Jun 19 22:22 /dev/vbil6

Base devices

For every extra card you have the numbers increased by one. For example, /dev/videoO is listed
as the ‘base’ encoding capture device so we have:

* /dev/videoO is the encoding capture device for the first card (card 0)
* /dev/videol is the encoding capture device for the second card (card 1)
* /dev/video2 is the encoding capture device for the third card (card 2)

Note that if the first card doesn’t have a feature (eg no decoder, so no videol6, the second card
will still use videol7. The simple rule is ‘add the card number to the base device number’. If
you have other capture cards (e.g. WinTV PCI) that are detected first, then you have to tell the
ivtv module about it so that it will start counting at 1 (or 2, or whatever). Otherwise the device
numbers can get confusing. The ivtv ‘ivtv_first minor’ module option can be used for that.

* /dev/videoO
The encoding capture device(s).
Read-only.
Reading from this device gets you the MPEG1/2 program stream. Example:

cat /dev/video0 > my.mpg (you need to hit ctrl-c to exit)

e /dev/videol6
The decoder output device(s)
Write-only. Only present if the MPEG decoder (i.e. CX23415) exists.

An mpeg?2 stream sent to this device will appear on the selected video display, audio will
appear on the line-out/audio out. It is only available for cards that support video out.
Example:

cat my.mpg >/dev/videol6

* /dev/video24
The raw audio capture device(s).
Read-only

The raw audio PCM stereo stream from the currently selected tuner or audio line-in. Read-
ing from this device results in a raw (signed 16 bit Little Endian, 48000 Hz, stereo pcm)
capture. This device only captures audio. This should be replaced by an ALSA device in the

168 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

future. Note that there is no corresponding raw audio output device, this is not supported
in the decoder firmware.

e /dev/video32
The raw video capture device(s)
Read-only

The raw YUV video output from the current video input. The YUV format is a 16x16 linear
tiled NV12 format (V4L2 PIX FMT NV12 16L16)

Note that the YUV and PCM streams are not synchronized, so they are of limited use.
* /dev/video48

The raw video display device(s)

Write-only. Only present if the MPEG decoder (i.e. CX23415) exists.

Writes a YUV stream to the decoder of the card.
* /dev/radio0O

The radio tuner device(s)

Cannot be read or written.

Used to enable the radio tuner and tune to a frequency. You cannot read or write audio
streams with this device. Once you use this device to tune the radio, use /dev/video24 to
read the raw pcm stream or /dev/videoO to get an mpeg2 stream with black video.

* /dev/vbiO
The ‘vertical blank interval’ (Teletext, CC, WSS etc) capture device(s)
Read-only

Captures the raw (or sliced) video data sent during the Vertical Blank Interval. This data is
used to encode teletext, closed captions, VPS, widescreen signalling, electronic program
guide information, and other services.

* /dev/vbi8
Processed vbi feedback device(s)
Read-only. Only present if the MPEG decoder (i.e. CX23415) exists.

The sliced VBI data embedded in an MPEG stream is reproduced on this device. So while
playing back a recording on /dev/videol6, you can read the embedded VBI data from
/dev/vbi8.

* /dev/vbil6
The vbi ‘display’ device(s)
Write-only. Only present if the MPEG decoder (i.e. CX23415) exists.

Can be used to send sliced VBI data to the video-out connector.

1.1. The media subsystem 169

Linux Media Documentation

1.1.6.11 Vaio Picturebook Motion Eye Camera Driver

Copyright © 2001-2004 Stelian Pop <stelian@popies.net>
Copyright © 2001-2002 Alcove <www.alcove.com>
Copyright © 2000 Andrew Tridgell <tridge@samba.org>

This driver enable the use of video4linux compatible applications with the Motion Eye camera.
This driver requires the “Sony Laptop Extras” driver (which can be found in the “Misc devices”
section of the kernel configuration utility) to be compiled and installed (using its “camera=1"
parameter).

It can do at maximum 30 fps @ 320x240 or 15 fps @ 640x480.
Grabbing is supported in packed YUV colorspace only.
MJPEG hardware grabbing is supported via a private API (see below).

Hardware supported

This driver supports the ‘second’ version of the MotionEye camera :)

The first version was connected directly on the video bus of the Neomagic video card and is
unsupported.

The second one, made by Kawasaki Steel is fully supported by this driver (PCI vendor/device is
0x136b/0xff01)

The third one, present in recent (more or less last year) Picturebooks (C1M* models), is not
supported. The manufacturer has given the specs to the developers under a NDA (which allows
the development of a GPL driver however), but things are not moving very fast (see http://
r-engine.sourceforge.net/) (PCI vendor/device is 0x10cf/0x2011).

There is a forth model connected on the USB bus in TR1* Vaio laptops. This camera is not
supported at all by the current driver, in fact little information if any is available for this camera
(USB vendor/device is 0x054c¢/0x0107).

Driver options

Several options can be passed to the meye driver using the standard module argument syntax
(<param>=<value> when passing the option to the module or meye.<param>=<value> on
the kernel boot line when meye is statically linked into the kernel). Those options are:

gbuffers: number of capture buffers, default is 2 (32 max)
gbufsize: size of each capture buffer, default is 614400
video nr: video device to register (0 = /dev/video0, etc)

170 Chapter 1. Media subsystem admin and user guide

mailto:stelian@popies.net
mailto:tridge@samba.org
http://r-engine.sourceforge.net/
http://r-engine.sourceforge.net/

Linux Media Documentation

Module use

In order to automatically load the meye module on use, you can put those lines in your
/etc/modprobe.d/meye.conf file:

alias char-major-81 videodev
alias char-major-81-0 meye
options meye gbuffers=32

Usage:

xawtv >= 3.49 (<http://bytesex.org/xawtv/>)
for display and uncompressed video capture:

xawtv -c /dev/video0O -geometry 640x480
or
xawtv -c /dev/video0 -geometry 320x240

motioneye (<http://popies.net/meye/>)
for getting ppm or jpg snapshots, mjpeg video

Bugs / Todo

* ‘motioneye’ still uses the meye private v4l1 API extensions.

1.1.6.12 OMAP 3 Image Signal Processor (ISP) driver

Copyright © 2010 Nokia Corporation
Copyright © 2009 Texas Instruments, Inc.

Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>, Sakari Ailus
<sakari.ailus@iki.fi>, David Cohen <dacohen@gmail.com>

Introduction

This file documents the Texas Instruments OMAP 3 Image Signal Processor (ISP) driver located
under drivers/media/platform/omap3isp. The original driver was written by Texas Instruments
but since that it has been rewritten (twice) at Nokia.

The driver has been successfully used on the following versions of OMAP 3:
* 3430
* 3530
* 3630

The driver implements V4L2, Media controller and v412 subdev interfaces. Sensor, lens and
flash drivers using the v412 subdev interface in the kernel are supported.

1.1. The media subsystem 171

mailto:laurent.pinchart@ideasonboard.com
mailto:sakari.ailus@iki.fi
mailto:dacohen@gmail.com

Linux Media Documentation

Split to subdevs

The OMAP 3 ISP is split into V4L2 subdevs, each of the blocks inside the ISP having one subdev
to represent it. Each of the subdevs provide a V4L2 subdev interface to userspace.

* OMAP3 ISP CCP2
OMAP3 ISP CSI2a
OMAP3 ISP CCDC
OMAP3 ISP preview
OMAP3 ISP resizer
OMAP3 ISP AEWB
OMAP3 ISP AF

* OMAP3 ISP histogram

Each possible link in the ISP is modelled by a link in the Media controller interface. For an
example program see’.

Controlling the OMAP 3 ISP

In general, the settings given to the OMAP 3 ISP take effect at the beginning of the following
frame. This is done when the module becomes idle during the vertical blanking period on the
sensor. In memory-to-memory operation the pipe is run one frame at a time. Applying the
settings is done between the frames.

All the blocks in the ISP, excluding the CSI-2 and possibly the CCP2 receiver, insist on receiving
complete frames. Sensors must thus never send the ISP partial frames.

Autoidle does have issues with some ISP blocks on the 3430, at least. Autoidle is only enabled
on 3630 when the omap3isp module parameter autoidle is non-zero.

Technical reference manuals (TRMs) and other documentation

OMAP 3430 TRM: <URL:http://focus.ti.com/pdfs/wtbu/OMAP34xx ES3.1.x PUBLIC TRM vZM.zip>
Referenced 2011-03-05.

OMAP 35xx TRM: <URL:http://www.ti.com/litv/pdf/spruf98o> Referenced 2011-03-05.

OMAP 3630 TRM: <URL:http://focus.ti.com/pdfs/wtbu/OMAP36xx ES1.x PUBLIC TRM vQ.zip>
Referenced 2011-03-05.

DM 3730 TRM: <URL:http://www.ti.com/litv/pdf/sprugn4h> Referenced 2011-03-06.

! http://git.ideasonboard.org/?p=media-ctl.git;a=summary

172 Chapter 1. Media subsystem admin and user guide

http://git.ideasonboard.org/?p=media-ctl.git;a=summary

Linux Media Documentation

References

1.1.6.13 OMAP4 ISS Driver

Author: Sergio Aguirre <sergio.a.aguirre@gmail.com>

Copyright (C) 2012, Texas Instruments

Introduction

The OMAP44XX family of chips contains the Imaging SubSystem (a.k.a. ISS), Which contains
several components that can be categorized in 3 big groups:

¢ Interfaces (2 Interfaces: CSI2-A & CSI2-B/CCP2)
* ISP (Image Signal Processor)
» SIMCOP (Still Image Coprocessor)

For more information, please look in' for latest version of: “OMAP4430 Multimedia Device
Silicon Revision 2.x”

As of Revision AB, the ISS is described in detail in section 8.
This driver is supporting only the CSI2-A/B interfaces for now.

It makes use of the Media Controller framework?, and inherited most of the code from OMAP3
ISP driver (found under drivers/media/platform/omap3isp/*), except that it doesn’t need an
IOMMU now for ISS buffers memory mapping.

Supports usage of MMAP buffers only (for now).

Tested platforms

* OMAP4430SDP, w/ ES2.1 GP & SEVM4430-CAM-V1-0 (Contains IMX060 & OV5640, in
which only the last one is supported, outputting YUV422 frames).

e TI Blaze MDP,. w/ OMAP4430 ES2.2 EMU (Contains 1 IMX060 & 2 OV5650 sensors, in
which only the OV5650 are supported, outputting RAW10 frames).

* PandaBoard, Rev. A2, w/ OMAP4430 ES2.1 GP & OV adapter board, tested with following
sensors: * OV5640 * OV5650

* Tested on mainline kernel:
http://git.kernel.org/?p=Ilinux/kernel/git/torvalds/linux.git;a=summary
Tag: v3.3 (commit c16fa4f2ad19908a47c63d8fa436a1178438c7e7)

! http://focus.ti.com/general/docs/wtbu/wtbudocumentcenter.tsp?navigationld=12037&templateIld=6123#62
% http://lwn.net/Articles/420485/

1.1. The media subsystem 173

mailto:sergio.a.aguirre@gmail.com
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=summary
http://focus.ti.com/general/docs/wtbu/wtbudocumentcenter.tsp?navigationId=12037&templateId=6123#62
http://lwn.net/Articles/420485/

Linux Media Documentation

File list

drivers/staging/media/omap4iss/ include/linux/platform data/media/omap4iss.h

References

1.1.6.14 Philips webcams (pwc driver)
This file contains some additional information for the Philips and OEM webcams. E-mail: web-
cam@smcc.demon.nl Last updated: 2004-01-19 Site: http://www.smcc.demon.nl/webcam/
As of this moment, the following cameras are supported:

* Philips PCA645

» Philips PCA646

* Philips PCVC675

* Philips PCVC680

* Philips PCVC690

* Philips PCVC720/40

 Philips PCVC730

* Philips PCVC740

* Philips PCVC750

* Askey VCO010

* Creative Labs Webcam 5

* Creative Labs Webcam Pro Ex

* Logitech QuickCam 3000 Pro

* Logitech QuickCam 4000 Pro

* Logitech QuickCam Notebook Pro

* Logitech QuickCam Zoom

* Logitech QuickCam Orbit

* Logitech QuickCam Sphere

* Samsung MPC-C10

* Samsung MPC-C30

* Sotec Afina Eye

« AME CU-001

* Visionite VCS-UM100

* Visionite VCS-UC300

174 Chapter 1. Media subsystem admin and user guide

mailto:webcam@smcc.demon.nl
mailto:webcam@smcc.demon.nl
http://www.smcc.demon.nl/webcam/

Linux Media Documentation

The main webpage for the Philips driver is at the address above. It contains a lot of extra
information, a FAQ, and the binary plugin ‘PWCX’. This plugin contains decompression routines
that allow you to use higher image sizes and framerates; in addition the webcam uses less
bandwidth on the USB bus (handy if you want to run more than 1 camera simultaneously).
These routines fall under a NDA, and may therefore not be distributed as source; however, its
use is completely optional.

You can build this code either into your kernel, or as a module. I recommend the latter, since
it makes troubleshooting a lot easier. The built-in microphone is supported through the USB
Audio class.

When you load the module you can set some default settings for the camera; some programs
depend on a particular image-size or -format and don’t know how to set it properly in the driver.
The options are:

size Can be one of ‘sqcif’, ‘gsif’, ‘qcif’, ‘sif’, ‘cif’ or ‘vga’, for an image size of resp. 128x96,
160x120, 176x144, 320x240, 352x288 and 640x480 (of course, only for those cameras that
support these resolutions).

fps Specifies the desired framerate. Is an integer in the range of 4-30.

fbufs This parameter specifies the number of internal buffers to use for storing frames from
the cam. This will help if the process that reads images from the cam is a bit slow or
momentarily busy. However, on slow machines it only introduces lag, so choose carefully.
The default is 3, which is reasonable. You can set it between 2 and 5.

mbufs This is an integer between 1 and 10. It will tell the module the number of buffers to
reserve for mmap(), VIDIOCCGMBUF, VIDIOCMCAPTURE and friends. The default is 2,
which is adequate for most applications (double buffering).

Should you experience a lot of ‘Dumping frame...” messages during grabbing with a tool
that uses mmap(), you might want to increase if. However, it doesn’t really buffer images,
it just gives you a bit more slack when your program is behind. But you need a multi-
threaded or forked program to really take advantage of these buffers.

The absolute maximum is 10, but don’t set it too high! Every buffer takes up 460 KB
of RAM, so unless you have a lot of memory setting this to something more than 4 is an
absolute waste. This memory is only allocated during open(), so nothing is wasted when
the camera is not in use.

power_save When power save is enabled (set to 1), the module will try to shut down the cam on
close() and re-activate on open(). This will save power and turn off the LED. Not all cameras
support this though (the 645 and 646 don’t have power saving at all), and some models
don’t work either (they will shut down, but never wake up). Consider this experimental.
By default this option is disabled.

compression (only useful with the plugin) With this option you can control the compres-
sion factor that the camera uses to squeeze the image through the USB bus. You can set
the parameter between 0 and 3:

0 = prefer uncompressed images; if the requested mode is not available
in an uncompressed format, the driver will silently switch to low
compression.

low compression.

medium compression.

high compression.

WN =
I nn

1.1. The media subsystem 175

Linux Media Documentation

High compression takes less bandwidth of course, but it could also introduce some un-
wanted artefacts. The default is 2, medium compression. See the FAQ on the website for
an overview of which modes require compression.

The compression parameter does not apply to the 645 and 646 cameras and OEM models
derived from those (only a few). Most cams honour this parameter.

leds This settings takes 2 integers, that define the on/off time for the LED (in milliseconds).

One of the interesting things that you can do with this is let the LED blink while the camera
is in use. This:

leds=500,500

will blink the LED once every second. But with:

leds=0,0

the LED never goes on, making it suitable for silent surveillance.

By default the camera’s LED is on solid while in use, and turned off when the camera is
not used anymore.

This parameter works only with the ToUCam range of cameras (720, 730, 740, 750) and
OEMs. For other cameras this command is silently ignored, and the LED cannot be con-
trolled.

Finally: this parameters does not take effect UNTIL the first time you open the camera
device. Until then, the LED remains on.

dev_hint A long standing problem with USB devices is their dynamic nature: you never know

what device a camera gets assigned; it depends on module load order, the hub config-
uration, the order in which devices are plugged in, and the phase of the moon (i.e. it
can be random). With this option you can give the driver a hint as to what video device
node (/dev/videoX) it should use with a specific camera. This is also handy if you have two
cameras of the same model.

A camera is specified by its type (the number from the camera model,
like PCA645, PCVC750VC, etc) and optionally the serial number (visible in
/sys/kernel/debug/usb/devices). A hint consists of a string with the following format:

[typel.serialnumber]:]node

The square brackets mean that both the type and the serialnumber are optional, but a
serialnumber cannot be specified without a type (which would be rather pointless). The
serialnumber is separated from the type by a “.’; the node number by a ‘:’.

This somewhat cryptic syntax is best explained by a few examples:

dev hint=3,5 The first detected cam gets assigned
/dev/video3, the second /dev/video5. Any
other cameras will get the first free
available slot (see below).

dev hint=645:1,680:2 The PCA645 camera will get /dev/videol,
and a PCVC680 /dev/video2.

dev_hint=645.0123:3,645.4567:0 The PCA645 camera with serialnumber

176

Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

0123 goes to /dev/video3, the same
camera model with the 4567 serial
gets /dev/video0.

dev_hint=750:1,4,5,6 The PCVC750 camera will get /dev/videol, the
next 3 Philips cams will use /dev/video4
through /dev/video6.

Some points worth knowing:

* Serialnumbers are case sensitive and must be written full, including leading zeroes
(it’s treated as a string).

» If a device node is already occupied, registration will fail and the webcam is not avail-
able.

* You can have up to 64 video devices; be sure to make enough device nodes in /dev if you
want to spread the numbers. After /dev/video9 comes /dev/video10 (not /dev/videoA).

» If a camera does not match any dev hint, it will simply get assigned the first available
device node, just as it used to be.

trace In order to better detect problems, it is now possible to turn on a ‘trace’ of some of the
calls the module makes; it logs all items in your kernel log at debug level.

The trace variable is a bitmask; each bit represents a certain feature. If you want to trace
something, look up the bit value(s) in the table below, add the values together and supply
that to the trace variable.

Value | Value | Description Default
(dec) | (hex)

1 0x1 Module initialization; this will log messages while loading and | On

unloading the module

2 0x2 probe() and disconnect() traces On
4 0x4 Trace open() and close() calls Off
8 0x8 read(), mmap() and associated ioctl() calls Off
16 0x10 | Memory allocation of buffers, etc. Off
32 0x20 | Showing underflow, overflow and Dumping frame messages On
64 0x40 | Show viewport and image sizes Off
128 0x80 | PWCX debugging Off

For example, to trace the open() & read() functions, sum 8 + 4 = 12, so you would supply
trace=12 during insmod or modprobe. If you want to turn the initialization and probing
tracing off, set trace=0. The default value for trace is 35 (0x23).

Example:

modprobe pwc size=cif fps=15 power save=l

The fbufs, mbufs and trace parameters are global and apply to all connected cameras. Each
camera has its own set of buffers.

size and fps only specify defaults when you open() the device; this is to accommodate some
tools that don’t set the size. You can change these settings after open() with the Video4Linux
ioctl() calls. The default of defaults is QCIF size at 10 fps.

1.1. The media subsystem 177

Linux Media Documentation

The compression parameter is semiglobal; it sets the initial compression preference for all
camera’s, but this parameter can be set per camera with the VIDIOCPWCSCQUAL ioctl() call.

All parameters are optional.

1.1.6.15 Qualcomm Camera Subsystem driver

Introduction

This file documents the Qualcomm Camera Subsystem driver located under
drivers/media/platform/qcom/camss.

The current version of the driver supports the Camera Subsystem found on Qualcomm
MSM8916/APQ8016 and MSM8996/APQ8096 processors.

The driver implements V4L2, Media controller and V4L2 subdev interfaces. Camera sensor
using V4L2 subdev interface in the kernel is supported.

The driver is implemented using as a reference the Qualcomm Camera Subsystem driver for
Android as found in Code Aurora’?.

Qualcomm Camera Subsystem hardware

The Camera Subsystem hardware found on 8x16 / 8x96 processors and supported by the driver
consists of:

* 2/ 3 CSIPHY modules. They handle the Physical layer of the CSI2 receivers. A separate
camera sensor can be connected to each of the CSIPHY module;

* 2 /4 CSID (CSI Decoder) modules. They handle the Protocol and Application layer of
the CSI2 receivers. A CSID can decode data stream from any of the CSIPHY. Each CSID
also contains a TG (Test Generator) block which can generate artificial input data for test
purposes;

* ISPIF (ISP Interface) module. Handles the routing of the data streams from the CSIDs to
the inputs of the VFE;

* 1/ 2 VFE (Video Front End) module(s). Contain a pipeline of image processing hardware
blocks. The VFE has different input interfaces. The PIX (Pixel) input interface feeds the
input data to the image processing pipeline. The image processing pipeline contains also
a scale and crop module at the end. Three RDI (Raw Dump Interface) input interfaces
bypass the image processing pipeline. The VFE also contains the AXI bus interface which
writes the output data to memory.

! https://source.codeaurora.org/quic/la/kernel/msm-3.10/
2 https://source.codeaurora.org/quic/la/kernel/msm-3.18/

178 Chapter 1. Media subsystem admin and user guide

https://source.codeaurora.org/quic/la/kernel/msm-3.10/
https://source.codeaurora.org/quic/la/kernel/msm-3.18/

Linux Media Documentation

Supported functionality

The current version of the driver supports:
* Input from camera sensor via CSIPHY;
* Generation of test input data by the TG in CSID;
* RDI interface of VFE
- Raw dump of the input data to memory.
Supported formats:

* YUYV/UYVY/YVYU/VYUY (packed YUV 4:2:2 - VA4L2 PIX FMT YUYV /
VAL2 PIX FMT UYVY/VAL2 PIX FMT YVYU /VAL2 PIX FMT VYUY);

+ MIPI RAWS (8bit Bayer RAW - VAL2 PIX FMT SRGGB8/V4L2 PIX FMT SGRBG8
/ VAL2 PIX FMT SGBRGS8/V4L2 PIX FMT SBGGRS);

+ MIPI RAWI10 (10bit packed Bayer RAW - V4L2 PIX FMT SBGGR10P
/ VAL2 PIX FMT SGBRG10P / VAL2 PIX FMT SGRBG10P /
V4L2 PIX FMT SRGGB10P / V4L2 PIX FMT Y10P);

+ MIPI RAW12 (12bit packed Bayer RAW - V4L2 PIX FMT SRGGB12P
/ VAL2 PIX FMT SGBRG12P / VAL2 PIX FMT SGRBG12P /
VAL2 PIX FMT SRGGBI12P).

* (8x96 only) MIPI RAW14 (14bit packed Bayer RAW - V4L2 PIX FMT SRGGB14P
/ V4L2 PIX FMT SGBRG14P / V4L2 PIX FMT SGRBG14P /
V4L2 PIX FMT SRGGB14P).

- (8x96 only) Format conversion of the input data.
Supported input formats:

+ MIPI RAW10 (10bit packed Bayer RAW - VA4L2 PIX FMT SBGGRI10P /
V4L2 PIX FMT Y10P).

Supported output formats:

* Plain16 RAW10 (10bit unpacked Bayer RAW - V4L2 PIX FMT SBGGR10 /
V4L2 PIX FMT Y10).

* PIX interface of VFE
- Format conversion of the input data.
Supported input formats:

* YUYV/UYVY/YVYU/VYUY (packed YUV 4:2:2 - VAL2 PIX FMT YUYV /
VAL2 PIX FMT UYVY/VAL2 PIX FMT YVYU /VAL2 PIX FMT VYUY).

Supported output formats:

* NV12/NV21 (two plane YUV 4:2:0 - V4L2 PIX FMT NV12 /
V4L2 PIX FMT NV21);

* NV16/NV61 (two plane YUV 4:2:2-V4L2 PIX FMT NV16/V4L2 PIX FMT NV61).

* (8x96 only) YUYV/UYVY/YVYU/VYUY (packed YUV 4:2:2 - V4L2 PIX FMT YUYV /
VAL2 PIX FMT UYVY/VAL2 PIX FMT YVYU /VAL2 PIX FMT VYUY).

1.1. The media subsystem 179

Linux Media Documentation

- Scaling support. Configuration of the VFE Encoder Scale module for downscalling
with ratio up to 16x.

- Cropping support. Configuration of the VFE Encoder Crop module.

* Concurrent and independent usage of two (8x96: three) data inputs - could be camera
sensors and/or TG.

Driver Architecture and Design

The driver implements the V4L2 subdev interface. With the goal to model the hardware links
between the modules and to expose a clean, logical and usable interface, the driver is split into
V412 sub-devices as follows (8x16 / 8x96):

» 2/ 3 CSIPHY sub-devices - each CSIPHY is represented by a single sub-device;

2 / 4 CSID sub-devices - each CSID is represented by a single sub-device;

2 / 4 ISPIF sub-devices - ISPIF is represented by a number of sub-devices equal to the
number of CSID sub-devices;

4 / 8 VFE sub-devices - VFE is represented by a number of sub-devices equal to the number
of the input interfaces (3 RDI and 1 PIX for each VFE).

The considerations to split the driver in this particular way are as follows:

» representing CSIPHY and CSID modules by a separate sub-device for each module allows
to model the hardware links between these modules;

» representing VFE by a separate sub-devices for each input interface allows to use the input
interfaces concurrently and independently as this is supported by the hardware;

* representing ISPIF by a number of sub-devices equal to the number of CSID sub-devices
allows to create linear media controller pipelines when using two cameras simultaneously.
This avoids branches in the pipelines which otherwise will require a) userspace and b)
media framework (e.g. power on/off operations) to make assumptions about the data flow
from a sink pad to a source pad on a single media entity.

Each VFE sub-device is linked to a separate video device node.

The media controller pipeline graph is as follows (with connected two / three OV5645 camera
sSensors):

Implementation

Runtime configuration of the hardware (updating settings while streaming) is not required to
implement the currently supported functionality. The complete configuration on each hardware
module is applied on STREAMON ioctl based on the current active media links, formats and
controls set.

The output size of the scaler module in the VFE is configured with the actual compose selection
rectangle on the sink pad of the ‘msm vfe0O pix’ entity.

The crop output area of the crop module in the VFE is configured with the actual crop selection
rectangle on the source pad of the ‘msm vfe0O pix’ entity.

180 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

msm_vfeO videoO
/dev/videoO

msm vfe0 videol

/dev/videol

msm_vfe0 video2
/dev/video2

msm_vfeO video3
/dev/video3

Fig. 5: Media pipeline graph 8x16

1.1. The media subsystem

181

Linux Media Documentation

msm_vfel video3
/dev/video7

msm_vfel video2

msm_vfel videol
/dev/video6

msm_vfel videoO
/dev/video5

msm_vfe0_video3
/dev/video4

msm_vfe0_video2
/dev/video3

msm_vfe0_videol
/dev/video2

msm_vfe0_videoO
/dev/videol

/dev/videoO

Fig. 6: Media pipeline graph 8x96

Documentation

APQ8016 Specification: https://developer.qualcomm.com/download/sd410/
snapdragon-410-processor-device-specification.pdf Referenced 2016-11-24.

APQ8096 Specification: https://developer.qualcomm.com/download/sd820e/
qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf Referenced
2018-06-22.

References

1.1.6.16 Renesas R-Car Fine Display Processor (FDP1) Driver

The R-Car FDP1 driver implements driver-specific controls as follows.

V4L2_CID_DEINTERLACING_MODE (menu) The video deinterlacing mode (such as Bob, Weave,
...). The R-Car FDP1 driver implements the following modes.

182 Chapter 1. Media subsystem admin and user guide

https://developer.qualcomm.com/download/sd410/snapdragon-410-processor-device-specification.pdf
https://developer.qualcomm.com/download/sd410/snapdragon-410-processor-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf

Linux Media Documentation

"Progressive" (0) The input image video stream is progressive (not interlaced). No
deinterlacing is performed. Apart from (optional) format and en-
coding conversion output frames are identical to the input frames.
"Adaptive 2D/3D" (1) | Motion adaptive version of 2D and 3D deinterlacing. Use 3D dein-
terlacing in the presence of fast motion and 2D deinterlacing with
diagonal interpolation otherwise.

"Fixed 2D" (2) The current field is scaled vertically by averaging adjacent lines to
recover missing lines. This method is also known as blending or
Line Averaging (LAV).

"Fixed 3D" (3) The previous and next fields are averaged to recover lines missing
from the current field. This method is also known as Field Averag-
ing (FAV).

"Previous field" (4) | The current field is weaved with the previous field, i.e. the previous
field is used to fill missing lines from the current field. This method
is also known as weave deinterlacing.

"Next field" (5) The current field is weaved with the next field, i.e. the next field
is used to fill missing lines from the current field. This method is
also known as weave deinterlacing.

1.1.6.17 Rockchip Image Signal Processor (rkispl)

Introduction

This file documents the driver for the Rockchip ISP1 that is part of RK3288 and RK3399 SoCs.
The driver is located under drivers/staging/media/rkispl and uses the Media-Controller API.

Revisions

There exist multiple smaller revisions to this ISP that got introduced in later SoCs. Revisions can
be found in the enum rkispl cif isp version in the UAPI and the revision of the ISP inside
the running SoC can be read in the field hw revision of struct media device info as returned
by ioctl MEDIA I0C DEVICE INFO.

Versions in use are:
* RKISP1 V10: used at least in rk3288 and rk3399
* RKISP1 V11: declared in the original vendor code, but not used
* RKISP1 V12: used at least in rk3326 and px30
* RKISP1 V13: used at least in rk1808

1.1. The media subsystem 183

Linux Media Documentation

Topology

rkispl params
/dev/video3

rkispi_stats
/dev/video?2

rkispl _rhainpath rkisp l_éelfpath
/dev/videoO /dev/videol

The driver has 4 video devices:

rkispl mainpath: capture device for retrieving images, usually in higher resolution.
» rkispl selfpath: capture device for retrieving images.

» rkispl stats: a metadata capture device that sends statistics.

rkispl params: a metadata output device that receives parameters configurations from
userspace.

The driver has 3 subdevices:

rkispl resizer mainpath: used to resize and downsample frames for the mainpath capture
device.

rkispl resizer selfpath: used to resize and downsample frames for the selfpath capture
device.

* rkispl isp: is connected to the sensor and is responsible for all the isp operations.

184 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

rkispl_mainpath, rkispl_selfpath - Frames Capture Video Nodes

Those are the mainpath and selfpath capture devices to capture frames. Those entities are the
DMA engines that write the frames to memory. The selfpath video device can capture YUV/RGB
formats. Its input is YUV encoded stream and it is able to convert it to RGB. The selfpath is not
able to capture bayer formats. The mainpath can capture both bayer and YUV formats but it is
not able to capture RGB formats. Both capture videos support the V4L2 CAP_I0 MC capability.

rkispl _resizer_mainpath, rkispl_resizer _selfpath - Resizers Subdevices Nodes

Those are resizer entities for the mainpath and the selfpath. Those entities can scale the
frames up and down and also change the YUV sampling (for example YUV4:2:2 -> YUV4:2:0).
They also have cropping capability on the sink pad. The resizers entities can only operate on
YUV:4:2:2 format (MEDIA BUS FMT YUYV8 2X8). The mainpath capture device supports cap-
turing video in bayer formats. In that case the resizer of the mainpath is set to ‘bypass’ mode -
it just forward the frame without operating on it.

rkispl_isp - Image Signal Processing Subdevice Node

This is the isp entity. It is connected to the sensor on sink pad 0 and receives the frames
using the CSI-2 protocol. It is responsible of configuring the CSI-2 protocol. It has a cropping
capability on sink pad 0 that is connected to the sensor and on source pad 2 connected to the
resizer entities. Cropping on sink pad 0 defines the image region from the sensor. Cropping on
source pad 2 defines the region for the Image Stabilizer (IS).

rkispl_stats - Statistics Video Node

The statistics video node outputs the 3A (auto focus, auto exposure and auto white balance)
statistics, and also histogram statistics for the frames that are being processed by the rkispl
to userspace applications. Using these data, applications can implement algorithms and re-
parameterize the driver through the rkisp params node to improve image quality during a video
stream. The buffer format is defined by struct rkispl stat buffer, and userspace should set
V4L2 META FMT RK ISP1 STAT 3A as the dataformat.

rkispl_params - Parameters Video Node

The rkispl params video node receives a set of parameters from userspace to be applied to
the hardware during a video stream, allowing userspace to dynamically modify values such as
black level, cross talk corrections and others.

The buffer format is defined by struct rkispl params cfg, and userspace should set
V412 META FMT RK ISP1 PARAMS as the dataformat.

1.1. The media subsystem 185

Linux Media Documentation

Capturing Video Frames Example

In the following example, the sensor connected to pad 0 of ‘rkispl isp’is imx219.

The following commands can be used to capture video from the selfpath video node with di-
mension 900x800 planar format YUV 4:2:2. It uses all cropping capabilities possible, (see ex-
planation right below)

set the links

"media-ctl" "-d" "platform:rkispl" "-r"

"media-ctl" "-d" "platform:rkispl" "-1" "'imx219 4-0010':0 -> 'rkispl isp':0 [1]"
"media-ctl" "-d" "platform:rkispl" "-1" "'rkispl isp':2 -> 'rkispl resizer selfpath':0,
<[1]"

"media-ctl" "-d" "platform:rkispl" "-1" "'rkispl isp':2 -> 'rkispl resizer mainpath':0,
(_)[0] n

set format for imx219 4-0010:0

"media-ctl" "-d" "platform:rkispl" "--set-v412" '"imx219 4-0010":0 [fmt:SRGGB1O 1X10/
-1640x1232]"

set format for rkispl isp pads:

"media-ctl" "-d" "platform:rkispl" "--set-v412" '"rkispl isp":0 [fmt:SRGGB10 1X10/
—1640x1232 crop: (0,0)/1600x1200]"

"media-ctl" "-d" "platform:rkispl" "--set-v412" '"rkispl isp":2 [fmt:YUYV8 2X8/

—1600x1200 crop: (0,0)/1500x1100]"

set format for rkispl resizer selfpath pads:

"media-ctl" "-d" "platform:rkispl" "--set-v412" '"rkispl resizer selfpath":0,
< [fmt:YUYV8 2X8/1500x1100 crop: (300,400)/1400x1000]"'
"media-ctl" "-d" "platform:rkispl" "--set-v412" '"rkispl resizer selfpath":1,

—[fmt:YUYV8 2X8/900x800]"

set format for rkispl selfpath:
"v412-ctl" "-z" "platform:rkispl" "-d" "rkispl selfpath" "-v" "width=900,height=800,"
"v4l2-ctl" "-z" "platform:rkispl" "-d" "rkispl selfpath" "-v" "pixelformat=422P"

start streaming:
v412-ctl "-z" "platform:rkispl" "-d" "rkispl selfpath" "--stream-mmap" "--stream-count
;)II “10“

In the above example the sensor is configured to bayer format: SRGGB10 1X10/1640x1232.
The rkispl isp:0 pad should be configured to the same mbus format and dimensions as
the sensor, otherwise streaming will fail with ‘EPIPE’ error. So it is also configured to
SRGGB10 1X10/1640x1232. In addition, the rkispl isp:0 pad is configured to cropping
(0,0)/1600x1200.

The cropping dimensions are automatically propagated to be the format of the isp source pad
rkispl isp:2. Another cropping operation is configured on the isp source pad: (0,0)/1500x1100.

The resizer’'s sink pad rkispl resizer selfpath should be configured to format
YUYV8 2X8/1500x1100 in order to match the format on the other side of the link. In
addition a cropping (300,400)/1400x1000 is configured on it.

The source pad of the resizer, rkispl resizer selfpath:1 is configured to format
YUYV8 2X8/900x800. That means that the resizer first crop a window of (300,400)/1400x100
from the received frame and then scales this window to dimension 900x800.

186 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Note that the above example does not uses the stats-params control loop. Therefore the capture
frames will not go through the 3A algorithms and probably won’t have a good quality, and can
even look dark and greenish.

Configuring Quantization

The driver supports limited and full range quantization on YUV formats, where limited is
the default. To switch between one or the other, userspace should use the Colorspace Con-
version API (CSC) for subdevices on source pad 2 of the isp (rkispl isp:2). The quantiza-
tion configured on this pad is the quantization of the captured video frames on the main-
path and selfpath video nodes. Note that the resizer and capture entities will always re-
port V4L2 QUANTIZATION DEFAULT even if the quantization is configured to full range on rk-
ispl isp:2. So in order to get the configured quantization, application should get it from pad
rkispl isp:2.

1.1.6.18 The saa7134 driver

Author Gerd Hoffmann
This is a v412/oss device driver for saa7130/33/34/35 based capture / TV boards.

Status

Almost everything is working. video, sound, tuner, radio, mpeg ts, ...

As with bttv, card-specific tweaks are needed. Check CARDLIST for a list of known TV cards
and saa7134-cards.c for the drivers card configuration info.

Build

Once you pick up a Kernel source, you should configure, build, install and boot the new kernel.
You’ll need at least these config options:

./scripts/config -e PCI

./scripts/config -e INPUT

./scripts/config -m I2C

./scripts/config -m MEDIA SUPPORT
./scripts/config -e MEDIA PCI SUPPORT
./scripts/config -e MEDIA ANALOG TV SUPPORT
./scripts/config -e MEDIA DIGITAL TV SUPPORT
./scripts/config -e MEDIA RADIO SUPPORT
./scripts/config -e RC_CORE
./scripts/config -e MEDIA SUBDRV_AUTOSELECT
./scripts/config -m VIDEO SAA7134
./scripts/config -e SAA7134 ALSA
./scripts/config -e VIDEO SAA7134 RC
./scripts/config -e VIDEO SAA7134 DVB
./scripts/config -e VIDEO SAA7134 GO7007

To build and install, you should run:

1.1. The media subsystem 187

Linux Media Documentation

make && make modules install && make install

Once the new Kernel is booted, saa7134 driver should be loaded automatically.

Depending on the card you might have to pass card=<nr> as insmod option. If so, please check
Documentation/admin-guide/media/saa7134-cardlist.rst for valid choices.

Once you have your card type number, you can pass a modules configuration via a file (usually,
it is either /etc/modules.conf or some file at /etc/modules-load.d/, but the actual place
depends on your distribution), with this content:

options saa7134 card=13 # Assuming that your card type is #13

Changes / Fixes

Please mail to linux-media AT vger.kernel.org unified diffs against the linux media git tree:
https://git.linuxtv.org/media tree.git/

This is done by committing a patch at a clone of the git tree and submitting the patch using
git send-email. Don’t forget to describe at the lots what it changes / which problem it fixes /
whatever it is good for ...

Known Problems

* The tuner for the flyvideos isn’t detected automatically and the default might not work for
you depending on which version you have. There is a tuner= insmod option to override
the driver’s default.

Credits

andrew.stevens@philips.com + werner.leeb@philips.com for providing saa7134 hardware
specs and sample board.

1.1.6.19 The Silicon Labs Si470x FM Radio Receivers driver

Copyright © 2009 Tobias Lorenz <tobias.lorenz@gmx.net>

Information from Silicon Labs

Silicon Laboratories is the manufacturer of the radio ICs, that nowadays are the most often used
radio receivers in cell phones. Usually they are connected with 12C. But SiLabs also provides a
reference design, which integrates this IC, together with a small microcontroller C8051F321,
to form a USB radio. Part of this reference design is also a radio application in binary and
source code. The software also contains an automatic firmware upgrade to the most current
version. Information on these can be downloaded here: http://www.silabs.com/usbradio

188 Chapter 1. Media subsystem admin and user guide

https://git.linuxtv.org/media_tree.git/
mailto:andrew.stevens@philips.com
mailto:werner.leeb@philips.com
mailto:tobias.lorenz@gmx.net
http://www.silabs.com/usbradio

Linux Media Documentation

Supported ICs

The following ICs have a very similar register set, so that they are or will be supported some-
when by the driver:

* Si4700: FM radio receiver

* Si4701: FM radio receiver, RDS Support

* Si4702: FM radio receiver

* Si4703: FM radio receiver, RDS Support

* Si4704: FM radio receiver, no external antenna required

* Si4705: FM radio receiver, no external antenna required, RDS support, Dig I/O

* Si4706: Enhanced FM RDS/TMC radio receiver, no external antenna required, RDS
Support

» Si4707: Dedicated weather band radio receiver with SAME decoder, RDS Support
* Si4708: Smallest FM receivers
e Si4709: Smallest FM receivers, RDS Support

More information on these can be downloaded here: http://www.silabs.com/products/mcu/
Pages/USBFMRadioRD.aspx

Supported USB devices

Currently the following USB radios (vendor:product) with the Silicon Labs si470x chips are
known to work:

* 10c4:818a: Silicon Labs USB FM Radio Reference Design

* 06el:al155: ADS/Tech FM Radio Receiver (formerly Instant FM Music) (RDX-155-EF)
* 1b80:d700: KWorld USB FM Radio SnapMusic Mobile 700 (FM700)

* 10c5:819a: Sanei Electric, Inc. FM USB Radio (sold as DealExtreme.com PCear)

Software

Testing is usually done with most application under Debian/testing:
* fmtools - Utility for managing FM tuner cards
* gnomeradio - FM-radio tuner for the GNOME desktop
» gradio - GTK FM radio tuner
» kradio - Comfortable Radio Application for KDE
* radio - ncurses-based radio application
* mplayer - The Ultimate Movie Player For Linux
* v4]2-ctl - Collection of command line video4linux utilities

For example, you can use:

1.1. The media subsystem 189

http://www.silabs.com/products/mcu/Pages/USBFMRadioRD.aspx
http://www.silabs.com/products/mcu/Pages/USBFMRadioRD.aspx

Linux Media Documentation

v412-ctl -d /dev/radio0® --set-ctrl=volume=10,mute=0 --set-freq=95.21 --all

There is also a library libv4l, which can be used. It’s going to have a function for frequency
seeking, either by using hardware functionality as in radio-si470x or by implementing a function
as we currently have in every of the mentioned programs. Somewhen the radio programs should
make use of libv4l.

