
Linux Media Documentation

The kernel development community

Dec 03, 2021

CONTENTS

1 Media subsystem admin and user guide 3
1.1 The media subsystem . 3

1.1.1 Introduction . 3
1.1.2 Building support for a media device . 4

1.1.2.1 Configuring the Linux Kernel . 4
1.1.2.2 Building and installing a new Kernel 8
1.1.2.3 Building just the new media drivers and core 9

1.1.3 Infrared remote control support in video4linux drivers 10
1.1.3.1 Basics . 10
1.1.3.2 How it works . 10

1.1.4 Digital TV . 11
1.1.4.1 Using the Digital TV Framework . 11
1.1.4.2 Digital TV Conditional Access Interface 22
1.1.4.3 FAQ . 23
1.1.4.4 References . 26

1.1.5 Cards List . 26
1.1.5.1 USB drivers . 27
1.1.5.2 PCI drivers . 62
1.1.5.3 Platform drivers . 83
1.1.5.4 Radio drivers . 85
1.1.5.5 I2C drivers . 86
1.1.5.6 Firewire driver . 98
1.1.5.7 Test drivers . 98

1.1.6 Video4Linux (V4L) driver-specific documentation 99
1.1.6.1 The bttv driver . 99
1.1.6.2 The cafe_ccic driver . 132
1.1.6.3 The cpia2 driver . 133
1.1.6.4 The cx88 driver . 136
1.1.6.5 The VPBE V4L2 driver design . 137
1.1.6.6 The Samsung S5P/Exynos4 FIMC driver 138
1.1.6.7 i.MX Video Capture Driver . 140
1.1.6.8 i.MX7 Video Capture Driver . 153
1.1.6.9 Intel Image Processing Unit 3 (IPU3) Imaging Unit (ImgU) driver . 157
1.1.6.10The ivtv driver . 166
1.1.6.11Vaio Picturebook Motion Eye Camera Driver 170
1.1.6.12OMAP 3 Image Signal Processor (ISP) driver 171
1.1.6.13OMAP4 ISS Driver . 173
1.1.6.14Philips webcams (pwc driver) . 174
1.1.6.15Qualcomm Camera Subsystem driver 178

i

1.1.6.16Renesas R-Car Fine Display Processor (FDP1) Driver 182
1.1.6.17Rockchip Image Signal Processor (rkisp1) 183
1.1.6.18The saa7134 driver . 187
1.1.6.19The Silicon Labs Si470x FM Radio Receivers driver 188
1.1.6.20The Silicon Labs Si4713 FM Radio Transmitter Driver 191
1.1.6.21The SI476x Driver . 195
1.1.6.22The Virtual Media Controller Driver (vimc) 198
1.1.6.23The Virtual Video Test Driver (vivid) . 199

1.1.7 Digital TV driver-specific documentation . 222
1.1.7.1 Avermedia DVB-T on BT878 Release Notes 222
1.1.7.2 How to get the bt8xx cards working . 224
1.1.7.3 Firmware files for lmedm04 cards . 227
1.1.7.4 Opera firmware . 228
1.1.7.5 How to set up the Technisat/B2C2 Flexcop devices 229
1.1.7.6 TechnoTrend/Hauppauge DEC USB Driver 230
1.1.7.7 Zoran 364xx based USB webcam module 231

1.1.8 CEC driver-specific documentation . 233
1.1.8.1 Pulse-Eight CEC Adapter driver . 233

2 Media subsystem kernel internal API 235
2.1 Media Subsystem Profile . 235

2.1.1 Overview . 235
2.1.1.1 Media maintainers . 236

2.1.2 Submit Checklist Addendum . 236
2.1.2.1 Style Cleanup Patches . 237
2.1.2.2 Coding Style Addendum . 237

2.1.3 Key Cycle Dates . 238
2.1.4 Review Cadence . 238

2.2 Video4Linux devices . 238
2.2.1 Introduction . 238
2.2.2 Structure of a V4L driver . 239
2.2.3 Structure of the V4L2 framework . 239
2.2.4 Video device’s internal representation . 239

2.2.4.1 ioctls and locking . 241
2.2.4.2 Video device registration . 242
2.2.4.3 video device debugging . 243
2.2.4.4 Video device cleanup . 244
2.2.4.5 helper functions . 244
2.2.4.6 video_device functions and data structures 245