For processing RDS information, there is a project ongoing at: http://rdsd.berlios.de/

There is currently no project for making TMC sentences human readable.

Audio Listing

USB Audio is provided by the ALSA snd usb audio module. It is recommended to also select
SND USB AUDIO, as this is required to get sound from the radio. For listing you have to
redirect the sound, for example using one of the following commands. Please adjust the audio
devices to your needs (/dev/dsp* and hw:x,x).

If you just want to test audio (very poor quality):

cat /dev/dspl > /dev/dsp

If you use sox + OSS try:

sox -2 --endian little -r 96000 -t oss /dev/dspl -t oss /dev/dsp

or using sox + alsa:

sox --endian little -c 2 -S -r 96000 -t alsa hw:1l -t alsa -r 96000 hw:0

If you use arts try:

arecord -D hw:1,0 -r96000 -c2 -f S16 LE | artsdsp aplay -B -

If you use mplayer try:

mplayer -radio adevice=hw=1.0:arate=96000 \
-rawaudio rate=96000 \
radio://<frequency>/capture

Module Parameters

After loading the module, you still have access to some of them in the sysfs mount under
/sys/module/radio si470x/parameters. The contents of read-only files (0444) are not updated,
even if space, band and de are changed using private video controls. The others are runtime
changeable.

190 Chapter 1. Media subsystem admin and user guide

http://rdsd.berlios.de/

Linux Media Documentation

Errors

Increase tune timeout, if you often get -EIO errors.
When timed out or band limit is reached, hw freq seek returns -EAGAIN.

If you get any errors from snd usb _audio, please report them to the ALSA people.

Open Issues

V4L minor device allocation and parameter setting is not perfect. A solution is currently under
discussion.

There is an USB interface for downloading/uploading new firmware images. Support for it can
be implemented using the request firmware interface.

There is a RDS interrupt mode. The driver is already using the same interface for polling RDS
information, but is currently not using the interrupt mode.

There is a LED interface, which can be used to override the LED control programmed in the
firmware. This can be made available using the LED support functions in the kernel.

Other useful information and links

http://www.silabs.com/usbradio

1.1.6.20 The Silicon Labs Si4713 FM Radio Transmitter Driver

Copyright © 2009 Nokia Corporation

Contact: Eduardo Valentin <eduardo.valentin@nokia.com>

Information about the Device

This chip is a Silicon Labs product. It is a I2C device, currently on 0x63 address. Basically, it
has transmission and signal noise level measurement features.

The Si4713 integrates transmit functions for FM broadcast stereo transmission. The chip also
allows integrated receive power scanning to identify low signal power FM channels.

The chip is programmed using commands and responses. There are also several properties
which can change the behavior of this chip.

Users must comply with local regulations on radio frequency (RF) transmission.

1.1. The media subsystem 191

http://www.silabs.com/usbradio
mailto:eduardo.valentin@nokia.com

Linux Media Documentation

Device driver description

There are two modules to handle this device. One is a I2C device driver and the other is a
platform driver.

The I12C device driver exports a v4l2-subdev interface to the kernel. All properties can also
be accessed by v412 extended controls interface, by using the v412-subdev calls (g ext ctrls,
s ext ctrls).

The platform device driver exports a v412 radio device interface to user land. So, it uses the 12C
device driver as a sub device in order to send the user commands to the actual device. Basically
it is a wrapper to the 12C device driver.

Applications can use v412 radio API to specify frequency of operation, mute state, etc. But
mostly of its properties will be present in the extended controls.

When the v412 mute property is set to 1 (true), the driver will turn the chip off.

Properties description

The properties can be accessed using v412 extended controls. Here is an output from v412-ctl
util:

/ # v412-ctl -d /dev/radio® --all -L
Driver Info:

Driver name : radio-sid713
Card type : Silicon Labs Si4713 Modulator
Bus info :

Driver version: 0
Capabilities : 0x00080800
RDS OQutput
Modulator
Audio output: 0 (FM Modulator Audio Out)
Frequency: 1408000 (88.000000 MHz)
Video Standard = 0x00000000

Modulator:
Name : FM Modulator
Capabilities : 62.5 Hz stereo rds
Frequency range : 76.0 MHz - 108.0 MHz

Subchannel modulation: stereo+rds
User Controls
mute (bool) : default=1 value=0
FM Radio Modulator Controls

rds_signal deviation (int) : min=0 max=90000 step=10 default=200 value=200,
—flags=slider
rds program_id (int) : min=0 max=65535 step=1 default=0 value=0
rds program type (int) : min=0 max=31 step=1 default=0 value=0
rds _ps name (str) : min=0 max=96 step=8 value='si4713
rds radio text (str) : min=0 max=384 step=32 value='"
audio limiter feature enabled (bool) : default=1 value=1l
audio limiter release time (int) : min=250 max=102390 step=50 default=5010 value=5010,
—flags=slider

192 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

audio limiter deviation (int) : min=0 max=90000 step=10 default=66250
—value=66250 flags=slider
audio compression feature enabl (bool) : default=1 value=1

audio compression gain (int) : min=0 max=20 step=1 default=15 value=15
—flags=slider
audio compression threshold (int) : min=-40 max=0 step=1 default=-40 value=-40,
—flags=slider
audio compression attack time (int) : min=0 max=5000 step=500 default=0 value=0,

—flags=slider
audio compression release time (int) : min=100000 max=1000000 step=100000,
—default=1000000 value=1000000 flags=slider
pilot tone feature enabled (bool) : default=1 value=1

pilot tone deviation (int) : min=0 max=90000 step=10 default=6750 value=6750,
—flags=slider

pilot tone frequency (int) : min=0 max=19000 step=1 default=19000 value=19000,
—flags=slider

pre_emphasis settings (menu) : min=0 max=2 default=1 value=1

tune power level (int) : min=0 max=120 step=1 default=88 value=88 flags=slider

tune_antenna capacitor (int) : min=0 max=191 step=1 default=0 value=110
—flags=slider

Here is a summary of them:
* Pilot is an audible tone sent by the device.
» pilot frequency - Configures the frequency of the stereo pilot tone.
* pilot deviation - Configures pilot tone frequency deviation level.
* pilot enabled - Enables or disables the pilot tone feature.
* The si4713 device is capable of applying audio compression to the transmitted signal.
* acomp _enabled - Enables or disables the audio dynamic range control feature.
* acomp gain - Sets the gain for audio dynamic range control.
* acomp threshold - Sets the threshold level for audio dynamic range control.
* acomp attack time - Sets the attack time for audio dynamic range control.
* acomp release time - Sets the release time for audio dynamic range control.

* Limiter setups audio deviation limiter feature. Once a over deviation occurs, it is possible
to adjust the front-end gain of the audio input and always prevent over deviation.

* limiter enabled - Enables or disables the limiter feature.

* limiter deviation - Configures audio frequency deviation level.
 limiter release time - Sets the limiter release time.

e Tuning power

* power level - Sets the output power level for signal transmission. antenna capacitor - This
selects the value of antenna tuning capacitor manually or automatically if set to zero.

* RDS related
* rds ps name - Sets the RDS ps name field for transmission.

* rds radio text - Sets the RDS radio text for transmission.

1.1. The media subsystem 193

Linux Media Documentation

rds pi - Sets the RDS PI field for transmission.
rds pty - Sets the RDS PTY field for transmission.

Region related

preemphasis - sets the preemphasis to be applied for transmission.

RNL

This device also has an interface to measure received noise level. To do that, you should ioctl

the device node. Here is an code of example:

int main (int argc, char *argv[])

{
struct si4713 rnl rnl;

int fd = open("/dev/radio0", O RDWR);
int rval;

if (argc < 2)
return -EINVAL;

if (fd < 0)
return fd;

sscanf(argv[l], "%d", &rnl.frequency);
rval = ioctl(fd, SI4713 IOC MEASURE RNL, &rnl);
if (rval < 0)

return rval;

printf("received noise level: %d\n", rnl.rnl);

close(fd);
}

The struct si4713 rnl and SI4713 IOC MEASURE RNL are
clude/linux/platform data/media/si4713.h.

defined

under

in-

194 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Stereo/Mono and RDS subchannels

The device can also be configured using the available sub channels for transmission. To do
that use S/G MODULATOR ioctl and configure txsubchans properly. Refer to the VAL2 API
specification for proper use of this ioctl.

Testing

Testing is usually done with v412-ctl utility for managing FM tuner cards. The tool can be found
in v4l-dvb repository under v412-apps/util directory.

Example for setting rds ps name:

v412-ctl -d /dev/radio@ --set-ctrl=rds ps name="Dummy"

1.1.6.21 The SI1476x Driver

Copyright © 2013 Andrey Smirnov <andrew.smirnov@gmail.com>

TODO for the driver

* According to the SiLabs’ datasheet it is possible to update the firmware of the radio chip in
the run-time, thus bringing it to the most recent version. Unfortunately I couldn’t find any
mentioning of the said firmware update for the old chips that I tested the driver against,
so for chips like that the driver only exposes the old functionality.

Parameters exposed over debugfs

SI476x allow user to get multiple characteristics that can be very useful for EoL testing/RF
performance estimation, parameters that have very little to do with V4L2 subsystem. Such
parameters are exposed via debugfs and can be accessed via regular file I/O operations.

The drivers exposes following files:

* /sys/kernel/debug/<device-name>/acf This file contains ACF(Automatically Controlled
Features) status information. The contents of the file is binary data of the following layout:

1.1. The media subsystem 195

mailto:andrew.smirnov@gmail.com

Linux Media Documentation

Offset | Name Description

0x00 blend int Flag, set when stereo separation has crossed below the blend
threshold

0x01 hblend int Flag, set when HiBlend cutoff frequency is lower than
threshold

0x02 hicut int Flag, set when HiCut cutoff frequency is lower than threshold

0x03 chbw int Flag, set when channel filter bandwidth is less than threshold

0x04 softmute int | Flag indicating that softmute attenuation has increased above
softmute threshold

0x05 smute 0 - Audio is not soft muted 1 - Audio is soft muted

0x06 smattn Soft mute attenuation level in dB

0x07 chbw Channel filter bandwidth in kHz

0x08 hicut HiCut cutoff frequency in units of 100Hz

0x09 hiblend HiBlend cutoff frequency in units of 100 Hz

0x10 pilot 0 - Stereo pilot is not present 1 - Stereo pilot is present

0x11 stblend Stereo blend in %

* /sys/kernel/debug/<device-name>/rds blckcnt This file contains statistics about RDS re-
ceptions. It’s binary data has the following layout:

Offset | Name Description

0x00 expected Number of expected RDS blocks
0x02 received Number of received RDS blocks
0x04 uncorrectable Number of uncorrectable RDS blocks

* /sys/kernel/debug/<device-name>/agc This file contains information about parameters
pertaining to AGC(Automatic Gain Control)

The layout is:

Offset | Name Description

0x00 mxhi 0 - FM Mixer PD high threshold is not tripped 1 - FM Mixer PD
high threshold is tripped

0x01 mxlo ditto for FM Mixer PD low

0x02 Inahi ditto for FM LNA PD high

0x03 Inalo ditto for FM LNA PD low

0x04 fmagcl FMAGC1 attenuator resistance (see datasheet for more detail)

0x05 fmagc?2 ditto for FMAGC?2

0x06 pgagain PGA gain in dB

0x07 fmwblang FM/WB LNA Gain in dB

* /sys/kernel/debug/<device-name>/rsq This file contains information about parameters
pertaining to RSQ(Received Signal Quality)

The layout is:

196

Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Offset | Name Description

0x00 multhint 0 - multipath value has not crossed the Multipath high thresh-
old 1 - multipath value has crossed the Multipath high thresh-
old

0x01 multlint ditto for Multipath low threshold

0x02 snrhint 0 - received signal’s SNR has not crossed high threshold 1 -
received signal’s SNR has crossed high threshold

0x03 snrlint ditto for low threshold

0x04 rssihint ditto for RSSI high threshold

0x05 rssilint ditto for RSSI low threshold

0x06 bltf Flag indicating if seek command reached/wrapped seek band
limit

0x07 snr ready Indicates that SNR metrics is ready

0x08 rssiready ditto for RSSI metrics

0x09 injside 0 - Low-side injection is being used 1 - High-side injection is
used

0x10 afcrl Flag indicating if AFC rails

0x11 valid Flag indicating if channel is valid

0x12 readfreq Current tuned frequency

0x14 freqoff Signed frequency offset in units of 2ppm

0x15 rssi Signed value of RSSI in dBuV

0x16 snr Signed RF SNR in dB

0x17 issi Signed Image Strength Signal indicator

0x18 lassi Signed Low side adjacent Channel Strength indicator

0x19 hassi ditto fpr High side

0x20 mult Multipath indicator

0x21 dev Frequency deviation

0x24 assi Adjacent channel SSI

0x25 usn Ultrasonic noise indicator

0x26 pilotdev Pilot deviation in units of 100 Hz

0x27 rdsdev ditto for RDS

0x28 assidev ditto for ASSI

0x29 strongdev Frequency deviation

0x30 rdspi RDS PI code

* /sys/kernel/debug/<device-name>/rsq primary This file contains information about pa-
rameters pertaining to RSQ(Received Signal Quality) for primary tuner only. Layout is
as the one above.

1.1. The media subsystem

197

Linux Media Documentation

1.1.6.22 The Virtual Media Controller Driver (vimc)

The vimc driver emulates complex video hardware using the V4L2 API and the Media APIL. It
has a capture device and three subdevices: sensor, debayer and scaler.

Topology

The topology is hardcoded, although you could modify it in vimc-core and recompile the driver
to achieve your own topology. This is the default topology:

Raw Cépture 1 RGB/YUV Input
/dev/videol /dev/video2

Raw Capture 0
/dev/videoO

RGB/YUV Capture
/dev/video3

Fig. 7: Media pipeline graph on vimc

Configuring the topology

Each subdevice will come with its default configuration (pixelformat, height, width, ...). One
needs to configure the topology in order to match the configuration on each linked subdevice
to stream frames through the pipeline. If the configuration doesn’t match, the stream will fail.
The v41-utils package is a bundle of user-space applications, that comes with media-ctl and
v412-ctl that can be used to configure the vimc configuration. This sequence of commands
fits for the default topology:

media-ctl -d platform:vimc -V '"Sensor A":0[fmt:SBGGR8 1X8/640x480]"'
media-ctl -d platform:vimc -V '"Debayer A":0[fmt:SBGGR8 1X8/640x480]"
media-ctl -d platform:vimc -V '"Sensor B":0[fmt:SBGGR8 1X8/640x480]"
media-ctl -d platform:vimc -V '"Debayer B":0[fmt:SBGGR8 1X8/640x480]"
v4l2-ctl -z platform:vimc -d "RGB/YUV Capture" -v width=1920,height=1440

198 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

v41l2-ctl -z platform:vimc -d "Raw Capture 0" -v pixelformat=BA81
v41l2-ctl -z platform:vimc -d "Raw Capture 1" -v pixelformat=BA81

Subdevices

Subdevices define the behavior of an entity in the topology. Depending on the subdevice, the
entity can have multiple pads of type source or sink.

vimc-sensor: Generates images in several formats using video test pattern generator. Ex-
poses:

* 1 Pad source

vimc-debayer: Transforms images in bayer format into a non-bayer format. Exposes:
* 1 Pad sink
* 1 Pad source

vimc-scaler: Re-size the image to meet the source pad resolution. E.g.: if the sync pad is
configured to 360x480 and the source to 1280x720, the image will be stretched to fit the
source resolution. Works for any resolution within the vimc limitations (even shrinking the
image if necessary). Exposes:

* 1 Pad sink
* 1 Pad source

vimc-capture: Exposes node /dev/videoX to allow userspace to capture the stream. Exposes:
e 1 Pad sink

¢ 1 Pad source

1.1.6.23 The Virtual Video Test Driver (vivid)

This driver emulates video4linux hardware of various types: video capture, video output, vbi
capture and output, metadata capture and output, radio receivers and transmitters, touch cap-
ture and a software defined radio receiver. In addition a simple framebuffer device is available
for testing capture and output overlays.

Up to 64 vivid instances can be created, each with up to 16 inputs and 16 outputs.

Each input can be a webcam, TV capture device, S-Video capture device or an HDMI capture
device. Each output can be an S-Video output device or an HDMI output device.

These inputs and outputs act exactly as a real hardware device would behave. This allows you
to use this driver as a test input for application development, since you can test the various
features without requiring special hardware.

This document describes the features implemented by this driver:
* Support for read()/write(), MMAP, USERPTR and DMABUF streaming I/O.
* A large list of test patterns and variations thereof

* Working brightness, contrast, saturation and hue controls

1.1. The media subsystem 199

Linux Media Documentation

Support for the alpha color component

Full colorspace support, including limited/full RGB range

All possible control types are present

Support for various pixel aspect ratios and video aspect ratios

Error injection to test what happens if errors occur

Supports crop/compose/scale in any combination for both input and output
Can emulate up to 4K resolutions

All Field settings are supported for testing interlaced capturing

Supports all standard YUV and RGB formats, including two multiplanar YUV formats
Raw and Sliced VBI capture and output support

Radio receiver and transmitter support, including RDS support

Software defined radio (SDR) support

Capture and output overlay support

Metadata capture and output support

Touch capture support

These features will be described in more detail below.

Configuring the driver

By default the driver will create a single instance that has a video capture device with webcam,
TV, S-Video and HDMI inputs, a video output device with S-Video and HDMI outputs, one vbi
capture device, one vbi output device, one radio receiver device, one radio transmitter device
and one SDR device.

The number of instances, devices, video inputs and outputs and their types are all configurable
using the following module options:

n devs:

number of driver instances to create. By default set to 1. Up to 64 instances can
be created.

node_types:

which devices should each driver instance create. An array of hexadecimal values,
one for each instance. The default is Ox1d3d. Each value is a bitmask with the
following meaning:

- bit 0: Video Capture node

- bit 2-3: VBI Capture node: 0 = none, 1 = raw vbi, 2 = sliced vbi, 3 = both
- bit 4: Radio Receiver node

- bit 5: Software Defined Radio Receiver node

- bit 8: Video Output node

200

Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

- bit 10-11: VBI Output node: 0 = none, 1 = raw vbi, 2 = sliced vbi, 3 = both
- bit 12: Radio Transmitter node

- bit 16: Framebuffer for testing overlays

- bit 17: Metadata Capture node

- bit 18: Metadata Output node

- bit 19: Touch Capture node

So to create four instances, the first two with just one video capture device, the
second two with just one video output device you would pass these module options
to vivid:

n_devs=4 node types=0x1,0x1,0x100,0x100

* num inputs:

the number of inputs, one for each instance. By default 4 inputs are created for
each video capture device. At most 16 inputs can be created, and there must be
at least one.

* input types:

the input types for each instance, the default is Oxe4. This defines what the type
of each input is when the inputs are created for each driver instance. This is a
hexadecimal value with up to 16 pairs of bits, each pair gives the type and bits
0-1 map to input 0, bits 2-3 map to input 1, 30-31 map to input 15. Each pair of
bits has the following meaning:

- 00: this is a webcam input
- 01: this is a TV tuner input
- 10: this is an S-Video input
- 11: this is an HDMI input

So to create a video capture device with 8 inputs where input 0 is a TV tuner,
inputs 1-3 are S-Video inputs and inputs 4-7 are HDMI inputs you would use the
following module options:

num_inputs=8 input types=0xffa9

* num outputs:

the number of outputs, one for each instance. By default 2 outputs are created
for each video output device. At most 16 outputs can be created, and there must
be at least one.

e output types:

the output types for each instance, the default is 0x02. This defines what the type
of each output is when the outputs are created for each driver instance. This is
a hexadecimal value with up to 16 bits, each bit gives the type and bit 0 maps to
output 0, bit 1 maps to output 1, bit 15 maps to output 15. The meaning of each
bit is as follows:

- 0: this is an S-Video output

1.1. The media subsystem 201

Linux Media Documentation

- 1: this is an HDMI output

So to create a video output device with 8 outputs where outputs 0-3 are S-Video
outputs and outputs 4-7 are HDMI outputs you would use the following module
options:

num_outputs=8 output types=0xf0O

* vid cap nr:

give the desired videoX start number for each video capture device. The default
is -1 which will just take the first free number. This allows you to map capture
video nodes to specific videoX device nodes. Example:

n devs=4 vid cap nr=2,4,6,8

This will attempt to assign /dev/video2 for the video capture device of the first
vivid instance, video4 for the next up to video8 for the last instance. If it can’t
succeed, then it will just take the next free number.

e vid out nr:

give the desired videoX start number for each video output device. The default is
-1 which will just take the first free number.

e vbi cap nr:

give the desired vbiX start number for each vbi capture device. The default is -1
which will just take the first free number.

* vbi out nr:

give the desired vbiX start number for each vbi output device. The default is -1
which will just take the first free number.

* radio rx nr:

give the desired radioX start number for each radio receiver device. The default
is -1 which will just take the first free number.

* radio tx nr:

give the desired radioX start number for each radio transmitter device. The de-
fault is -1 which will just take the first free number.

e sdr cap nr:

give the desired swradioX start number for each SDR capture device. The default
is -1 which will just take the first free number.

* meta cap nr:

give the desired videoX start number for each metadata capture device. The de-
fault is -1 which will just take the first free number.

* meta out nr:

give the desired videoX start number for each metadata output device. The default
is -1 which will just take the first free number.

* touch cap nr:

202 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

give the desired v4l-touchX start number for each touch capture device. The de-
fault is -1 which will just take the first free number.

* ccs_cap _mode:

specify the allowed video capture crop/compose/scaling combination for each
driver instance. Video capture devices can have any combination of cropping,
composing and scaling capabilities and this will tell the vivid driver which of those
is should emulate. By default the user can select this through controls.

The value is either -1 (controlled by the user) or a set of three bits, each enabling
(1) or disabling (0) one of the features:

- bit O:

Enable crop support. Cropping will take only part of the incoming pic-
ture.

- bit 1:

Enable compose support. Composing will copy the incoming picture
into a larger buffer.

- bit 2:

Enable scaling support. Scaling can scale the incoming picture. The
scaler of the vivid driver can enlarge up or down to four times the orig-
inal size. The scaler is very simple and low-quality. Simplicity and speed
were key, not quality.

Note that this value is ignored by webcam inputs: those enumerate discrete
framesizes and that is incompatible with cropping, composing or scaling.

* ccs_out mode:

specify the allowed video output crop/compose/scaling combination for each
driver instance. Video output devices can have any combination of cropping, com-
posing and scaling capabilities and this will tell the vivid driver which of those is
should emulate. By default the user can select this through controls.

The value is either -1 (controlled by the user) or a set of three bits, each enabling
(1) or disabling (0) one of the features:

- bit 0:

Enable crop support. Cropping will take only part of the outgoing
buffer.

- bit 1:

Enable compose support. Composing will copy the incoming buffer into
a larger picture frame.

- bit 2:

Enable scaling support. Scaling can scale the incoming buffer. The
scaler of the vivid driver can enlarge up or down to four times the orig-
inal size. The scaler is very simple and low-quality. Simplicity and speed
were key, not quality.

* multiplanar:

1.1. The media subsystem 203

Linux Media Documentation

select whether each device instance supports multi-planar formats, and thus the
V4L2 multi-planar API. By default device instances are single-planar.

This module option can override that for each instance. Values are:
- 1: this is a single-planar instance.
- 2: this is a multi-planar instance.
 vivid debug:
enable driver debugging info
* NO _error inj:

if set disable the error injecting controls. This option is needed in order to run a
tool like v412-compliance. Tools like that exercise all controls including a control
like ‘Disconnect’ which emulates a USB disconnect, making the device inaccessi-
ble and so all tests that v4l2-compliance is doing will fail afterwards.

There may be other situations as well where you want to disable the error injection
support of vivid. When this option is set, then the controls that select crop, com-
pose and scale behavior are also removed. Unless overridden by ccs cap mode
and/or ccs_out mode the will default to enabling crop, compose and scaling.

* allocators:

memory allocator selection, default is 0. It specifies the way buffers will be allo-
cated.

- 0: vmalloc
- 1: dma-contig
* cache hints:

specifies if the device should set queues’ user-space cache and memory consis-
tency hint capability (V4L2 BUF CAP SUPPORTS MMAP CACHE HINTS). The
hints are valid only when using MMAP streaming I/O. Default is 0.

- 0: forbid hints
- 1: allow hints

Taken together, all these module options allow you to precisely customize the driver behavior
and test your application with all sorts of permutations. It is also very suitable to emulate
hardware that is not yet available, e.g. when developing software for a new upcoming device.

Video Capture

This is probably the most frequently used feature. The video capture device can be configured
by using the module options num _inputs, input types and ccs cap mode (see section 1 for more
detailed information), but by default four inputs are configured: a webcam, a TV tuner, an S-
Video and an HDMI input, one input for each input type. Those are described in more detail
below.

Special attention has been given to the rate at which new frames become available. The jitter
will be around 1 jiffie (that depends on the HZ configuration of your kernel, so usually 1/100,
1/250 or 1/1000 of a second), but the long-term behavior is exactly following the framerate. So

204 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

a framerate of 59.94 Hz is really different from 60 Hz. If the framerate exceeds your kernel’s
HZ value, then you will get dropped frames, but the frame/field sequence counting will keep
track of that so the sequence count will skip whenever frames are dropped.

Webcam Input

The webcam input supports three framesizes: 320x180, 640x360 and 1280x720. It supports
frames per second settings of 10, 15, 25, 30, 50 and 60 fps. Which ones are available depends
on the chosen framesize: the larger the framesize, the lower the maximum frames per second.

The initially selected colorspace when you switch to the webcam input will be sRGB.

TV and S-Video Inputs

The only difference between the TV and S-Video input is that the TV has a tuner. Otherwise
they behave identically.

These inputs support audio inputs as well: one TV and one Line-In. They both support all
TV standards. If the standard is queried, then the Vivid controls ‘Standard Signal Mode’ and
‘Standard’ determine what the result will be.

These inputs support all combinations of the field setting. Special care has been taken to faith-
fully reproduce how fields are handled for the different TV standards. This is particularly no-
ticeable when generating a horizontally moving image so the temporal effect of using interlaced
formats becomes clearly visible. For 50 Hz standards the top field is the oldest and the bottom
field is the newest in time. For 60 Hz standards that is reversed: the bottom field is the oldest
and the top field is the newest in time.

When you start capturing in VAL2 FIELD ALTERNATE mode the first buffer will contain the
top field for 50 Hz standards and the bottom field for 60 Hz standards. This is what capture
hardware does as well.

Finally, for PAL/SECAM standards the first half of the top line contains noise. This simulates
the Wide Screen Signal that is commonly placed there.

The initially selected colorspace when you switch to the TV or S-Video input will be SMPTE-
170M.

The pixel aspect ratio will depend on the TV standard. The video aspect ratio can be selected
through the ‘Standard Aspect Ratio’ Vivid control. Choices are ‘4x3’, ‘16x9’ which will give let-
terboxed widescreen video and ‘16x9 Anamorphic’ which will give full screen squashed anamor-
phic widescreen video that will need to be scaled accordingly.

The TV ‘tuner’ supports a frequency range of 44-958 MHz. Channels are available every 6 MHz,
starting from 49.25 MHz. For each channel the generated image will be in color for the +/- 0.25
MHz around it, and in grayscale for +/- 1 MHz around the channel. Beyond that it is just noise.
The VIDIOC G TUNER ioctl will return 100% signal strength for +/- 0.25 MHz and 50% for +/-
1 MHz. It will also return correct afc values to show whether the frequency is too low or too
high.

The audio subchannels that are returned are MONO for the +/- 1 MHz range around a valid
channel frequency. When the frequency is within +/- 0.25 MHz of the channel it will return
either MONO, STEREO, either MONO | SAP (for NTSC) or LANG1 | LANG2 (for others), or
STEREO | SAP.

1.1. The media subsystem 205

Linux Media Documentation

Which one is returned depends on the chosen channel, each next valid channel will cycle
through the possible audio subchannel combinations. This allows you to test the various com-
binations by just switching channels..

Finally, for these inputs the v412 timecode struct is filled in in the dequeued v412 buffer struct.

HDMI Input

The HDMI inputs supports all CEA-861 and DMT timings, both progressive and interlaced,
for pixelclock frequencies between 25 and 600 MHz. The field mode for interlaced formats is
always V4L2 FIELD ALTERNATE. For HDMI the field order is always top field first, and when
you start capturing an interlaced format you will receive the top field first.

The initially selected colorspace when you switch to the HDMI input or select an HDMI timing
is based on the format resolution: for resolutions less than or equal to 720x576 the colorspace
is set to SMPTE-170M, for others it is set to REC-709 (CEA-861 timings) or sSRGB (VESA DMT
timings).

The pixel aspect ratio will depend on the HDMI timing: for 720x480 is it set as for the NTSC TV
standard, for 720x576 it is set as for the PAL TV standard, and for all others a 1:1 pixel aspect
ratio is returned.

The video aspect ratio can be selected through the ‘DV Timings Aspect Ratio’ Vivid control.
Choices are ‘Source Width x Height’ (just use the same ratio as the chosen format), ‘4x3’ or
‘16x9’, either of which can result in pillarboxed or letterboxed video.

For HDMI inputs it is possible to set the EDID. By default a simple EDID is provided. You can
only set the EDID for HDMI inputs. Internally, however, the EDID is shared between all HDMI
inputs.

No interpretation is done of the EDID data with the exception of the physical address. See the
CEC section for more details.

There is a maximum of 15 HDMI inputs (if there are more, then they will be reduced to 15)
since that’s the limitation of the EDID physical address.

Video Output

The video output device can be configured by using the module options num outputs, out-
put types and ccs out mode (see section 1 for more detailed information), but by default two
outputs are configured: an S-Video and an HDMI input, one output for each output type. Those
are described in more detail below.

Like with video capture the framerate is also exact in the long term.

206 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

S-Video Output

This output supports audio outputs as well: “Line-Out 1” and “Line-Out 2”. The S-Video output
supports all TV standards.

This output supports all combinations of the field setting.

The initially selected colorspace when you switch to the TV or S-Video input will be SMPTE-
170M.

HDMI Output

The HDMI output supports all CEA-861 and DMT timings, both progressive and interlaced,
for pixelclock frequencies between 25 and 600 MHz. The field mode for interlaced formats is
always V4L2 FIELD ALTERNATE.

The initially selected colorspace when you switch to the HDMI output or select an HDMI timing
is based on the format resolution: for resolutions less than or equal to 720x576 the colorspace
is set to SMPTE-170M, for others it is set to REC-709 (CEA-861 timings) or sSRGB (VESA DMT
timings).

The pixel aspect ratio will depend on the HDMI timing: for 720x480 is it set as for the NTSC TV
standard, for 720x576 it is set as for the PAL TV standard, and for all others a 1:1 pixel aspect
ratio is returned.

An HDMI output has a valid EDID which can be obtained through VIDIOC G EDID.

There is a maximum of 15 HDMI outputs (if there are more, then they will be reduced to 15)
since that’s the limitation of the EDID physical address. See also the CEC section for more
details.

VBI Capture

There are three types of VBI capture devices: those that only support raw (undecoded) VBI,
those that only support sliced (decoded) VBI and those that support both. This is determined
by the node types module option. In all cases the driver will generate valid VBI data: for 60
Hz standards it will generate Closed Caption and XDS data. The closed caption stream will
alternate between “Hello world!” and “Closed captions test” every second. The XDS stream
will give the current time once a minute. For 50 Hz standards it will generate the Wide Screen
Signal which is based on the actual Video Aspect Ratio control setting and teletext pages 100-
159, one page per frame.

The VBI device will only work for the S-Video and TV inputs, it will give back an error if the
current input is a webcam or HDMI.

1.1. The media subsystem 207

Linux Media Documentation

VBI Output

There are three types of VBI output devices: those that only support raw (undecoded) VBI,
those that only support sliced (decoded) VBI and those that support both. This is determined
by the node types module option.

The sliced VBI output supports the Wide Screen Signal and the teletext signal for 50 Hz stan-
dards and Closed Captioning + XDS for 60 Hz standards.

The VBI device will only work for the S-Video output, it will give back an error if the current
output is HDMI.

Radio Receiver

The radio receiver emulates an FM/AM/SW receiver. The FM band also supports RDS. The
frequency ranges are:

« FM: 64 MHz - 108 MHz
« AM: 520 kHz - 1710 kHz
« SW: 2300 kHz - 26.1 MHz

Valid channels are emulated every 1 MHz for FM and every 100 kHz for AM and SW. The signal
strength decreases the further the frequency is from the valid frequency until it becomes 0%
at +/- 50 kHz (FM) or 5 kHz (AM/SW) from the ideal frequency. The initial frequency when the
driver is loaded is set to 95 MHz.

The FM receiver supports RDS as well, both using ‘Block I/O’ and ‘Controls’ modes. In the
‘Controls’ mode the RDS information is stored in read-only controls. These controls are updated
every time the frequency is changed, or when the tuner status is requested. The Block I/O
method uses the read() interface to pass the RDS blocks on to the application for decoding.

The RDS signal is ‘detected’ for +/- 12.5 kHz around the channel frequency, and the further the
frequency is away from the valid frequency the more RDS errors are randomly introduced into
the block I/O stream, up to 50% of all blocks if you are +/- 12.5 kHz from the channel frequency.
All four errors can occur in equal proportions: blocks marked ‘CORRECTED’, blocks marked
‘ERROR’, blocks marked ‘INVALID’ and dropped blocks.

The generated RDS stream contains all the standard fields contained in a 0B group, and also
radio text and the current time.

The receiver supports HW frequency seek, either in Bounded mode, Wrap Around mode or both,
which is configurable with the “Radio HW Seek Mode” control.

Radio Transmitter

The radio transmitter emulates an FM/AM/SW transmitter. The FM band also supports RDS.
The frequency ranges are:

« FM: 64 MHz - 108 MHz
* AM: 520 kHz - 1710 kHz
« SW: 2300 kHz - 26.1 MHz

208 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

The initial frequency when the driver is loaded is 95.5 MHz.

The FM transmitter supports RDS as well, both using ‘Block I/O’ and ‘Controls’ modes. In the
‘Controls’ mode the transmitted RDS information is configured using controls, and in ‘Block
I/0’ mode the blocks are passed to the driver using write().

Software Defined Radio Receiver

The SDR receiver has three frequency bands for the ADC tuner:
* 300 kHz
* 900 kHz - 2800 kHz
* 3200 kHz

The RF tuner supports 50 MHz - 2000 MHz.

The generated data contains the In-phase and Quadrature components of a 1 kHz tone that has
an amplitude of sqrt(2).

Metadata Capture

The Metadata capture generates UVC format metadata. The PTS and SCR are transmitted
based on the values set in vivid contols.

The Metadata device will only work for the Webcam input, it will give back an error for all other
inputs.

Metadata Output

The Metadata output can be used to set brightness, contrast, saturation and hue.

The Metadata device will only work for the Webcam output, it will give back an error for all
other outputs.

Touch Capture

The Touch capture generates touch patterns simulating single tap, double tap, triple tap, move
from left to right, zoom in, zoom out, palm press (simulating a large area being pressed on a
touchpad), and simulating 16 simultaneous touch points.

1.1. The media subsystem 209

Linux Media Documentation

Controls

Different devices support different controls. The sections below will describe each control and
which devices support them.

User Controls - Test Controls

The Button, Boolean, Integer 32 Bits, Integer 64 Bits, Menu, String, Bitmask and Integer Menu
are controls that represent all possible control types. The Menu control and the Integer Menu
control both have ‘holes’ in their menu list, meaning that one or more menu items return EIN-
VAL when VIDIOC QUERYMENU is called. Both menu controls also have a non-zero minimum
control value. These features allow you to check if your application can handle such things
correctly. These controls are supported for every device type.

User Controls - Video Capture

The following controls are specific to video capture.

The Brightness, Contrast, Saturation and Hue controls actually work and are standard. There is
one special feature with the Brightness control: each video input has its own brightness value,
so changing input will restore the brightness for that input. In addition, each video input uses
a different brightness range (minimum and maximum control values). Switching inputs will
cause a control event to be sent with the VAL2 EVENT CTRL CH RANGE flag set. This allows
you to test controls that can change their range.

The ‘Gain, Automatic’ and Gain controls can be used to test volatile controls: if ‘Gain, Automatic’
is set, then the Gain control is volatile and changes constantly. If ‘Gain, Automatic’ is cleared,
then the Gain control is a normal control.

The ‘Horizontal Flip’ and ‘Vertical Flip’ controls can be used to flip the image. These combine
with the ‘Sensor Flipped Horizontally/Vertically’ Vivid controls.

The ‘Alpha Component’ control can be used to set the alpha component for formats containing
an alpha channel.

User Controls - Audio

The following controls are specific to video capture and output and radio receivers and trans-
mitters.

The ‘Volume’ and ‘Mute’ audio controls are typical for such devices to control the volume and
mute the audio. They don’t actually do anything in the vivid driver.

210 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Vivid Controls

These vivid custom controls control the image generation, error injection, etc.

Test Pattern Controls

The Test Pattern Controls are all specific to video capture.
* Test Pattern:

selects which test pattern to use. Use the CSC Colorbar for testing colorspace
conversions: the colors used in that test pattern map to valid colors in all col-
orspaces. The colorspace conversion is disabled for the other test patterns.

e OSD Text Mode:

selects whether the text superimposed on the test pattern should be shown, and
if so, whether only counters should be displayed or the full text.

* Horizontal Movement:

selects whether the test pattern should move to the left or right and at what speed.
* Vertical Movement:

does the same for the vertical direction.
* Show Border:

show a two-pixel wide border at the edge of the actual image, excluding letter or
pillarboxing.

* Show Square:

show a square in the middle of the image. If the image is displayed with the
correct pixel and image aspect ratio corrections, then the width and height of the
square on the monitor should be the same.

* Insert SAV Code in Image:

adds a SAV (Start of Active Video) code to the image. This can be used to check
if such codes in the image are inadvertently interpreted instead of being ignored.

* Insert EAV Code in Image:
does the same for the EAV (End of Active Video) code.

Capture Feature Selection Controls

These controls are all specific to video capture.
* Sensor Flipped Horizontally:

the image is flipped horizontally and the VAL2 IN ST HFLIP input status flag is
set. This emulates the case where a sensor is for example mounted upside down.

* Sensor Flipped Vertically:

1.1. The media subsystem

211

Linux Media Documentation

the image is flipped vertically and the V4L2 IN ST VFLIP input status flag is set.
This emulates the case where a sensor is for example mounted upside down.

Standard Aspect Ratio:

selects if the image aspect ratio as used for the TV or S-Video input should be 4x3,
16x9 or anamorphic widescreen. This may introduce letterboxing.

DV Timings Aspect Ratio:

selects if the image aspect ratio as used for the HDMI input should be the same
as the source width and height ratio, or if it should be 4x3 or 16x9. This may
introduce letter or pillarboxing.

Timestamp Source:
selects when the timestamp for each buffer is taken.
* Colorspace:

selects which colorspace should be used when generating the image. This only
applies if the CSC Colorbar test pattern is selected, otherwise the test pattern
will go through unconverted. This behavior is also what you want, since a 75%
Colorbar should really have 75% signal intensity and should not be affected by
colorspace conversions.

Changing the colorspace will result in the V4L2 EVENT SOURCE CHANGE to be
sent since it emulates a detected colorspace change.

e Transfer Function:

selects which colorspace transfer function should be used when generating an
image. This only applies if the CSC Colorbar test pattern is selected, otherwise
the test pattern will go through unconverted. This behavior is also what you want,
since a 75% Colorbar should really have 75% signal intensity and should not be
affected by colorspace conversions.

Changing the transfer function will result in the
VAL2 EVENT SOURCE CHANGE to be sent since it emulates a detected
colorspace change.

* Y’CbCr Encoding:

selects which Y’CbCr encoding should be used when generating a Y'CbCr image.
This only applies if the format is set to a Y'CbCr format as opposed to an RGB
format.

Changing the Y’ CbhCr encoding will result in the
V4L2 EVENT SOURCE CHANGE to be sent since it emulates a detected
colorspace change.

¢ Quantization:

selects which quantization should be used for the RGB or Y’ChCr encoding when
generating the test pattern.

Changing the quantization will result in the V4L2 EVENT SOURCE CHANGE to
be sent since it emulates a detected colorspace change.

* Limited RGB Range (16-235):

212 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

selects if the RGB range of the HDMI source should be limited or full range. This
combines with the Digital Video ‘Rx RGB Quantization Range’ control and can be
used to test what happens if a source provides you with the wrong quantization
range information. See the description of that control for more details.

Apply Alpha To Red Only:

apply the alpha channel as set by the ‘Alpha Component’ user control to the red
color of the test pattern only.

Enable Capture Cropping:

enables crop support. This control is only present if the ccs cap mode module
option is set to the default value of -1 and if the no error inj module option is set
to O (the default).

Enable Capture Composing:

enables composing support. This control is only present if the ccs cap mode mod-
ule option is set to the default value of -1 and if the no_error inj module option is
set to O (the default).

Enable Capture Scaler:

enables support for a scaler (maximum 4 times upscaling and downscaling). This
control is only present if the ccs cap mode module option is set to the default
value of -1 and if the no error inj module option is set to 0 (the default).

e Maximum EDID Blocks:

determines how many EDID blocks the driver supports. Note that the vivid driver
does not actually interpret new EDID data, it just stores it. It allows for up to 256
EDID blocks which is the maximum supported by the standard.

Fill Percentage of Frame:

can be used to draw only the top X percent of the image. Since each frame has to
be drawn by the driver, this demands a lot of the CPU. For large resolutions this
becomes problematic. By drawing only part of the image this CPU load can be
reduced.

Output Feature Selection Controls

These controls are all specific to video output.
* Enable Output Cropping:

enables crop support. This control is only present if the ccs out mode module
option is set to the default value of -1 and if the no error inj module option is set
to O (the default).

* Enable Output Composing:

enables composing support. This control is only present if the ccs out mode mod-
ule option is set to the default value of -1 and if the no_error inj module option is
set to 0 (the default).

* Enable Output Scaler:

1.1. The media subsystem

213

Linux Media Documentation

enables support for a scaler (maximum 4 times upscaling and downscaling). This
control is only present if the ccs out mode module option is set to the default
value of -1 and if the no error inj module option is set to 0 (the default).

Error Injection Controls

The following two controls are only valid for video and vbi capture.
» Standard Signal Mode:
selects the behavior of VIDIOC QUERYSTD: what should it return?

Changing this control will result in the VAL2 EVENT SOURCE CHANGE to be
sent since it emulates a changed input condition (e.g. a cable was plugged in or
out).

e Standard:

selects the standard that VIDIOC QUERYSTD should return if the previous control
is set to “Selected Standard”.

Changing this control will result in the VAL2 EVENT SOURCE CHANGE to be
sent since it emulates a changed input standard.

The following two controls are only valid for video capture.
* DV Timings Signal Mode:
selects the behavior of VIDIOC QUERY DV TIMINGS: what should it return?

Changing this control will result in the V4L2 EVENT SOURCE CHANGE to be
sent since it emulates a changed input condition (e.g. a cable was plugged in or
out).

* DV Timings:

selects the timings the VIDIOC QUERY DV TIMINGS should return if the previ-
ous control is set to “Selected DV Timings”.

Changing this control will result in the VAL2 EVENT SOURCE CHANGE to be
sent since it emulates changed input timings.

The following controls are only present if the no_error inj module option is set to 0 (the default).
These controls are valid for video and vbi capture and output streams and for the SDR capture
device except for the Disconnect control which is valid for all devices.

* Wrap Sequence Number:

test what happens when you wrap the sequence number in struct v412 buffer
around.

* Wrap Timestamp:
test what happens when you wrap the timestamp in struct v412_buffer around.
* Percentage of Dropped Buffers:

sets the percentage of buffers that are never returned by the driver (i.e., they are
dropped).

e Disconnect:

214 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

emulates a USB disconnect. The device will act as if it has been disconnected.
Only after all open filehandles to the device node have been closed will the device
become ‘connected’ again.

Inject VAL2 BUF FLAG ERROR:

when pressed, the next frame returned by the driver will have the error flag set
(i.e. the frame is marked corrupt).

Inject VIDIOC REQBUFS Error:

when pressed, the next REQBUFS or CREATE BUFS ioctl call will fail with an
error. To be precise: the videobuf2 queue setup() op will return -EINVAL.

Inject VIDIOC QBUF Error:

when pressed, the next VIDIOC QBUF or VIDIOC PREPARE BUFFER ioctl call
will fail with an error. To be precise: the videobuf2 buf prepare() op will return
-EINVAL.

Inject VIDIOC STREAMON Error:

when pressed, the next VIDIOC STREAMON ioctl call will fail with an error. To
be precise: the videobuf2 start streaming() op will return -EINVAL.

Inject Fatal Streaming Error:

when pressed, the streaming core will be marked as having suffered a fatal er-
ror, the only way to recover from that is to stop streaming. To be precise: the
videobuf2 vb2 queue error() function is called.

VBI Raw Capture Controls

e Interlaced VBI Format:

if set, then the raw VBI data will be interlaced instead of providing it grouped by
field.

Digital Video Controls

* Rx RGB Quantization Range:

sets the RGB quantization detection of the HDMI input. This combines with the
Vivid ‘Limited RGB Range (16-235)’ control and can be used to test what happens
if a source provides you with the wrong quantization range information. This can
be tested by selecting an HDMI input, setting this control to Full or Limited range
and selecting the opposite in the ‘Limited RGB Range (16-235)’ control. The effect
is easy to see if the ‘Gray Ramp’ test pattern is selected.

* Tx RGB Quantization Range:

sets the RGB quantization detection of the HDMI output. It is currently not used
for anything in vivid, but most HDMI transmitters would typically have this con-
trol.

e Transmit Mode:

1.1. The media subsystem

215

Linux Media Documentation

sets the transmit mode of the HDMI output to HDMI or DVI-D. This affects the
reported colorspace since DVI D outputs will always use sRGB.

* Display Present:

sets the presence of a “display” on the HDMI output. This affects the
tx _edid present, tx hotplug and tx rxsense controls.

FM Radio Receiver Controls

RDS Reception:
set if the RDS receiver should be enabled.
* RDS Program Type:
* RDS PS Name:
* RDS Radio Text:
* RDS Traffic Announcement:
* RDS Traffic Program:
* RDS Music:

these are all read-only controls. If RDS Rx I/O Mode is set to “Block 1/0”, then
they are inactive as well. If RDS Rx I/O Mode is set to “Controls”, then these
controls report the received RDS data.

Note: The vivid implementation of this is pretty basic: they are only updated when you set a
new frequency or when you get the tuner status (VIDIOC G TUNER).

Radio HW Seek Mode:

can be one of “Bounded”, “Wrap Around” or “Both”. This determines if VID-
IOC S HW FREQ SEEK will be bounded by the frequency range or wrap-around
or if it is selectable by the user.

Radio Programmable HW Seek:

if set, then the user can provide the lower and upper bound of the HW Seek.
Otherwise the frequency range boundaries will be used.

Generate RBDS Instead of RDS:

if set, then generate RBDS (the US variant of RDS) data instead of RDS (European-
style RDS). This affects only the PICODE and PTY codes.

RDS Rx I/O Mode:

this can be “Block I/0” where the RDS blocks have to be read() by the application,
or “Controls” where the RDS data is provided by the RDS controls mentioned
above.

216 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

FM Radio Modulator Controls

* RDS Program ID:

* RDS Program Type:

* RDS PS Name:

* RDS Radio Text:

* RDS Stereo:

* RDS Artificial Head:
* RDS Compressed:

* RDS Dynamic PTY:

e RDS Traffic Announcement:
* RDS Traffic Program:
* RDS Music:

these are all controls that set the RDS data that is transmitted by the FM modu-
lator.

« RDS Tx I/O Mode:

this can be “Block I/O” where the application has to use write() to pass the RDS
blocks to the driver, or “Controls” where the RDS data is Provided by the RDS
controls mentioned above.

Metadata Capture Controls

e Generate PTS
if set, then the generated metadata stream contains Presentation timestamp.
¢ Generate SCR

if set, then the generated metadata stream contains Source Clock information.

Video, VBI and RDS Looping

The vivid driver supports looping of video output to video input, VBI output to VBI input and
RDS output to RDS input. For video/VBI looping this emulates as if a cable was hooked up
between the output and input connector. So video and VBI looping is only supported between
S-Video and HDMI inputs and outputs. VBI is only valid for S-Video as it makes no sense for
HDMI.

Since radio is wireless this looping always happens if the radio receiver frequency is close to
the radio transmitter frequency. In that case the radio transmitter will ‘override’ the emulated
radio stations.

Looping is currently supported only between devices created by the same vivid driver instance.

1.1. The media subsystem 217

Linux Media Documentation

Video and Sliced VBI looping

The way to enable video/VBI looping is currently fairly crude. A ‘Loop Video’ control is available
in the “Vivid” control class of the video capture and VBI capture devices. When checked the
video looping will be enabled. Once enabled any video S-Video or HDMI input will show a static
test pattern until the video output has started. At that time the video output will be looped to
the video input provided that:

* the input type matches the output type. So the HDMI input cannot receive video from the
S-Video output.

* the video resolution of the video input must match that of the video output. So it is not
possible to loop a 50 Hz (720x576) S-Video output to a 60 Hz (720x480) S-Video input, or
a 720p60 HDMI output to a 1080p30 input.

* the pixel formats must be identical on both sides. Otherwise the driver would have to do
pixel format conversion as well, and that’s taking things too far.

* the field settings must be identical on both sides. Same reason as above: requiring the
driver to convert from one field format to another complicated matters too much. This
also prohibits capturing with ‘Field Top’ or ‘Field Bottom’ when the output video is set to
‘Field Alternate’. This combination, while legal, became too complicated to support. Both
sides have to be ‘Field Alternate’ for this to work. Also note that for this specific case the
sequence and field counting in struct v412 buffer on the capture side may not be 100%
accurate.

* field settings V4L2 FIELD SEQ TB/BT are not supported. While it is possible to implement
this, it would mean a lot of work to get this right. Since these field values are rarely used
the decision was made not to implement this for now.

* on the input side the “Standard Signal Mode” for the S-Video input or the “DV Timings
Signal Mode” for the HDMI input should be configured so that a valid signal is passed to
the video input.

The framerates do not have to match, although this might change in the future.

By default you will see the OSD text superimposed on top of the looped video. This can be
turned off by changing the “OSD Text Mode” control of the video capture device.

For VBI looping to work all of the above must be valid and in addition the vbi output must be
configured for sliced VBI. The VBI capture side can be configured for either raw or sliced VBI.
Note that at the moment only CC/XDS (60 Hz formats) and WSS (50 Hz formats) VBI data is
looped. Teletext VBI data is not looped.

Radio & RDS Looping

As mentioned in section 6 the radio receiver emulates stations are regular frequency intervals.
Depending on the frequency of the radio receiver a signal strength value is calculated (this is
returned by VIDIOC G TUNER). However, it will also look at the frequency set by the radio
transmitter and if that results in a higher signal strength than the settings of the radio trans-
mitter will be used as if it was a valid station. This also includes the RDS data (if any) that
the transmitter ‘transmits’. This is received faithfully on the receiver side. Note that when
the driver is loaded the frequencies of the radio receiver and transmitter are not identical, so
initially no looping takes place.

218 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Cropping, Composing, Scaling

This driver supports cropping, composing and scaling in any combination. Normally which
features are supported can be selected through the Vivid controls, but it is also possible to
hardcode it when the module is loaded through the ccs cap mode and ccs out mode module
options. See section 1 on the details of these module options.

This allows you to test your application for all these variations.

Note that the webcam input never supports cropping, composing or scaling. That only applies
to the TV/S-Video/HDMI inputs and outputs. The reason is that webcams, including this virtual
implementation, normally use VIDIOC ENUM FRAMESIZES to list a set of discrete framesizes
that it supports. And that does not combine with cropping, composing or scaling. This is pri-
marily a limitation of the V4L2 API which is carefully reproduced here.

The minimum and maximum resolutions that the scaler can achieve are 16x16 and (4096 * 4) x
(2160 x 4), but it can only scale up or down by a factor of 4 or less. So for a source resolution
of 1280x720 the minimum the scaler can do is 320x180 and the maximum is 5120x2880. You
can play around with this using the qv412 test tool and you will see these dependencies.

This driver also supports larger ‘bytesperline’ settings, something that VIDIOC S FMT allows
but that few drivers implement.

The scaler is a simple scaler that uses the Coarse Bresenham algorithm. It’s designed for speed
and simplicity, not quality.

If the combination of crop, compose and scaling allows it, then it is possible to change crop and
compose rectangles on the fly.

Formats

The driver supports all the regular packed and planar 4:4:4, 4:2:2 and 4:2:0 YUYV formats, 8,
16, 24 and 32 RGB packed formats and various multiplanar formats.

The alpha component can be set through the ‘Alpha Component’ User control for those formats
that support it. If the ‘Apply Alpha To Red Only’ control is set, then the alpha component is only
used for the color red and set to 0 otherwise.

The driver has to be configured to support the multiplanar formats. By default the driver in-
stances are single-planar. This can be changed by setting the multiplanar module option, see
section 1 for more details on that option.

If the driver instance is using the multiplanar formats/API, then the first single planar format
(YUYV) and the multiplanar NV16M and NV61M formats the will have a plane that has a non-
zero data_ offset of 128 bytes. It is rare for data offset to be non-zero, so this is a useful feature
for testing applications.

Video output will also honor any data offset that the application set.

1.1. The media subsystem 219

Linux Media Documentation

Capture Overlay

Note: capture overlay support is implemented primarily to test the existing V4L2 capture over-
lay API. In practice few if any GPUs support such overlays anymore, and neither are they gener-
ally needed anymore since modern hardware is so much more capable. By setting flag 0x10000
in the node types module option the vivid driver will create a simple framebuffer device that can
be used for testing this API. Whether this API should be used for new drivers is questionable.

This driver has support for a destructive capture overlay with bitmap clipping and list clipping
(up to 16 rectangles) capabilities. Overlays are not supported for multiplanar formats. It also
honors the struct v412 window field setting: if it is set to FIELD TOP or FIELD BOTTOM and
the capture setting is FIELD ALTERNATE, then only the top or bottom fields will be copied to
the overlay.

The overlay only works if you are also capturing at that same time. This is a vivid limitation
since it copies from a buffer to the overlay instead of filling the overlay directly. And if you are
not capturing, then no buffers are available to fill.

In addition, the pixelformat of the capture format and that of the framebuffer must be the same
for the overlay to work. Otherwise VIDIOC OVERLAY will return an error.

In order to really see what it going on you will need to create two vivid instances: the first with
a framebuffer enabled. You configure the capture overlay of the second instance to use the
framebuffer of the first, then you start capturing in the second instance. For the first instance
you setup the output overlay for the video output, turn on video looping and capture to see the
blended framebuffer overlay that’s being written to by the second instance. This setup would
require the following commands:

$ sudo modprobe vivid n devs=2 node types=0x10101,0x1
$ v412-ctl -dl1 --find-fb

/dev/fbl is the framebuffer associated with base address 0x12800000
sudo v412-ctl -d2 --set-fbuf fb=1

v41l2-ctl -dl --set-fbuf fb=1

v41l2-ctl -dO --set-fmt-video=pixelformat='AR15"
v4l2-ctl -dl --set-fmt-video-out=pixelformat='AR15"'
v4l2-ctl -d2 --set-fmt-video=pixelformat='AR15"
v412-ctl -do -i2

v412-ctl -d2 -i2

v4l2-ctl -d2 -c horizontal movement=4

v412-ctl -d1 --overlay=1

v4l2-ctl -d1 -c loop video=1

v412-ctl -d2 --stream-mmap --overlay=1

R S e C i A~ i~ e~

And from another console:

$ v412-ctl -d1 --stream-out-mmap

And yet another console:

$ qv4l2

and start streaming.

As you can see, this is not for the faint of heart...

220 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Output Overlay

Note: output overlays are primarily implemented in order to test the existing V4L2 output
overlay API. Whether this API should be used for new drivers is questionable.

This driver has support for an output overlay and is capable of:
* bitmap clipping,
* list clipping (up to 16 rectangles)
* chromakey
* source chromakey
* global alpha
* local alpha
* local inverse alpha

Output overlays are not supported for multiplanar formats. In addition, the pixelformat of the
capture format and that of the framebuffer must be the same for the overlay to work. Otherwise
VIDIOC OVERLAY will return an error.

Output overlays only work if the driver has been configured to create a framebuffer by setting
flag 0x10000 in the node types module option. The created framebuffer has a size of 720x576
and supports ARGB 1:5:5:5 and RGB 5:6:5.

In order to see the effects of the various clipping, chromakeying or alpha processing capabilities
you need to turn on video looping and see the results on the capture side. The use of the clipping,
chromakeying or alpha processing capabilities will slow down the video loop considerably as a
lot of checks have to be done per pixel.

CEC (Consumer Electronics Control)

If there are HDMI inputs then a CEC adapter will be created that has the same number of input
ports. This is the equivalent of e.g. a TV that has that number of inputs. Each HDMI output
will also create a CEC adapter that is hooked up to the corresponding input port, or (if there
are more outputs than inputs) is not hooked up at all. In other words, this is the equivalent of
hooking up each output device to an input port of the TV. Any remaining output devices remain
unconnected.

The EDID that each output reads reports a unique CEC physical address that is based on the
physical address of the EDID of the input. So if the EDID of the receiver has physical address
A.B.0.0, then each output will see an EDID containing physical address A.B.C.0 where C is 1 to
the number of inputs. If there are more outputs than inputs then the remaining outputs have a
CEC adapter that is disabled and reports an invalid physical address.

1.1. The media subsystem 221

Linux Media Documentation

Some Future Improvements

Just as a reminder and in no particular order:

Add a virtual alsa driver to test audio

Add virtual sub-devices and media controller support

Some support for testing compressed video

Add support to loop raw VBI output to raw VBI input

Add support to loop teletext sliced VBI output to VBI input

Fix sequence/field numbering when looping of video with alternate fields
Add support for V4L2 CID BG COLOR for video outputs

Add ARGBS888 overlay support: better testing of the alpha channel
Improve pixel aspect support in the tpg code by passing a real v412 fract
Use per-queue locks and/or per-device locks to improve throughput

Add support to loop from a specific output to a specific input across vivid instances

The SDR radio should use the same ‘frequencies’ for stations as the normal radio receiver,
and give back noise if the frequency doesn’t match up with a station frequency

Make a thread for the RDS generation, that would help in particular for the “Controls”
RDS Rx I/O Mode as the read-only RDS controls could be updated in real-time.

Changing the EDID should cause hotplug detect emulation to happen.

1.1.7 Digital TV driver-specific documentation

1.1.7.1 Avermedia DVB-T on BT878 Release Notes

February 14th 2006

Note: Several other Avermedia devices are supported. For a more broader and updated
content about that, please check:

https://linuxtv.org/wiki/index.php/AVerMedia

The Avermedia DVB-T

The Avermedia DVB-T is a budget PCI DVB card. It has 3 inputs:

RF Tuner Input
Composite Video Input (RCA Jack)
SVIDEO Input (Mini-DIN)

222

Chapter 1. Media subsystem admin and user guide

https://linuxtv.org/wiki/index.php/AVerMedia

Linux Media Documentation

The RF Tuner Input is the input to the tuner module of the card. The Tuner is otherwise known
as the “Frontend” . The Frontend of the Avermedia DVB-T is a Microtune 7202D. A timely post
to the linux-dvb mailing list ascertained that the Microtune 7202D is supported by the sp887x
driver which is found in the dvb-hw CVS module.

The DVB-T card is based around the BT878 chip which is a very common multimedia bridge
and often found on Analogue TV cards. There is no on-board MPEG2 decoder, which means
that all MPEG2 decoding must be done in software, or if you have one, on an MPEG2 hardware
decoding card or chipset.

Getting the card going

At this stage, it has not been able to ascertain the functionality of the remaining device nodes
in respect of the Avermedia DVBT. However, full functionality in respect of tuning, receiving
and supplying the MPEG2 data stream is possible with the currently available versions of the
driver. It may be possible that additional functionality is available from the card (i.e. viewing
the additional analogue inputs that the card presents), but this has not been tested yet. If I get
around to this, I'll update the document with whatever I find.

To power up the card, load the following modules in the following order:
* modprobe bttv (normally loaded automatically)
* modprobe dvb-bt8xx (or place dvb-bt8xx in /etc/modules)

Insertion of these modules into the running kernel will activate the appropriate DVB device
nodes. It is then possible to start accessing the card with utilities such as scan, tzap, dvbstream
etc.

The frontend module sp887x.0, requires an external firmware. Please use the command
“get dvb firmware sp887x” to download it. Then copy it to /usr/lib/hotplug/firmware or
/lib/firmware/ (depending on configuration of firmware hotplug).

Known Limitations

At present I can say with confidence that the frontend tunes via /dev/dvb/adapter{x}/frontend0
and supplies an MPEG2 stream via /dev/dvb/adapter{x}/dvr0. I have not tested the functionality
of any other part of the card yet. I will do so over time and update this document.

There are some limitations in the i2c layer due to a returned error message inconsistency.
Although this generates errors in dmesg and the system logs, it does not appear to affect the
ability of the frontend to function correctly.

1.1. The media subsystem 223

Linux Media Documentation

Further Update

dvbstream and VideoLAN Client on windows works a treat with DVB, in fact this is currently
serving as my main way of viewing DVB-T at the moment. Additionally, VLC is happily decoding
HDTV signals, although the PC is dropping the odd frame here and there - I assume due to
processing capability - as all the decoding is being done under windows in software.

Many thanks to Nigel Pearson for the updates to this document since the recent revision of the
driver.

1.1.7.2 How to get the bt8xx cards working

Authors: Richard Walker, Jamie Honan, Michael Hunold, Manu Abraham, Uwe Bugla, Michael
Krufky

General information

This class of cards has a bt878a as the PCI interface, and require the bttv driver for accessing
the i2c¢ bus and the gpio pins of the bt8xx chipset.

Please see Documentation/admin-guide/media/bttv-cardlist.rst for a complete list of Cards
based on the Conexant Bt8xx PCI bridge supported by the Linux Kernel.

In order to be able to compile the kernel, some config options should be enabled:

./scripts/config -e PCI

./scripts/config -e INPUT

./scripts/config -m I2C

./scripts/config -m MEDIA SUPPORT
./scripts/config -e MEDIA PCI SUPPORT
./scripts/config -e MEDIA ANALOG TV SUPPORT
./scripts/config -e MEDIA DIGITAL TV SUPPORT
./scripts/config -e MEDIA RADIO_SUPPORT
./scripts/config -e RC_CORE
./scripts/config -m VIDEO BT848
./scripts/config -m DVB BT8XX

If you want to automatically support all possible variants of the Bt8xx cards, you should also
do:

./scripts/config -e MEDIA SUBDRV_AUTOSELECT

Note: Please use the following options with care as deselection of drivers which are in fact
necessary may result in DVB devices that cannot be tuned due to lack of driver support.

If your goal is to just support an specific board, you may, instead, disable ME-
DIA SUBDRV AUTOSELECT and manually select the frontend drivers required by your board.
With that, you can save some RAM.

You can do that by calling make xconfig/gconfig/menuconfig and look at the options on those
menu options (only enabled if Autoselect ancillary drivers is disabled:

224 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

1) Device drivers => Multimedia support => Customize TV tuners
2) Device drivers => Multimedia support => Customize DVB frontends

Then, on each of the above menu, please select your card-specific frontend and tuner modules.

Loading Modules

Regular case: If the bttv driver detects a bt8xx-based DVB card, all frontend and backend
modules will be loaded automatically.

Exceptions are:
* Old TV cards without EEPROMs, sharing a common PCI subsystem ID;
* Old TwinHan DST cards or clones with or without CA slot and not containing an Eeprom.

In the following cases overriding the PCI type detection for bttv and for dvb-bt8xx drivers by
passing modprobe parameters may be necessary.

Running TwinHan and Clones

As shown at Documentation/admin-guide/media/bttv-cardlist.rst, TwinHan and clones use
card=113 modprobe parameter. So, in order to properly detect it for devices without EEPROM,
you should use:

$ modprobe bttv card=113
$ modprobe dst

Useful parameters for verbosity level and debugging the dst module:

verbose=0: messages are disabled

1: only error messages are displayed

2: notifications are displayed

3: other useful messages are displayed

4: debug setting
dst addons=0: card is a free to air (FTA) card only

0x20: card has a conditional access slot for scrambled channels
dst algo=0: (default) Software tuning algorithm

1: Hardware tuning algorithm

)«

The autodetected values are determined by the cards’ “response string”.
In your logs see f. ex.: dst get device id: Recognize [DSTMCI].

For bug reports please send in a complete log with verbose=4 activated. Please also see
Documentation/admin-guide/media/ci.rst.

1.1. The media subsystem 225

Linux Media Documentation

Running multiple cards

See Documentation/admin-guide/media/bttv-cardlist.rst for a complete list of Card ID. Some
examples:

Brand name ID
Pinnacle PCTV Sat 94
Nebula Electronics Digi TV 104
pcHDTV HD-2000 TV 112
Twinhan DST and clones 113

Avermedia AverTV DVB-T 77: 123
Avermedia AverTV DVB-T 761 124
DViCO FusionHDTV DVB-T Lite | 128
DViCO FusionHDTV 5 Lite 135

Note: When you have multiple cards, the order of the card ID should match the order where
they’re detected by the system. Please notice that removing/inserting other PCI cards may
change the detection order.

Example:

$ modprobe bttv card=113 card=135

In case of further problems please subscribe and send questions to the mailing list: linux-
media@vger.kernel.org.

Probing the cards with broken PCl subsystem ID

There are some TwinHan cards whose EEPROM has become corrupted for some reason. The
cards do not have a correct PCI subsystem ID. Still, it is possible to force probing the cards
with:

$ echo 109e 0878 $subvendor $subdevice > \
/sys/bus/pci/drivers/bt878/new id

The two numbers there are:

109e: PCI_VENDOR ID BROOKTREE
0878: PCI DEVICE ID BROOKTREE 878

226 Chapter 1. Media subsystem admin and user guide

mailto:linux-media@vger.kernel.org
mailto:linux-media@vger.kernel.org

Linux Media Documentation

1.1.7.3 Firmware files for ImedmoO04 cards

To extract firmware for the DM04/QQBOX you need to copy the following file(s) to this directory.

For DM04+/QQBOX LME2510C (Sharp 7395 Tuner)

The Sharp 7395 driver can be found in windows/system32/drivers
US2A0D.sys (dated 17 Mar 2009)

and run:

scripts/get dvb firmware 1me2510c_ s7395

will produce dvb-usb-lme2510c-s7395.fw

An alternative but older firmware can be found on the driver disk DVB-S EN 3.5A in
BDADriver/driver

LMEBDA DVBS7395C.sys (dated 18 Jan 2008)

and run:

./get dvb firmware 1me2510c s7395 old

will produce dvb-usb-lme2510c¢-s7395.fw
The LG firmware can be found on the driver disk DM04+ 5.1A[LG] in BDADriver/driver

For DM04 LME2510 (LG Tuner)

LMEBDA DVBS.sys (dated 13 Nov 2007)

and run:

./get _dvb firmware 1me2510 lg

will produce dvb-usb-lme2510-1g.fw

Other LG firmware can be extracted manually from US280D.sys only found in win-
dows/system32/drivers

dd if=US280D.sys ibs=1 skip=42360 count=3924 of=dvb-usb-lme2510-1g.fw

For DM04 LME2510C (LG Tuner)

dd if=US280D.sys ibs=1 skip=35200 count=3850 of=dvb-usb-1me2510c-1g.fw

The Sharp 0194 tuner driver can be found in windows/system32/drivers
US290D.sys (dated 09 Apr 2009)

1.1. The media subsystem 227

Linux Media Documentation

For LME2510

dd if=US290D.sys ibs=1 skip=36856 count=3976 of=dvb-usb-1me2510-s0194.fw

For LME2510C

dd if=US290D.sys ibs=1 skip=33152 count=3697 of=dvb-usb-1me2510c-s0194. fw

The m88rs2000 tuner driver can be found in windows/system32/drivers

US2BO0D.sys (dated 29 Jun 2010)

dd if=US2BOD.sys ibs=1 skip=34432 count=3871 of=dvb-usb-1me2510c-rs2000. fw

We need to modify id of rs2000 firmware or it will warm boot id 3344:1120.

echo -ne \\xFO\\x22 | dd conv=notrunc bs=1 count=2 seek=266 of=dvb-usb-1lme2510c-rs2000.
< fw

Copy the firmware file(s) to /lib/firmware

1.1.7.4 Opera firmware

Author: Marco Gittler <g.marco@freenet.de>

To extract the firmware for the Opera DVB-S1 USB-Box you need to copy the files:
2830SCap2.sys 2830SLoad?2.sys

from the windriver disk into this directory.

Then run:

scripts/get dvb firmware operal

and after that you have 2 files:
dvb-usb-opera-01.fw dvb-usb-operal-fpga-01.fw
in here.

Copy them into /lib/firmware/ .

After that the driver can load the firmware (if you have enabled firmware loading in kernel
config and have hotplug running).

228 Chapter 1. Media subsystem admin and user guide

mailto:g.marco@freenet.de

Linux Media Documentation

1.1.7.5 How to set up the Technisat/B2C2 Flexcop devices

Note: This documentation is outdated.

Author: Uwe Bugla <uwe.bugla@gmx.de> August 2009

Find out what device you have

Important Notice: The driver does NOT support Technisat USB 2 devices!

First start your linux box with a shipped kernel:

lspci -vvv for a PCI device (lsusb -vvv for an USB device) will show you for example:
02:0b.0 Network controller: Techsan Electronics Co Ltd B2C2 FlexCopII DVB chip /
Technisat SkyStar2 DVB card (rev 02)

dmesg | grep frontend may show you for example:
DVB: registering frontend 0 (Conexant (CX24123/CX24109)...

Kernel compilation:

If the Flexcop / Technisat is the only DVB / TV / Radio device in your box get rid of unnecessary
modules and check this one:

Multimedia support => Customise analog and hybrid tuner modules to build

In this directory uncheck every driver which is activated there (except Simple tuner support
for ATSC 3rd generation only -> see case 9 please).

Then please activate:
* Main module part:

Multimedia support => DVB/ATSC adapters => Technisat/B2C2 FlexcopII(b) and
FlexCopIII adapters

1) => Technisat/B2C2 Air/Sky/Cable2PC PCI (PCI card) or

2) => Technisat/B2C2 Air/Sky/Cable2PC USB (USB 1.1 adapter) and for troubleshoot-
ing purposes:

3) => Enable debug for the B2C2 FlexCop drivers
* Frontend / Tuner / Demodulator module part:

Multimedia support => DVB/ATSC adapters => Customise the frontend modules
to build Customise DVB frontends =>

- SkyStar DVB-S Revision 2.3:
1) => Zarlink VP310/MT312/ZL10313 based
2) => Generic I2C PLL based tuners

- SkyStar DVB-S Revision 2.6:

1.1. The media subsystem 229

mailto:uwe.bugla@gmx.de

Linux Media Documentation

1) => ST STV0299 based

2) => Generic I2C PLL based tuners

SkyStar DVB-S Revision 2.7:

1) => Samsung S5H1420 based

2) => Integrant ITD1000 Zero IF tuner for DVB-S/DSS
3) => ISL6421 SEC controller

SkyStar DVB-S Revision 2.8:

1) => Conexant (CX24123 based

2) => Conexant (CX24113/CX24128 tuner for DVB-S/DSS
3) => ISL6421 SEC controller

AirStar DVB-T card:

1) => Zarlink MT352 based

2) => Generic I2C PLL based tuners

CableStar DVB-C card:

1) => ST STV0297 based

2) => Generic I2C PLL based tuners

- AirStar ATSC card 1st generation:
1) => Broadcom BCM3510
- AirStar ATSC card 2nd generation:
1) => NxtWave Communications NXT2002/NXT2004 based
2) => Generic I2C PLL based tuners
- AirStar ATSC card 3rd generation:
1) => LG Electronics LGDT3302/LGDT3303 based

2) Multimedia support => Customise analog and hybrid tuner modules to
build => Simple tuner support

1.1.7.6 TechnoTrend/Hauppauge DEC USB Driver

Driver Status

Supported:

* DEC2000-t
DEC2450-t
DEC3000-s

Video Streaming

Audio Streaming

230 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

» Section Filters

* Channel Zapping

* Hotplug firmware loader
To Do:

* Tuner status information

* DVB network interface

* Streaming video PC->DEC

* Conax support for 2450-t

Getting the Firmware

To download the firmware, use the following commands:

scripts/get dvb firmware dec2000t
scripts/get dvb firmware dec2540t
scripts/get dvb firmware dec3000s

Hotplug Firmware Loading

Since 2.6 kernels, the firmware is loaded at the point that the driver module is loaded.

Copy the three files downloaded above into the /usr/lib/hotplug/firmware or /lib/firmware direc-
tory (depending on configuration of firmware hotplug).

1.1.7.7 Zoran 364xx based USB webcam module

site: http://royale.zerezo.com/zr364xx/

mail: royale@zerezo.com

Introduction

This brings support under Linux for the Aiptek PocketDV 3300 and similar devices in webcam
mode. If you just want to get on your PC the pictures and movies on the camera, you should
use the usb-storage module instead.

The driver works with several other cameras in webcam mode (see the list below).
Possible chipsets are : ZR36430 (ZR36430BGC) and maybe ZR36431, ZR36440, ZR36442...
You can try the experience changing the vendor/product ID values (look at the source code).

You can get these values by looking at /var/log/messages when you plug your camera, or by
typing : cat /sys/kernel/debug/usb/devices.

1.1. The media subsystem 231

http://royale.zerezo.com/zr364xx/
mailto:royale@zerezo.com

Linux Media Documentation

Install

In order to use this
options:

driver, you must compile it with your kernel, with the following config

./scripts/config -e USB

./scripts/config -m MEDIA SUPPORT
./scripts/config -e MEDIA USB SUPPORT
./scripts/config -e MEDIA CAMERA SUPPORT
./scripts/config -m USB_ZR364XX

Usage

modprobe zr364xx debug=X mode=Y

* debug : set to 1 to enable verbose debug messages

* mode : 0 = 320x240, 1 = 160x120, 2 = 640x480

You can then use the camera with V4L2 compatible applications, for example Ekiga.

To capture a single image, try this: dd if=/dev/video0 of=test.jpg bs=1M count=1

links

http://mxhaard.free.fr/ (support for many others cams including some Aiptek PocketDV) http:
/[www.harmwal.nl/pccam880/ (this project also supports cameras based on this chipset)

Supported devices

Vendor | Product | Distributor Model

0x08ca | 0x0109 | Aiptek PocketDV 3300
0x08ca | 0x0109 | Maxell Maxcam PRO DV3
0x041e | 0x4024 | Creative PC-CAM 880
0x0d64 | 0x0108 | Aiptek Fidelity 3200
0x0d64 | 0x0108 | Praktica DCZ1.3S

0x0d64 | 0x0108 | Genius Digital Camera (?)
0x0d64 | 0x0108 | DXG Technology | Fashion Cam
0x0546 | 0x3187 | Polaroid iON 230

0x0d64 | 0x3108 | Praktica Exakta DC 2200
0x0d64 | 0x3108 | Genius G-Shot D211
0x0595 | 0x4343 | Concord Eye-Q Duo 1300
0x0595 | 0x4343 | Concord Eye-Q Duo 2000
0x0595 | 0x4343 | Fujifilm EX-10

0x0595 | 0x4343 | Ricoh RDC-6000

0x0595 | 0x4343 | Digitrex DSC 1300

0x0595 | 0x4343 | Firstline FDC 2000

0x0bb0 | 0x500d | Concord EyeQ Go Wireless

Continued on next page

232

Chapter 1. Media subsystem admin and user guide

http://mxhaard.free.fr/
http://www.harmwal.nl/pccam880/
http://www.harmwal.nl/pccam880/

Linux Media Documentation

Table 20 - continued from previous page

Vendor | Product | Distributor Model

0x0feb | 0x2004 | CRS Electronic | 3.3 Digital Camera
0x0feb | 0x2004 | Packard Bell DSC-300

0x055f | 0xb500 | Mustek MDC 3000
0x08ca | 0x2062 | Aiptek PocketDV 5700
0x052b | 0x1al18 | Chiphead Megapix V12
0x04c8 | 0x0729 | Konica Revio 2

0x04f2 | 0xa208 | Creative PC-CAM 850
0x0784 | 0x0040 | Traveler Slimline X5
0x06d6 | 0x0034 | Trust Powerc@m 750
0x0al7 | 0x0062 | Pentax Optio 50L
0x06d6 | 0x003b | Trust Powerc@m 970Z
0x0al7 | 0x004e | Pentax Optio 50

0x041e | 0x405d | Creative DiVi CAM 516
0x08ca | 0x2102 | Aiptek DV T300

0x06d6 | 0x003d | Trust Powerc@m 910Z

1.1.8 CEC driver-specific documentation
1.1.8.1 Pulse-Eight CEC Adapter driver

The pulse8-cec driver implements the following module option:

persistent_config

By default this is off, but when set to 1 the driver will store the current settings to the device’s
internal eeprom and restore it the next time the device is connected to the USB port.

Copyright © 1999-2020 : LinuxTV Developers

This documentation is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

For more details see the file COPYING in the source distribution of Linux.

1.1. The media subsystem 233

Linux Media Documentation

234 Chapter 1. Media subsystem admin and user guide

CHAPTER
TWO

MEDIA SUBSYSTEM KERNEL INTERNAL API

This section contains usage information about media subsystem and its supported drivers.
Please see:
Documentation/admin-guide/media/index.rst

» for usage information about media subsystem and supported drivers;
Documentation/userspace-api/media/index.rst

» for the userspace APIs used on media devices.

2.1 Media Subsystem Profile

2.1.1 Overview
The media subsystem covers support for a variety of devices: stream capture, analog and digital
TV streams, cameras, remote controllers, HDMI CEC and media pipeline control.
It covers, mainly, the contents of those directories:

* drivers/media

* drivers/staging/media

* Documentation/admin-guide/media

* Documentation/driver-api/media

* Documentation/userspace-api/media

« Documentation/devicetree/bindings/media/!

* include/media

Both media userspace and Kernel APIs are documented and the documentation must be kept
in sync with the API changes. It means that all patches that add new features to the subsystem
must also bring changes to the corresponding API files.

Due to the size and wide scope of the media subsystem, media’s maintainership model is to
have sub-maintainers that have a broad knowledge of a specific aspect of the subsystem. It is

! Device tree bindings are maintained by the OPEN FIRMWARE AND FLATTENED DEVICE TREE BINDINGS
maintainers (see the MAINTAINERS file). So, changes there must be reviewed by them before being merged via
the media subsystem’s development tree.

235

Linux Media Documentation

the sub-maintainers’ task to review the patches, providing feedback to users if the patches are
following the subsystem rules and are properly using the media kernel and userspace APIs.

Patches for the media subsystem must be sent to the media mailing list at linux-
media@vger.kernel.org as plain text only e-mail. Emails with HTML will be automatically re-
jected by the mail server. It could be wise to also copy the sub-maintainer(s).

Media’s workflow is heavily based on Patchwork, meaning that, once a patch is submitted, the
e-mail will first be accepted by the mailing list server, and, after a while, it should appear at:

* https://patchwork.linuxtv.org/project/linux-media/list/

If it doesn’t automatically appear there after a few minutes, then probably something went

wrong on your submission. Please check if the email is in plain text” only and if your emailer is
not mangling whitespaces before complaining or submitting them again.

You can check if the mailing list server accepted your patch, by looking at:

* https://lore.kernel.org/linux-media/

2.1.1.1 Media maintainers

At the media subsystem, we have a group of senior developers that are responsible for doing
the code reviews at the drivers (also known as sub-maintainers), and another senior developer
responsible for the subsystem as a whole. For core changes, whenever possible, multiple media
maintainers do the review.

The media maintainers that work on specific areas of the subsystem are:
* Remote Controllers (infrared): Sean Young <sean@mess.org>

HDMI CEC: Hans Verkuil <hverkuil@xs4all.nl>

Media controller drivers: Laurent Pinchart <laurent.pinchart@ideasonboard.com>

ISP, v412-async, v412-fwnode, v412-flash-led-class and Sensor drivers: Sakari Ailus
<sakari.ailus@linux.intel.com>

V4L2 drivers and core V4L2 frameworks: Hans Verkuil <hverkuil@xs4all.nl>
The subsystem maintainer is: Mauro Carvalho Chehab <mchehab@kernel.org>

Media maintainers may delegate a patch to other media maintainers as needed. On such case,
checkpatch’s delegate field indicates who’s currently responsible for reviewing a patch.