2.2.5 V4L2 device instance . 254
2.2.5.1 v4l2_device functions and data structures 256

2.2.6 V4L2 File handlers . 264
2.2.6.1 V4L2 fh functions and data structures 266

2.2.7 V4L2 sub-devices . 268
2.2.7.1 Subdev registration . 270
2.2.7.2 Calling subdev operations . 272

2.2.8 V4L2 sub-device userspace API . 273
2.2.9 Read-only sub-device userspace API . 274
2.2.10 I2C sub-device drivers . 274
2.2.11 V4L2 sub-device functions and data structures 276
2.2.12 V4L2 events . 294

ii

2.2.12.1Event subscription . 295
2.2.12.2Unsubscribing an event . 296
2.2.12.3Check if there’s a pending event . 296
2.2.12.4How events work . 296

2.2.13 V4L2 Controls . 300
2.2.13.1Introduction . 300
2.2.13.2Objects in the framework . 301
2.2.13.3Basic usage for V4L2 and sub-device drivers 301
2.2.13.4Inheriting Sub-device Controls . 304
2.2.13.5Accessing Control Values . 305
2.2.13.6Menu Controls . 306
2.2.13.7Custom Controls . 307
2.2.13.8Active and Grabbed Controls . 307
2.2.13.9Control Clusters . 307
2.2.13.10Handling autogain/gain-type Controls with Auto Clusters 309
2.2.13.11VIDIOC_LOG_STATUS Support . 310
2.2.13.12Different Handlers for Different Video Nodes 310
2.2.13.13Finding Controls . 311
2.2.13.14Preventing Controls inheritance . 311
2.2.13.15V4L2_CTRL_TYPE_CTRL_CLASS Controls 312
2.2.13.16Adding Notify Callbacks . 312
2.2.13.17v4l2_ctrl functions and data structures 312

2.2.14 Videobuf Framework . 337
2.2.14.1Introduction . 337
2.2.14.2Buffer types . 337
2.2.14.3Data structures, callbacks, and initialization 338
2.2.14.4File operations . 339
2.2.14.5ioctl() operations . 341
2.2.14.6Buffer allocation . 341
2.2.14.7Filling the buffers . 342

2.2.15 V4L2 videobuf2 functions and data structures 343
2.2.16 V4L2 DV Timings functions . 368
2.2.17 V4L2 flash functions and data structures . 372
2.2.18 V4L2 Media Controller functions and data structures 375
2.2.19 V4L2 Media Bus functions and data structures 378
2.2.20 V4L2 Memory to Memory functions and data structures 379
2.2.21 V4L2 async kAPI . 392
2.2.22 V4L2 fwnode kAPI . 397
2.2.23 V4L2 rect helper functions . 406
2.2.24 Tuner functions and data structures . 408
2.2.25 V4L2 common functions and data structures 412
2.2.26 Hauppauge TV EEPROM functions and data structures 428

2.3 Digital TV (DVB) devices . 430
2.3.1 Digital TV Common functions . 430

2.3.1.1 Math functions . 430
2.3.1.2 DVB devices . 431
2.3.1.3 Digital TV Ring buffer . 438
2.3.1.4 Digital TV VB2 handler . 443

2.3.2 Digital TV Frontend kABI . 447
2.3.2.1 Digital TV Frontend . 447
2.3.2.2 Digital TV Frontend statistics . 450

iii

2.3.2.3 Digital TV Frontend functions and types 455
2.3.3 Digital TV Demux kABI . 468

2.3.3.1 Digital TV Demux . 468
2.3.3.2 Demux Callback API . 469
2.3.3.3 Digital TV Demux device registration functions and data structures 469
2.3.3.4 High-level Digital TV demux interface 472
2.3.3.5 Driver-internal low-level hardware specific driver demux interface . 477

2.3.4 Digital TV Conditional Access kABI . 485
2.3.5 Digital TV Network kABI . 487

2.4 Remote Controller devices . 488
2.4.1 Remote Controller core . 488

2.4.1.1 Remote controller data structures and functions 489
2.5 Media Controller devices . 495

2.5.1 Media Controller . 495
2.5.1.1 Abstract media device model . 495
2.5.1.2 Media device . 496
2.5.1.3 Entities . 496
2.5.1.4 Interfaces . 496
2.5.1.5 Pads . 496
2.5.1.6 Links . 497
2.5.1.7 Graph traversal . 497
2.5.1.8 Use count and power handling . 498
2.5.1.9 Links setup . 498
2.5.1.10Pipelines and media streams . 498
2.5.1.11Link validation . 499
2.5.1.12Media Controller Device Allocator API 499
2.5.1.13API Definitions . 500

2.6 CEC Kernel Support . 533
2.6.1 The CEC Protocol . 533
2.6.2 CEC Adapter Interface . 533
2.6.3 Implementing the Low-Level CEC Adapter . 534
2.6.4 Implementing the interrupt handler . 537
2.6.5 Optional: Implementing Error Injection Support 537
2.6.6 Implementing the High-Level CEC Adapter 538
2.6.7 CEC framework functions . 538
2.6.8 CEC Pin framework . 539
2.6.9 CEC Notifier framework . 541