2.1.2 Submit Checklist Addendum

Patches that change the Open Firmware/Device Tree bindings must be reviewed by the Device
Tree maintainers. So, DT maintainers should be Cc:ed when those are submitted via device-
tree@vger.kernel.org mailing list.

There is a set of compliance tools at https://git.linuxtv.org/v4l-utils.git/ that should be used in
order to check if the drivers are properly implementing the media APIs:

21f your email contains HTML, the mailing list server will simply drop it, without any further notice.

236 Chapter 2. Media subsystem kernel internal API

mailto:linux-media@vger.kernel.org
mailto:linux-media@vger.kernel.org
https://patchwork.linuxtv.org/project/linux-media/list/
https://lore.kernel.org/linux-media/
mailto:sean@mess.org
mailto:hverkuil@xs4all.nl
mailto:laurent.pinchart@ideasonboard.com
mailto:sakari.ailus@linux.intel.com
mailto:hverkuil@xs4all.nl
mailto:mchehab@kernel.org
https://git.linuxtv.org/v4l-utils.git/

Linux Media Documentation

Type Tool

V412 drivers® v41l2-compliance

VA4L2 virtual drivers | contrib/test/test-media
CEC drivers cec-compliance

Other compilance tools are under development to check other parts of the subsystem.
Those tests need to pass before the patches go upstream.

Also, please notice that we build the Kernel with:

make CF=-D_CHECK ENDIAN _ CONFIG DEBUG SECTION MISMATCH=y C=1 W=1 CHECK=check script

Where the check script is:

#!/bin/bash
/devel/smatch/smatch -p=kernel $@ >&2
/devel/sparse/sparse $@ >&2

Be sure to not introduce new warnings on your patches without a very good reason.

2.1.2.1 Style Cleanup Patches

Style cleanups are welcome when they come together with other changes at the files where the
style changes will affect.

We may accept pure standalone style cleanups, but they should ideally be one patch for the
whole subsystem (if the cleanup is low volume), or at least be grouped per directory. So, for
example, if you're doing a big cleanup change set at drivers under drivers/media, please send
a single patch for all drivers under drivers/media/pci, another one for drivers/media/usb and so
on.

2.1.2.2 Coding Style Addendum

Media development uses checkpatch.pl on strict mode to verify the code style, e.g.:

$./scripts/checkpatch.pl --strict --max-line-length=80

In principle, patches should follow the coding style rules, but exceptions are allowed if there
are good reasons. On such case, maintainers and reviewers may question about the rationale
for not addressing the checkpatch.pl.

Please notice that the goal here is to improve code readability. On a few cases, checkpatch.pl
may actually point to something that would look worse. So, you should use good sense.

Note that addressing one checkpatch.pl issue (of any kind) alone may lead to having longer
lines than 80 characters per line. While this is not strictly prohibited, efforts should be made
towards staying within 80 characters per line. This could include using re-factoring code that
leads to less indentation, shorter variable or function names and last but not least, simply wrap-
ping the lines.

In particular, we accept lines with more than 80 columns:

® The v412-compliance also covers the media controller usage inside V4L2 drivers.

2.1. Media Subsystem Profile 237

Linux Media Documentation

* on strings, as they shouldn’t be broken due to line length limits;

* when a function or variable name need to have a big identifier name, which keeps hard to
honor the 80 columns limit;

* on arithmetic expressions, when breaking lines makes them harder to read;

* when they avoid a line to end with an open parenthesis or an open bracket.

2.1.3 Key Cycle Dates

New submissions can be sent at any time, but if they intend to hit the next merge window they
should be sent before -rc5, and ideally stabilized in the linux-media branch by -rc6.

2.1.4 Review Cadence

Provided that your patch is at https://patchwork.linuxtv.org, it should be sooner or later han-
dled, so you don’t need to re-submit a patch.

Except for bug fixes, we don’t usually add new patches to the development tree between -rc6
and the next -rcl.

Please notice that the media subsystem is a high traffic one, so it could take a while for us to be
able to review your patches. Feel free to ping if you don’t get a feedback in a couple of weeks or
to ask other developers to publicly add Reviewed-by and, more importantly, Tested-by: tags.

Please note that we expect a detailed description for Tested-by:, identifying what boards were
used at the test and what it was tested.

2.2 VideodlLinux devices

2.2.1 Introduction

The V4L2 drivers tend to be very complex due to the complexity of the hardware: most devices
have multiple ICs, export multiple device nodes in /dev, and create also non-V4L2 devices such
as DVB, ALSA, FB, I2C and input (IR) devices.

Especially the fact that VAL2 drivers have to setup supporting ICs to do audio/video mux-
ing/encoding/decoding makes it more complex than most. Usually these ICs are connected
to the main bridge driver through one or more I12C buses, but other buses can also be used.
Such devices are called ‘sub-devices’.

For a long time the framework was limited to the video device struct for creating V4L device
nodes and video buf for handling the video buffers (note that this document does not discuss
the video buf framework).

This meant that all drivers had to do the setup of device instances and connecting to sub-
devices themselves. Some of this is quite complicated to do right and many drivers never did
do it correctly.

There is also a lot of common code that could never be refactored due to the lack of a framework.

238 Chapter 2. Media subsystem kernel internal API

https://patchwork.linuxtv.org

Linux Media Documentation

So this framework sets up the basic building blocks that all drivers need and this same frame-
work should make it much easier to refactor common code into utility functions shared by all
drivers.

A good example to look at as a reference is the v412-pci-skeleton.c source that is available in
samples/v4l/. It is a skeleton driver for a PCI capture card, and demonstrates how to use the
V4L2 driver framework. It can be used as a template for real PCI video capture driver.

2.2.2 Structure of a V4L driver

All drivers have the following structure:
1) A struct for each device instance containing the device state.
2) A way of initializing and commanding sub-devices (if any).

3) Creating V4L2 device nodes (/dev/videoX, /dev/vbiX and /dev/radioX) and keeping track of
device-node specific data.

4) Filehandle-specific structs containing per-filehandle data;
5) video buffer handling.

This is a rough schematic of how it all relates:

device instances

+-sub-device instances

|
\-V4L2 device nodes

\-filehandle instances

2.2.3 Structure of the V4L2 framework

The framework closely resembles the driver structure: it has a v412 device struct for the device
instance data, a v412 subdev struct to refer to sub-device instances, the video device struct
stores V4L2 device node data and the v412 fh struct keeps track of filehandle instances.

The VAL2 framework also optionally integrates with the media framework. If a driver sets the
struct v412 device mdev field, sub-devices and video nodes will automatically appear in the
media framework as entities.

2.2.4 Video device’ s internal representation

The actual device nodes in the /dev directory are created using the video device struct
(v412-dev.h). This struct can either be allocated dynamically or embedded in a larger struct.

To allocate it dynamically use video device alloc():

struct video device *vdev = video device alloc();

if (vdev == NULL)
return -ENOMEM;

2.2. Video4lLinux devices 239

Linux Media Documentation

vdev->release = video device release;

If you embed it in a larger struct, then you must set the release() callback to your own function:

struct video device *vdev = &my vdev->vdev;

vdev->release = my vdev release;

The release() callback must be set and it is called when the last user of the video device exits.

The default video device release() callback currently just calls kfree to free the allocated
memory.

There is also a video device release empty() function that does nothing (is empty) and
should be used if the struct is embedded and there is nothing to do when it is released.

You should also set these fields of video device:
* video device->v4l2 dev: must be set to the v412 device parent device.
* video device->name: set to something descriptive and unique.

* video device->vil dir: set this to VFL DIR RX for capture devices (VFL DIR RX has value
0, so this is normally already the default), set to VFL DIR TX for output devices and
VFL DIR M2M for mem2mem (codec) devices.

* video device->fops: settothe v412 file operations struct.

* video device->ioctl ops: if you use the v412 ioctl ops to simplify ioctl maintenance
(highly recommended to use this and it might become compulsory in the future!), then
set this to your v412 ioctl ops struct. The video device->vil type and video device-
>vfl dir fields are used to disable ops that do not match the type/dir combination. E.g. VBI
ops are disabled for non-VBI nodes, and output ops are disabled for a capture device. This
makes it possible to provide just one v412 ioctl ops struct for both vbi and video nodes.

* video device->lock: leave to NULL if you want to do all the locking in the driver. Otherwise
you give it a pointer to a struct mutex lock and before the video device->unlocked ioctl
file operation is called this lock will be taken by the core and released afterwards. See the
next section for more details.

* video device->queue: a pointer to the struct vb2 queue associated with this device
node. If queue is not NULL, and queue->lock is not NULL, then queue->lock is used for
the queuing ioctls (VIDIOC REQBUFS, CREATE BUFS, QBUF, DQBUF, QUERYBUF, PREPARE_BUF,
STREAMON and STREAMOFF) instead of the lock above. That way the vb2 queuing framework
does not have to wait for other ioctls. This queue pointer is also used by the vb2 helper
functions to check for queuing ownership (i.e. is the filehandle calling it allowed to do the
operation).

* video device->prio: keeps track of the priorities. Used to implement VIDIOC G PRIORITY
and VIDIOC S PRIORITY. If left to NULL, then it will use the struct v412 prio state in
v412 device. If you want to have a separate priority state per (group of) device node(s),
then you can point it to your own struct v412 prio state.

* video device->dev parent: you only set this if v412 device was registered with NULL as
the parent device struct. This only happens in cases where one hardware device has
multiple PCI devices that all share the same v412 device core.

240 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

The cx88 driver is an example of this: one core v412 device struct, but it is used by both
a raw video PCI device (cx8800) and a MPEG PCI device (cx8802). Since the v412 device
cannot be associated with two PCI devices at the same time it is setup without a parent
device. But when the struct video device is initialized you do know which parent PCI
device to use and so you set dev_device to the correct PCI device.

If you use v41l2 ioctl ops, then you should set video device->unlocked ioctl to
video ioctl2() inyour v41l2 file operations struct.

In some cases you want to tell the core that a function you had specified in your
v412 ioctl ops should be ignored. You can mark such ioctls by calling this function before
video register device() is called:

v412 disable ioctl (vdev, cmd).

This tends to be needed if based on external factors (e.g. which card is being used) you want
to turns off certain features in v412 ioctl ops without having to make a new struct.

The v412 file operations struct is a subset of file operations. The main difference is that
the inode argument is omitted since it is never used.

If integration with the media framework is needed, you must initialize the media entity struct
embedded in the video device struct (entity field) by calling media entity pads init():

struct media_pad *pad = &my vdev->pad;
int err;

err = media entity pads init(&vdev->entity, 1, pad);

The pads array must have been previously initialized. There is no need to manually set the
struct media entity type and name fields.

A reference to the entity will be automatically acquired/released when the video device is
opened/closed.

2.2.4.1 ioctls and locking

The V4L core provides optional locking services. The main service is the lock field in struct
video device, which is a pointer to a mutex. If you set this pointer, then that will be used by
unlocked ioctl to serialize all ioctls.

If you are using the videobufZ2 framework, then there is a second lock that you can set:
video device->queue->lock. If set, then this lock will be used instead of video device->lock
to serialize all queuing ioctls (see the previous section for the full list of those ioctls).

The advantage of using a different lock for the queuing ioctls is that for some drivers (particu-
larly USB drivers) certain commands such as setting controls can take a long time, so you want
to use a separate lock for the buffer queuing ioctls. That way your VIDIOC DQBUF doesn’t stall
because the driver is busy changing the e.g. exposure of the webcam.

Of course, you can always do all the locking yourself by leaving both lock pointers at NULL.

If you use the old videobuf framework then you must pass the video device->lock to the
videobuf queue initialize function: if videobuf has to wait for a frame to arrive, then it will
temporarily unlock the lock and relock it afterwards. If your driver also waits in the code,
then you should do the same to allow other processes to access the device node while the first
process is waiting for something.

2.2. Video4lLinux devices 241

Linux Media Documentation

In the case of videobuf2 you will need to implement the wait prepare() and wait finish()
callbacks to unlock/lock if applicable. If you use the queue->1lock pointer, then you can use the
helper functions vb2 ops wait prepare() and vb2 ops wait finish().

The implementation of a hotplug disconnect should also take the lock from video device before
calling v412 device disconnect. If you are also using video device->queue->lock, then you
have to first lock video device->queue->lock followed by video device->lock. That way you
can be sure no ioctl is running when you call v412 device disconnect().

2.2.4.2 Video device registration

Next you register the video device with video register device(). This will create the char-
acter device for you.

err = video register device(vdev, VFL TYPE VIDEO, -1);

if (err) {
video device release(vdev); /* or kfree(my vdev); */
return err;

}

If the v412 device parent device has a not NULL mdev field, the video device entity will be
automatically registered with the media device.

Which device is registered depends on the type argument. The following types exist:

vfl devnode type | Device name Usage

VFL TYPE VIDEO /dev/videoX for video input/output devices

VFL TYPE VBI /dev/vbiX for vertical blank data (i.e. closed captions, tele-
text)

VFL TYPE RADIO /dev/radioX for radio tuners

VFL TYPE SUBDEV | /dev/v4l-subdevX | for VAL2 subdevices

VFL _TYPE_SDR /dev/swradioX for Software Defined Radio (SDR) tuners

VFL TYPE TOUCH /dev/v4l-touchX | for touch sensors

The last argument gives you a certain amount of control over the device node number used (i.e.
the X in videoX). Normally you will pass -1 to let the v412 framework pick the first free number.
But sometimes users want to select a specific node number. It is common that drivers allow the
user to select a specific device node number through a driver module option. That number is
then passed to this function and video register device will attempt to select that device node
number. If that number was already in use, then the next free device node number will be
selected and it will send a warning to the kernel log.

Another use-case is if a driver creates many devices. In that case it can be useful to place
different video devices in separate ranges. For example, video capture devices start at 0, video
output devices start at 16. So you can use the last argument to specify a minimum device node
number and the v412 framework will try to pick the first free number that is equal or higher to
what you passed. If that fails, then it will just pick the first free number.

Since in this case you do not care about a warning about not being able to select the specified
device node number, you can call the function video register device no warn() instead.

Whenever a device node is created some attributes are also created for you. If you look in
/sys/class/video4linux you see the devices. Go into e.g. video0O and you will see ‘name’,

242 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

‘dev_debug’ and ‘index’ attributes. The ‘name’ attribute is the ‘name’ field of the video device
struct. The ‘dev_debug’ attribute can be used to enable core debugging. See the next section
for more detailed information on this.

The ‘index’ attribute is the index of the device node: for each call to video register device()
the index is just increased by 1. The first video device node you register always starts with index
0.

Users can setup udev rules that utilize the index attribute to make fancy device names (e.g.
‘mpegX’ for MPEG video capture device nodes).

After the device was successfully registered, then you can use these fields:
* video device->vil type: the device type passed to video register device().
* video device->minor: the assigned device minor number.
* video device->num: the device node number (i.e. the X in videoX).
* video device->index: the device index number.

If the registration failed, then you need to call video device release() to free the allocated
video device struct, or free your own struct if the video device was embedded in it. The
vdev->release() callback will never be called if the registration failed, nor should you ever
attempt to unregister the device if the registration failed.

2.2.4.3 video device debugging

The ‘dev_debug’ attribute that is created for each video, vbi, radio or swradio device in /sys/
class/video4linux/<devX>/ allows you to enable logging of file operations.

It is a bitmask and the following bits can be set:

Mask | Description

0x01 | Log the ioctl name and error code. VIDIOC (D)QBUF ioctls are only logged if bit
0x08 is also set.

0x02 | Log the ioctl name arguments and error code. VIDIOC (D)QBUF ioctls are only
logged if bit 0x08 is also set.

0x04 | Log the file operations open, release, read, write, mmap and get unmapped area.
The read and write operations are only logged if bit 0x08 is also set.

0x08 | Log the read and write file operations and the VIDIOC QBUF and VIDIOC DQBUF
ioctls.

0x10 | Log the poll file operation.

0x20 | Log error and messages in the control operations.

2.2. Video4lLinux devices 243

Linux Media Documentation

2.2.4.4 Video device cleanup
When the video device nodes have to be removed, either during the unload of the driver or
because the USB device was disconnected, then you should unregister them with:
video unregister device() (vdev);
This will remove the device nodes from sysfs (causing udev to remove them from /dev).

After video unregister device() returns no new opens can be done. However, in the case
of USB devices some application might still have one of these device nodes open. So after the
unregister all file operations (except release, of course) will return an error as well.

When the last user of the video device node exits, then the vdev->release() callback is called
and you can do the final cleanup there.

Don’t forget to cleanup the media entity associated with the video device if it has been initial-
ized:

media entity cleanup (&vdev->entity);

This can be done from the release callback.

2.2.4.5 helper functions

There are a few useful helper functions:
» file and video device private data
You can set/get driver private data in the video device struct using:
video get drvdata (vdev);
video set drvdata (vdev);
Note that you can safely call video set drvdata() before calling video register device().
And this function:
video devdata (struct file *file);
returns the video device belonging to the file struct.
The video devdata() function combines video get drvdata() with video devdata():
video drvdata (struct file *file);

You can go from a video device struct to the v412 device struct using:

struct v412 device *v412 dev = vdev->v412 dev;

* Device node name
The video device node kernel name can be retrieved using:
video device node name (vdev);

The name is used as a hint by userspace tools such as udev. The function should be used where
possible instead of accessing the video device::num and video device::minor fields.

244 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

2.2.4.6 video_device functions and data structures
enum vfl _devnode_type
type of V4L2 device node
Constants
VFL_TYPE_VIDEO for video input/output devices
VFL_TYPE_VBI for vertical blank data (i.e. closed captions, teletext)
VFL_TYPE_RADIO for radio tuners
VFL_TYPE_SUBDEV for V412 subdevices
VFL_TYPE_SDR for Software Defined Radio tuners
VFL_TYPE_TOUCH for touch sensors
VFL_TYPE_MAX number of VFL types, must always be last in the enum

enum vfl_devnode_direction
Identifies if a struct video device corresponds to a receiver, a transmitter or a mem-to-
mem device.

Constants

VFL_DIR_RX device is a receiver.

VFL_DIR_TX device is a transmitter.

VFL_DIR_M2M device is a memory to memory device.
Note

Ignored if enum vfl devnode typeis VFL TYPE SUBDEV.

enum v412_video_device_flags
Flags used by struct video device

Constants
V4L2 FL REGISTERED

indicates thata struct video device isregistered. Drivers can clear this flag if they
want to block all future device access. It is cleared by video unregister device.

V4L2 FL_USES V4L2 FH

indicates that file->private data points to struct v412 fh. This flag is set by the
core when v412 fh init() is called. All new drivers should use it.

V4AL2 FL_QUIRK INVERTED CROP

some old M2M drivers use g/s crop/cropcap incorrectly: crop and compose are
swapped. If this flag is set, then the selection targets are swapped in the
g/s_crop/cropcap functions in v412-ioctl.c. This allows those drivers to correctly im-
plement the selection API, but the old crop API will still work as expected in order to
preserve backwards compatibility. Never set this flag for new drivers.

V4L2 FL_SUBDEV_RO DEVNODE

2.2. Video4lLinux devices 245

Linux Media Documentation

indicates that the video device node is registered in read-only mode.
The flag only applies to device nodes registered for sub-devices, it is
set by the core when the sub-devices device nodes are registered with
v412 device register ro subdev nodes() and used by the sub-device ioctl
handler to restrict access to some ioctl calls.

struct v412_prio_state
stores the priority states

Definition

struct v412 prio_state {
atomic t prios[4];

}

Members
prios array with elements to store the array priorities

Description

Note: The size of prios array matches the number of priority types defined by enum
v4l2 priority.

void v412_prio_init(struct v4I2 prio state *global)
initializes a struct v412 prio state

Parameters
struct v412 prio_state *global pointer to struct v412 prio state

int v412_prio_change(struct v412 prio state *global, enum v4l2 priority *local, enum
v412 priority new)
changes the v412 file handler priority

Parameters

struct v412 prio_state *global pointer to the struct v412 prio state of the device
node.

enum v412 priority *local pointer to the desired priority, as defined by enum
v4l2 priority

enum v412_priority new Priority type requested, as defined by enum v412 priority.

Description

Note: This function should be used only by the V4L2 core.

void v412_prio_open(struct v412 prio state *global, enum v412 priority *local)
Implements the priority logic for a file handler open

Parameters

struct v412 prio_state *global pointer to the struct v412 prio state of the device
node.

246 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

enum v412 priority *local pointer to the desired priority, as defined by enum
v4l2 priority

Description

Note: This function should be used only by the VAL2 core.

void v412_prio_close(struct v412 prio state *global, enum v412 priority local)
Implements the priority logic for a file handler close

Parameters

struct v412_prio_state *global pointer to the struct v412 prio state of the device
node.

enum v412 priority local priority to be released, as defined by enum v412 priority

Description

Note: This function should be used only by the VAL2 core.

enum v412 priority v412_prio_max (struct v412 prio state *global)
Return the maximum priority, as stored at the global array.

Parameters

struct v412_prio_state *global pointer to the struct v412 prio state of the device
node.

Description

Note: This function should be used only by the V4L2 core.

int v412_prio_check(struct v4I2 prio state *global, enum v412_ priority local)
Implements the priority logic for a file handler close

Parameters

struct v412_prio_state *global pointer to the struct v412 prio state of the device
node.

enum v412 priority local desired priority, as defined by enum v412 priority local

Description

Note: This function should be used only by the VAL2 core.

struct v412_file_operations
fs operations used by a V4L2 device

Definition

2.2. Video4lLinux devices 247

Linux Media Documentation

struct v412 file operations {

struct module *owner;

ssize t (*read) (struct file *, char user *, size t, loff t *);

ssize t (*write) (struct file *, const char user *, size t, loff t *);

__poll t (*poll) (struct file *, struct poll table struct *);

long (*unlocked ioctl) (struct file *, unsigned int, unsigned long);
#ifdef CONFIG COMPAT;

long (*compat ioctl32) (struct file *, unsigned int, unsigned long);
#endif;

unsigned long (*get unmapped area) (struct file *, unsigned long, unsigned long, .
—unsigned long, unsigned long);

int (*mmap) (struct file *, struct vm area struct *);

int (*open) (struct file *);

int (*release) (struct file *);

1

Members

owner pointer to struct module

read operations needed to implement the read() syscall

write operations needed to implement the write() syscall

poll operations needed to implement the poll() syscall
unlocked_ioctl operations needed to implement the ioctl() syscall

compat_ioctl32 operations needed to implement the ioctl() syscall for the special case where
the Kernel uses 64 bits instructions, but the userspace uses 32 bits.

get_unmapped_area called by the mmap() syscall, used when %!CONFIG MMU
mmap operations needed to implement the mmap() syscall

open operations needed to implement the open() syscall

release operations needed to implement the release() syscall

Description

Note: Those operations are used to implemente the fs struct file operations at the V4L2
drivers. The VA4L2 core overrides the fs ops with some extra logic needed by the subsystem.

struct video_device
Structure used to create and manage the V4L2 device nodes.

Definition

struct video device {

#if defined (CONFIG _MEDIA CONTROLLER);
struct media entity entity;
struct media intf devnode *intf devnode;
struct media pipeline pipe;

#endif;
const struct v412 file operations *fops;
u32 device caps;
struct device dev;
struct cdev *cdev;

248 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct v412 device *v412 dev;

struct device *dev parent;

struct v412 ctrl _handler *ctrl handler;
struct vb2 queue *queue;

struct v412 prio state *prio;

char name[32];

enum vfl devnode type vfl type;

enum vfl devnode direction vfl dir;

int minor;

ulé num;

unsigned long flags;

int index;

spinlock t fh lock;

struct list head fh list;

int dev_debug;

v412 std id tvnorms;

void (*release)(struct video device *vdev);

const struct v412 ioctl ops *ioctl ops;

unsigned long valid ioctls[BITS TO LONGS(BASE VIDIOC PRIVATE)I];
struct mutex *lock;

};

Members

entity struct media entity

intf_devnode pointer to struct media intf devnode

pipe struct media pipeline

fops pointer to struct v412 file operations for the video device
device_caps device capabilities as used in v412 capabilities

dev struct device for the video device

cdev character device

v412_dev pointer to struct v412 device parent

dev_parent pointer to struct device parent

ctrl_handler Control handler associated with this device node. May be NULL.
queue struct vb2 queue associated with this device node. May be NULL.

prio pointerto struct v412 prio state with device’s Priority state. If NULL, then v412 dev-
>prio will be used.

name video device name

vfl_type VAL device type, as defined by enum vfl devnode type
vfl dir V4L receiver, transmitter or m2m

minor device node ‘minor’. It is set to -1 if the registration failed
num number of the video device node

flags video device flags. Use bitops to set/clear/test flags. Contains a set of enum
v41l2 video device flags.

index attribute to differentiate multiple indices on one physical device

2.2. Video4lLinux devices 249

Linux Media Documentation

fh_lock Lock for all v412 fhs

fh_list List of struct v412 fh

dev_debug Internal device debug flags, not for use by drivers
tvnorms Supported tv norms

release video device release() callback

ioctl_ops pointer to struct v412 ioctl ops with ioctl callbacks
valid_ioctls bitmap with the valid ioctls for this device

lock pointer to struct mutex serialization lock

Description

Note: Only set dev_parent if that can’t be deduced from v412_dev.

media_entity to video device(entity)
Returns a struct video device from the struct media entity embedded on it.

Parameters
__entity pointer to struct media entity

to_video_device(cd)
Returns a struct video device from the struct device embedded on it.

Parameters
cd pointer to struct device

int __video_register_device(struct video device *vdev, enum vfl devnode type type,
int nr, int warn_if nr in_use, struct module *owner)
register video4linux devices

Parameters
struct video device *vdev struct video device to register

enum vfl_devnode_type type type of device to register, as defined by enum
vfl devnode type

int nr which device node number is desired: (0 == /dev/videoO, 1 == /dev/videol, ..., -1 ==
first free)

int warn_if nr_in_use warn if the desired device node number was already in use and an-
other number was chosen instead.

struct module *owner module that owns the video device node
Description

The registration code assigns minor numbers and device node numbers based on the requested
type and registers the new device node with the kernel.

This function assumes that struct video device was zeroed when it was allocated and does
not contain any stale date.

250 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

An error is returned if no free minor or device node number could be found, or if the registration
of the device node failed.

Returns 0 on success.

Note: This function is meant to be used only inside the V4L2 core. Drivers should use
video register device() or video register device no warn().

int video_register_device(struct video device *vdev, enum vfl devnode type type,

o int nr)
register video4linux devices

Parameters
struct video_device *vdev struct video device to register

enum vfl devnode_type type type of device to register, as defined by enum
vfl devnode type

int nr which device node number is desired: (0 == /dev/videoO, 1 == /dev/videol, ..., -1 ==
first free)

Description

Internally, it calls video register device(). Please see its documentation for more details.

Note: if video register device fails, the release() callback of struct video device structure
is not called, so the caller is responsible for freeing any data. Usually that means that you
video device release() should be called on failure.

int video_register_device_no_warn(struct video device *vdev, enum

vfl devnode type type, int nr)
register video4linux devices

Parameters
struct video_device *vdev struct video device to register

enum vfl_devnode_type type type of device to register, as defined by enum
vfl devnode type

int nr which device node number is desired: (0 == /dev/videoO, 1 == /dev/videol, ..., -1 ==
first free)

Description

This function is identical to video register device() except that no warning is issued if the
desired device node number was already in use.

Internally, it calls video register device(). Please see its documentation for more details.

Note: if video register device fails, the release() callback of struct video device structure
is not called, so the caller is responsible for freeing any data. Usually that means that you
video device release() should be called on failure.

2.2. Video4lLinux devices 251

Linux Media Documentation

void video_unregister_device(struct video device *vdev)
Unregister video devices.

Parameters

struct video device *vdev struct video device to register
Description

Does nothing if vdev == NULL or if video is registered() returns false.

struct video device * video_device_alloc(void)
helper function to alloc struct video device

Parameters

void no arguments

Description

Returns NULL if -ENOMEM or a struct video device on success.

void video_device_release(struct video device *vdev)
helper function to release struct video device

Parameters

struct video_device *vdev pointer to struct video device
Description

Can also be used for video device->release().

void video_device_release_empty (struct video device *vdev)
helper function to implement the video device->release() callback.

Parameters

struct video_device *vdev pointer to struct video device
Description

This release function does nothing.

It should be used when the video device is a static global struct.

Note: Having a static video device is a dubious construction at best.

void v412_disable_ioctl(struct video device *vdev, unsigned int cmd)
mark that a given command isn’t implemented. shouldn’t use core locking

Parameters

struct video_device *vdev pointer to struct video device
unsigned int cmd ioctl command

Description

This function allows drivers to provide just one v412 ioctl ops struct, but disable ioctls based
on the specific card that is actually found.

252 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Note: This must be called before video register device. See also the comments for deter-
mine valid ioctls().

void * video_get_drvdata(struct video device *vdev)
gets private data from struct video device.

Parameters

struct video device *vdev pointer to struct video device
Description

returns a pointer to the private data

void video_set_drvdata(struct video device *vdev, void *data)
sets private data from struct video device.

Parameters
struct video_device *vdev pointer to struct video device
void *data private data pointer

struct video device * video_devdata (struct file *file)
gets struct video device from struct file.

Parameters
struct file *file pointer to struct file

void * video_drvdata(struct file *file)
gets private data from struct video device using the struct file.

Parameters
struct file *file pointer to struct file
Description

This is function combines both video get drvdata() and video devdata() as thisisused very
often.

const char * video_device_node_name (struct video device *vdev)
returns the video device name

Parameters

struct video_device *vdev pointer to struct video device
Description

Returns the device name string

int video_is_registered (struct video device *vdev)
returns true if the struct video device is registered.

Parameters
struct video_device *vdev pointer to struct video device

Description

2.2. Video4lLinux devices 253

Linux Media Documentation

2.2.5 V4L2 device instance

Each device instance is represented by a struct v412 device. Very simple devices can just
allocate this struct, but most of the time you would embed this struct inside a larger struct.

You must register the device instance by calling:
v4l2 device register (dev, v412 dev).

Registration will initialize the v412 device struct. If the dev->driver data field is NULL, it will
be linked to v412 dev argument.

Drivers that want integration with the media device framework need to set dev->driver data
manually to point to the driver-specific device structure that embed the struct v412 device
instance. This is achieved by a dev_set drvdata() call before registering the V4L2 device in-
stance. They must also set the struct v412 device mdev field to point to a properly initialized
and registered media device instance.

If v412 dev->name is empty then it will be set to a value derived from dev (driver name fol-
lowed by the bus id, to be precise). If you set it up before calling v412 device register()
then it will be untouched. If dev is NULL, then you must setup v412 dev->name before calling
v41l2 device register().

You can use v412 device set name() to set the name based on a driver name and a driver-
global atomic t instance. This will generate names like ivtv0, ivtvl, etc. If the name ends
with a digit, then it will insert a dash: ¢x18-0, cx18-1, etc. This function returns the instance
number.

The first dev argument is normally the struct device pointer of a pci dev, usb _interface or
platform device. It is rare for dev to be NULL, but it happens with ISA devices or when one
device creates multiple PCI devices, thus making it impossible to associate v412 dev with a
particular parent.

You can also supply a notify() callback that can be called by sub-devices to notify you of
events. Whether you need to set this depends on the sub-device. Any notifications a sub-device
supports must be defined in a header in include/media/subdevice.h.

VA4L2 devices are unregistered by calling:
v4l2 device unregister() (v412 dev).

If the dev->driver data field points to v412 dev, it will be reset to NULL. Unregistering will also
automatically unregister all subdevs from the device.

If you have a hotpluggable device (e.g. a USB device), then when a disconnect happens the
parent device becomes invalid. Since v412 device has a pointer to that parent device it has to
be cleared as well to mark that the parent is gone. To do this call:

v412 device disconnect() (v412 dev).

This does not unregister the subdevs, so you still need to call the v412 device unregister()
function for that. If your driver is not hotpluggable, then there is no need to call
v41l2 device disconnect().

Sometimes you need to iterate over all devices registered by a specific driver. This is usually the
case if multiple device drivers use the same hardware. E.g. the ivtvib driver is a framebuffer
driver that uses the ivtv hardware. The same is true for alsa drivers for example.

You can iterate over all registered devices as follows:

254 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

static int callback(struct device *dev, void *p)

{
struct v412_device *v412 dev = dev get drvdata(dev);
/* test if this device was inited */
if (v412 dev == NULL)
return 0;
return 0;
}
int iterate(void *p)
{
struct device_driver *drv;
int err;
/* Find driver 'ivtv' on the PCI bus.
pci bus type is a global. For USB buses use usb bus type. */
drv = driver_ find("ivtv", &pci bus type);
/* iterate over all ivtv device instances */
err = driver for each device(drv, NULL, p, callback);
put driver(drv);
return err;
}

Sometimes you need to keep a running counter of the device instance. This is commonly used
to map a device instance to an index of a module option array.

The recommended approach is as follows:

static atomic t drv_instance = ATOMIC INIT(O);

static int drv _probe(struct pci_dev *pdev, const struct pci_device_id *pci id)

{

state->instance = atomic_inc return(&drv_instance) - 1;

}

If you have multiple device nodes then it can be difficult to know when it is safe to unregister
v412 device for hotpluggable devices. For this purpose v412 device has refcounting support.
The refcount is increased whenever video register device() is called and it is decreased
whenever that device node is released. When the refcount reaches zero, then the v412 device
release() callback is called. You can do your final cleanup there.

If other device nodes (e.g. ALSA) are created, then you can increase and decrease the refcount
manually as well by calling:

v412 device get() (v412 dev).
or:
v412 device put() (v412 dev).

Since the initial refcount is 1 you also need to call v412 device put() in the disconnect()
callback (for USB devices) or in the remove() callback (for e.g. PCI devices), otherwise the
refcount will never reach 0.

2.2. Video4lLinux devices 255

Linux Media Documentation

2.2.5.1 v412_device functions and data structures

struct v412_device
main struct to for V412 device drivers

Definition

struct v412 device {
struct device *dev;
struct media device *mdev;
struct list head subdevs;
spinlock t lock;
char name[V4L2 DEVICE NAME SIZE];
void (*notify)(struct v412 subdev *sd, unsigned int notification, void *arg);
struct v412 ctrl handler *ctrl handler;
struct v412 prio_state prio;
struct kref ref;
void (*release)(struct v4l2 device *v412 dev);

}

Members

dev pointer to struct device.

mdev pointer to struct media device, may be NULL.
subdevs used to keep track of the registered subdevs

lock lock this struct; can be used by the driver as well if this struct is embedded into a larger
struct.

name unique device name, by default the driver name + bus ID
notify notify operation called by some sub-devices.

ctrl_handler The control handler. May be NULL.

prio Device’s priority state

ref Keep track of the references to this struct.

release Release function that is called when the ref count goes to 0.
Description

Each instance of a V4L2 device should create the v412 device struct, either stand-alone or
embedded in a larger struct.

It allows easy access to sub-devices (see v4l2-subdev.h) and provides basic V4L2 device-level
support.

Note:
1) dev->driver_data points to this struct.

2) dev might be NULL if there is no parent device

void v412_device get (struct v412 device *v412 dev)
gets a V4L2 device reference

256 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Parameters
struct v412_device *v412_dev pointer to struct v412 device
Description

This is an ancillary routine meant to increment the usage for the struct v412 device pointed
by v412_dev.

int v412_device_put (struct v412 device *v412 dev)
puts a V412 device reference

Parameters
struct v412 device *v412_dev pointer to struct v412 device
Description

This is an ancillary routine meant to decrement the usage for the struct v412 device pointed
by v412_dev.

int v412_device_register (struct device *dev, struct v412 device *v4I12 dev)
Initialize v412 dev and make dev->driver_data point to v412_dev.

Parameters
struct device *dev pointer to struct device
struct v412 device *v412_dev pointer to struct v412 device

Description

Note: dev may be NULL in rare cases (ISA devices). In such case the caller must fill in the
v412_dev->name field before calling this function.

int v412_device_set_name(struct v4I2 device *v412 dev, const char *basename,

atomic t *instance)
Optional function to initialize the name field of struct v412 device

Parameters
struct v412 _device *v412_dev pointer to struct v412 device
const char *basename base name for the device name

atomic_t *instance pointer to a static atomic t var with the instance usage for the device
driver.

Description

v41l2 device set name() initializes the name field of struct v412 device using the driver name
and a driver-global atomic t instance.

This function will increment the instance counter and returns the instance value used in the
name.

The first time this is called the name field will be set to foo0 and this function returns 0. If the
name ends with a digit (e.g. cx18), then the name will be set to cx18-0 since cx180 would look
really odd.

Example

2.2. Video4lLinux devices 257

Linux Media Documentation

static atomic t drv instance = ATOMIC INIT(0);

instance = v412 device set name(&v4l2 dev, “foo”, &drv_instance);

void v412_device_disconnect(struct v412 device *v412 dev)
Change V4L2 device state to disconnected.

Parameters
struct v412 _device *v412 dev pointer to struct v412 device
Description

Should be called when the USB parent disconnects. Since the parent disappears, this ensures
that v412_dev doesn’t have an invalid parent pointer.

Note: This function sets v412_dev->dev to NULL.

void v412_device_unregister(struct v412 device *v412 dev)
Unregister all sub-devices and any other resources related to v412_dev.

Parameters
struct v412 device *v412_dev pointer to struct v412 device

int v412_device_register_subdev (struct v412 device *v412 dev, struct
v412 subdev *sd)
Registers a subdev with a v412 device.

Parameters

struct v412_device *v412_dev pointer to struct v412 device

struct v412_subdev *sd pointer to struct v412 subdev

Description

While registered, the subdev module is marked as in-use.

An error is returned if the module is no longer loaded on any attempts to register it.

void v412_device_unregister_subdev (struct v412 subdev *sd)
Unregisters a subdev with a v412 device.

Parameters
struct v412_subdev *sd pointer to struct v412 subdev

Description

Note: Can also be called if the subdev wasn'’t registered. In such case, it will do nothing.

int __v412 _device register_subdev_nodes (struct v412 device *v412 dev,

bool read only)
Registers device nodes for all subdevs of the v41l2 device that are marked with the

V4L2 SUBDEV_FL_HAS DEVNODE flag.

Parameters

258 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct v412 device *v412 dev pointer to struct v412 device

bool read_only subdevices read-only flag. True to register the subdevices device nodes in
read-only mode, false to allow full access to the subdevice userspace API.

int v412_device register_subdev_nodes (struct v412 device *v4I2 dev)
Registers subdevices device nodes with unrestricted access to the subdevice userspace
operations

Parameters
struct v412_device *v412_dev pointer to struct v412 device
Description

Internally calls v412 device register subdev nodes(). See its documentation for more
details.

int v412_device_register_ro_subdev_nodes (struct v4I2 device *v412 dev)
Registers subdevices device nodes in read-only mode

Parameters
struct v412_device *v412_dev pointer to struct v412 device
Description

Internally calls v412 device register subdev nodes(). See its documentation for more
details.

void v412_subdev_notify(struct v412 subdev *sd, unsigned int notification, void *arg)
Sends a notification to v412 device.

Parameters
struct v412_subdev *sd pointer to struct v412 subdev

unsigned int notification type of notification. Please notice that the notification type is
driver-specific.

void *arg arguments for the notification. Those are specific to each notification type.

bool v412_device_supports_requests (struct v4I2 device *v412 dev)
Test if requests are supported.

Parameters
struct v412_device *v412_dev pointer to struct v412 device

v412_device_for_each_subdev(sd, v4I2 dev)
Helper macro that interates over all sub-devices of a given v412 device.

Parameters

sd pointer that will be filled by the macro with all struct v412 subdev pointer used as an
iterator by the loop.

v412_dev struct v412 device owning the sub-devices to iterate over.
Description

This macro iterates over all sub-devices owned by the v412_dev device. It acts as a for loop
iterator and executes the next statement with the sd variable pointing to each sub-device in
turn.

2.2. Video4lLinux devices 259

Linux Media Documentation

__v412 _device_call_subdevs p(v4I2 dev, sd, cond, o, f, args...)
Calls the specified operation for all subdevs matching the condition.

Parameters
v412_dev struct v412 device owning the sub-devices to iterate over.

sd pointer that will be filled by the macro with all struct v412 subdev pointer used as an
iterator by the loop.

cond condition to be match

o name of the element at struct v412 subdev ops that contains f. Each element there groups
a set of operations functions.

f operation function that will be called if cond matches. The operation functions are defined
in groups, according to each element at struct v412 subdev ops.

args... arguments for f.

Description

Ignore any errors.

Note

subdevs cannot be added or deleted while walking the subdevs list.

__v412 device_call_subdevs(v4I2 dev, cond, o, f, args...)
Calls the specified operation for all subdevs matching the condition.

Parameters
v412_dev struct v412 device owning the sub-devices to iterate over.
cond condition to be match

o name of the element at struct v412 subdev ops that contains f. Each element there groups
a set of operations functions.

f operation function that will be called if cond matches. The operation functions are defined
in groups, according to each element at struct v412 subdev ops.

args... arguments for f.

Description

Ignore any errors.

Note

subdevs cannot be added or deleted while walking the subdevs list.

__v412 device_call_subdevs until _err_p(v4I2 dev, sd, cond, o, f, args...)
Calls the specified operation for all subdevs matching the condition.

Parameters
v412_dev struct v412 device owning the sub-devices to iterate over.

sd pointer that will be filled by the macro with all struct v412 subdev sub-devices associated
with v412_dev.

cond condition to be match

260 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

o name of the element at struct v412 subdev ops that contains f. Each element there groups
a set of operations functions.

f operation function that will be called if cond matches. The operation functions are defined
in groups, according to each element at struct v412 subdev ops.

args... arguments for f.
Return
Description

If the operation returns an error other than 0 or -ENOIOCTLCMD for any subdevice, then abort
and return with that error code, zero otherwise.

Note
subdevs cannot be added or deleted while walking the subdevs list.

__v412 device call _subdevs until_err(v4I2 dev, cond, o, f, args...)
Calls the specified operation for all subdevs matching the condition.

Parameters
v412_dev struct v412 device owning the sub-devices to iterate over.
cond condition to be match

o name of the element at struct v412 subdev ops that contains f. Each element there groups
a set of operations functions.

f operation function that will be called if cond matches. The operation functions are defined
in groups, according to each element at struct v412 subdev ops.

args... arguments for f.
Return
Description

If the operation returns an error other than 0 or -ENOIOCTLCMD for any subdevice, then abort
and return with that error code, zero otherwise.

Note
subdevs cannot be added or deleted while walking the subdevs list.

v412 device call_all(v4I2 dev, grpid, o, f, args...)
Calls the specified operation for all subdevs matching the v412 subdev.grp id, as as-
signed by the bridge driver.

Parameters
v412_dev struct v412 device owning the sub-devices to iterate over.
grpid struct v412 subdev->grp id group ID to match. Use 0 to match them all.

o name of the element at struct v412 subdev ops that contains f. Each element there groups
a set of operations functions.

f operation function that will be called if cond matches. The operation functions are defined
in groups, according to each element at struct v412 subdev ops.

args... arguments for f.

2.2. Video4lLinux devices 261

Linux Media Documentation

Description

Ignore any errors.

Note

subdevs cannot be added or deleted while walking the subdevs list.

v412_device_call_until_err(v4I2 dev, grpid, o, f, args...)
Calls the specified operation for all subdevs matching the v412 subdev.grp id, as as-
signed by the bridge driver, until an error occurs.

Parameters
v412_dev struct v412 device owning the sub-devices to iterate over.
grpid struct v412 subdev->grp id group ID to match. Use 0 to match them all.

o name of the element at struct v412 subdev ops that contains f. Each element there groups
a set of operations functions.

f operation function that will be called if cond matches. The operation functions are defined
in groups, according to each element at struct v412 subdev ops.

args... arguments for f.
Return
Description

If the operation returns an error other than 0 or -ENOIOCTLCMD for any subdevice, then abort
and return with that error code, zero otherwise.

Note
subdevs cannot be added or deleted while walking the subdevs list.

v412_device_mask_call_all(v4I2 dev, grpmsk, o, f, args...)
Calls the specified operation for all subdevices where a group ID matches a specified bit-
mask.

Parameters
v412_dev struct v412 device owning the sub-devices to iterate over.

grpmsk bitmask to be checked against struct v412 subdev->grp id group ID to be matched.
Use 0 to match them all.

o name of the element at struct v412 subdev ops that contains f. Each element there groups
a set of operations functions.

f operation function that will be called if cond matches. The operation functions are defined
in groups, according to each element at struct v412 subdev ops.

args... arguments for f.
Description

Ignore any errors.

Note

subdevs cannot be added or deleted while walking the subdevs list.

262 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

v412 device _mask_call_until_err(v4I2 dev, grpmsk, o, f, args...)
Calls the specified operation for all subdevices where a group ID matches a specified bit-
mask.

Parameters
v412_dev struct v412 device owning the sub-devices to iterate over.

grpmsk bitmask to be checked against struct v412 subdev->grp id group ID to be matched.
Use 0 to match them all.

o name of the element at struct v412 subdev ops that contains f. Each element there groups
a set of operations functions.

f operation function that will be called if cond matches. The operation functions are defined
in groups, according to each element at struct v412 subdev ops.

args... arguments for f.
Return
Description

If the operation returns an error other than 0 or -ENOIOCTLCMD for any subdevice, then abort
and return with that error code, zero otherwise.

Note
subdevs cannot be added or deleted while walking the subdevs list.

v412 _device_has_op(v4i2 dev, grpid, o, f)
checks if any subdev with matching grpid has a given ops.

Parameters
v412_dev struct v412 device owning the sub-devices to iterate over.
grpid struct v412 subdev->grp id group ID to match. Use 0 to match them all.

o name of the element at struct v412 subdev ops that contains f. Each element there groups
a set of operations functions.

f operation function that will be called if cond matches. The operation functions are defined
in groups, according to each element at struct v412 subdev ops.

v412_device_mask_has_op(v412 dev, grpmsk, o, f)
checks if any subdev with matching group mask has a given ops.

Parameters
v412_dev struct v412 device owning the sub-devices to iterate over.

grpmsk bitmask to be checked against struct v412 subdev->grp id group ID to be matched.
Use 0 to match them all.

o name of the element at struct v412 subdev ops that contains f. Each element there groups
a set of operations functions.

f operation function that will be called if cond matches. The operation functions are defined
in groups, according to each element at struct v412 subdev ops.

2.2. Video4lLinux devices 263

Linux Media Documentation

2.2.6 V4L2 File handlers

struct v412 fh provides a way to easily keep file handle specific data that is used by the V4L2
framework.

Attention: New drivers mustuse struct v412 fhsince itis also used toimplement priority
handling (ioctl VIDIOC G PRIORITY, VIDIOC S PRIORITY).

The users of v412 fh (in the V4L2 framework, not the driver) know whether a driver uses
v412 fh as its file->private data pointer by testing the V4L2 FL USES V4L2 FH bit in
video device->flags. This bit is set whenever v412 fh init() is called.

struct v41l2 fh is allocated as a part of the driver’s own file handle structure and
file->private data is set to it in the driver’s open() function by the driver.

In many cases the struct v412 fh will be embedded in a larger structure. In that case you
should call:

1) v412 fh init() and v412 fh add() in open()
2) v412 fh del() and v412 fh exit() in release()
Drivers can extract their own file handle structure by using the container of macro.

Example:

struct my_ fh {

int blah;

struct v412_fh fh;
}s

int my open(struct file *file)

{
struct my_fh *my_ fh;
struct video device *vfd;
int ret;

my fh = kzalloc(sizeof(*my fh), GFP_KERNEL);

v4l2 fh_init(&my fh->fh, vfd);

file->private_data = &my_ fh->fh;
v4l2 fh add(&my fh->fh);
return 0;

}

int my release(struct file *file)

{

264 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct v412_fh *fh = file->private data;
struct my_ fh *my fh = container of(fh, struct my_fh, fh);

v4l2 fh del(&my fh->fh);
v4l2 fh exit(&my fh->fh);
kfree(my fh);

return O;

}

Below is a short description of the v412 fh functions used:
v412 fh init (fh, vdev)

* Initialise the file handle. This MUST be performed in the driver’'s v412 file operations-
>open() handler.

v412 fh add (fh)

* Add a v412 fh to video device file handle list. Must be called once the file handle is
completely initialized.

v412 fh del (fh)

* Unassociate the file handle from video device. The file handle exit function may now be
called.

v412 fh exit (fh)

* Uninitialise the file handle. After uninitialisation the v412 fh memory can be freed.
If struct v412 fh is not embedded, then you can use these helper functions:
v412 fh open (struct file *filp)

e This allocates a struct v412 fh, initializes it and adds it to the struct video device
associated with the file struct.

v412 fh release (struct file *filp)

* This deletes it from the struct video device associated with the file struct, uninitialised
the v412 fh and frees it.

These two functions can be plugged into the v412 file operation’s open() and release() ops.

Several drivers need to do something when the first file handle is opened and when the last file
handle closes. Two helper functions were added to check whether the v412 fh struct is the
only open filehandle of the associated device node:

v4l2 fh is singular (fh)
* Returns 1 if the file handle is the only open file handle, else 0.
v4l2 fh is singular file (struct file *filp)

* Same, but it calls v412 fh is singular with filp->private data.

2.2. Video4lLinux devices 265

Linux Media Documentation

2.2.6.1 V4L2 fh functions and data structures

struct v412_fh
Describes a V412 file handler

Definition

struct v412 fh {

struct list head list;
struct video device *vdev;
struct v412 ctrl handler *ctrl handler;
enum v412 priority prio;
wait queue head t wait;
struct mutex subscribe lock;
struct list head subscribed;
struct list head available;
unsigned int navailable;
u32 sequence;
struct v412 m2m ctx *m2m_ctx;

}s

Members

list list of file handlers

vdev pointer to struct video device

ctrl_handler pointer to struct v412 ctrl handler

prio priority of the file handler, as defined by enum v412 priority
wait event’ s wait queue

subscribe lock serialise changes to the subscribed list; guarantee that the add and del event
callbacks are orderly called

subscribed list of subscribed events

available list of events waiting to be dequeued
navailable number of available events at available list
sequence event sequence number

m2m_ctx pointer to struct v412 m2m ctx

void v412_fh_init (struct v412 fh *fh, struct video device *vdev)
Initialise the file handle.

Parameters

struct v412_fh *fh pointer to struct v412 fh

struct video device *vdev pointer to struct video device
Description

Parts of the VAL2 framework using the file handles should be initialised in this function. Must
be called from driver’s v412 file operations->open() handler if the driver uses struct v412 fh.

266 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

void v412_fh_add (struct v412 fh *fh)
Add the fh to the list of file handles on a video _device.

Parameters
struct v412_fh *fh pointer to struct v412 fh

Description

Note: The fh file handle must be initialised first.

int v412_fh_open (struct file *filp)
Ancillary routine that can be used as the open() op of v412 file operations.

Parameters
struct file *filp pointer to struct file
Description

It allocates a v412 fh and inits and adds it to the struct video device associated with the file
pointer.

void v412_fh_del (struct v412 fh *fh)
Remove file handle from the list of file handles.

Parameters
struct v412_fh *fh pointer to struct v412 fh
Description

On error filp->private data will be NULL, otherwise it will point to the struct v412 fh.

Note: Must be called in v412 file operations->release() handler if the driver uses struct
v412 fh.

void v412_fh_exit (struct v412 fh *fh)
Release resources related to a file handle.

Parameters
struct v412_fh *fh pointer to struct v412 fh
Description

Parts of the VAL2 framework using the v412 fh must release their resources here, too.

Note: Must be called in v412 file operations->release() handler if the driver uses struct
v412 fh.

int v412_fh_release(struct file *filp)
Ancillary routine that can be used as the release() op of v412 file operations.

Parameters

struct file *filp pointer to struct file

2.2. Video4lLinux devices 267

Linux Media Documentation

Description

It deletes and exits the v412 fh associated with the file pointer and frees it. It will do nothing if
filp->private data (the pointer to the v412 fh struct) is NULL.

This function always returns 0.

int v412_fh_is_singular (struct v412 fh *fh)
Returns 1 if this filehandle is the only filehandle opened for the associated video device.

Parameters

struct v412_fh *fh pointer to struct v412 fh
Description

If fh is NULL, then it returns 0.

int v412_fh_is_singular_file(struct file *filp)
Returns 1 if this filehandle is the only filehandle opened for the associated video device.

Parameters

struct file *filp pointer to struct file

Description

This is a helper function variant of v412 fh is singular() with uses struct file as argument.

If filp->private data is NULL, then it will return 0.

2.2.7 VA4L2 sub-devices

Many drivers need to communicate with sub-devices. These devices can do all sort of tasks, but
most commonly they handle audio and/or video muxing, encoding or decoding. For webcams
common sub-devices are sensors and camera controllers.

Usually these are I12C devices, but not necessarily. In order to provide the driver with a consis-
tent interface to these sub-devices the v412 subdev struct (v412-subdev.h) was created.

Each sub-device driver must have a v412 subdev struct. This struct can be stand-alone for
simple sub-devices or it might be embedded in a larger struct if more state information needs
to be stored. Usually there is a low-level device struct (e.g. i2c client) that contains the
device data as setup by the kernel. It is recommended to store that pointer in the private data
of v412 subdev using v41l2 set subdevdata(). That makes it easy to go from a v412 subdev
to the actual low-level bus-specific device data.

You also need a way to go from the low-level struct to v412 subdev. For the common i2c client
struct the i2c_set clientdata() call is used to store a v412 subdev pointer, for other buses you
may have to use other methods.

Bridges might also need to store per-subdev private data, such as a pointer to bridge-specific
per-subdev private data. The v412 subdev structure provides host private data for that purpose
that can be accessed with v412 get subdev hostdata() and v412 set subdev hostdata().

From the bridge driver perspective, you load the sub-device module and somehow obtain the
v412 subdev pointer. For i2c devices this is easy: you call i2c_get clientdata(). For other
buses something similar needs to be done. Helper functions exist for sub-devices on an I12C bus
that do most of this tricky work for you.

268 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Each v412 subdev contains function pointers that sub-device drivers can implement (or leave
NULL if it is not applicable). Since sub-devices can do so many different things and you do not
want to end up with a huge ops struct of which only a handful of ops are commonly implemented,
the function pointers are sorted according to category and each category has its own ops struct.

The top-level ops struct contains pointers to the category ops structs, which may be NULL if
the subdev driver does not support anything from that category.

It looks like this:

struct v412_subdev_core_ops {
int (*log status)(struct v412_subdev *sd);
int (*init) (struct v412_subdev *sd, u32 val);

}

struct v412_subdev_tuner_ops {
struct v412_subdev_audio ops {
struct v412 subdev_video ops {
struct vf}%_subdev_pad_ops {

struct v412_subdev_ops {
const struct v412_subdev_core_ops *core;
const struct v412_subdev_tuner_ops *tuner;
const struct v412 subdev _audio ops *audio;
const struct v412 subdev video ops *video;
const struct v412_subdev_pad_ops *video;

1

The core ops are common to all subdevs, the other categories are implemented depending on
the sub-device. E.g. a video device is unlikely to support the audio ops and vice versa.

This setup limits the number of function pointers while still making it easy to add new ops and
categories.

A sub-device driver initializes the v412 subdev struct using:
v412 subdev init (sd, &ops).

Afterwards you need to initialize sd->name with a unique name and set the module owner. This
is done for you if you use the i2c¢ helper functions.

If integration with the media framework is needed, you must initialize the media entity struct
embedded in the v412 subdev struct (entity field) by calling media entity pads init(), if the
entity has pads:

struct media_pad *pads = &my sd->pads;
int err;

2.2. Video4lLinux devices 269

Linux Media Documentation

err = media entity pads init(&sd->entity, npads, pads);

The pads array must have been previously initialized. There is no need to manually set the
struct media entity function and name fields, but the revision field must be initialized if
needed.

A reference to the entity will be automatically acquired/released when the subdev device node
(if any) is opened/closed.

Don’t forget to cleanup the media entity before the sub-device is destroyed:

media entity cleanup(&sd->entity);

If a sub-device driver implements sink pads, the subdev driver may set the link validate field in
v412 subdev pad ops to provide its own link validation function. For every link in the pipeline,
the link validate pad operation of the sink end of the link is called. In both cases the driver is
still responsible for validating the correctness of the format configuration between sub-devices
and video nodes.

If link validate op is not set, the default function v412 subdev link validate default() is
used instead. This function ensures that width, height and the media bus pixel code are equal
on both source and sink of the link. Subdev drivers are also free to use this function to perform
the checks mentioned above in addition to their own checks.

2.2.7.1 Subdev registration

There are currently two ways to register subdevices with the V4L2 core. The first (traditional)
possibility is to have subdevices registered by bridge drivers. This can be done when the bridge
driver has the complete information about subdevices connected to it and knows exactly when
to register them. This is typically the case for internal subdevices, like video data processing
units within SoCs or complex PCI(e) boards, camera sensors in USB cameras or connected to
SoCs, which pass information about them to bridge drivers, usually in their platform data.

There are however also situations where subdevices have to be registered asynchronously to
bridge devices. An example of such a configuration is a Device Tree based system where infor-
mation about subdevices is made available to the system independently from the bridge devices,
e.g. when subdevices are defined in DT as [2C device nodes. The API used in this second case
is described further below.

Using one or the other registration method only affects the probing process, the run-time
bridge-subdevice interaction is in both cases the same.

In the synchronous case a device (bridge) driver needs to register the v412 subdev with the
v4l2 device:

v412 device register subdev (v412 dev, sd).

This can fail if the subdev module disappeared before it could be registered. After this function
was called successfully the subdev->dev field points to the v412 device.

If the v412 device parent device has a non-NULL mdev field, the sub-device entity will be auto-
matically registered with the media device.

You can unregister a sub-device using:

270 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

v412 device unregister subdev (sd).
Afterwards the subdev module can be unloaded and sd->dev == NULL.

In the asynchronous case subdevice probing can be invoked independently of the bridge driver
availability. The subdevice driver then has to verify whether all the requirements for a success-
ful probing are satisfied. This can include a check for a master clock availability. If any of
the conditions aren’t satisfied the driver might decide to return -EPROBE DEFER to request
further reprobing attempts. Once all conditions are met the subdevice shall be registered
using the v412 async register subdev() function. Unregistration is performed using the
v41l2 async unregister subdev() call. Subdevices registered this way are stored in a global
list of subdevices, ready to be picked up by bridge drivers.

Bridge drivers in turn have to register a notifier object. This is performed using
the v412 async nf register() call. To unregister the notifier the driver has to call
v412 async nf unregister(). The former of the two functions takes two arguments: a pointer
to struct v412 device and a pointer to struct v412 async notifier.

Before registering the notifier, bridge drivers must do two things: first, the notifier must be
initialized using the v412 async nf init(). Second, bridge drivers can then begin to form a
list of subdevice descriptors that the bridge device needs for its operation. Several functions
are available to add subdevice descriptors to a notifier, depending on the type of device and the
needs of the driver.

v41l2 async nf add fwnode remote() and v412 async nf add i2c() are for bridge and ISP
drivers for registering their async sub-devices with the notifier.

v41l2 async register subdev sensor() is a helper function for sensor drivers registering
their own async sub-device, but it also registers a notifier and further registers async sub-
devices for lens and flash devices found in firmware. The notifier for the sub-device is unregis-
tered with the async sub-device.

These functions allocate an async sub-device descriptor which is of type struct
v412 async subdev embedded in a driver-specific struct. The &struct v412 async subdev
shall be the first member of this struct:

struct my_async_subdev {
struct v412_async_subdev asd;

}

struct my_async_subdev *my asd;
struct fwnode_handle *ep;

my asd = v412 async nf add fwnode remote(¬ifier, ep,
struct my_async_subdev);
fwnode handle put(ep);

if (IS _ERR(asd))
return PTR ERR(asd);

The VAL2 core will then use these descriptors to match asynchronously registered subdevices
to them. If a match is detected the .bound() notifier callback is called. After all subdevices
have been located the .complete() callback is called. When a subdevice is removed from the
system the .unbind() method is called. All three callbacks are optional.

2.2. Video4lLinux devices 271

Linux Media Documentation

2.2.7.2 Calling subdev operations

The advantage of using v412 subdev is that it is a generic struct and does not contain any
knowledge about the underlying hardware. So a driver might contain several subdevs that
use an 12C bus, but also a subdev that is controlled through GPIO pins. This distinction is
only relevant when setting up the device, but once the subdev is registered it is completely
transparent.

Once the subdev has been registered you can call an ops function either directly:

err = sd->ops->core->g std(sd, &norm);

but it is better and easier to use this macro:

err = v412 subdev call(sd, core, g std, &norm);

The macro will do the right NULL pointer checks and returns -ENODEV if sd is NULL, -ENOIOCTLCMD
if either sd->core or sd->core->g std is NULL, or the actual result of the sd->ops->core->g_std
ops.

It is also possible to call all or a subset of the sub-devices:

v412 device call all(v4l2 dev, 0, core, g std, &norm);

Any subdev that does not support this ops is skipped and error results are ignored. If you want
to check for errors use this:

err = v412 device call until err(v412 dev, 0, core, g std, &norm);

Any error except -ENOIOCTLCMD will exit the loop with that error. If no errors (except
-ENOIOCTLCMD) occurred, then O is returned.

The second argument to both calls is a group ID. If O, then all subdevs are called. If non-zero,
then only those whose group ID match that value will be called. Before a bridge driver registers
a subdev it can set sd->grp id to whatever value it wants (it’s 0 by default). This value is owned
by the bridge driver and the sub-device driver will never modify or use it.

The group ID gives the bridge driver more control how callbacks are called. For example, there
may be multiple audio chips on a board, each capable of changing the volume. But usually only
one will actually be used when the user want to change the volume. You can set the group ID for
that subdev to e.g. AUDIO CONTROLLER and specify that as the group ID value when calling
v412 device call all(). That ensures that it will only go to the subdev that needs it.

If the sub-device needs to notify its v412 device parent of an event, then it can call
v412 subdev _notify(sd, notification, arg). This macro checks whether there is a
notify() callback defined and returns -ENODEV if not. Otherwise the result of the notify()
call is returned.

272 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

2.2.8 V4L2 sub-device userspace API

Bridge drivers traditionally expose one or multiple video nodes to userspace, and control sub-
devices through the v412 subdev ops operations in response to video node operations. This
hides the complexity of the underlying hardware from applications. For complex devices, finer-
grained control of the device than what the video nodes offer may be required. In those cases,
bridge drivers that implement the media controller API may opt for making the subdevice op-
erations directly accessible from userpace.

Device nodes named v4l-subdevX can be created in /dev to access sub-devices di-
rectly. If a sub-device supports direct userspace configuration it must set the
V4L2 SUBDEV FL HAS DEVNODE flag before being registered.

After registering sub-devices, the v412 device driver can create device nodes for
all registered sub-devices marked with V4L2 SUBDEV FL HAS DEVNODE by calling
v41l2 device register subdev nodes(). Those device nodes will be automatically removed
when sub-devices are unregistered.

The device node handles a subset of the V4L2 API.

VIDIOC QUERYCTRL, VIDIOC QUERYMENU, VIDIOC G CTRL, VIDIOC S CTRL,
VIDIOC G EXT CTRLS, VIDIOC S EXT CTRLS and VIDIOC TRY EXT CTRLS:

The controls ioctls are identical to the ones defined in V4L2. They behave identically,
with the only exception that they deal only with controls implemented in the sub-
device. Depending on the driver, those controls can be also be accessed through one
(or several) V4L2 device nodes.

VIDIOC DQEVENT, VIDIOC SUBSCRIBE EVENT and VIDIOC UNSUBSCRIBE EVENT

The events ioctls are identical to the ones defined in VAL2. They behave identically,
with the only exception that they deal only with events generated by the sub-device.
Depending on the driver, those events can also be reported by one (or several) V4L2
device nodes.

Sub-device drivers that want to use events need to set the
V4L2 SUBDEV_FL HAS EVENTS v412 subdev.flags before registering the sub-device.
After registration events can be queued as usual on the v412 subdev.devnode device
node.

To properly support events, the poll() file operation is also implemented.
Private ioctls

All ioctls not in the above list are passed directly to the sub-device driver through the
core::ioctl operation.

2.2. Video4lLinux devices 273

Linux Media Documentation

2.2.9 Read-only sub-device userspace API

Bridge drivers that control their connected subdevices through direct calls to the kernel API
realized by v412 subdev ops structure do not usually want userspace to be able to change the
same parameters through the subdevice device node and thus do not usually register any.

It is sometimes useful to report to userspace the current subdevice configuration through a
read-only API, that does not permit applications to change to the device parameters but allows
interfacing to the subdevice device node to inspect them.

For instance, to implement cameras based on computational photography, userspace needs to
know the detailed camera sensor configuration (in terms of skipping, binning, cropping and
scaling) for each supported output resolution. To support such use cases, bridge drivers may
expose the subdevice operations to userspace through a read-only API.

To create a read-only device node for all the subdevices registered with
the V4L2 SUBDEV FL HAS DEVNODE set, the v412 device driver should call
v41l2 device register ro subdev nodes().

Access to the following ioctls for userspace applications is restricted on sub-device device nodes
registered with v412 device register ro subdev nodes().

VIDIOC SUBDEV S FMT, VIDIOC SUBDEV S CROP, VIDIOC SUBDEV S SELECTION:

These ioctls are only allowed on a read-only subdevice device node for the
V412 SUBDEV FORMAT TRY formats and selection rectangles.

VIDIOC SUBDEV S FRAME INTERVAL, VIDIOC SUBDEV S DV TIMINGS, VIDIOC SUBDEV S STD:
These ioctls are not allowed on a read-only subdevice node.

In case the ioctl is not allowed, or the format to modify is set to V4L2 SUBDEV_ FORMAT ACTIVE,
the core returns a negative error code and the errno variable is set to -EPERM.

2.2.10 12C sub-device drivers

Since these drivers are so common, special helper functions are available to ease the use of
these drivers (v412-common.h).

The recommended method of adding v412 subdev support to an I12C driver is to embed the
v412 subdev struct into the state struct that is created for each I2C device instance. Very
simple devices have no state struct and in that case you can just create a v412 subdev directly.

A typical state struct would look like this (where ‘chipname’ is replaced by the name of the
chip):

struct chipname_state {
struct v412_subdev sd;
/* additional state fields */

}

Initialize the v412 subdev struct as follows:

v412 i2c subdev init(&state->sd, client, subdev ops);

This function will fill in all the fields of v412 subdev ensure that the v412 subdev and i2c_client
both point to one another.

274 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

You should also add a helper inline function to go from a v412 subdev pointer to a chip-
name state struct:

static inline struct chipname_state *to state(struct v412_subdev *sd)

{
}

return container of(sd, struct chipname state, sd);

Use this to go from the v412 subdev struct to the i2c_client struct:

struct i2c_client *client = v412 get subdevdata(sd);

And this to go from an i2c_client to a v412 subdev struct:

struct v412_subdev *sd = i2c get clientdata(client);

Make sure to call v412 device unregister subdev()(sd) when the remove() callback is
called. This will unregister the sub-device from the bridge driver. It is safe to call this even if
the sub-device was never registered.

You need to do this because when the bridge driver destroys the i2c adapter the remove()
callbacks are called of the i2c devices on that adapter. After that the correspond-
ing v4l2 subdev structures are invalid, so they have to be unregistered first. Calling
v412 device unregister subdev()(sd)from the remove () callback ensures that this is always
done correctly.

The bridge driver also has some helper functions it can use:

struct v412_subdev *sd = v412 i2c new subdev(v41l2 dev, adapter,
"module foo", "chipid", 0x36, NULL);

This loads the given module (can be NULL if no module needs to be loaded) and calls
i2c new client device() withthe given i2c adapter and chip/address arguments. If all goes
well, then it registers the subdev with the v412 device.

You can also use the last argument of v412 i2c new subdev() to pass an array of possible I12C
addresses that it should probe. These probe addresses are only used if the previous argument
is 0. A non-zero argument means that you know the exact i2c address so in that case no probing
will take place.

Both functions return NULL if something went wrong.

Note that the chipid you pass to v412 i2c new subdev() is usually the same as the module
name. It allows you to specify a chip variant, e.g. “saa7114” or “saa7115”. In general though
the i2c¢ driver autodetects this. The use of chipid is something that needs to be looked at more
closely at a later date. It differs between i2c drivers and as such can be confusing. To see which
chip variants are supported you can look in the i2c driver code for the i2c device id table. This
lists all the possibilities.

There are one more helper function:

v4l2 i2c new subdev board() uses an i2c_board info struct which is passed to the i2c
driver and replaces the irqg, platform data and addr arguments.

If the subdev supports the s config core ops, then that op is called with the irq and platform data
arguments after the subdev was setup.

2.2. Video4lLinux devices 275

Linux Media Documentation

The v412 i2c new subdev() function will call v412 i2c new subdev board(), internally fill-
ing a i2c_board_info structure using the client type and the addr to fill it.

2.2.11 V4L2 sub-device functions and data structures

struct v412_decode_vbi_line
used to decode vbi line

Definition

struct v412 decode vbi line {
u32 is second field;
u8 *p;
u32 line;
u32 type;
3

Members

is _second_field Set to O for the first (odd) field; set to 1 for the second (even) field.

p Pointer to the sliced VBI data from the decoder. On exit, points to the start of the payload.
line Line number of the sliced VBI data (1-23)

type VBI service type (VAL2 SLICED *). 0 if no service found

enum v412_subdev_io_pin_bits
Subdevice external IO pin configuration bits

Constants

V4L2_SUBDEV_IO_PIN_DISABLE disables a pin config. ENABLE assumed.
V4L2_SUBDEV_IO_PIN_OUTPUT set it if pin is an output.
V4L2_SUBDEV_IO_PIN_INPUT set it if pin is an input.

V4L2_SUBDEV_IO PIN_SET_VALUE to set the output value via struct
v412 subdev io pin config->value.

V4L2_SUBDEV_IO0 PIN_ACTIVE_LOW pin active is bit 0. Otherwise, ACTIVE HIGH is assumed.

struct v412_subdev_io_pin_config
Subdevice external IO pin configuration

Definition

struct v412 subdev_io pin_config {
u32 flags;
u8 pin;
u8 function;
u8 value;
u8 strength;
+

Members

flags bitmask with flags for this pin’s config, whose bits are defined by enum
v412 subdev _io pin bits.

276 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

pin Chip external IO pin to configure

function Internal signal pad/function to route to IO pin
value Initial value for pin - e.g. GPIO output value
strength Pin drive strength

struct v412_subdev_core_ops
Define core ops callbacks for subdevs

Definition

struct v412 subdev core ops {

int (*log status)(struct v412 subdev *sd);

int (*s_io_pin config) (struct v412 subdev *sd, size t n, struct v412 subdev_io pin_
—config *pincfg);

int (*init) (struct v412 subdev *sd, u32 val);

int (*load fw)(struct v412 subdev *sd);

int (*reset)(struct v4l12 subdev *sd, u32 val);

int (*s _gpio)(struct v412 subdev *sd, u32 val);

long (*command) (struct v412 subdev *sd, unsigned int cmd, void *arg);

long (*ioctl) (struct v412 subdev *sd, unsigned int cmd, void *arg);
#ifdef CONFIG COMPAT;

long (*compat ioctl32)(struct v412 subdev *sd, unsigned int cmd, unsigned long arg);
#endif;
#ifdef CONFIG_VIDEO ADV DEBUG;

int (*g _register)(struct v412 subdev *sd, struct v4l2 dbg register *reg);

int (*s _register)(struct v412 subdev *sd, const struct v4l2 dbg register *reg);
#endif;

int (*s _power)(struct v4l2 subdev *sd, int on);

int (*interrupt_service routine) (struct v412 subdev *sd, u32 status, bool *handled);

int (*subscribe event) (struct v412 subdev *sd, struct v4l2 fh *fh, struct v412 event
—subscription *sub);

int (*unsubscribe event) (struct v412 subdev *sd, struct v412 fh *fh, struct v4l2
—event subscription *sub);

+

Members
log_status callback for VIDIOC LOG STATUS() ioctl handler code.

s_io pin_config configure one or more chip I/O pins for chips that multiplex different internal
signal pads out to IO pins. This function takes a pointer to an array of ‘n’ pin configuration
entries, one for each pin being configured. This function could be called at times other
than just subdevice initialization.

init initialize the sensor registers to some sort of reasonable default values. Do not use for
new drivers and should be removed in existing drivers.

load_fw load firmware.

reset generic reset command. The argument selects which subsystems to reset. Passing 0 will
always reset the whole chip. Do not use for new drivers without discussing this first on
the linux-media mailinglist. There should be no reason normally to reset a device.

s_gpio set GPIO pins. Very simple right now, might need to be extended with a direction
argument if needed.

2.2. Video4lLinux devices 277

Linux Media Documentation

command called by in-kernel drivers in order to call functions internal to subdev drivers driver
that have a separate callback.

ioctl called at the end of ioctl() syscall handler at the V4L2 core. used to provide support for
private ioctls used on the driver.

compat_ioctl32 called when a 32 bits application uses a 64 bits Kernel, in order to fix data
passed from/to userspace.

g_register callback for VIDIOC DBG G REGISTER() ioctl handler code.
s_register callback for VIDIOC DBG S REGISTER() ioctl handler code.
s_power puts subdevice in power saving mode (on == 0) or normal operation mode (on == 1).

interrupt_service_routine Called by the bridge chip’s interrupt service handler, when an
interrupt status has be raised due to this subdev, so that this subdev can handle the details.
It may schedule work to be performed later. It must not sleep. Called from an IRQ
context.

subscribe_event used by the drivers to request the control framework that for it to be warned
when the value of a control changes.

unsubscribe_event remove event subscription from the control framework.

struct v412_subdev_tuner_ops
Callbacks used when v41 device was opened in radio mode.

Definition

struct v412 subdev_tuner ops {
int (*standby) (struct v412 subdev *sd);
int (*s_radio) (struct v412 subdev *sd);
int (*s frequency) (struct v412 subdev *sd, const struct v412 frequency *freq);
int (*g_ frequency) (struct v412 subdev *sd, struct v412 frequency *freq);
int (*enum freq bands) (struct v412 subdev *sd, struct v412 frequency band *band);
int (*g_tuner)(struct v412 subdev *sd, struct v412 tuner *vt);
int (*s_tuner) (struct v412 subdev *sd, const struct v412 tuner *vt);
int (*g modulator) (struct v412 subdev *sd, struct v412 modulator *vm);
int (*s modulator) (struct v412 subdev *sd, const struct v412 modulator *vm);
int (*s_type addr)(struct v412 subdev *sd, struct tuner setup *type);
int (*s_config)(struct v412 subdev *sd, const struct v4l12 priv tun config *config);

}

Members

standby puts the tuner in standby mode. It will be woken up automatically the next time it is
used.

s_radio callback that switches the tuner to radio mode. drivers should explicitly call it when
a tuner ops should operate on radio mode, before being able to handle it. Used on devices
that have both AM/FM radio receiver and TV.

s_frequency callback for VIDIOC S FREQUENCY() ioctl handler code.

g_frequency callback for VIDIOC G FREQUENCY() ioctl handler code. freq->type must be
filled in. Normally done by video ioctl2() or the bridge driver.

enum_freq_bands callback for VIDIOC ENUM FREQ BANDS() ioctl handler code.
g_tuner callback for VIDIOC G TUNER() ioctl handler code.

278 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

s_tuner callback for VIDIOC S TUNER() ioctl handler code. vt->type must be filled in. Nor-
mally done by video ioctl2 or the bridge driver.

g_modulator callback for VIDIOC G MODULATOR() ioctl handler code.
s_modulator callback for VIDIOC S MODULATOR() ioctl handler code.
s_type_addr sets tuner type and its I2C addr.

s_config sets tda9887 specific stuff, like portl, port2 and gss

Description

Note: On devices that have both AM/FM and TV, it is up to the driver to explicitly call
s radio when the tuner should be switched to radio mode, before handling other struct
v412 subdev tuner ops that would require it. An example of such usage is:

static void s frequency(void *priv, const struct v412 frequency *f)

{

if (f.type == V4L2 TUNER RADIO)
v412 device call all(v4l2 dev, 0, tuner, s radio);

v412 device call all(v4l2 dev, 0, tuner, s frequency);

struct v412_subdev_audio_ops
Callbacks used for audio-related settings

Definition

struct v412 subdev audio ops {
int (*s_clock freq) (struct v412 subdev *sd, u32 freq);
int (*s_i2s clock freq) (struct v412 subdev *sd, u32 freq);
int (*s_routing) (struct v412 subdev *sd, u32 input, u32 output, u32 config);
int (*s_stream) (struct v412 subdev *sd, int enable);

+;

Members

s_clock_freq set the frequency (in Hz) of the audio clock output. Used to slave an audio
processor to the video decoder, ensuring that audio and video remain synchronized. Usual
values for the frequency are 48000, 44100 or 32000 Hz. If the frequency is not supported,
then -EINVAL is returned.

s_i2s _clock_freq sets I2S speed in bps. This is used to provide a standard way to select I12S
clock used by driving digital audio streams at some board designs. Usual values for the
frequency are 1024000 and 2048000. If the frequency is not supported, then -EINVAL is
returned.

s_routing used to define the input and/or output pins of an audio chip, and any additional
configuration data. Never attempt to use user-level input IDs (e.g. Composite, S-Video,
Tuner) at this level. An i2c device shouldn’t know about whether an input pin is connected
to a Composite connector, become on another board or platform it might be connected to
something else entirely. The calling driver is responsible for mapping a user-level input to
the right pins on the i2c device.

2.2. Video4lLinux devices 279

Linux Media Documentation

s_stream used to notify the audio code that stream will start or has stopped.

enum v412_mbus_frame_desc_flags
media bus frame description flags

Constants
V4L2 MBUS FRAME DESC FL LEN MAX

Indicates that struct v412 mbus frame desc entry->length field specifies maxi-
mum data length.

V4L2 MBUS FRAME DESC FL BLOB

Indicates that the format does not have line offsets, i.e. the receiver should use 1D
DMA.

struct v412_mbus_frame_desc_entry
media bus frame description structure

Definition

struct v412 mbus frame desc entry {
enum v412 mbus frame desc flags flags;
u32 pixelcode;

u32 length;

3

Members

flags bitmask flags, as defined by enum v412 mbus frame desc flags.

pixelcode media bus pixel code, valid if flags FRAME DESC FL BLOB is not set.

length number of octets per frame, valid if flags V4L2 MBUS FRAME DESC FL LEN MAX is set.

struct v412_mbus_frame_desc
media bus data frame description

Definition

struct v412 mbus frame desc {
struct v412 mbus frame desc entry entry[V4L2 FRAME DESC ENTRY MAX];
unsigned short num entries;

+;

Members
entry frame descriptors array
num_entries number of entries in entry array

enum v412_subdev_pre_streamon_flags
Flags for pre streamon subdev core op

Constants

V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP Set the transmitter to either LP-11 or LP-111 mode
before call to s stream().

struct v412_subdev_video_ops
Callbacks used when v41 device was opened in video mode.

280 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Definition

struct v412 subdev video ops {

int (*s routing) (struct v412 subdev *sd, u32 input, u32 output, u32 config);

int (*s _crystal freq)(struct v412 subdev *sd, u32 freq, u32 flags);

int (*g _std)(struct v412 subdev *sd, v412 std id *norm);

int (*s_std)(struct v412 subdev *sd, v412 std id norm);

int (*s_std output) (struct v41l2 subdev *sd, v412 std id std);

int (*g std output) (struct v412 subdev *sd, v412 std id *std);

int (*querystd) (struct v412 subdev *sd, v412 std id *std);

int (*g_tvnorms) (struct v412 subdev *sd, v412 std id *std);

int (*g_tvnorms output) (struct v412 subdev *sd, v412 std id *std);

int (*g_input status)(struct v412 subdev *sd, u32 *status);

int (*s stream)(struct v412 subdev *sd, int enable);

int (*g pixelaspect)(struct v412 subdev *sd, struct v4l2 fract *aspect);

int (*g_frame_interval) (struct v412 subdev *sd, struct v412 subdev_frame interval,
~*interval);

int (*s frame_interval) (struct v412 subdev *sd, struct v41l2 subdev frame interval,
~*interval);

int (*s dv _timings) (struct v412 subdev *sd, struct v412 dv timings *timings);

int (*g dv_timings) (struct v412 subdev *sd, struct v412 dv_timings *timings);

int (*query dv_timings) (struct v412 subdev *sd, struct v412 dv_timings *timings);

int (*s_rx_buffer)(struct v4l2 subdev *sd, void *buf, unsigned int *size);

int (*pre_streamon) (struct v412 subdev *sd, u32 flags);

int (*post streamoff)(struct v412 subdev *sd);

+

Members
s_routing see s routing in audio ops, except this version is for video devices.

s_crystal_freq sets the frequency of the crystal used to generate the clocks in Hz. An extra
flags field allows device specific configuration regarding clock frequency dividers, etc. If
not used, then set flags to 0. If the frequency is not supported, then -EINVAL is returned.

g_std callback for VIDIOC G STD() ioctl handler code.
s_std callback for VIDIOC S STD() ioctl handler code.
s_std_output setv4l2 std id for video OUTPUT devices. This is ignored by video input devices.

g_std_output get current standard for video OUTPUT devices. This is ignored by video input
devices.

querystd callback for VIDIOC QUERYSTD() ioctl handler code.

g_tvnorms get v412 std id with all standards supported by the video CAPTURE device. This
is ignored by video output devices.

g_tvnorms_output get v412 std id with all standards supported by the video OUTPUT device.
This is ignored by video capture devices.

g_input_status get input status. Same as the status field in the struct v412 input
s_stream used to notify the driver that a video stream will start or has stopped.
g_pixelaspect callback to return the pixelaspect ratio.

g_frame_interval callback for VIDIOC SUBDEV G FRAME INTERVAL() ioctl handler code.
s_frame_interval callback for VIDIOC SUBDEV S FRAME INTERVAL() ioctl handler code.