2.7 Pixel data transmitter and receiver drivers . 543
2.7.1 Bus types . 543

2.7.1.1 MIPI CSI-2 . 543
2.7.1.2 Parallel . 543

2.7.2 Transmitter drivers . 543
2.7.2.1 Media bus pixel code . 543
2.7.2.2 Link frequency . 543
2.7.2.3 .s_stream() callback . 543

2.7.3 CSI-2 transmitter drivers . 544
2.7.3.1 Pixel rate . 544
2.7.3.2 LP-11 and LP-111 modes . 544
2.7.3.3 Stopping the transmitter . 545

2.8 Writing camera sensor drivers . 545
2.8.1 CSI-2 and parallel (BT.601 and BT.656) busses 545

iv

2.8.2 Handling clocks . 545
2.8.2.1 ACPI . 545
2.8.2.2 Devicetree . 545

2.8.3 Frame size . 546
2.8.3.1 Freely configurable camera sensor drivers 546
2.8.3.2 Register list based drivers . 546

2.8.4 Frame interval configuration . 546
2.8.4.1 Raw camera sensors . 546
2.8.4.2 USB cameras etc. devices . 547

2.8.5 Power management . 547
2.8.5.1 Control framework . 547

2.9 Media driver-specific documentation . 547
2.9.1 Video4Linux (V4L) drivers . 547

2.9.1.1 The bttv driver . 547
2.9.1.2 The cpia2 driver . 550
2.9.1.3 The cx2341x driver . 551
2.9.1.4 The cx88 driver . 621
2.9.1.5 The VPBE V4L2 driver design . 623
2.9.1.6 The Samsung S5P/EXYNOS4 FIMC driver 624
2.9.1.7 The pvrusb2 driver . 624
2.9.1.8 PXA-Camera Host Driver . 628
2.9.1.9 The Radiotrack radio driver . 631
2.9.1.10The Rockchip Image Signal Processor Driver (rkisp1) 633
2.9.1.11The saa7134 driver . 634
2.9.1.12Cropping and Scaling algorithm, used in the sh_mobile_ceu_camera

driver . 636
2.9.1.13Tuner drivers . 638
2.9.1.14The Virtual Media Controller Driver (vimc) 640
2.9.1.15The Zoran driver . 642
2.9.1.16MIPI CCS camera sensor driver . 653
2.9.1.17CCS PLL calculator . 654

2.9.2 Digital TV drivers . 658
2.9.2.1 Idea behind the dvb-usb-framework . 658
2.9.2.2 Frontend drivers . 664
2.9.2.3 vidtv: Virtual Digital TV driver . 678
2.9.2.4 Contributors . 710

3 Linux Media Infrastructure userspace API 713
3.1 Introduction . 713
3.2 Part I - Video for Linux API . 715

3.2.1 Common API Elements . 715
3.2.1.1 Opening and Closing Devices . 715
3.2.1.2 Querying Capabilities . 718
3.2.1.3 Application Priority . 719
3.2.1.4 Video Inputs and Outputs . 719
3.2.1.5 Audio Inputs and Outputs . 720
3.2.1.6 Tuners and Modulators . 722
3.2.1.7 Video Standards . 723
3.2.1.8 Digital Video (DV) Timings . 726
3.2.1.9 User Controls . 726
3.2.1.10Extended Controls API . 733

v

3.2.1.11Camera Control Reference . 736
3.2.1.12Flash Control Reference . 744
3.2.1.13Image Source Control Reference . 746
3.2.1.14Image Process Control Reference . 747
3.2.1.15Codec Control Reference . 748
3.2.1.16Stateless Codec Control Reference . 779
3.2.1.17JPEG Control Reference . 797
3.2.1.18Digital Video Control Reference . 798
3.2.1.19RF Tuner Control Reference . 800
3.2.1.20FM Transmitter Control Reference . 802
3.2.1.21FM Receiver Control Reference . 804
3.2.1.22Detect Control Reference . 805
3.2.1.23Colorimetry Control Reference . 806
3.2.1.24Guidelines for Video4Linux pixel format 4CCs 806
3.2.1.25Data Formats . 807
3.2.1.26Single- and multi-planar APIs . 808
3.2.1.27Cropping, composing and scaling – the SELECTION API 809
3.2.1.28Image Cropping, Insertion and Scaling – the CROP API 814
3.2.1.29Streaming Parameters . 819