2.2. Video4lLinux devices 281

Linux Media Documentation

s_dv_timings Set custom dv timings in the sub device. This is used when sub device is capable
of setting detailed timing information in the hardware to generate/detect the video signal.

g_dv_timings Get custom dv timings in the sub device.
query _dv_timings callback for VIDIOC QUERY DV TIMINGS() ioctl handler code.

s_rx_buffer set a host allocated memory buffer for the subdev. The subdev can adjust size to
a lower value and must not write more data to the buffer starting at data than the original
value of size.

pre_streamon May be called before streaming is actually started, to help initialising the bus.
Current usage is to set a CSI-2 transmitter to LP-11 or LP-111 mode before streaming. See
enum v412 subdev pre streamon flags.

pre_streamon shall return error if it cannot perform the operation as indicated by the flags
argument. In particular, -EACCES indicates lack of support for the operation. The caller
shall call post_streamoff for each successful call of pre streamon.

post_streamoff Called after streaming is stopped, but if and only if pre streamon was called
earlier.

struct v412_subdev_vbi_ops
Callbacks used when v41 device was opened in video mode via the vbi device node.

Definition

struct v412 subdev vbi ops {
int (*decode vbi line) (struct v412 subdev *sd, struct v412 decode vbi line *vbi
—line);
int (*s vbi data)(struct v412 subdev *sd, const struct v412 sliced vbi data *vbi
—data);
int (*g vbi data)(struct v412 subdev *sd, struct v412 sliced vbi data *vbi data);
int (*g sliced vbi cap)(struct v412 subdev *sd, struct v412 sliced vbi cap *cap);
int (*s_raw fmt) (struct v412 subdev *sd, struct v412 vbi format *fmt);
int (*g sliced fmt)(struct v412 subdev *sd, struct v4l2 sliced vbi format *fmt);
int (*s sliced fmt)(struct v412 subdev *sd, struct v412 sliced vbi format *fmt);

1

Members

decode_vbi_line video decoders that support sliced VBI need to implement this ioctl. Field p
of the struct v412 decode vbi lineissetto the start of the VBI data that was generated
by the decoder. The driver then parses the sliced VBI data and sets the other fields in the
struct accordingly. The pointer p is updated to point to the start of the payload which can
be copied verbatim into the data field of the struct v412 sliced vbi data. If no valid
VBI data was found, then the type field is set to 0 on return.

s_vbi data used to generate VBI signals on a video signal. struct v412 sliced vbi datais
filled with the data packets that should be output. Note that if you set the line field to O,
then that VBI signal is disabled. If no valid VBI data was found, then the type field is set
to 0 on return.

g_vbi_data used to obtain the sliced VBI packet from a readback register. Not all video de-
coders support this. If no data is available because the readback register contains invalid
or erroneous data -EIO is returned. Note that you must fill in the ‘id’ member and the ‘field’
member (to determine whether CC data from the first or second field should be obtained).

g_sliced_vbi_cap callback for VIDIOC G SLICED VBI CAP() ioctl handler code.

282 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

s_raw_fmt setup the video encoder/decoder for raw VBI.
g_sliced fmt retrieve the current sliced VBI settings.
s_sliced_fmt setup the sliced VBI settings.

struct v412_subdev_sensor_ops
v412-subdev sensor operations

Definition

struct v412 subdev_sensor ops {
int (*g skip top lines)(struct v412 subdev *sd, u32 *lines);
int (*g skip frames) (struct v412 subdev *sd, u32 *frames);

s

Members

g_skip_top_lines number of lines at the top of the image to be skipped. This is needed for
some sensors, which always corrupt several top lines of the output image, or which send
their metadata in them.

g_skip_frames number of frames to skip at stream start. This is needed for buggy sensors that
generate faulty frames when they are turned on.

enum v412_subdev_ir mode
describes the type of IR supported

Constants
V4L2_SUBDEV_IR_MODE_PULSE_WIDTH IR uses struct ir raw event records

struct v412_subdev_ir_parameters
Parameters for IR TX or TX

Definition

struct v412 subdev _ir parameters {
unsigned int bytes per data element;
enum v412 subdev ir mode mode;
bool enable;
bool interrupt enable;
bool shutdown;
bool modulation;
u32 max_pulse width;
unsigned int carrier freq;
unsigned int duty cycle;
bool invert level;
bool invert carrier sense;
u32 noise filter min width;
unsigned int carrier range lower;
unsigned int carrier range upper;
u32 resolution;

}

Members
bytes per_data_element bytes per data element of data in read or write call.

mode IR mode as defined by enum v412 subdev ir mode.

2.2. Video4lLinux devices 283

Linux Media Documentation

enable device is active if true

interrupt_enable IR interrupts are enabled if true

shutdown if true: set hardware to low/no power, false: normal mode
modulation if true, it uses carrier, if false: baseband

max_pulse width maximum pulse width in ns, valid only for baseband signal
carrier_freq carrier frequency in Hz, valid only for modulated signal
duty_cycle duty cycle percentage, valid only for modulated signal
invert_level invert signal level

invert_carrier_sense Send O/space as a carrier burst. used only in TX.
noise_filter_min_width min time of a valid pulse, in ns. Used only for RX.

carrier_range lower Lower carrier range, in Hz, valid only for modulated signal. Used only
for RX.

carrier_range_upper Upper carrier range, in Hz, valid only for modulated signal. Used only
for RX.

resolution The receive resolution, in ns . Used only for RX.

struct v412_subdev_ir ops
operations for IR subdevices

Definition

struct v412 subdev ir ops {

int (*rx_read) (struct v4l2 subdev *sd, u8 *buf, size t count, ssize t *num);

int (*rx_g parameters) (struct v412 subdev *sd, struct v412 subdev ir parameters,
—*params) ;

int (*rx_s parameters) (struct v41l2 subdev *sd, struct v4l2 subdev ir parameters,
—*params) ;

int (*tx write) (struct v412 subdev *sd, u8 *buf, size t count, ssize t *num);

int (*tx g parameters) (struct v412 subdev *sd, struct v412 subdev ir parameters,
—*params) ;

int (*tx_s parameters) (struct v412 subdev *sd, struct v4l2 subdev ir parameters,

* .
—*params) ;

};

Members

rx_read Reads received codes or pulse width data. The semantics are similar to a non-blocking
read() call.

rx_g_parameters Get the current operating parameters and state of the IR receiver.

rx_s_parameters Set the current operating parameters and state of the IR receiver. It is rec-
ommended to call [rt]x g parameters first to fill out the current state, and only change
the fields that need to be changed. Upon return, the actual device operating parameters
and state will be returned. Note that hardware limitations may prevent the actual settings
from matching the requested settings - e.g. an actual carrier setting of 35,904 Hz when
36,000 Hz was requested. An exception is when the shutdown parameter is true. The
last used operational parameters will be returned, but the actual state of the hardware be
different to minimize power consumption and processing when shutdown is true.

284 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

tx_write Writes codes or pulse width data for transmission. The semantics are similar to a
non-blocking write() call.

tx_g_parameters Get the current operating parameters and state of the IR transmitter.

tx_s_parameters Set the current operating parameters and state of the IR transmitter. It is
recommended to call [rt]x g parameters first to fill out the current state, and only change
the fields that need to be changed. Upon return, the actual device operating parameters
and state will be returned. Note that hardware limitations may prevent the actual settings
from matching the requested settings - e.g. an actual carrier setting of 35,904 Hz when
36,000 Hz was requested. An exception is when the shutdown parameter is true. The
last used operational parameters will be returned, but the actual state of the hardware be
different to minimize power consumption and processing when shutdown is true.

struct v412_subdev_pad_config
Used for storing subdev pad information.

Definition

struct v412 subdev pad config {
struct v412 mbus framefmt try fmt;
struct v412 rect try crop;

struct v412 rect try compose;

¥

Members

try_fmt struct v412 mbus framefmt

try_crop struct v4l2 rect to be used for crop
try_compose struct v412 rect to be used for compose
Description

This structure only needs to be passed to the pad op if the ‘which’ field of the main argument
is set to V4L2 SUBDEV FORMAT_ TRY. For V4L2 SUBDEV FORMAT ACTIVE it is safe to pass NULL.

struct v412_subdev_state
Used for storing subdev state information.

Definition

struct v412 subdev state {
struct v412 subdev pad config *pads;

¥

Members
pads struct v412 subdev pad config array
Description

This structure only needs to be passed to the pad op if the ‘which’ field of the main argument
is set to V4L2 SUBDEV FORMAT_ TRY. For V4L2 SUBDEV FORMAT_ ACTIVE it is safe to pass NULL.

struct v412_subdev_pad_ops
v4]2-subdev pad level operations

Definition

2.2. Video4lLinux devices 285

Linux Media Documentation

struct v412 subdev _pad ops {

int (*init cfg) (struct v412 subdev *sd, struct v412 subdev state *state);

int (*enum mbus code) (struct v412 subdev *sd,struct v4l12 subdev state *state, struct,
—v412 subdev _mbus code enum *code);

int (*enum frame size)(struct v412 subdev *sd,struct v4l2 subdev state *state,,
—struct v412 subdev frame size enum *fse);

int (*enum frame interval) (struct v412 subdev *sd,struct v4l2 subdev state *state,
—struct v412 subdev frame interval enum *fie);

int (*get fmt)(struct v412 subdev *sd,struct v412 subdev state *state, struct v4l12
—subdev_format *format);

int (*set fmt) (struct v412 subdev *sd,struct v4l2 subdev state *state, struct v412
—subdev_format *format);

int (*get selection)(struct v412 subdev *sd,struct v412 subdev state *state, struct,
—v412 subdev selection *sel);

int (*set_selection) (struct v412 subdev *sd,struct v4l12 subdev state *state, struct,
—v412 subdev selection *sel);
int (*get edid) (struct v412 subdev *sd, struct v412 edid *edid);
int (*set edid) (struct v412 subdev *sd, struct v412 edid *edid);

int (*dv_timings cap) (struct v412 subdev *sd, struct v412 dv timings cap *cap);

int (*enum dv_timings) (struct v412 subdev *sd, struct v412 enum dv_timings *timings);
#ifdef CONFIG MEDIA CONTROLLER;

int (*link validate) (struct v412 subdev *sd, struct media link *1link,struct v412_
—subdev format *source fmt, struct v412 subdev format *sink fmt);
#endif ;

int (*get frame desc)(struct v412 subdev *sd, unsigned int pad, struct v412 mbus_
—frame desc *fd);

int (*set frame desc)(struct v412 subdev *sd, unsigned int pad, struct v412 mbus
—frame desc *fd);

int (*get _mbus config) (struct v412 subdev *sd, unsigned int pad, struct v412 mbus
—config *config);

int (*set_mbus config) (struct v412 subdev *sd, unsigned int pad, struct v412 mbus_
—config *config);

}

Members

init_cfg initialize the pad config to default values

enum_mbus_code callback for VIDIOC SUBDEV ENUM MBUS CODE() ioctl handler code.
enum_frame_size callback for VIDIOC SUBDEV ENUM FRAME SIZE() ioctl handler code.

enum_frame_interval callback for VIDIOC SUBDEV_ENUM FRAME INTERVAL() ioctl han-
dler code.

get_fmt callback for VIDIOC SUBDEV G FMTY() ioctl handler code.

set_fmt callback for VIDIOC SUBDEV S FMT() ioctl handler code.

get_selection callback for VIDIOC SUBDEV G SELECTION() ioctl handler code.
set_selection callback for VIDIOC SUBDEV S SELECTION() ioctl handler code.
get_edid callback for VIDIOC SUBDEV G EDID() ioctl handler code.

set_edid callback for VIDIOC SUBDEV S EDID() ioctl handler code.

dv_timings cap callback for VIDIOC SUBDEV DV TIMINGS CAP() ioctl handler code.
enum_dv_timings callback for VIDIOC SUBDEV _ENUM DV TIMINGS() ioctl handler code.

286 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

link_validate used by the media controller code to check if the links that belongs to a pipeline

can be used for stream.

get_frame_desc get the current low level media bus frame parameters.

set_frame_desc set the low level media bus frame parameters, fd array may be adjusted by

the subdev driver to device capabilities.

get _mbus_config get the media bus configuration of a remote sub-device. The media bus con-

figuration is usually retrieved from the firmware interface at sub-device probe time, imme-
diately applied to the hardware and eventually adjusted by the driver. Remote sub-devices
(usually video receivers) shall use this operation to query the transmitting end bus con-
figuration in order to adjust their own one accordingly. Callers should make sure they
get the most up-to-date as possible configuration from the remote end, likely calling this
operation as close as possible to stream on time. The operation shall fail if the pad index
it has been called on is not valid or in case of unrecoverable failures.

set_mbus_config set the media bus configuration of a remote sub-device. This operations

is intended to allow, in combination with the get mbus config operation, the negotiation
of media bus configuration parameters between media sub-devices. The operation shall
not fail if the requested configuration is not supported, but the driver shall update the
content of the config argument to reflect what has been actually applied to the hardware.
The operation shall fail if the pad index it has been called on is not valid or in case of
unrecoverable failures.

struct v412_subdev_ops

Subdev operations

Definition

struct v412 subdev ops {

const struct v412 subdev core ops *core;
const struct v412 subdev tuner ops *tuner;
const struct v412 subdev audio ops *audio;
const struct v412 subdev video ops *video;
const struct v412 subdev_vbi ops *vbi;
const struct v412 subdev_ir ops *ir;
const struct v412 subdev_sensor _ops *sensor;
const struct v412 subdev pad ops *pad;

}s

Members

core pointer to struct v412 subdev core ops. Can be NULL

tuner pointer to struct v412 subdev tuner ops. Can be NULL

audio pointer to struct v412 subdev audio ops. Can be NULL

video pointer to struct v412 subdev video ops. Can be NULL

vbi pointer to struct v412 subdev vbi ops. Can be NULL

ir pointer to struct v412 subdev ir ops. Can be NULL

sensor pointer to struct v412 subdev sensor ops. Can be NULL

pad pointer to struct v412 subdev pad ops. Can be NULL

2.2. Video4lLinux devices

Linux Media Documentation

struct v412_subdev_internal ops
V4L2 subdev internal ops

Definition

struct v412 subdev _internal ops {
int (*registered) (struct v412 subdev *sd);
void (*unregistered) (struct v412 subdev *sd);
int (*open)(struct v412 subdev *sd, struct v412 subdev fh *fh);
int (*close) (struct v412 subdev *sd, struct v412 subdev fh *fh);
void (*release)(struct v412 subdev *sd);

+;

Members

registered called when this subdev is registered. When called the v412 dev field is set to the
correct v412 device.

unregistered called when this subdev is unregistered. When called the v412 dev field is still
set to the correct v412 device.

open called when the subdev device node is opened by an application.

close called when the subdev device node is closed. Please note that it is possible for close to
be called after unregistered!

release called when the last user of the subdev device is gone. This happens after the unreg-
istered callback and when the last open filehandle to the v4l-subdevX device node was
closed. If no device node was created for this sub-device, then the release callback is
called right after the unregistered callback. The release callback is typically used to
free the memory containing the v412 subdev structure. It is almost certainly required for
any sub-device that sets the V4L2 SUBDEV FLL. HAS DEVNODE flag.

Description

Note: Never call this from drivers, only the v412 framework can call these ops.

struct v412_subdev_platform_data
regulators config struct

Definition

struct v412 subdev platform data {
struct regulator bulk data *regulators;
int num_regulators;
void *host priv;

}

Members

regulators Optional regulators used to power on/off the subdevice
num_regulators Number of regululators

host_priv Per-subdevice data, specific for a certain video host device

struct v412_subdev
describes a V412 sub-device

288 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Definition

struct v412 subdev {
#if defined(CONFIG_MEDIA CONTROLLER);
struct media entity entity;
#endif;
struct list head list;
struct module *owner;
bool owner v412 dev;
u32 flags;
struct v412 device *v412 dev;
const struct v412 subdev ops *ops;
const struct v412 subdev internal ops *internal ops;
struct v412 ctrl handler *ctrl handler;
char name[V4L2 SUBDEV NAME SIZE];
u32 grp_id;
void *dev priv;
void *host priv;
struct video device *devnode;
struct device *dev;
struct fwnode handle *fwnode;
struct list head async list;
struct v412 async_subdev *asd;
struct v412 async notifier *notifier;
struct v412 async notifier *subdev notifier;
struct v412 subdev platform data *pdata;

+;

Members

entity pointer to struct media entity

list List of sub-devices

owner The owner is the same as the driver’s struct device owner.

owner_v412 dev true if the sd->owner matches the owner of v412_dev->dev owner. Initialized
by v412 device register subdev().

flags subdev flags. Can be: V4L2 SUBDEV FL IS I2C - Set this flag if this subdev is
a i2c device; V4L2 SUBDEV _FL IS SPI - Set this flag if this subdev is a spi de-
vice; V4L2 SUBDEV FL HAS DEVNODE - Set this flag if this subdev needs a device node;
V4L2 SUBDEV_FL HAS EVENTS - Set this flag if this subdev generates events.

v412_dev pointer to struct v412 device
ops pointer to struct v412 subdev ops

internal_ops pointer to struct v412 subdev internal ops. Never call these internal ops
from within a driver!

ctrl_handler The control handler of this subdev. May be NULL.

name Name of the sub-device. Please notice that the name must be unique.
grp_id can be used to group similar subdevs. Value is driver-specific
dev_priv pointer to private data

host_priv pointer to private data used by the device where the subdev is attached.

2.2. Video4lLinux devices 289

Linux Media Documentation

devnode subdev device node
dev pointer to the physical device, if any

fwnode The fwnode handle of the subdev, usually the same as either dev->of node->fwnode or
dev->fwnode (whichever is non-NULL).

async_list Links this subdev to a global subdev list or notifier->done list.
asd Pointer to respective struct v412 async subdev.
notifier Pointer to the managing notifier.

subdev_notifier A sub-device notifier implicitly registered for the sub- device using
v412 async register subdev sensor().

pdata common part of subdevice platform data
Description

Each instance of a subdev driver should create this struct, either stand-alone or embedded in
a larger struct.

This structure should be initialized by v412 subdev init() or one of its variants:
v4l2 spi subdev init(),v4l2 i2c subdev init().

media_entity_to_v412_subdev(ent)
Returns a struct v412 subdev from the struct media entity embedded in it.

Parameters
ent pointer to struct media entity.

vdev_to_v412_ subdev(vdev)
Returns a struct v412 subdev from the struct video device embedded on it.

Parameters
vdev pointer to struct video device

struct v412_subdev_fh
Used for storing subdev information per file handle

Definition

struct v412 subdev_fh {
struct v412 fh vfh;
struct module *owner;

#if defined (CONFIG VIDEO V4L2 SUBDEV API);
struct v41l2 subdev state *state;

#endif;

}

Members

vfh pointer to struct v412 fh

owner module pointer to the owner of this file handle
state pointer to struct v412 subdev state

to_v412_subdev_fh(fh)
Returns a struct v412 subdev fh from the struct v412 fh embedded on it.

290 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Parameters
fh pointer to struct v412 fh

struct v412 mbus framefmt * v412_subdev_get_try_format (struct
v412 subdev *sd, struct
v412 subdev state *state,
unsigned int pad)
ancillary routine to call struct v412 subdev pad config->try fmt

Parameters
struct v412_subdev *sd pointer to struct v412 subdev
struct v412_subdev_state *state pointer to struct v412 subdev state

unsigned int pad index of the pad in the struct v412 subdev state->pads array

struct v412 rect * v412_subdev_get_try_ crop(struct v412 subdev *sd, struct
v412 subdev state *state, unsigned
int pad)

ancillary routine to call struct v412 subdev pad config->try crop
Parameters
struct v412_subdev *sd pointer to struct v412 subdev
struct v412_subdev_state *state pointer to struct v412 subdev state.

unsigned int pad index of the pad in the struct v412 subdev state->pads array.

struct v412 rect * v412_subdev_get_try_ compose(struct v412 subdev *sd, struct
v412 subdev state *state, = unsigned
int pad)

ancillary routine to call struct v412 subdev pad config->try compose
Parameters
struct v412_subdev *sd pointer to struct v412 subdev
struct v412_subdev_state *state pointer to struct v412 subdev state.
unsigned int pad index of the pad in the struct v412 subdev state->pads array.

void v412_set_subdevdata(struct v4[2 subdev *sd, void *p)
Sets V41.2 dev private device data

Parameters
struct v412_subdev *sd pointer to struct v412 subdev
void *p pointer to the private device data to be stored.

void * v412_get_subdevdata(const struct v412 subdev *sd)
Gets V4L2 dev private device data

Parameters
const struct v412_subdev *sd pointer to struct v412 subdev
Description

Returns the pointer to the private device data to be stored.

2.2. Video4lLinux devices 291

Linux Media Documentation

void v412_set_subdev_hostdata(struct v412 subdev *sd, void *p)
Sets V412 dev private host data

Parameters
struct v412_subdev *sd pointer to struct v412 subdev
void *p pointer to the private data to be stored.

void * v412_get_subdev_hostdata(const struct v412 subdev *sd)
Gets V4L2 dev private data

Parameters

const struct v412_subdev *sd pointer to struct v412 subdev
Description

Returns the pointer to the private host data to be stored.

int v412_subdev_get fwnode pad 1 to_1l(struct media entity *entity, struct fwn-
ode endpoint *endpoint)
Get pad number from a subdev fwnode endpoint, assuming 1:1 port:pad

Parameters

struct media_entity *entity Pointer to the subdev entity

struct fwnode_endpoint *endpoint Pointer to a parsed fwnode endpoint
Description

This function can be used as the .get fwnode pad operation for subdevices that map port num-
bers and pad indexes 1:1. If the endpoint is owned by the subdevice, the function returns the
endpoint port number.

Returns the endpoint port number on success or a negative error code.

int v412_subdev_link_validate_default (struct v412 subdev *sd, struct
media link *link, struct
v412 subdev format *source fmt, struct

v412 subdev format *sink fmt)
validates a media link

Parameters

struct v412_subdev *sd pointer to struct v412 subdev

struct media_link *link pointer to struct media link

struct v412_subdev_format *source_fmt pointer to struct v412 subdev format
struct v412 subdev _format *sink fmt pointer to struct v412 subdev format
Description

This function ensures that width, height and the media bus pixel code are equal on both source
and sink of the link.

int v412_subdev_link_validate (struct media link *link)
validates a media link

Parameters

292 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct media_link *1link pointer to struct media link
Description

This function calls the subdev’s link validate ops to validate if a media link is valid for streaming.
It also internally calls v412 subdev link validate default() to ensure that width, height
and the media bus pixel code are equal on both source and sink of the link.

struct v412 subdev state * v412_subdev_alloc_state(struct v4/2 subdev *sd)
allocate v412 subdev state

Parameters

struct v412_subdev *sd pointer to struct v412 subdev for which the state is being allo-
cated.

Description
Must call v412 subdev free state() when state is no longer needed.

void v412_subdev_free_state(struct v412 subdev state *state)
free a v412 subdev state

Parameters
struct v412_subdev_state *state v412 subdev state to be freed.

void v412_subdev_init(struct v412 subdev *sd, const struct v412 subdev ops *ops)
initializes the sub-device struct

Parameters
struct v412_subdev *sd pointer to the struct v412 subdev to be initialized
const struct v412_subdev_ops *ops pointer to struct v412 subdev ops.

v412_subdev_call(sd, o, f, args...)
call an operation of a v412 subdev.

Parameters
sd pointer to the struct v412 subdev

o name of the element at struct v412 subdev ops that contains f. Each element there groups
a set of callbacks functions.

f callback function to be called. The callback functions are defined in groups, according to
each element at struct v412 subdev ops.

args... arguments for f.
Example
err = v4l2 subdev call(sd, video, s_std, norm);

v412_subdev_has_op(sd, o, f)
Checks if a subdev defines a certain operation.

Parameters
sd pointer to the struct v412 subdev
o The group of callback functions in struct v412 subdev ops which f is a part of.

f callback function to be checked for its existence.

2.2. Video4lLinux devices 293

Linux Media Documentation

void v412_subdev_notify event(struct v412 subdev *sd, const struct v412 event *ev)
Delivers event notification for subdevice

Parameters

struct v412_subdev *sd The subdev for which to deliver the event
const struct v412_event *ev The event to deliver

Description

Will deliver the specified event to all userspace event listeners which are subscribed to the v421
subdev event queue as well as to the bridge driver using the notify callback. The notification
type for the notify callback will be V4L2 DEVICE NOTIFY EVENT.

2.2.12 V4L2 events

The V4L2 events provide a generic way to pass events to user space. The driver must use
v412 fh to be able to support V4L2 events.

Events are subscribed per-filehandle. An event specification consists of a type and is optionally
associated with an object identified through the id field. If unused, then the id is 0. So an
event is uniquely identified by the (type, id) tuple.

The v412 fh struct has a list of subscribed events on its subscribed field.

When the user subscribes to an event, a v412 subscribed event struct is added to v412 fh.
subscribed, one for every subscribed event.

Each v412 subscribed event struct ends with a v412 kevent ringbuffer, with the size given
by the caller of v412 event subscribe(). This ringbuffer is used to store any events raised by
the driver.

Soevery (type, ID) eventtuple will haveits own v412 kevent ringbuffer. This guarantees that
if a driver is generating lots of events of one type in a short time, then that will not overwrite
events of another type.

But if you get more events of one type than the size of the v412 kevent ringbuffer, then the
oldest event will be dropped and the new one added.

The v412 kevent struct links into the available list of the v412 fh struct so ioctl VID-
IOC DQEVENT will know which event to dequeue first.

Finally, if the event subscription is associated with a particular object such as a V4L2 control,
then that object needs to know about that as well so that an event can be raised by that object.
So the node field can be used to link the v412 subscribed event struct into a list of such
objects.

So to summarize:

» struct v412 fh has two lists: one of the subscribed events, and one of the available
events.

* struct v412 subscribed event has a ringbuffer of raised (pending) events of that par-
ticular type.

o If struct v412 subscribed event is associated with a specific object, then that object
will have an internal list of struct v412 subscribed event so it knows who subscribed
an event to that object.

294 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Furthermore, the internal struct v412 subscribed event has merge() and replace() call-
backs which drivers can set. These callbacks are called when a new event is raised and there
is no more room.

The replace() callback allows you to replace the payload of the old event with that of the new
event, merging any relevant data from the old payload into the new payload that replaces it. It
is called when this event type has a ringbuffer with size is one, i.e. only one event can be stored
in the ringbuffer.

The merge () callback allows you to merge the oldest event payload into that of the second-oldest
event payload. It is called when the ringbuffer has size is greater than one.

This way no status information is lost, just the intermediate steps leading up to that state.

A good example of these replace/merge callbacks is in v4l2-event.c: ctrls replace() and
ctrls merge() callbacks for the control event.

Note: these callbacks can be called from interrupt context, so they must be fast.

In order to queue events to video device, drivers should call:
v412 event queue (vdev, ev)

The driver’s only responsibility is to fill in the type and the data fields. The other fields will be
filled in by V4L2.

2.2.12.1 Event subscription

Subscribing to an event is via:
v41l2 event subscribe (fh, sub, elems, ops)

This function is used to implement video device-> ioctl ops-> vidioc subscribe event,
but the driver must check first if the driver is able to produce events with specified event id,
and then should call v412 event subscribe() to subscribe the event.

The elems argument is the size of the event queue for this event. If it is 0, then the framework
will fill in a default value (this depends on the event type).

The ops argument allows the driver to specify a number of callbacks:

Callback| Description

add called when a new listener gets added (subscribing to the same event twice will
only cause this callback to get called once)
del called when a listener stops listening

replace | replace event ‘old’ with event ‘new’.
merge | merge event ‘old’ into event ‘new’.

All 4 callbacks are optional, if you don’t want to specify any callbacks the ops argument itself
maybe NULL.

2.2. Video4lLinux devices 295

Linux Media Documentation

2.2.12.2 Unsubscribing an event

Unsubscribing to an event is via:
v41l2 event unsubscribe (fh, sub)

This function is used to implement video device-> ioctl ops->vidioc unsubscribe event.
A driver may call v412 event unsubscribe() directly unless it wants to be involved in unsub-
scription process.

The special type V4L2 EVENT ALL may be used to unsubscribe all events. The drivers may want
to handle this in a special way.

2.2.12.3 Check if there’s a pending event

Checking if there’s a pending event is via:
v41l2 event pending (fh)

This function returns the number of pending events. Useful when implementing poll.

2.2.12.4 How events work

Events are delivered to user space through the poll system call. The driver can use v412 fh-
>wait (a wait queue head t) as the argument for poll wait().

There are standard and private events. New standard events must use the smallest available
event type. The drivers must allocate their events from their own class starting from class base.
Class base is V4L2 EVENT PRIVATE START + n * 1000 where n is the lowest available number.
The first event type in the class is reserved for future use, so the first available event type is
‘class base + 1.

An example on how the V4L2 events may be used can be found in the OMAP 3 ISP driver
(drivers/media/platform/omap3isp).

A subdev can directly send an event to the v412 device notify function with
V4L2 DEVICE NOTIFY EVENT. This allows the bridge to map the subdev that sends the
event to the video node(s) associated with the subdev that need to be informed about such an
event.

V4L2 event functions and data structures

struct v412_kevent
Internal kernel event struct.

Definition

struct v412 kevent {

struct list head list;
struct v412 subscribed event *sev;
struct v412 event event;
ue4 ts;

}

296 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Members

list List node for the v412 fh->available list.
sev Pointer to parent v412 subscribed event.
event The event itself.

ts The timestamp of the event.

struct v412_subscribed_event_ops
Subscribed event operations.

Definition

struct v412 subscribed event ops {
int (*add) (struct v412 subscribed event *sev, unsigned int elems);
void (*del) (struct v412 subscribed event *sev);
void (*replace)(struct v412 event *old, const struct v412 event *new);
void (*merge) (const struct v41l2 event *old, struct v412 event *new);

+

Members

add Optional callback, called when a new listener is added

del Optional callback, called when a listener stops listening

replace Optional callback that can replace event ‘old’ with event ‘new’.
merge Optional callback that can merge event ‘old’ into event ‘new’.

struct v412_subscribed_event
Internal struct representing a subscribed event.

Definition

struct v412 subscribed event {

struct list head list;
u32 type;
u32 id;
u32 flags;
struct v412 fh *fh;
struct list head node;
const struct v412 subscribed event ops *ops;
unsigned int elems;
unsigned int first;
unsigned int in_use;
struct v412 kevent events[];
}s
Members

list List node for the v412 fh->subscribed list.

type Event type.

id Associated object ID (e.g. control ID). O if there isn’t any.
flags Copy of v4l2 event subscription->flags.

fh Filehandle that subscribed to this event.

2.2. Video4lLinux devices 297

Linux Media Documentation

node List node that hooks into the object’s event list (if there is one).
ops v4l2 subscribed event ops

elems The number of elements in the events array.

first The index of the events containing the oldest available event.
in_use The number of queued events.

events An array of elems events.

int v412_event_dequeue(struct v412 fh *fh, struct v4l12_event *event, int nonblocking)
Dequeue events from video device.

Parameters

struct v412_fh *fh pointer to struct v412 fh

struct v412_event *event pointer to struct v4l2 event
int nonblocking if not zero, waits for an event to arrive

void v412_event_queue (struct video device *vdev, const struct v4l2 event *ev)
Queue events to video device.

Parameters
struct video device *vdev pointer to struct video device
const struct v412_event *ev pointer to struct v412 event
Description

The event will be queued for all struct v412 fh file handlers.

Note: The driver’s only responsibility is to fill in the type and the data fields. The other fields
will be filled in by V4L2.

void v412_event_queue_fh(struct v412 fh *fh, const struct v412_event *ev)
Queue events to video device.

Parameters

struct v412_fh *fh pointer to struct v412 fh

const struct v412_event *ev pointer to struct v412 event
Description

The event will be queued only for the specified struct v412 fh file handler.

Note: The driver’s only responsibility is to fill in the type and the data fields. The other fields
will be filled in by V4L2.

void v412_event_wake_all(struct video device *vdev)
Wake all filehandles.

Parameters

struct video device *vdev pointer to struct video device

298 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description
Used when unregistering a video device.

int v412_event_pending (struct v412 fh *fh)
Check if an event is available

Parameters

struct v412_fh *fh pointer to struct v412 fh
Description

Returns the number of pending events.

int v412_event_subscribe(struct v412 fh *fh, const struct v412 event subscription *sub,
unsigned int elems, const struct

v412 subscribed event ops *ops)
Subscribes to an event

Parameters
struct v412_fh *fh pointer to struct v412 fh

const struct v4l2_event_subscription *sub pointer to struct
v412 event subscription

unsigned int elems size of the events queue
const struct v4l2_subscribed_event_ops *ops pointer to v412 subscribed event ops

Description

Note: if elems is zero, the framework will fill in a default value, with is currently 1 element.

int v412_event_unsubscribe (struct v412 fh *fh, const struct

v412 event subscription *sub)
Unsubscribes to an event

Parameters
struct v412_fh *fh pointer to struct v412 fh

const struct v4l2_event_subscription *sub pointer to struct
v4l2 event subscription

void v412_event_unsubscribe_all(struct v412 fh *fh)
Unsubscribes to all events

Parameters
struct v412_fh *fh pointer to struct v412 fh

int v412_event_subdev_unsubscribe(struct v412 subdev *sd, struct v4I12 fh *fh, struct

v4l2 event subscription *sub)
Subdev variant of v412 event unsubscribe()

Parameters
struct v412_subdev *sd pointer to struct v412 subdev
struct v412_fh *fh pointer to struct v412 fh

2.2. Video4lLinux devices 299

Linux Media Documentation

struct v412_event_subscription *sub pointer to struct v412 event subscription

Description

Note: This function should be wused for the struct v4l2 subdev core ops
unsubscribe event field.

int v412_src_change_event_subscribe (struct v412 fh *fh, const struct
v412 event subscription *sub)
helper function that calls v412 event subscribe() if the event s

V4L2 EVENT SOURCE CHANGE.
Parameters
struct v412_fh *fh pointer to struct v412 fh

const struct v412 event_subscription *sub pointer to struct
v41l2 event subscription
int v412_src_change_event_subdev_subscribe (struct v412 subdev *sd,
struct v412 fh *fh, struct

v4l2 event subscription *sub)
Variant of v412 event subscribe(), meant to subscribe only events of the type

V4L2 EVENT SOURCE_CHANGE.
Parameters
struct v412_subdev *sd pointer to struct v412 subdev
struct v412_fh *fh pointer to struct v412 fh

struct v412_event_subscription *sub pointer to struct v412 event subscription

2.2.13 V4L2 Controls

2.2.13.1 Introduction

The V4L2 control API seems simple enough, but quickly becomes very hard to implement cor-
rectly in drivers. But much of the code needed to handle controls is actually not driver specific
and can be moved to the V4L core framework.

After all, the only part that a driver developer is interested in is:

1) How do I add a control?

2) How do I set the control’s value? (i.e. s_ctrl)
And occasionally:

3) How do I get the control’s value? (i.e. g volatile ctrl)

4) How do I validate the user’s proposed control value? (i.e. try ctrl)
All the rest is something that can be done centrally.

The control framework was created in order to implement all the rules of the V4L2 specification
with respect to controls in a central place. And to make life as easy as possible for the driver
developer.

300 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Note that the control framework relies on the presence of a struct v4 12 device for V4L2 drivers
and struct v412 subdev for sub-device drivers.

2.2.13.2 Objects in the framework

There are two main objects:

The v412 ctrl object describes the control properties and keeps track of the control’s value
(both the current value and the proposed new value).

v4l2 ctrl handler is the object that keeps track of controls. It maintains a list of v412 ctrl
objects that it owns and another list of references to controls, possibly to controls owned by
other handlers.

2.2.13.3 Basic usage for V4L2 and sub-device drivers

1) Prepare the driver:

#include <media/v412-ctrls. h>

1.1) Add the handler to your driver’s top-level struct:
For V4L2 drivers:

struct foo dev {
struct v412_device v412 dev;
struct v412_ctrl_handler ctrl handler;

}

For sub-device drivers:

struct foo_dev {
struct v412_subdev sd;
struct v412_ctrl_handler ctrl handler;

+;

1.2) Initialize the handler:

v41l2 ctrl handler_init(&foo->ctrl handler, nr_of controls);

The second argument is a hint telling the function how many controls this handler is expected
to handle. It will allocate a hashtable based on this information. It is a hint only.

1.3) Hook the control handler into the driver:
For V412 drivers:

foo->v412 dev.ctrl handler = &foo->ctrl handler;

For sub-device drivers:

2.2. Video4lLinux devices 301

Linux Media Documentation

foo->sd.ctrl _handler = &foo->ctrl handler;

1.4) Clean up the handler at the end:

v412 ctrl handler free(&foo->ctrl handler);

2) Add controls:

You add non-menu controls by calling v412 ctrl new std():

struct v412_ctrl *v412 ctrl new std(struct v4l2_ctrl_handler *hdl,
const struct v412 ctrl_ops *ops,
u32 id, s32 min, s32 max, u32 step, s32 def);

Menu and integer menu controls are added by calling v412 ctrl new std menu():

struct v412_ctrl *v412 ctrl new std menu(struct v412_ctrl_handler *hdl,
const struct v412_ctrl_ops *ops,
u32 id, s32 max, s32 skip mask, s32 def);

Menu controls with a driver specific menu are added by calling
v4l2 ctrl new std menu items():

struct v412_ctrl *v412 ctrl new std menu_items(
struct v412 ctrl handler *hdl,
const struct v4l2 ctrl _ops *ops, u32 id, s32 max,
s32 skip mask, s32 def, const char * const *gmenu);

Standard compound controls can be added by calling v412 ctrl new std compound():

struct v412_ctrl *v412 ctrl new std compound(struct v4l2_ctrl_handler *hdl,
const struct v412_ctrl_ops *ops, u32 id,
const union v412_ctrl_ptr p def);

Integer menu controls with a driver specific menu can be added by calling
v4l2 ctrl new int menu():

struct v412_ctrl *v412 ctrl new int menu(struct v412_ctrl_handler *hdl,
const struct v412 ctrl _ops *ops,
u32 id, s32 max, s32 def, const s64 *gmenu int);

These functions are typically called right after the v412 ctrl handler init():

static const s64 exp bias gmenu[] = {
-2, -1, 0, 1, 2
I
static const char * const test pattern[] = {
"Disabled",
"Vertical Bars",
"Solid Black",
"Solid White",
I

v412 ctrl handler init(&foo->ctrl handler, nr_of controls);
v4l2 ctrl new std(&foo->ctrl handler, &foo ctrl ops,
V4L2 CID BRIGHTNESS, 0, 255, 1, 128);

302 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

v4l2 ctrl new std(&foo->ctrl handler, &foo ctrl ops,
V4L2 CID CONTRAST, 0, 255, 1, 128);
v4l2 ctrl new std menu(&foo->ctrl handler, &foo ctrl ops,
V4L2 CID POWER LINE FREQUENCY,
V4L2 CID POWER LINE FREQUENCY_60HZ, 0,
V4L2 CID POWER LINE FREQUENCY DISABLED);
v41l2 ctrl new int menu(&foo->ctrl handler, &foo ctrl ops,
V4L2 CID EXPOSURE_BIAS,
ARRAY SIZE(exp bias gmenu) - 1,
ARRAY SIZE(exp bias gmenu) / 2 - 1,
exp_bias gmenu);
v4l2 ctrl new std menu items(&foo->ctrl handler, &foo ctrl ops,
V4L2 CID TEST PATTERN, ARRAY SIZE(test pattern) - 1, 0,
0, test pattern);

if (foo->ctrl handler.error) {
int err = foo->ctrl handler.error;

v41l2 ctrl handler free(&foo->ctrl handler);
return err;

}

The v412 ctrl new std() function returns the v412 ctrl pointer to the new control, but if you
do not need to access the pointer outside the control ops, then there is no need to store it.

The v412 ctrl new std() function will fill in most fields based on the control ID except for the
min, max, step and default values. These are passed in the last four arguments. These values
are driver specific while control attributes like type, name, flags are all global. The control’s
current value will be set to the default value.

The v412 ctrl new std menu() function is very similar but it is used for menu controls. There
is no min argument since that is always 0 for menu controls, and instead of a step there is a
skip mask argument: if bit X is 1, then menu item X is skipped.

The v412 ctrl new int menu() function creates a new standard integer menu control with
driver-specific items in the menu. It differs from v412 ctrl new std menu in that it doesn’t
have the mask argument and takes as the last argument an array of signed 64-bit integers that
form an exact menu item list.

The v412 ctrl new std menu items() function is very similar to v4l2 ctrl new std menu but
takes an extra parameter gmenu, which is the driver specific menu for an otherwise stan-
dard menu control. A good example for this control is the test pattern control for cap-
ture/display/sensors devices that have the capability to generate test patterns. These test pat-
terns are hardware specific, so the contents of the menu will vary from device to device.