3.2.2 Image Formats . 820
3.2.2.1 Single-planar format structure . 820
3.2.2.2 Multi-planar format structures . 825
3.2.2.3 Standard Image Formats . 826
3.2.2.4 Indexed Format . 827
3.2.2.5 RGB Formats . 827
3.2.2.6 Raw Bayer Formats . 830
3.2.2.7 YUV Formats . 837
3.2.2.8 HSV Formats . 851
3.2.2.9 Depth Formats . 851
3.2.2.10Compressed Formats . 853
3.2.2.11SDR Formats . 856
3.2.2.12Touch Formats . 860
3.2.2.13Metadata Formats . 861
3.2.2.14Reserved Format Identifiers . 945
3.2.2.15Colorspaces . 947
3.2.2.16Defining Colorspaces in V4L2 . 949
3.2.2.17Detailed Colorspace Descriptions . 952
3.2.2.18Detailed Transfer Function Descriptions 960

3.2.3 Input/Output . 961
3.2.3.1 Read/Write . 961
3.2.3.2 Streaming I/O (Memory Mapping) . 962
3.2.3.3 Streaming I/O (User Pointers) . 966
3.2.3.4 Streaming I/O (DMA buffer importing) 968
3.2.3.5 Asynchronous I/O . 970
3.2.3.6 Buffers . 970
3.2.3.7 Field Order . 981

3.2.4 Interfaces . 983
3.2.4.1 Video Capture Interface . 983
3.2.4.2 Video Overlay Interface . 986
3.2.4.3 Video Output Interface . 990
3.2.4.4 Video Output Overlay Interface . 992

vi

3.2.4.5 Video Memory-To-Memory Interface 994
3.2.4.6 Raw VBI Data Interface . 1027
3.2.4.7 Sliced VBI Data Interface . 1032
3.2.4.8 Radio Interface . 1039
3.2.4.9 RDS Interface . 1040
3.2.4.10Software Defined Radio Interface (SDR) 1042
3.2.4.11Touch Devices . 1043
3.2.4.12Event Interface . 1044
3.2.4.13Sub-device Interface . 1044
3.2.4.14Metadata Interface . 1063

3.2.5 Libv4l Userspace Library . 1064
3.2.5.1 Introduction . 1064

3.2.6 Changes . 1066
3.2.6.1 Differences between V4L and V4L2 . 1066
3.2.6.2 Changes of the V4L2 API . 1075

3.2.7 Function Reference . 1094
3.2.7.1 V4L2 close() . 1094
3.2.7.2 V4L2 ioctl() . 1095
3.2.7.3 ioctl VIDIOC_CREATE_BUFS . 1096
3.2.7.4 ioctl VIDIOC_CROPCAP . 1099
3.2.7.5 ioctl VIDIOC_DBG_G_CHIP_INFO . 1101
3.2.7.6 ioctl VIDIOC_DBG_G_REGISTER, VIDIOC_DBG_S_REGISTER 1103
3.2.7.7 ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD . . . 1105
3.2.7.8 ioctl VIDIOC_DQEVENT . 1108
3.2.7.9 ioctl VIDIOC_DV_TIMINGS_CAP, VIDIOC_SUBDEV_DV_TIMINGS_CAP1113
3.2.7.10ioctl VIDIOC_ENCODER_CMD, VIDIOC_TRY_ENCODER_CMD . . . 1115
3.2.7.11ioctl VIDIOC_ENUMAUDIO . 1118
3.2.7.12ioctl VIDIOC_ENUMAUDOUT . 1119
3.2.7.13ioctl VIDIOC_ENUM_DV_TIMINGS, VID-

IOC_SUBDEV_ENUM_DV_TIMINGS . 1120
3.2.7.14ioctl VIDIOC_ENUM_FMT . 1121
3.2.7.15ioctl VIDIOC_ENUM_FRAMESIZES . 1126
3.2.7.16ioctl VIDIOC_ENUM_FRAMEINTERVALS 1129
3.2.7.17ioctl VIDIOC_ENUM_FREQ_BANDS . 1131
3.2.7.18ioctl VIDIOC_ENUMINPUT . 1134
3.2.7.19ioctl VIDIOC_ENUMOUTPUT . 1137
3.2.7.20ioctl VIDIOC_ENUMSTD, VIDIOC_SUBDEV_ENUMSTD 1139
3.2.7.21ioctl VIDIOC_EXPBUF . 1144
3.2.7.22ioctl VIDIOC_G_AUDIO, VIDIOC_S_AUDIO 1146
3.2.7.23ioctl VIDIOC_G_AUDOUT, VIDIOC_S_AUDOUT 1148
3.2.7.24ioctl VIDIOC_G_CROP, VIDIOC_S_CROP 1149
3.2.7.25ioctl VIDIOC_G_CTRL, VIDIOC_S_CTRL 1151
3.2.7.26ioctl VIDIOC_G_DV_TIMINGS, VIDIOC_S_DV_TIMINGS 1152
3.2.7.27ioctl VIDIOC_G_EDID, VIDIOC_S_EDID, VIDIOC_SUBDEV_G_EDID,