Note that if something fails, the function will return NULL or an error and set ctrl handler-
>error to the error code. If ctrl handler->error was already set, then it will just return and
do nothing. This is also true for v412 ctrl handler init if it cannot allocate the internal data
structure.

This makes it easy to init the handler and just add all controls and only check the error code at
the end. Saves a lot of repetitive error checking.

It is recommended to add controls in ascending control ID order: it will be a bit faster that way.

3) Optionally force initial control setup:

2.2. Video4lLinux devices 303

Linux Media Documentation

v41l2 ctrl handler setup(&foo->ctrl handler);

This will call s ctrl for all controls unconditionally. Effectively this initializes the hardware to
the default control values. It is recommended that you do this as this ensures that both the
internal data structures and the hardware are in sync.

4) Finally: implement the v412 ctrl ops

static const struct v412_ctrl_ops foo ctrl ops = {
.s _ctrl = foo_s ctrl,

}

Usually all you need is s _ctrl:

static int foo s ctrl(struct v412_ctrl *ctrl)
{

struct foo *state = container of(ctrl->handler, struct foo, ctrl handler);

switch (ctrl->id) {

case V4L2_ CID_ BRIGHTNESS:
write reg(0x123, ctrl->val);
break;

case V4L2_CID_CONTRAST:
write reg(0x456, ctrl->val);
break;

}

return 0;

}

The control ops are called with the v412 ctrl pointer as argument. The new control value has
already been validated, so all you need to do is to actually update the hardware registers.

You’'re done! And this is sufficient for most of the drivers we have. No need to do any valida-
tion of control values, or implement QUERYCTRL, QUERY EXT CTRL and QUERYMENU. And
G/S_CTRL as well as G/TRY/S EXT CTRLS are automatically supported.

Note: The remainder sections deal with more advanced controls topics and scenarios. In
practice the basic usage as described above is sufficient for most drivers.

2.2.13.4 Inheriting Sub-device Controls

When a sub-device is registered with a VA4L2 driver by calling v412 device register subdev()
and the ctrl handler fields of both v412 subdev and v412 device are set, then the controls of the
subdev will become automatically available in the V4L2 driver as well. If the subdev driver
contains controls that already exist in the V4L2 driver, then those will be skipped (so a V4L2
driver can always override a subdev control).

What happens here is that v412 device register subdev() calls v412 ctrl add handler()
adding the controls of the subdev to the controls of v412 device.

304 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

2.2.13.5 Accessing Control Values

The following union is used inside the control framework to access control values:

union v412_ctrl_ptr {
s32 *p s32;
s64 *p sb64;
char *p char;
void *p;

+

The v412 ctrl struct contains these fields that can be used to access both current and new
values:

s32 val;
struct {

s32 val;
} cur;

union v412_ctrl_ptr p new;
union v412_ctrl_ptr p cur;

If the control has a simple s32 type, then:

&ctrl->val == ctrl->p new.p s32
&ctrl->cur.val == ctrl->p _cur.p_s32

For all other types use ctrl->p cur.p<something>. Basically the val and cur.val fields can be
considered an alias since these are used so often.

Within the control ops you can freely use these. The val and cur.val speak for themselves.
The p char pointers point to character buffers of length ctrl->maximum + 1, and are always
O-terminated.

Unless the control is marked volatile the p_cur field points to the current cached control value.
When you create a new control this value is made identical to the default value. After calling
v41l2 ctrl handler setup() this value is passed to the hardware. It is generally a good idea
to call this function.

Whenever a new value is set that new value is automatically cached. This means that most
drivers do not need to implement the g volatile ctrl() op. The exception is for controls that
return a volatile register such as a signal strength read-out that changes continuously. In that
case you will need to implement g volatile ctrl like this:

static int foo g volatile ctrl(struct v412 ctrl *ctrl)

{
switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:
ctrl->val = read reg(0x123);
break;
}
}

Note that you use the ‘new value’ union as well in g volatile ctrl. In general con-
trols that need to implement g volatile ctrl are read-only controls. If they are not, a
V4L2 EVENT CTRL CH VALUE will not be generated when the control changes.

2.2. Video4lLinux devices 305

Linux Media Documentation

To mark a control as volatile you have to set VAL2 CTRL FLAG VOLATILE:

ctrl = v412 ctrl new std(&sd->ctrl handler, ...);
if (ctrl)
ctrl->flags |= V4L2 CTRL FLAG VOLATILE;

For try/s_ctrl the new values (i.e. as passed by the user) are filled in and you can modify them
in try ctrl or set them in s ctrl. The ‘cur’ union contains the current value, which you can use
(but not change!) as well.

If s ctrl returns 0 (OK), then the control framework will copy the new final values to the ‘cur’
union.

While in g volatile/s/try ctrl you can access the value of all controls owned by the same handler
since the handler’s lock is held. If you need to access the value of controls owned by other
handlers, then you have to be very careful not to introduce deadlocks.

Outside of the control ops you have to go through to helper functions to get or set a single
control value safely in your driver:

s32 v412 ctrl g ctrl(struct v4l2_ctrl *ctrl);
int v412 ctrl s ctrl(struct v412 ctrl *ctrl, s32 val);

These functions go through the control framework just as VIDIOC G/S _CTRL ioctls do. Don’t
use these inside the control ops g volatile/s/try ctrl, though, that will result in a deadlock since
these helpers lock the handler as well.

You can also take the handler lock yourself:

mutex lock(&state->ctrl _handler.lock);

pr_info("String value is '%s'\n", ctrll->p cur.p char);
pr info("Integer value is '%s'\n", ctrl2->cur.val);
mutex unlock(&state->ctrl handler.lock);

2.2.13.6 Menu Controls

The v412 ctrl struct contains this union:

union {
u32 step;
u32 menu_skip mask;

+;

For menu controls menu skip mask is used. What it does is that it allows you to easily exclude
certain menu items. This is used in the VIDIOC QUERYMENU implementation where you can
return -EINVAL if a certain menu item is not present. Note that VIDIOC QUERYCTRL always
returns a step value of 1 for menu controls.

A good example is the MPEG Audio Layer II Bitrate menu control where the menu is a list of
standardized possible bitrates. But in practice hardware implementations will only support a
subset of those. By setting the skip mask you can tell the framework which menu items should
be skipped. Setting it to 0 means that all menu items are supported.

You set this mask either through the v412 ctrl config struct for a custom control, or by calling
v4l2 ctrl new std menu().

306 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

2.2.13.7 Custom Controls

Driver specific controls can be created using v412 ctrl new custom():

static const struct v4l12_ctrl_config ctrl filter = {
.ops = &ctrl custom ops,
.id = V4L2_CID MPEG _CX2341X VIDEO SPATIAL FILTER,

.hame = "Spatial Filter",

.type = V4L2 CTRL TYPE INTEGER,
.flags = V4L2 CTRL_FLAG SLIDER,
.max = 15,

.step = 1,

+;

ctrl = v412 ctrl new custom(&foo->ctrl handler, &ctrl filter, NULL);

The last argument is the priv pointer which can be set to driver-specific private data.
The v412 ctrl config struct also has a field to set the is private flag.

If the name field is not set, then the framework will assume this is a standard control and will
fill in the name, type and flags fields accordingly.

2.2.13.8 Active and Grabbed Controls

If you get more complex relationships between controls, then you may have to activate and
deactivate controls. For example, if the Chroma AGC control is on, then the Chroma Gain
control is inactive. That is, you may set it, but the value will not be used by the hardware as
long as the automatic gain control is on. Typically user interfaces can disable such input fields.

You can set the ‘active’ status using v412 ctrl activate(). By default all controls are active.
Note that the framework does not check for this flag. It is meant purely for GUIs. The function
is typically called from within s ctrl.

The other flag is the ‘grabbed’ flag. A grabbed control means that you cannot change it because
it is in use by some resource. Typical examples are MPEG bitrate controls that cannot be
changed while capturing is in progress.

If a control is set to ‘grabbed’ using v412 ctrl grab(), then the framework will return -EBUSY
if an attempt is made to set this control. The v412 ctrl grab() function is typically called from
the driver when it starts or stops streaming.

2.2.13.9 Control Clusters

By default all controls are independent from the others. But in more complex scenarios you can
get dependencies from one control to another. In that case you need to ‘cluster’ them:

struct foo {

struct v412_ctrl_handler ctrl _handler;
#define AUDIO CL VOLUME (0)
#define AUDIO CL MUTE (1)

struct v412_ctrl *audio cluster[2];

+

2.2. Video4lLinux devices 307

Linux Media Documentation

state->audio cluster[AUDIO CL VOLUME] =

v41l2 ctrl new std(&state->ctrl handler, ...);
state->audio cluster[AUDIO CL MUTE] =
v4l2 ctrl new std(&state->ctrl handler, ...);

v412 ctrl cluster(ARRAY SIZE(state->audio cluster), state->audio cluster);

From now on whenever one or more of the controls belonging to the same cluster is set (or
‘gotten’, or ‘tried’), only the control ops of the first control (‘volume’ in this example) is called.
You effectively create a new composite control. Similar to how a ‘struct’ works in C.

So when s ctrl is called with VAL2 CID AUDIO VOLUME as argument, you should set all two
controls belonging to the audio cluster:

static int foo s ctrl(struct v4l2_ctrl *ctrl)

{
struct foo *state = container of(ctrl->handler, struct foo, ctrl handler);
switch (ctrl->id) {
case V4L2_CID AUDIO VOLUME: {
struct v412 ctrl *mute = ctrl->cluster[AUDIO CL MUTE];
write reg(0x123, mute->val ? 0 : ctrl->val);
break;
}
case V4L2_CID CONTRAST:
write reg(0x456, ctrl->val);
break;
}
return 0;
}
In the example above the following are equivalent for the VOLUME case:
ctrl == ctrl->cluster[AUDIO CL VOLUME] == state->audio cluster[AUDIO CL VOLUME]
ctrl->cluster[AUDIO CL MUTE] == state->audio cluster[AUDIO CL MUTE]

In practice using cluster arrays like this becomes very tiresome. So instead the following equiv-
alent method is used:

struct {
/* audio cluster */
struct v412_ctrl *volume;
struct v412_ctrl *mute;

}

The anonymous struct is used to clearly ‘cluster’ these two control pointers, but it serves no
other purpose. The effect is the same as creating an array with two control pointers. So you
can just do:

state->volume = v412 ctrl new std(&state->ctrl handler, ...);
state->mute = v412 ctrl new std(&state->ctrl handler, ...);
v41l2 ctrl cluster(2, &state->volume);

And in foo_s ctrl you can use these pointers directly: state->mute->val.

Note that controls in a cluster may be NULL. For example, if for some reason mute was never
added (because the hardware doesn’t support that particular feature), then mute will be NULL.

308 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

So in that case we have a cluster of 2 controls, of which only 1 is actually instantiated. The only
restriction is that the first control of the cluster must always be present, since that is the ‘master’
control of the cluster. The master control is the one that identifies the cluster and that provides
the pointer to the v412 ctrl ops struct that is used for that cluster.

Obviously, all controls in the cluster array must be initialized to either a valid control or to
NULL.

In rare cases you might want to know which controls of a cluster actually were set explicitly
by the user. For this you can check the ‘is new’ flag of each control. For example, in the case
of a volume/mute cluster the ‘is new’ flag of the mute control would be set if the user called
VIDIOC S CTRL for mute only. If the user would call VIDIOC S EXT CTRLS for both mute and
volume controls, then the ‘is new’ flag would be 1 for both controls.

The ‘is new’ flag is always 1 when called from v412 ctrl handler setup().

2.2.13.10 Handling autogain/gain-type Controls with Auto Clusters

A common type of control cluster is one that handles ‘auto-foo/foo’-type controls. Typical exam-
ples are autogain/gain, autoexposure/exposure, autowhitebalance/red balance/blue balance. In
all cases you have one control that determines whether another control is handled automatically
by the hardware, or whether it is under manual control from the user.

If the cluster is in automatic mode, then the manual controls should be marked inactive and
volatile. When the volatile controls are read the g volatile ctrl operation should return the
value that the hardware’s automatic mode set up automatically.

If the cluster is put in manual mode, then the manual controls should become active again and
the volatile flag is cleared (so g volatile ctrl is no longer called while in manual mode). In
addition just before switching to manual mode the current values as determined by the auto
mode are copied as the new manual values.

Finally the VAL2 CTRL FLAG UPDATE should be set for the auto control since changing that
control affects the control flags of the manual controls.

In order to simplify this a special variation of v412 ctrl cluster was introduced:

void v412 ctrl auto cluster(unsigned ncontrols, struct v412_ctrl **controls,
u8 manual val, bool set volatile);

The first two arguments are identical to v412 ctrl cluster. The third argument tells the frame-
work which value switches the cluster into manual mode. The last argument will optionally set
V4L2 CTRL FLAG VOLATILE for the non-auto controls. If it is false, then the manual controls
are never volatile. You would typically use that if the hardware does not give you the option
to read back to values as determined by the auto mode (e.g. if autogain is on, the hardware
doesn’t allow you to obtain the current gain value).

The first control of the cluster is assumed to be the ‘auto’ control.

Using this function will ensure that you don’t need to handle all the complex flag and volatile
handling.

2.2. Video4lLinux devices 309

Linux Media Documentation

2.2.13.11 VIDIOC_LOG_STATUS Support

This ioctl allow you to dump the current status of a driver to the kernel log. The
v412 ctrl handler log status(ctrl handler, prefix) can be used to dump the value of the con-
trols owned by the given handler to the log. You can supply a prefix as well. If the prefix didn’t
end with a space, then “: “ will be added for you.

2.2.13.12 Different Handlers for Different Video Nodes

Usually the V4L2 driver has just one control handler that is global for all video nodes. But
you can also specify different control handlers for different video nodes. You can do that by
manually setting the ctrl handler field of struct video device.

That is no problem if there are no subdevs involved but if there are, then you need
to block the automatic merging of subdev controls to the global control handler. You
do that by simply setting the ctrl handler field in struct v412 device to NULL. Now
v41l2 device register subdev() will no longer merge subdev controls.

After each subdev was added, you will then have to call v412 ctrl add handler manually to add
the subdev’s control handler (sd->ctrl handler) to the desired control handler. This control
handler may be specific to the video_device or for a subset of video device’s. For example: the
radio device nodes only have audio controls, while the video and vbi device nodes share the
same control handler for the audio and video controls.

If you want to have one handler (e.g. for a radio device node) have a subset of another handler
(e.g. for a video device node), then you should first add the controls to the first handler, add
the other controls to the second handler and finally add the first handler to the second. For
example:

v4l2 ctrl new std(&radio ctrl handler, &radio ops, V4L2 CID AUDIO VOLUME, ...);
v4l2 ctrl new std(&radio ctrl handler, &radio ops, V4L2 CID AUDIO MUTE, ...);
v412 ctrl new std(&video ctrl handler, &video ops, V4L2 CID BRIGHTNESS, ...);
v4l2 ctrl new std(&video ctrl handler, &video ops, V4L2 CID CONTRAST, ...);

v412_ctrl _add _handler(&video ctrl handler, &radio ctrl handler, NULL);

The last argument to v412 ctrl add handler() is a filter function that allows you to filter
which controls will be added. Set it to NULL if you want to add all controls.

Or you can add specific controls to a handler:

volume = v412 ctrl new std(&video ctrl _handler, &ops, V4L2 CID AUDIO VOLUME, ...);
v4l2 ctrl new std(&video ctrl handler, &ops, V4L2 CID BRIGHTNESS, ...);
v412 ctrl new std(&video ctrl handler, &ops, V4L2 CID CONTRAST, ...);

What you should not do is make two identical controls for two handlers. For example:

v4l2 ctrl new std(&radio ctrl handler, &radio _ops, V4L2 CID AUDIO MUTE, ...)
v4l2 ctrl new std(&video ctrl _handler, &video ops, V4L2 CID AUDIO MUTE, ...)

’
’

This would be bad since muting the radio would not change the video mute control. The rule is
to have one control for each hardware ‘knob’ that you can twiddle.

310 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

2.2.13.13 Finding Controls
Normally you have created the controls yourself and you can store the struct v412 ctrl
pointer into your own struct.

But sometimes you need to find a control from another handler that you do not own. For exam-
ple, if you have to find a volume control from a subdev.

You can do that by calling v412 ctrl find:

struct v412_ctrl *volume;

volume = v412 ctrl find(sd->ctrl handler, V4L2 CID AUDIO VOLUME);

Since v412 ctrl find will lock the handler you have to be careful where you use it. For example,
this is not a good idea:

struct v412_ctrl_handler ctrl handler;

v4l2 ctrl new std(&ctrl handler, &video ops, V4L2 CID BRIGHTNESS, ...);
v4l2 ctrl new std(&ctrl_handler, &video ops, V4L2 CID CONTRAST, ...);

...and in video _ops.s ctrl:

case V4L2_CID_BRIGHTNESS:
contrast = v412 find ctrl(&ctrl handler, V4L2 CID CONTRAST);

When s _ctrl is called by the framework the ctrl handler.lock is already taken, so attempting to
find another control from the same handler will deadlock.

It is recommended not to use this function from inside the control ops.

2.2.13.14 Preventing Controls inheritance

When one control handler is added to another using v412 ctrl add handler, then by default all
controls from one are merged to the other. But a subdev might have low-level controls that
make sense for some advanced embedded system, but not when it is used in consumer-level
hardware. In that case you want to keep those low-level controls local to the subdev. You can
do this by simply setting the ‘is private’ flag of the control to 1:

static const struct v412 ctrl config ctrl private = {
.ops = &ctrl custom ops,
.id = v4L2 CID ...,
.hame = "Some Private Control",

.type V4L2 CTRL_TYPE INTEGER,
.max = 15,
.step = 1,

.is private = 1,

}

ctrl = v412 ctrl new custom(&foo->ctrl handler, &ctrl private, NULL);

These controls will now be skipped when v412 ctrl add handler is called.

2.2. Video4lLinux devices 311

Linux Media Documentation

2.2.13.15 V4L2_CTRL_TYPE_CTRL_CLASS Controls

Controls of this type can be used by GUIs to get the name of the control class. A fully featured
GUI can make a dialog with multiple tabs with each tab containing the controls belonging to a
particular control class. The name of each tab can be found by querying a special control with
ID <control class | 1>.

Drivers do not have to care about this. The framework will automatically add a control of this
type whenever the first control belonging to a new control class is added.

2.2.13.16 Adding Notify Callbacks

Sometimes the platform or bridge driver needs to be notified when a control from a sub-device
driver changes. You can set a notify callback by calling this function:

void v412 ctrl notify(struct v412_ctrl *ctrl,
void (*notify) (struct v412 ctrl *ctrl, void *priv), void *priv);

Whenever the give control changes value the notify callback will be called with a pointer to
the control and the priv pointer that was passed with v412 ctrl notify. Note that the control’s
handler lock is held when the notify function is called.

There can be only one notify function per control handler. Any attempt to set another notify
function will cause a WARN ON.

2.2.13.17 v4l2_ctrl functions and data structures

union v412_ctrl_ptr
A pointer to a control value.

Definition

union v412 ctrl ptr {
s32 *p s32;
s64 *p so64;
u8 *p us§;
ulée *p ul6;
u32 *p u32;
char *p char;
struct v412 ctrl mpeg2 sequence *p mpeg2 sequence;
struct v412 ctrl mpeg2 picture *p mpeg2 picture;
struct v412 ctrl mpeg2 quantisation *p mpeg2 quantisation;
struct v412 ctrl fwht params *p fwht params;
struct v412 ctrl h264 sps *p h264 sps;
struct v412 ctrl h264 pps *p h264 pps;
struct v412 ctrl h264 scaling matrix *p h264 scaling matrix;
struct v412 ctrl h264 slice params *p h264 slice params;
struct v412 ctrl h264 decode params *p h264 decode params;
struct v412 ctrl h264 pred weights *p h264 pred weights;
struct v412 ctrl vp8 frame *p vp8 frame;
struct v412 ctrl hevc sps *p _hevc sps;
struct v412 ctrl hevc pps *p hevc pps;
struct v412 ctrl hevc slice params *p hevc slice params;
struct v412 ctrl vp9 compressed hdr *p vp9 compressed hdr probs;
struct v412 ctrl vp9 frame *p vp9 frame;

312 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct v412 ctrl hdrle cll info *p hdrlo cll;

struct v412 ctrl hdrl@ mastering display *p hdrl@ mastering;
struct v41l2 area *p area;

void *p;

const void *p const;

}

Members

p_s32 Pointer to a 32-bit signed value.

p_s64 Pointer to a 64-bit signed value.

p_u8 Pointer to a 8-bit unsigned value.

p_ulé Pointer to a 16-bit unsigned value.

p_u32 Pointer to a 32-bit unsigned value.

p_char Pointer to a string.

p_mpeg2_sequence Pointer to a MPEG2 sequence structure.

p_mpeg2_picture Pointer to a MPEG2 picture structure.

p_mpeg2_ quantisation Pointer to a MPEG2 quantisation data structure.
p_fwht_params Pointer to a FWHT stateless parameters structure.
p_h264_sps Pointer to a struct v412 ctrl h264 sps.

p_h264_pps Pointer to a struct v412 ctrl h264 pps.
p_h264_scaling_matrix Pointer to a struct v412 ctrl h264 scaling matrix.
p_h264_slice_params Pointer to a struct v412 ctrl h264 slice params.
p_h264_decode_params Pointer to a struct v412 ctrl h264 decode params.
p_h264 pred weights Pointerto a struct v412 ctrl h264 pred weights.
p_vp8_frame Pointer to a VP8 frame params structure.

p_hevc_sps Pointer to an HEVC sequence parameter set structure.
p_hevc_pps Pointer to an HEVC picture parameter set structure.
p_hevc_slice_params Pointer to an HEVC slice parameters structure.
p_vp9_compressed_hdr_probs Pointer to a VP9 frame compressed header probs structure.
p_vp9_frame Pointer to a VP9 frame params structure.

p_hdrl0_cll Pointer to an HDR10 Content Light Level structure.
p_hdrle_mastering Pointer to an HDR10 Mastering Display structure.
p_area Pointer to an area.

p Pointer to a compound value.

p_const Pointer to a constant compound value.

union v412 ctrl ptr v4l2_ctrl_ptr_create(void *ptr)
Helper function to return a v412 ctrl ptr from a void pointer

2.2. Video4lLinux devices 313

Linux Media Documentation

Parameters
void *ptr The void pointer

struct v412_ctrl_ops
The control operations that the driver has to provide.

Definition

struct v412 ctrl ops {
int (*g _volatile ctrl)(struct v412 ctrl *ctrl);
int (*try ctrl)(struct v412 ctrl *ctrl);
int (*s ctrl)(struct v412 ctrl *ctrl);

b

Members

g_volatile_ctrl Get a new value for this control. Generally only relevant for volatile (and
usually read-only) controls such as a control that returns the current signal strength which
changes continuously. If not set, then the currently cached value will be returned.

try_ctrl Test whether the control’s value is valid. Only relevant when the usual min/max/step
checks are not sufficient.

s_ctrl Actually set the new control value. s ctrl is compulsory. The ctrl->handler->lock is
held when these ops are called, so no one else can access controls owned by that handler.

struct v412_ctrl_type_ops
The control type operations that the driver has to provide.

Definition

struct v412 ctrl type ops {

bool (*equal)(const struct v412 ctrl *ctrl, u32 idx,union v412 ctrl ptr ptrl, union,
—Vv412 ctrl ptr ptr2);

void (*init) (const struct v412 ctrl *ctrl, u32 idx, union v412 ctrl ptr ptr);

void (*log)(const struct v412 ctrl *ctrl);

int (*validate) (const struct v412 ctrl *ctrl, u32 idx, union v412 ctrl ptr ptr);
b

Members

equal return true if both values are equal.

init initialize the value.

log log the value.

validate validate the value. Return 0 on success and a negative value otherwise.

v4l2_ctrl_notify_fnc
Typedef: typedef for a notify argument with a function that should be called when a control
value has changed.

Syntax
void v412 ctrl notify fnc (struct v412 ctrl *ctrl, void *priv)
Parameters

struct v412_ctrl *ctrl pointer to struct v412 ctrl

314 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

void *priv control private data
Description

This typedef definition is used as an argument to v412 ctrl notify() and as an argument at
struct v412 ctrl handler.

struct v412_ctrl
The control structure.

Definition

struct v412 ctrl {
struct list head node;
struct list head ev subs;
struct v412 ctrl handler *handler;
struct v412 ctrl **cluster;
unsigned int ncontrols;
unsigned int done:1;
unsigned int is new:1;
unsigned int has changed:1;
unsigned int is private:1;
unsigned int is auto:1;
unsigned int is int:1;
unsigned int is string:1;
unsigned int is ptr:1;
unsigned int is array:1;
unsigned int has volatiles:1;
unsigned int call notify:1;
unsigned int manual mode value:8;
const struct v412 ctrl ops *ops;
const struct v412 ctrl type ops *type ops;
u32 id;
const char *name;
enum v412 ctrl type type;
s64 minimum, maximum, default value;
u32 elems;
u32 elem size;
u32 dims[V4L2 CTRL MAX DIMS];
u32 nr_of dims;
union {
ub4 step;
u64 menu_skip mask;
b
union {
const char * const *qgmenu;
const s64 *gmenu int;
b
unsigned long flags;
void *priv;
s32 val;
struct {
s32 val;
} cur;
union v412 ctrl ptr p def;
union v412 ctrl ptr p_new;
union v412 ctrl ptr p_cur;

2.2. Video4lLinux devices 315

Linux Media Documentation

Members

node The list node.

ev_subs The list of control event subscriptions.
handler The handler that owns the control.
cluster Point to start of cluster array.

ncontrols Number of controls in cluster array.
done Internal flag: set for each processed control.

is_new Set when the user specified a new value for this control. It is also set when called from
v412 ctrl handler setup(). Drivers should never set this flag.

has_changed Set when the current value differs from the new value. Drivers should never use
this flag.

is_private If set, then this control is private to its handler and it will not be added to any other
handlers. Drivers can set this flag.

is_auto If set, then this control selects whether the other cluster members are in ‘automatic’
mode or ‘manual’ mode. This is used for autogain/gain type clusters. Drivers should never
set this flag directly.

is_int If set, then this control has a simple integer value (i.e. it uses ctrl->val).
is_string If set, then this control has type V4L2 CTRL TYPE STRING.

is_ptr If set, then this control is an array and/or has type >= V4L2 CTRL COMPOUND TYPES
and/or has type V4L2 CTRL TYPE STRING. In other words, struct v412 ext control uses
field p to point to the data.

is_array If set, then this control contains an N-dimensional array.

has_volatiles If set, then one or more members of the cluster are volatile. Drivers should
never touch this flag.

call_notify If set, then call the handler’s notify function whenever the control’s value
changes.

manual_mode_value If the is auto flag is set, then this is the value of the auto control that
determines if that control is in manual mode. So if the value of the auto control equals
this value, then the whole cluster is in manual mode. Drivers should never set this flag
directly.

ops The control ops.

type_ops The control type ops.

id The control ID.

name The control name.

type The control type.

minimum The control’s minimum value.
maximum The control’s maximum value.

default_value The control’s default value.

316 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

elems The number of elements in the N-dimensional array.
elem_size The size in bytes of the control.

dims The size of each dimension.

nr_of _dims The number of dimensions in dims.
{unnamed_union} anonymous

step The control’s step value for non-menu controls.

menu_skip_mask The control’s skip mask for menu controls. This makes it easy to skip menu
items that are not valid. If bit X is set, then menu item X is skipped. Of course, this only
works for menus with <= 32 menu items. There are no menus that come close to that
number, so this is OK. Should we ever need more, then this will have to be extended to a
u64 or a bit array.

{unnamed_union} anonymous

wn

gmenu A const char * array for all menu items. Array entries that are empty strings (“”) corre-
spond to non-existing menu items (this is in addition to the menu skip mask above). The
last entry must be NULL. Used only if the type is V4L2 CTRL TYPE MENU.

gmenu_int A 64-bit integer array for with integer menu items. The size of array must be
equal to the menu size, e. (.: ceil (AL) 4], Used only if the type is
V4L2 CTRL_TYPE INTEGER MENU.

flags The control’s flags.

priv The control’s private pointer. For use by the driver. It is untouched by the control frame-
work. Note that this pointer is not freed when the control is deleted. Should this be needed
then a new internal bitfield can be added to tell the framework to free this pointer.

val The control’s new s32 value.
cur Structure to store the current value.

cur.val The control’s current value, if the type is represented via a u32 integer (see enum
v4l2 ctrl _type).

p_def The control’s default value represented via a union which provides a standard way of
accessing control types through a pointer (for compound controls only).

p_new The control’s new value represented via a union which provides a standard way of ac-
cessing control types through a pointer.

p_cur The control’s current value represented via a union which provides a standard way of
accessing control types through a pointer.

struct v412_ctrl_ref
The control reference.

Definition

struct v412 ctrl ref {
struct list head node;
struct v412 ctrl ref *next;
struct v412 ctrl *ctrl;
struct v412 ctrl _helper *helper;
bool from other dev;
bool req done;

2.2. Video4lLinux devices 317

Linux Media Documentation

bool valid p req;
union v412 ctrl ptr p req;
+;

Members

node List node for the sorted list.
next Single-link list node for the hash.
ctrl The actual control information.

helper Pointer to helper struct. Used internally in prepare ext ctrls function at v412-ctrl.
C.

from_other_dev If true, then ctrl was defined in another device than the struct
v4l2 ctrl handler.

req_done Internal flag: if the control handler containing this control reference is bound to a
media request, then this is set when the control has been applied. This prevents applying
controls from a cluster with multiple controls twice (when the first control of a cluster is
applied, they all are).

valid_p_req If set, then p req contains the control value for the request.

p_req If the control handler containing this control reference is bound to a media request, then
this points to the value of the control that must be applied when the request is executed,
or to the value of the control at the time that the request was completed. If valid_p_req is
false, then this control was never set for this request and the control will not be updated
when this request is applied.

Description

Each control handler has a list of these refs. The list head is used to keep a sorted-by-control-ID
list of all controls, while the next pointer is used to link the control in the hash’s bucket.

struct v412_ctrl_handler
The control handler keeps track of all the controls: both the controls owned by the handler
and those inherited from other handlers.

Definition

struct v412 ctrl handler {
struct mutex lock;
struct mutex *lock;
struct list head ctrls;
struct list head ctrl refs;
struct v412 ctrl ref *cached;
struct v412 ctrl ref **buckets;
v4l2 ctrl notify fnc notify;
void *notify priv;
ulé nr_of buckets;
int error;
bool request is queued;
struct list head requests;
struct list head requests queued;
struct media request object req _obj;

318 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Members
_lock Default for “lock”.

lock Lock to control access to this handler and its controls. May be replaced by the user right
after init.

ctrls The list of controls owned by this handler.
ctrl_refs The list of control references.

cached The last found control reference. It is common that the same control is needed multiple
times, so this is a simple optimization.

buckets Buckets for the hashing. Allows for quick control lookup.

notify A notify callback that is called whenever the control changes value. Note that the
handler’s lock is held when the notify function is called!

notify priv Passed as argument to the v412 ctrl notify callback.
nr_of_buckets Total number of buckets in the array.

error The error code of the first failed control addition.
request_is_queued True if the request was queued.

requests List to keep track of open control handler request objects. For the parent control
handler (req_obj.ops == NULL) this is the list header. When the parent control handler
is removed, it has to unbind and put all these requests since they refer to the parent.

requests_queued List of the queued requests. This determines the order in which these con-
trols are applied. Once the request is completed it is removed from this list.

req_obj The struct media request object, used to link into a struct media request. This
request object has a refcount.

struct v412_ctrl_config
Control configuration structure.

Definition

struct v412 ctrl _config {
const struct v412 ctrl ops *ops;
const struct v412 ctrl type ops *type ops;
u32 id;
const char *name;
enum v412 ctrl type type;
s64 min;
s64 max;
ub4 step;
s64 def;
union v412 ctrl ptr p_def;
u32 dims[V4L2 CTRL MAX DIMS];
u32 elem size;
u32 flags;
u64 menu skip mask;
const char * const *qgmenu;
const s64 *gmenu_int;
unsigned int is private:1;

2.2. Video4lLinux devices 319

Linux Media Documentation

Members

ops The control ops.

type_ops The control type ops. Only needed for compound controls.
id The control ID.

name The control name.

type The control type.

min The control’s minimum value.

max The control’s maximum value.

step The control’s step value for non-menu controls.

def The control’s default value.

p_def The control’s default value for compound controls.
dims The size of each dimension.

elem_size The size in bytes of the control.

flags The control’s flags.

menu_skip_mask The control’s skip mask for menu controls. This makes it easy to skip menu
items that are not valid. If bit X is set, then menu item X is skipped. Of course, this only
works for menus with <= 64 menu items. There are no menus that come close to that
number, so this is OK. Should we ever need more, then this will have to be extended to a
bit array.

wn

gmenu A const char * array for all menu items. Array entries that are empty strings (“”) corre-
spond to non-existing menu items (this is in addition to the menu skip mask above). The
last entry must be NULL.

gmenu_int A const s64 integer array for all menu items of the type
V4L2 CTRL TYPE INTEGER MENU.

is_private If set, then this control is private to its handler and it will not be added to any other
handlers.

void v412_ctrl_fill(u32 id, const char **name, enum v4l2 ctrl type *type, s64 *min,
s64 *max, u64 *step, s64 *def, u32 *flags)
Fill in the control fields based on the control ID.

Parameters

u32 id ID of the control

const char **pame pointer to be filled with a string with the name of the control
enum v412_ctrl_type *type pointer for storing the type of the control

s64 *min pointer for storing the minimum value for the control

s64 *max pointer for storing the maximum value for the control

u64 *step pointer for storing the control step

s64 *def pointer for storing the default value for the control

u32 *flags pointer for storing the flags to be used on the control

320 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description

This works for all standard V4L2 controls. For non-standard controls it will only fill in the given
arguments and name content will be set to NULL.

This function will overwrite the contents of name, type and flags. The contents of min, max,
step and def may be modified depending on the type.

Note: Do not use in drivers! It is used internally for backwards compatibility control handling
only. Once all drivers are converted to use the new control framework this function will no
longer be exported.

int v412_ctrl_handler_init_class(struct v412 ctrl handler *hdl, unsigned
int nr of controls hint, struct lock class key *key,

const char *name)
Initialize the control handler.

Parameters
struct v4l12_ctrl_handler *hdl The control handler.

unsigned int nr_of_controls_hint A hint of how many controls this handler is expected to
refer to. This is the total number, so including any inherited controls. It doesn’t have to be
precise, but if it is way off, then you either waste memory (too many buckets are allocated)
or the control lookup becomes slower (not enough buckets are allocated, so there are more
slow list lookups). It will always work, though.

struct lock_class_key *key Used by the lock validator if CONFIG LOCKDEP is set.
const char *name Used by the lock validator if CONFIG LOCKDEP is set.

Description

Attention: Never use this call directly, always use the v412 ctrl handler init() macro
that hides the key and name arguments.

Return

returns an error if the buckets could not be allocated. This error will also be stored in hdl-
>error.

v412_ctrl_handler_init(hdl, nr of controls hint)
helper function to <create a static struct lock class key and calls
v4l2 ctrl handler init class()

Parameters
hdl The control handler.

nr_of_controls_hint A hint of how many controls this handler is expected to refer to. This
is the total number, so including any inherited controls. It doesn’t have to be precise,
but if it is way off, then you either waste memory (too many buckets are allocated) or the
control lookup becomes slower (not enough buckets are allocated, so there are more slow
list lookups). It will always work, though.

Description

2.2. Video4lLinux devices 321

Linux Media Documentation

This helper function creates a static struct lock class key and calls
v4l2 ctrl handler init class(), providing a proper name for the lock validador.

Use this helper function to initialize a control handler.

void v412_ctrl_handler_free(struct v412 ctrl handler *hdl)
Free all controls owned by the handler and free the control list.

Parameters

struct v412_ctrl_handler *hdl The control handler.
Description

Does nothing if hdl == NULL.

void v412_ctrl_lock(struct v4I12 ctrl *ctrl)
Helper function to lock the handler associated with the control.

Parameters
struct v412_ctrl *ctrl The control to lock.

void v412_ctrl_unlock(struct v4I2 ctrl *ctrl)
Helper function to unlock the handler associated with the control.

Parameters
struct v412_ctrl *ctrl The control to unlock.

int __v412_ctrl_handler_setup(struct v412 ctrl handler *hdl)
Call the s _ctrl op for all controls belonging to the handler to initialize the hardware to the
current control values. The caller is responsible for acquiring the control handler mutex
on behalf of v412 ctrl handler setup().

Parameters

struct v4l12_ctrl_handler *hdl The control handler.
Description

Button controls will be skipped, as are read-only controls.
If hdl == NULL, then this just returns 0.

int v412_ctrl_handler_setup(struct v412 ctrl handler *hdl)
Call the s_ctrl op for all controls belonging to the handler to initialize the hardware to the
current control values.

Parameters

struct v4l12_ctrl_handler *hdl The control handler.
Description

Button controls will be skipped, as are read-only controls.
If hdl == NULL, then this just returns 0.

void v412_ctrl_handler_log_status (struct v412 ctrl handler *hdl, const char *prefix)
Log all controls owned by the handler.

Parameters

struct v412_ctrl_handler *hdl The control handler.

322 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

const char *prefix The prefix to use when logging the control values. If the prefix does not
end with a space, then “: ” will be added after the prefix. If prefix == NULL, then no
prefix will be used.

Description
For use with VIDIOC LOG STATUS.
Does nothing if hdl == NULL.

struct v412 ctrl * v412_ctrl_new_custom(struct v4I2 ctrl handler *hdl, const struct

v412 ctrl config *cfg, void *priv)
Allocate and initialize a new custom V4L2 control.

Parameters

struct v412_ctrl_handler *hdl The control handler.

const struct v412_ctrl_config *cfg The control’s configuration data.
void *priv The control’s driver-specific private data.

Description

If the v412 ctrl struct could not be allocated then NULL is returned and hdl->error is set to
the error code (if it wasn’t set already).

struct v412 ctrl * v4l2_ctrl_new_std(struct v4I[2 ctrl handler *hdl, const struct
v412 ctrl ops *ops, u32id, s64 min, s64 max,
u64 step, s64 def)
Allocate and initialize a new standard V4L2 non-menu control.

Parameters

struct v412_ctrl_handler *hdl The control handler.
const struct v412 _ctrl _ops *ops The control ops.
u32 id The control ID.

s64 min The control’s minimum value.

s64 max The control’s maximum value.

u64 step The control’s step value

s64 def The control’s default value.

Description

If the v412 ctrl struct could not be allocated, or the control ID is not known, then NULL is
returned and hdl->error is set to the appropriate error code (if it wasn’t set already).

If id refers to a menu control, then this function will return NULL.
Use v412 ctrl new std menu() when adding menu controls.

struct v412 ctrl * v412_ctrl_new_std_menu(struct v412 ctrl handler *hdl, const
struct v412 ctrl ops *ops, u32id, u8 max,

u64 mask, u8 def)
Allocate and initialize a new standard V4L2 menu control.

Parameters
struct v412_ctrl_handler *hdl The control handler.

2.2. Video4lLinux devices 323

Linux Media Documentation

const struct v412 ctrl _ops *ops The control ops.
u32 id The control ID.
u8 max The control’s maximum value.

u64 mask The control’s skip mask for menu controls. This makes it easy to skip menu items
that are not valid. If bit X is set, then menu item X is skipped. Of course, this only works
for menus with <= 64 menu items. There are no menus that come close to that number,
so this is OK. Should we ever need more, then this will have to be extended to a bit array.

u8 def The control’s default value.
Description

Sameasv4l2 ctrl new std(),but minissetto 0 and the mask value determines which menu
items are to be skipped.

If id refers to a non-menu control, then this function will return NULL.

struct v412 ctrl * v412_ctrl_new_std_menu_items (struct v4I2 ctrl handler *hdl, const
struct v412 ctrl ops *ops, u32id,
u8 max, u64 mask, u8 def, const char

* const *qmenu)
Create a new standard V4L2 menu control with driver specific menu.

Parameters

struct v412_ctrl_handler *hdl The control handler.
const struct v412 _ctrl_ops *ops The control ops.
u32 id The control ID.

u8 max The control’s maximum value.

u64 mask The control’s skip mask for menu controls. This makes it easy to skip menu items
that are not valid. If bit X is set, then menu item X is skipped. Of course, this only works
for menus with <= 64 menu items. There are no menus that come close to that number,
so this is OK. Should we ever need more, then this will have to be extended to a bit array.

u8 def The control’s default value.
const char * const *qmenu The new menu.
Description

Same as v412 ctrl new std menu(), but qmenu will be the driver specific menu of this con-
trol.

struct v412 ctrl * v412_ctrl_new_std_compound (struct v4I2 ctrl handler *hdl, const
struct v412 ctrl ops *ops, u32 id, const
union v412 ctrl ptr p def’)
Allocate and initialize a new standard V4L2 compound control.

Parameters

struct v412_ctrl_handler *hdl The control handler.
const struct v412_ctrl_ops *ops The control ops.
u32 id The control ID.

324 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

const union v412 ctrl _ptr p_def The control’s default value.
Description

Sames as v412 ctrl new std(), but with support to compound controls, thanks to
the p_def field. Use v412 ctrl ptr create() to create p_def from a pointer. Use
v4l2 ctrl ptr create(NULL) if the default value of the compound control should be all zeroes.

struct v412 ctrl * v412_ctrl_new_int_menu(struct v4i2 ctrl handler *hdl, const struct
v412 ctrl ops *ops, u32id, u8 max, u8 def,
const s64 *qmenu_int)
Create a new standard V4L2 integer menu control.

Parameters

struct v412_ctrl_handler *hdl The control handler.
const struct v412_ctrl_ops *ops The control ops.
u32 id The control ID.

u8 max The control’s maximum value.

u8 def The control’s default value.

const s64 *gmenu_int The control’s menu entries.
Description

Same as v412 ctrl new std menu(), but mask is set to 0 and it additionally takes as an argu-
ment an array of integers determining the menu items.

If id refers to a non-integer-menu control, then this function will return NULL.

v4l2_ctrl_filter
Typedef: Typedef to define the filter function to be used when adding a control handler.

Syntax

bool v412 ctrl filter (const struct v412 ctrl *ctrl)
Parameters
const struct v412_ctrl *ctrl pointer to struct v412 ctrl.

int v412_ctrl_add_handler (struct v412 ctrl handler *hdl, struct v412 ctrl handler *add,

v412 ctrl filter filter, bool from_other dev)
Add all controls from handler add to handler hdl.

Parameters
struct v412_ctrl_handler *hdl The control handler.

struct v412_ctrl_handler *add The control handler whose controls you want to add to the
hdl control handler.

v412_ctrl_filter filter This function will filter which controls should be added.

bool from_other_dev If true, then the controls in add were defined in another device than
hdl.

Description

2.2. Video4lLinux devices 325

Linux Media Documentation

Does nothing if either of the two handlers is a NULL pointer. If filter is NULL, then all controls
are added. Otherwise only those controls for which filter returns true will be added. In case
of an error hdl->error will be set to the error code (if it wasn’t set already).

bool v412_ctrl_radio_filter(const struct v412 ctrl *ctrl)
Standard filter for radio controls.

Parameters
const struct v412_ctrl *ctrl The control that is filtered.
Description

This will return true for any controls that are valid for radio device nodes. Those are all of the
V4L2 CID AUDIO * user controls and all FM transmitter class controls.

This function is to be used with v412 ctrl add handler().

void v412_ctrl_cluster (unsigned int ncontrols, struct v412 ctrl **controls)
Mark all controls in the cluster as belonging to that cluster.

Parameters
unsigned int ncontrols The number of controls in this cluster.
struct v412_ctrl **controls The cluster control array of size ncontrols.

void v412_ctrl_auto_cluster(unsigned int ncontrols, struct v4I2 ctrl **controls,

u8 manual val, bool set volatile)
Mark all controls in the cluster as belonging to that cluster and set it up for autofoo/foo-

type handling.
Parameters
unsigned int ncontrols The number of controls in this cluster.

struct v412_ctrl **controls The cluster control array of size ncontrols. The first control
must be the ‘auto’ control (e.g. autogain, autoexposure, etc.)

u8 manual_val The value for the first control in the cluster that equals the manual setting.
bool set_volatile If true, then all controls except the first auto control will be volatile.
Description

Use for control groups where one control selects some automatic feature and the other controls
are only active whenever the automatic feature is turned off (manual mode). Typical examples:
autogain vs gain, auto-whitebalance vs red and blue balance, etc.

The behavior of such controls is as follows:

When the autofoo control is set to automatic, then any manual controls are set to inactive and
any reads will call g volatile ctrl (if the control was marked volatile).

When the autofoo control is set to manual, then any manual controls will be marked active, and
any reads will just return the current value without going through g volatile ctrl.

In addition, this function will set the V4L2 CTRL FLAG UPDATE flag on the autofoo control and
V4L2 CTRL_FLAG INACTIVE on the foo control(s) if autofoo is in auto mode.

struct v412 ctrl * v412_ctrl_find(struct v412 ctrl handler *hdl, u32 id)
Find a control with the given ID.

326 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Parameters

struct v412_ctrl_handler *hdl The control handler.
u32 id The control ID to find.

Description

If hdl == NULL this will return NULL as well. Will lock the handler so do not use from inside
v41l2 ctrl ops.

void v412_ctrl_activate(struct v412 ctrl *ctrl, bool active)
Make the control active or inactive.

Parameters
struct v412_ctrl *ctrl The control to (de)activate.
bool active True if the control should become active.
Description

This sets or clears the V4L2 CTRL FLAG INACTIVE flag atomically. Does nothing if ctrl ==
NULL. This will usually be called from within the s ctrl op. The V4L2 EVENT CTRL event will
be generated afterwards.

This function assumes that the control handler is locked.

void _ v412_ctrl_grab(struct v412 ctrl *ctrl, bool grabbed)
Unlocked variant of v412 ctrl grab.

Parameters

struct v412_ctrl *ctrl The control to (de)activate.
bool grabbed True if the control should become grabbed.
Description

This sets or clears the V4L2 CTRL FLAG GRABBED flag atomically. Does nothing if ctrl ==
NULL. The V4L2 EVENT CTRL event will be generated afterwards. This will usually be called
when starting or stopping streaming in the driver.

This function assumes that the control handler is locked by the caller.

void v412_ctrl_grab(struct v412 ctrl *ctrl, bool grabbed)
Mark the control as grabbed or not grabbed.

Parameters

struct v412_ctrl *ctrl The control to (de)activate.
bool grabbed True if the control should become grabbed.
Description

This sets or clears the V4L2 CTRL FLAG GRABBED flag atomically. Does nothing if ctrl ==
NULL. The V4L2 EVENT CTRL event will be generated afterwards. This will usually be called
when starting or stopping streaming in the driver.

This function assumes that the control handler is not locked and will take the lock itself.

2.2. Video4lLinux devices 327

Linux Media Documentation

int __v412 ctrl_modify range(struct v4i2 ctrl *ctrl, s64 min, s64 max, u64 step,

s64 def’)
Unlocked variant of v412 ctrl modify range()

Parameters

struct v4l12_ctrl *ctrl The control to update.
s64 min The control’s minimum value.

s64 max The control’s maximum value.

u64 step The control’s step value

s64 def The control’s default value.
Description

Update the range of a control on the fly. This works for control types INTEGER, BOOLEAN,
MENU, INTEGER MENU and BITMASK. For menu controls the step value is interpreted as a
menu_skip mask.

An error is returned if one of the range arguments is invalid for this control type.

The caller is responsible for acquiring the control handler mutex on behalf of
~v41l2 ctrl modify range().

int v412_ctrl_modify_range (struct v412 ctrl *ctrl, s64 min, s64 max, u64 step, s64 def)
Update the range of a control.

Parameters

struct v412_ctrl *ctrl The control to update.
s64 min The control’s minimum value.

s64 max The control’s maximum value.

u64 step The control’s step value

s64 def The control’s default value.
Description

Update the range of a control on the fly. This works for control types INTEGER, BOOLEAN,
MENU, INTEGER MENU and BITMASK. For menu controls the step value is interpreted as a
menu_skip mask.

An error is returned if one of the range arguments is invalid for this control type.
This function assumes that the control handler is not locked and will take the lock itself.

void v412_ctrl_notify(struct v412 ctrl *ctrl, v412 ctrl notify fnc notify, void *priv)
Function to set a notify callback for a control.

Parameters
struct v4l12_ctrl *ctrl The control.
v4l12_ctrl_notify_fnc notify The callback function.

void *priv The callback private handle, passed as argument to the callback.

328 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description

This function sets a callback function for the control. If ctrl is NULL, then it will do nothing. If
notify is NULL, then the notify callback will be removed.

There can be only one notify. If another already exists, then a WARN ON will be issued and the
function will do nothing.

const char * v412_ctrl_get name(u32 id)
Get the name of the control

Parameters

u32 id The control ID.

Description

This function returns the name of the given control ID or NULL if it isn’t a known control.

const char * const * v412_ctrl_get_menu(u32 id)
Get the menu string array of the control

Parameters
u32 id The control ID.
Description

This function returns the NULL-terminated menu string array name of the given control ID or
NULL if it isn’t a known menu control.

const s64 * v412_ctrl_get_int_menu(u32 id, u32 *len)
Get the integer menu array of the control

Parameters

u32 id The control ID.

u32 *len The size of the integer array.
Description

This function returns the integer array of the given control ID or NULL if it if it isn’t a known
integer menu control.

s32 v412_ctrl_g_ctrl(struct v412 ctrl *ctrl)
Helper function to get the control’s value from within a driver.

Parameters
struct v412 _ctrl *ctrl The control.
Description

This returns the control’s value safely by going through the control framework. This function
will lock the control’s handler, so it cannot be used from within the v412 ctrl ops functions.

This function is for integer type controls only.

int __ v412_ctrl_s_ctrl(struct v412 ctrl *ctrl, s32 val)
Unlocked variant of v412 ctrl s ctrl().

Parameters

struct v412 _ctrl *ctrl The control.

2.2. Video4lLinux devices 329

Linux Media Documentation

s32 val The new value.
Description

This sets the control’s new value safely by going through the control framework. This func-
tion assumes the control’s handler is already locked, allowing it to be used from within the
v412 ctrl ops functions.

This function is for integer type controls only.

int v412_ctrl_s_ctrl(struct v412 ctrl *ctrl, s32 val)
Helper function to set the control’s value from within a driver.

Parameters

struct v412_ctrl *ctrl The control.
s32 val The new value.

Description

This sets the control’s new value safely by going through the control framework. This function
will lock the control’s handler, so it cannot be used from within the v412 ctrl ops functions.

This function is for integer type controls only.

s64 v412_ctrl_g_ctrl_int64(struct v412 ctrl *ctrl)
Helper function to get a 64-bit control’s value from within a driver.

Parameters
struct v412_ctrl *ctrl The control.
Description

This returns the control’s value safely by going through the control framework. This function
will lock the control’s handler, so it cannot be used from within the v412 ctrl ops functions.

This function is for 64-bit integer type controls only.

int __v412_ctrl_s_ctrl_int64(struct v4I2 ctrl *ctrl, s64 val)
Unlocked variant of v412 ctrl s ctrl int64().

Parameters

struct v4l12_ctrl *ctrl The control.
s64 val The new value.

Description

This sets the control’s new value safely by going through the control framework. This func-
tion assumes the control’s handler is already locked, allowing it to be used from within the
v412 ctrl ops functions.

This function is for 64-bit integer type controls only.

int v412_ctrl_s_ctrl_int64 (struct v412 ctrl *ctrl, s64 val)
Helper function to set a 64-bit control’s value from within a driver.

Parameters
struct v412_ctrl *ctrl The control.

s64 val The new value.

330 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description

This sets the control’s new value safely by going through the control framework. This function
will lock the control’s handler, so it cannot be used from within the v412 ctrl ops functions.

This function is for 64-bit integer type controls only.

int __v412_ctrl_s_ctrl_string(struct v4I2 ctrl *ctrl, const char *s)
Unlocked variant of v412 ctrl s ctrl string().

Parameters

struct v4l12_ctrl *ctrl The control.
const char *s The new string.
Description

This sets the control’s new string safely by going through the control framework. This func-
tion assumes the control’s handler is already locked, allowing it to be used from within the
v412 ctrl ops functions.

This function is for string type controls only.

int v412_ctrl_s_ctrl_string(struct v4i2 ctrl *ctrl, const char *s)
Helper function to set a control’s string value from within a driver.

Parameters

struct v412_ctrl *ctrl The control.
const char *s The new string.
Description

This sets the control’s new string safely by going through the control framework. This function
will lock the control’s handler, so it cannot be used from within the v412 ctrl ops functions.

This function is for string type controls only.

int __v412_ctrl_s_ctrl_compound (struct v412 ctrl *ctrl, enum v412 ctrl type type, const
void *p)
Unlocked variant to set a compound control

Parameters

struct v4l12_ctrl *ctrl The control.

enum v412 ctrl_type type The type of the data.
const void *p The new compound payload.
Description

This sets the control’s new compound payload safely by going through the control framework.
This function assumes the control’s handler is already locked, allowing it to be used from within
the v412 ctrl ops functions.

This function is for compound type controls only.
int v412_ctrl_s_ctrl_compound(struct v4I12 ctrl *ctrl, enum v4l2 ctrl type type, const

void *p)
Helper function to set a compound control from within a driver.

2.2. Video4lLinux devices 331

Linux Media Documentation

Parameters

struct v412_ctrl *ctrl The control.

enum v412_ctrl_type type The type of the data.
const void *p The new compound payload.
Description

This sets the control’s new compound payload safely by going through the control framework.
This function will lock the control’s handler, so it cannot be used from within the v412 ctrl ops
functions.

This function is for compound type controls only.

void v412_ctrl_replace(struct v4l2 event *old, const struct v412 event *new)
Function to be used as a callback to struct v412 subscribed event ops replace()

Parameters
struct v412_event *old pointer to struct v412 event with the reported event;
const struct v412_event *new pointer to struct v412 event with the modified event;

void v412_ctrl_merge(const struct v4l2 event *old, struct v4l2 event *new)
Function to be used as a callback to struct v412 subscribed event ops merge()

Parameters
const struct v412_event *old pointer to struct v4l2 event with the reported event;
struct v412_event *new pointer to struct v412 event with the merged event;

int v412_ctrl_log_status (struct file *file, void *fh)
helper function to implement VIDIOC LOG STATUS ioctl

Parameters
struct file *file pointer to struct file

void *fh unused. Kept just to be compatible to the arguments expected by struct
v412 ioctl ops.vidioc log status.

Description

Can be used as a vidioc log status function that just dumps all controls associated with the
filehandle.

int v412_ctrl_subscribe_event (struct v412 fh *fh, const struct

v412 event subscription *sub)
Subscribes to an event

Parameters
struct v412_fh *fh pointer to struct v412 fh

const struct v4l12_event_subscription *sub pointer to struct
v412 event subscription

Description

Can be used as a vidioc_subscribe event function that just subscribes control events.

332 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

__poll tv4l2_ctrl_poll(struct file *file, struct poll table struct *wait)
function to be used as a callback to the poll() That just polls for control events.

Parameters
struct file *file pointer to struct file
struct poll_table_struct *wait pointer to struct poll table struct

int v412_ctrl_request_setup(struct media request *req, struct
v412 ctrl handler *parent)
helper function to apply control values in a request

Parameters
struct media_request *req The request

struct v412_ctrl_handler *parent The parent control handler (“priv’ in
media request object find())

Description

This is a helper function to call the control handler’s s ctrl callback with the control values
contained in the request. Do note that this approach of applying control values in a request is
only applicable to memory-to-memory devices.

void v412_ctrl_request_complete (struct media request *req, struct
v412 ctrl handler *parent)
Complete a control handler request object

Parameters
struct media_request *req The request

struct v412_ctrl_handler *parent The parent control handler (“priv’ in
media request object find())

Description

This function is to be called on each control handler that may have had a request object asso-
ciated with it, i.e. control handlers of a driver that supports requests.

The function first obtains the values of any volatile controls in the control handler and attach
them to the request. Then, the function completes the request object.

struct v412 ctrl handler * v412_ctrl_request_hdl_find(struct me-
dia request *req, struct

v412 ctrl handler *parent)
Find the control handler in the request

Parameters
struct media_request *req The request

struct v412_ctrl_handler *parent The parent control handler (‘priv’ in
media request object find())

Description

This function finds the control handler in the request. It may return NULL if not found. When
done, you must call v412 ctrl request put hdl() with the returned handler pointer.

2.2. Video4lLinux devices 333

Linux Media Documentation

If the request is not in state VALIDATING or QUEUED, then this function will always return
NULL.

Note that in state VALIDATING the req queue mutex is held, so no objects can be added or
deleted from the request.

In state QUEUED it is the driver that will have to ensure this.

void v412_ctrl_request_hdl put(struct v4I2 ctrl handler *hdl)
Put the control handler

Parameters
struct v412_ctrl_handler *hdl Put this control handler
Description

This function released the control handler previously obtained from’
v4l2 ctrl request hdl find().

struct v412 ctrl * v412_ctrl_request_hdl_ctrl_find(struct v412 ctrl handler *hdl,

u32 id)
Find a control with the given ID.

Parameters

struct v412_ctrl_handler *hdl The control handler from the request.
u32 id The ID of the control to find.

Description

This function returns a pointer to the control if this control is part of the request or NULL
otherwise.

int v412_queryctrl(struct v412 ctrl handler *hdl, struct v412 queryctrl *qc)
Helper function to implement VIDIOC QUERYCTRL ioctl

Parameters

struct v412_ctrl_handler *hdl pointer to struct v412 ctrl handler
struct v412_queryctrl *qc pointer to struct v412 queryctrl
Description

If hdl == NULL then they will all return -EINVAL.

int v412_query_ext_ctrl(struct v4I2 ctrl handler *hdl, struct v412 query ext ctrl *qc)
Helper function to implement VIDIOC QUERY EXT CTRL ioctl

Parameters

struct v412_ctrl_handler *hdl pointer to struct v412 ctrl handler
struct v412 _query_ext_ctrl *qc pointer to struct v412 query ext ctrl
Description

If hdl == NULL then they will all return -EINVAL.

int v412_querymenu (struct v412 ctrl handler *hdl, struct v412 querymenu *qm)
Helper function to implement VIDIOC QUERYMENU ioctl

Parameters

334 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct v412_ctrl _handler *hdl pointer to struct v412 ctrl handler
struct v412_querymenu *qgm pointer to struct v412 querymenu
Description

If hdl == NULL then they will all return -EINVAL.

int v412_g_ctrl(struct v412 ctrl handler *hdl, struct v412_control *ctrl)
Helper function to implement VIDIOC G CTRL ioctl

Parameters
struct v412_ctrl_handler *hdl pointer to struct v412 ctrl handler

struct v412_control *ctrl pointer to struct v4l2 control

Description
If hdl == NULL then they will all return -EINVAL.
int v412_s_ctrl(struct v412 fh *fh, struct v412 ctrl handler *hdl, struct

v412 control *ctrl)
Helper function to implement VIDIOC S CTRL ioctl

Parameters

struct v412_fh *fh pointer to struct v412 fh

struct v412_ctrl_handler *hdl pointer to struct v412 ctrl handler
struct v412_control *ctrl pointer to struct v412 control
Description

If hdl == NULL then they will all return -EINVAL.

int v412_g_ext_ctrls(struct v4I12 ctrl handler *hdl, struct video device *vdev, struct

media _device *mdev, struct v412 ext controls *c)
Helper function to implement VIDIOC G EXT CTRLS ioctl

Parameters

struct v412_ctrl_handler *hdl pointer to struct v412 ctrl handler
struct video device *vdev pointer to struct video device

struct media_device *mdev pointer to struct media device

struct v412_ext_controls *c pointer to struct v4l2 ext controls
Description

If hdl == NULL then they will all return -EINVAL.

int v412_try_ext_ctrls(struct v412 ctrl handler *hdl, struct video device *vdev, struct

media device *mdev, struct v4l2 ext controls *c)
Helper function to implement VIDIOC TRY EXT CTRLS ioctl

Parameters
struct v412_ctrl_handler *hdl pointer to struct v412 ctrl handler
struct video_device *vdev pointer to struct video device

struct media_device *mdev pointer to struct media device

2.2. Video4lLinux devices 335

Linux Media Documentation

struct v412_ext_controls *c pointer to struct v412 ext controls
Description
If hdl == NULL then they will all return -EINVAL.

int v412_s_ext_ctrls(struct v4I12 fh *fh, struct v412 ctrl handler *hdl, struct
video device *vdev, struct media_device *mdev, struct

v412 ext controls *c)
Helper function to implement VIDIOC S EXT CTRLS ioctl

Parameters

struct v412_fh *fh pointer to struct v412 fh

struct v412_ctrl_handler *hdl pointer to struct v412 ctrl handler
struct video_device *vdev pointer to struct video device

struct media_device *mdev pointer to struct media device

struct v412_ext_controls *c pointer to struct v412 ext controls
Description

If hdl == NULL then they will all return -EINVAL.

int v412_ctrl_subdev_subscribe_event(struct v4I2 subdev *sd, struct v4I2 fh *fh,

struct v412 event subscription *sub)
Helper function to implement as a struct v41l2 subdev core ops subscribe event func-

tion that just subscribes control events.
Parameters
struct v412_subdev *sd pointer to struct v412 subdev
struct v412_fh *fh pointer to struct v412 fh
struct v412 event_subscription *sub pointer to struct v412 event subscription

int v412_ctrl_subdev_log_status(struct v412 subdev *sd)
Log all controls owned by subdev’s control handler.

Parameters
struct v412_subdev *sd pointer to struct v412 subdev

int v412_ctrl_new_fwnode_properties(struct v4i2 ctrl handler *hdl, const struct
v412 ctrl ops *ctrl _ops, const struct

v412 fwnode device properties *p)
Register controls for the device properties

Parameters

struct v412_ctrl_handler *hdl pointer to struct v412 ctrl handler to register controls
on

const struct v412 ctrl _ops *ctrl_ops pointer to struct v412 ctrl ops to register con-
trols with

const struct v412_fwnode device properties *p pointer to struct
v412 fwnode device properties

336 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description

This function registers controls associated to device properties, using the property values con-
tained in p parameter, if the property has been set to a value.

Currently the following v412 controls are parsed and registered: -
VAL2 CID CAMERA ORIENTATION - V4L2 CID CAMERA SENSOR ROTATION;

Controls already registered by the caller with the hdl control handler are not overwritten.
Callers should register the controls they want to handle themselves before calling this function.

Return

0 on success, a negative error code on failure.

2.2.14 Videobuf Framework

Author: Jonathan Corbet <corbet@lwn.net>

Current as of 2.6.33

Note: The videobuf framework was deprecated in favor of videobuf2. Shouldn’t be used on
new drivers.

2.2.14.1 Introduction

The videobuf layer functions as a sort of glue layer between a V4L2 driver and user space. It
handles the allocation and management of buffers for the storage of video frames. There is a
set of functions which can be used to implement many of the standard POSIX I/O system calls,
including read(), poll(), and, happily, mmap(). Another set of functions can be used to implement
the bulk of the V4L2 ioctl() calls related to streaming I/O, including buffer allocation, queueing
and dequeueing, and streaming control. Using videobuf imposes a few design decisions on the
driver author, but the payback comes in the form of reduced code in the driver and a consistent
implementation of the V412 user-space API.

2.2.14.2 Buffer types

Not all video devices use the same kind of buffers. In fact, there are (at least) three common
variations:

* Buffers which are scattered in both the physical and (kernel) virtual address spaces. (Al-
most) all user-space buffers are like this, but it makes great sense to allocate kernel-space
buffers this way as well when it is possible. Unfortunately, it is not always possible; work-
ing with this kind of buffer normally requires hardware which can do scatter/gather DMA
operations.

* Buffers which are physically scattered, but which are virtually contiguous; buffers allo-
cated with vmalloc(), in other words. These buffers are just as hard to use for DMA op-
erations, but they can be useful in situations where DMA is not available but virtually-
contiguous buffers are convenient.

2.2. Video4lLinux devices 337

mailto:corbet@lwn.net

Linux Media Documentation

* Buffers which are physically contiguous. Allocation of this kind of buffer can be unreliable
on fragmented systems, but simpler DMA controllers cannot deal with anything else.

Videobuf can work with all three types of buffers, but the driver author must pick one at the
outset and design the driver around that decision.

[It’s worth noting that there’s a fourth kind of buffer: “overlay” buffers which are located within
the system’s video memory. The overlay functionality is considered to be deprecated for most
use, but it still shows up occasionally in system-on-chip drivers where the performance benefits
merit the use of this technique. Overlay buffers can be handled as a form of scattered buffer,
but there are very few implementations in the kernel and a description of this technique is
currently beyond the scope of this document.]

2.2.14.3 Data structures, callbacks, and initialization

Depending on which type of buffers are being used, the driver should include one of the follow-
ing files:

<media/videobuf-dma-sg.h> /* Physically scattered */
<media/videobuf-vmalloc.h> /* vmalloc() buffers */
<media/videobuf-dma-contig.h> /* Physically contiguous */

The driver’s data structure describing a V4L2 device should include a struct videobuf queue
instance for the management of the buffer queue, along with a list head for the queue of avail-
able buffers. There will also need to be an interrupt-safe spinlock which is used to protect (at
least) the queue.

The next step is to write four simple callbacks to help videobuf deal with the management of
buffers:

struct videobuf queue ops {
int (*buf setup) (struct videobuf queue *q,
unsigned int *count, unsigned int *size);
int (*buf _prepare) (struct videobuf queue *q,
struct videobuf buffer *vb,
enum v412 field field);
void (*buf queue)(struct videobuf queue *q,
struct videobuf buffer *vb);
void (*buf release)(struct videobuf queue *q,
struct videobuf buffer *vb);

}

buf setup() is called early in the I/O process, when streaming is being initiated; its purpose is to
tell videobuf about the I/O stream. The count parameter will be a suggested number of buffers
to use; the driver should check it for rationality and adjust it if need be. As a practical rule,
a minimum of two buffers are needed for proper streaming, and there is usually a maximum
(which cannot exceed 32) which makes sense for each device. The size parameter should be
set to the expected (maximum) size for each frame of data.

Each buffer (in the form of a struct videobuf buffer pointer) will be passed to buf prepare(),
which should set the buffer’s size, width, height, and field fields properly. If the buffer’s state
field is VIDEOBUF NEEDS INIT, the driver should pass it to:

int videobuf iolock(struct videobuf queue* q, struct videobuf buffer *vb,
struct v412 framebuffer *fbuf);

338 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Among other things, this call will usually allocate memory for the buffer. Finally, the
buf prepare() function should set the buffer’s state to VIDEOBUF PREPARED.

When a buffer is queued for I/O, it is passed to buf queue(), which should put it onto the driver’s
list of available buffers and set its state to VIDEOBUF QUEUED. Note that this function is called
with the queue spinlock held; if it tries to acquire it as well things will come to a screeching halt.
Yes, this is the voice of experience. Note also that videobuf may wait on the first buffer in the
queue; placing other buffers in front of it could again gum up the works. So use list add tail()
to enqueue buffers.

Finally, buf release() is called when a buffer is no longer intended to be used. The driver should
ensure that there is no I/O active on the buffer, then pass it to the appropriate free routine(s):

/* Scatter/gather drivers */

int videobuf dma unmap(struct videobuf queue *q,
struct videobuf dmabuf *dma);

int videobuf dma free(struct videobuf dmabuf *dma);

/* vmalloc drivers */
void videobuf vmalloc free (struct videobuf buffer *buf);

/* Contiguous drivers */
void videobuf dma contig free(struct videobuf queue *q,
struct videobuf buffer *buf);

One way to ensure that a buffer is no longer under I/O is to pass it to:

int videobuf waiton(struct videobuf buffer *vb, int non blocking, int intr);

Here, vb is the buffer, non blocking indicates whether non-blocking I/O should be used (it should
be zero in the buf release() case), and intr controls whether an interruptible wait is used.

2.2.14.4 File operations

At this point, much of the work is done; much of the rest is slipping videobuf calls into the
implementation of the other driver callbacks. The first step is in the open() function, which
must initialize the videobuf queue. The function to use depends on the type of buffer used:

void videobuf queue sg init(struct videobuf queue *q,
struct videobuf queue ops *ops,
struct device *dev,
spinlock t *irqlock,
enum v412 buf type type,
enum v412 field field,
unsigned int msize,
void *priv);

void videobuf queue vmalloc init(struct videobuf queue *q,
struct videobuf queue ops *ops,
struct device *dev,
spinlock t *irqlock,
enum v412 buf type type,
enum v412 field field,
unsigned int msize,
void *priv);

2.2. Video4lLinux devices 339

Linux Media Documentation

void videobuf queue dma contig init(struct videobuf queue *q,
struct videobuf queue ops *ops,
struct device *dev,
spinlock t *irqlock,
enum v412 buf type type,
enum v412 field field,
unsigned int msize,
void *priv);

In each case, the parameters are the same: q is the queue structure for the device, ops is the set
of callbacks as described above, dev is the device structure for this video device, irglock is an
interrupt-safe spinlock to protect access to the data structures, type is the buffer type used by
the device (cameras will use V4L2 BUF TYPE VIDEO CAPTURE, for example), field describes
which field is being captured (often VAL2 FIELD NONE for progressive devices), msize is the
size of any containing structure used around struct videobuf buffer, and priv is a private data
pointer which shows up in the priv_data field of struct videobuf queue. Note that these are void
functions which, evidently, are immune to failure.

VAL2 capture drivers can be written to support either of two APIs: the read() system call and
the rather more complicated streaming mechanism. As a general rule, it is necessary to support
both to ensure that all applications have a chance of working with the device. Videobuf makes
it easy to do that with the same code. To implement read(), the driver need only make a call to
one of:

ssize t videobuf read one(struct videobuf queue *q,
char _ user *data, size t count,
loff t *ppos, int nonblocking);

ssize t videobuf read stream(struct videobuf queue *q,
char _ user *data, size t count,
loff t *ppos, int vbihack, int nonblocking);

Either one of these functions will read frame data into data, returning the amount actu-
ally read; the difference is that videobuf read one() will only read a single frame, while
videobuf read stream() will read multiple frames if they are needed to satisfy the count re-
quested by the application. A typical driver read() implementation will start the capture engine,
call one of the above functions, then stop the engine before returning (though a smarter imple-
mentation might leave the engine running for a little while in anticipation of another read() call
happening in the near future).

The poll() function can usually be implemented with a direct call to:

unsigned int videobuf poll stream(struct file *file,
struct videobuf queue *q,
poll table *wait);

Note that the actual wait queue eventually used will be the one associated with the first available
buffer.

When streaming I/0 is done to kernel-space buffers, the driver must support the mmap() system
call to enable user space to access the data. In many V4L2 drivers, the often-complex mmap()
implementation simplifies to a single call to:

int videobuf mmap mapper(struct videobuf queue *q,
struct vm area struct *vma);

340 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Everything else is handled by the videobuf code.

The release() function requires two separate videobuf calls:

void videobuf stop(struct videobuf queue *q);
int videobuf mmap free(struct videobuf queue *q);

The call to videobuf stop() terminates any I/O in progress - though it is still up to the driver
to stop the capture engine. The call to videobuf mmap free() will ensure that all buffers have
been unmapped; if so, they will all be passed to the buf release() callback. If buffers remain
mapped, videobuf mmap free() returns an error code instead. The purpose is clearly to cause
the closing of the file descriptor to fail if buffers are still mapped, but every driver in the 2.6.32
kernel cheerfully ignores its return value.

2.2.14.5 ioctl() operations

The V4L2 API includes a very long list of driver callbacks to respond to the many ioctl() com-
mands made available to user space. A number of these - those associated with streaming I/O
- turn almost directly into videobuf calls. The relevant helper functions are:

int videobuf regbufs(struct videobuf queue *q,
struct v412 requestbuffers *req);

int videobuf querybuf(struct videobuf queue *q, struct v412 buffer *b);
int videobuf qbuf(struct videobuf queue *q, struct v412 buffer *b);
int videobuf dgbuf(struct videobuf queue *q, struct v412 buffer *b,

int nonblocking);
int videobuf streamon(struct videobuf queue *q);
int videobuf streamoff(struct videobuf queue *q);

So, for example, a VIDIOC REQBUFS call turns into a call to the driver’s vidioc regbufs() call-
back which, in turn, usually only needs to locate the proper struct videobuf queue pointer and
pass it to videobuf regbufs(). These support functions can replace a great deal of buffer man-
agement boilerplate in a lot of V4L2 drivers.

The vidioc_streamon() and vidioc_streamoff() functions will be a bit more complex, of course,
since they will also need to deal with starting and stopping the capture engine.

2.2.14.6 Buffer allocation

Thus far, we have talked about buffers, but have not looked at how they are allocated. The
scatter/gather case is the most complex on this front. For allocation, the driver can leave buffer
allocation entirely up to the videobuf layer; in this case, buffers will be allocated as anony-
mous user-space pages and will be very scattered indeed. If the application is using user-space
buffers, no allocation is needed; the videobuf layer will take care of calling get user pages()
and filling in the scatterlist array.

If the driver needs to do its own memory allocation, it should be done in the vidioc regbufs()
function, after calling videobuf reqgbufs(). The first step is a call to:

struct videobuf dmabuf *videobuf to dma(struct videobuf buffer *buf);

The returned videobuf dmabuf structure (defined in <media/videobuf-dma-sg.h>) includes a
couple of relevant fields:

2.2. Video4lLinux devices 341

Linux Media Documentation

struct scatterlist *sglist;
int sglen;

The driver must allocate an appropriately-sized scatterlist array and populate it with pointers
to the pieces of the allocated buffer; sglen should be set to the length of the array.

Drivers using the vmalloc() method need not (and cannot) concern themselves with buffer allo-
cation at all; videobuf will handle those details. The same is normally true of contiguous-DMA
drivers as well; videobuf will allocate the buffers (with dma alloc coherent()) when it sees fit.
That means that these drivers may be trying to do high-order allocations at any time, an opera-
tion which is not always guaranteed to work. Some drivers play tricks by allocating DMA space
at system boot time; videobuf does not currently play well with those drivers.

As of 2.6.31, contiguous-DMA drivers can work with a user-supplied buffer, as long as that
buffer is physically contiguous. Normal user-space allocations will not meet that criterion, but
buffers obtained from other kernel drivers, or those contained within huge pages, will work
with these drivers.

2.2.14.7 Filling the buffers

The final part of a videobuf implementation has no direct callback - it’s the portion of the code
which actually puts frame data into the buffers, usually in response to interrupts from the de-
vice. For all types of drivers, this process works approximately as follows:

* Obtain the next available buffer and make sure that somebody is actually waiting for it.
* Get a pointer to the memory and put video data there.
* Mark the buffer as done and wake up the process waiting for it.

Step (1) above is done by looking at the driver-managed list head structure - the one which
is filled in the buf queue() callback. Because starting the engine and enqueueing buffers are
done in separate steps, it’s possible for the engine to be running without any buffers available
- in the vmalloc() case especially. So the driver should be prepared for the list to be empty. It
is equally possible that nobody is yet interested in the buffer; the driver should not remove it
from the list or fill it until a process is waiting on it. That test can be done by examining the
buffer’s done field (a wait _queue head t structure) with waitqueue active().

A buffer’s state should be set to VIDEOBUF ACTIVE before being mapped for DMA; that ensures
that the videobuf layer will not try to do anything with it while the device is transferring data.

For scatter/gather drivers, the needed memory pointers will be found in the scatterlist structure
described above. Drivers using the vmalloc() method can get a memory pointer with:

void *videobuf to vmalloc(struct videobuf buffer *buf);

For contiguous DMA drivers, the function to use is:

dma_addr t videobuf to dma contig(struct videobuf buffer *buf);

The contiguous DMA API goes out of its way to hide the kernel-space address of the DMA buffer
from drivers.

The final step is to set the size field of the relevant videobuf buffer structure to the actual size
of the captured image, set state to VIDEOBUF DONE, then call wake up() on the done queue.
At this point, the buffer is owned by the videobuf layer and the driver should not touch it again.

342 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Developers who are interested in more information can go into the relevant header files; there
are a few low-level functions declared there which have not been talked about here. Note also
that all of these calls are exported GPL-only, so they will not be available to non-GPL kernel
modules.

2.2.15 V4L2 videobuf2 functions and data structures
enum vb2_memory
type of memory model used to make the buffers visible on userspace.
Constants
VB2_MEMORY_UNKNOWN Buffer status is unknown or it is not used yet on userspace.

VB2_MEMORY_MMAP The buffers are allocated by the Kernel and it is memory mapped via mmap()
ioctl. This model is also used when the user is using the buffers via read() or write() system
calls.

VB2_MEMORY_USERPTR The buffers was allocated in userspace and it is memory mapped via
mmap() ioctl.

VB2_MEMORY_DMABUF The buffers are passed to userspace via DMA buffer.

struct vb2_mem_ops
memory handling/memory allocator operations.

Definition

struct vb2 mem ops {

void *(*alloc)(struct vb2 buffer *vb,struct device *dev, unsigned long size);

void (*put)(void *buf priv);

struct dma buf *(*get dmabuf)(struct vb2 buffer *vb,void *buf priv, unsigned long,
~flags);

void *(*get userptr)(struct vb2 buffer *vb,struct device *dev,unsigned long vaddr, ,
—unsigned long size);

void (*put userptr)(void *buf priv);

void (*prepare)(void *buf priv);

void (*finish)(void *buf priv);

void *(*attach dmabuf) (struct vb2 buffer *vb,struct device *dev,struct dma buf *dbuf,
— unsigned long size);

void (*detach dmabuf)(void *buf priv);

int (*map dmabuf) (void *buf priv);

void (*unmap dmabuf) (void *buf priv);

void *(*vaddr) (struct vb2 buffer *vb, void *buf priv);

void *(*cookie) (struct vb2 buffer *vb, void *buf priv);

unsigned int (*num_users) (void *buf priv);

int (*mmap) (void *buf priv, struct vm area struct *vma);

+;

Members

alloc allocate video memory and, optionally, allocator private data, return ERR PTR() on fail-
ure or a pointer to allocator private, per-buffer data on success; the returned private struc-
ture will then be passed as buf_priv argument to other ops in this structure. The size
argument to this function shall be page aligned.

2.2. Video4lLinux devices 343

Linux Media Documentation

put inform the allocator that the buffer will no longer be used; usually will result in the allocator
freeing the buffer (if no other users of this buffer are present); the buf _priv argument is
the allocator private per-buffer structure previously returned from the alloc callback.

get_dmabuf acquire userspace memory for a hardware operation; used for DMABUF memory
types.

get_userptr acquire userspace memory for a hardware operation; used for USERPTR memory
types; vaddr is the address passed to the videobuf layer when queuing a video buffer of
USERPTR type; should return an allocator private per-buffer structure associated with the
buffer on success, ERR PTR() on failure; the returned private structure will then be passed
as buf priv argument to other ops in this structure.

put_userptr inform the allocator that a USERPTR buffer will no longer be used.

prepare called every time the buffer is passed from userspace to the driver, useful for cache
synchronisation, optional.

finish called every time the buffer is passed back from the driver to the userspace, also op-
tional.

attach_dmabuf attach a shared struct dma buf for a hardware operation; used for DMABUF
memory types; dev is the alloc device dbuf is the shared dma buf; returns ERR PTR() on
failure; allocator private per-buffer structure on success; this needs to be used for further
accesses to the buffer.

detach_dmabuf inform the exporter of the buffer that the current DMABUF buffer is no longer
used; the buf priv argument is the allocator private per-buffer structure previously re-
turned from the attach dmabuf callback.

map_dmabuf request for access to the dmabuf from allocator; the allocator of dmabuf is in-
formed that this driver is going to use the dmabuf.

unmap_dmabuf releases access control to the dmabuf - allocator is notified that this driver is
done using the dmabuf for now.

vaddr return a kernel virtual address to a given memory buffer associated with the passed
private structure or NULL if no such mapping exists.

cookie return allocator specific cookie for a given memory buffer associated with the passed
private structure or NULL if not available.

num_users return the current number of users of a memory buffer; return 1 if the videobuf
layer (or actually the driver using it) is the only user.

mmap setup a userspace mapping for a given memory buffer under the provided virtual memory
region.

Description

Those operations are used by the videobuf2 core to implement the memory handling/memory
allocators for each type of supported streaming I/O method.

Note:
1) Required ops for USERPTR types: get userptr, put userptr.
2) Required ops for MMAP types: alloc, put, num users, mmap.

3) Required ops for read/write access types: alloc, put, num users, vaddr.

344 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

4) Required ops for DMABUF types: attach dmabuf, detach dmabuf, map dmabuf, un-
map dmabuf.

struct vb2_plane
plane information.

Definition

struct vb2 plane {
void *mem priv;

struct dma buf *dbuf;
unsigned int dbuf mapped;
unsigned int bytesused;
unsigned int length;
unsigned int min_ length;
union {
unsigned int offset;
unsigned long userptr;
int fd;
rom;
unsigned int data offset;
}
Members

mem_priv private data with this plane.

dbuf dma buf - shared buffer object.

dbuf_mapped flag to show whether dbuf is mapped or not
bytesused number of bytes occupied by data in the plane (payload).

length size of this plane (NOT the payload) in bytes. The maximum valid size is MAX UINT -
PAGE SIZE.

min_length minimum required size of this plane (NOT the payload) in bytes. length is always
greater or equal to min_length, and like length, it is limited to MAX UINT - PAGE SIZE.

m Union with memtype-specific data.

m.offset when memory in the associated struct vb2 buffer is VB2 _MEMORY_ MMAP, equals