VIDIOC_SUBDEV_S_EDID . 1157
3.2.7.28ioctl VIDIOC_G_ENC_INDEX . 1159
3.2.7.29ioctl VIDIOC_G_EXT_CTRLS, VIDIOC_S_EXT_CTRLS, VID-

IOC_TRY_EXT_CTRLS . 1161
3.2.7.30ioctl VIDIOC_G_FBUF, VIDIOC_S_FBUF 1167
3.2.7.31ioctl VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT 1173
3.2.7.32ioctl VIDIOC_G_FREQUENCY, VIDIOC_S_FREQUENCY 1176

vii

3.2.7.33ioctl VIDIOC_G_INPUT, VIDIOC_S_INPUT 1177
3.2.7.34ioctl VIDIOC_G_JPEGCOMP, VIDIOC_S_JPEGCOMP 1178
3.2.7.35ioctl VIDIOC_G_MODULATOR, VIDIOC_S_MODULATOR 1180
3.2.7.36ioctl VIDIOC_G_OUTPUT, VIDIOC_S_OUTPUT 1183
3.2.7.37ioctl VIDIOC_G_PARM, VIDIOC_S_PARM 1184
3.2.7.38ioctl VIDIOC_G_PRIORITY, VIDIOC_S_PRIORITY 1188
3.2.7.39ioctl VIDIOC_G_SELECTION, VIDIOC_S_SELECTION 1189
3.2.7.40ioctl VIDIOC_G_SLICED_VBI_CAP . 1192
3.2.7.41ioctl VIDIOC_G_STD, VIDIOC_S_STD, VIDIOC_SUBDEV_G_STD,

VIDIOC_SUBDEV_S_STD . 1194
3.2.7.42ioctl VIDIOC_G_TUNER, VIDIOC_S_TUNER 1195
3.2.7.43ioctl VIDIOC_LOG_STATUS . 1202
3.2.7.44ioctl VIDIOC_OVERLAY . 1203
3.2.7.45ioctl VIDIOC_PREPARE_BUF . 1204
3.2.7.46ioctl VIDIOC_QBUF, VIDIOC_DQBUF 1205
3.2.7.47ioctl VIDIOC_QUERYBUF . 1207
3.2.7.48ioctl VIDIOC_QUERYCAP . 1208
3.2.7.49ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VID-

IOC_QUERYMENU . 1213
3.2.7.50ioctl VIDIOC_QUERY_DV_TIMINGS . 1221
3.2.7.51ioctl VIDIOC_QUERYSTD, VIDIOC_SUBDEV_QUERYSTD 1222
3.2.7.52ioctl VIDIOC_REQBUFS . 1224
3.2.7.53ioctl VIDIOC_S_HW_FREQ_SEEK . 1226
3.2.7.54ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF 1228
3.2.7.55ioctl VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL 1230
3.2.7.56ioctl VIDIOC_SUBDEV_ENUM_FRAME_SIZE 1231
3.2.7.57ioctl VIDIOC_SUBDEV_ENUM_MBUS_CODE 1233
3.2.7.58ioctl VIDIOC_SUBDEV_G_CROP, VIDIOC_SUBDEV_S_CROP 1235
3.2.7.59ioctl VIDIOC_SUBDEV_G_FMT, VIDIOC_SUBDEV_S_FMT 1236
3.2.7.60ioctl VIDIOC_SUBDEV_G_FRAME_INTERVAL, VID-

IOC_SUBDEV_S_FRAME_INTERVAL 1238
3.2.7.61ioctl VIDIOC_SUBDEV_G_SELECTION, VID-

IOC_SUBDEV_S_SELECTION . 1240
3.2.7.62ioctl VIDIOC_SUBDEV_QUERYCAP . 1242
3.2.7.63ioctl VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT 1243
3.2.7.64V4L2 mmap() . 1245
3.2.7.65V4L2 munmap() . 1247
3.2.7.66V4L2 open() . 1248
3.2.7.67V4L2 poll() . 1249
3.2.7.68V4L2 read() . 1251
3.2.7.69V4L2 select() . 1252
3.2.7.70V4L2 write() . 1254

3.2.8 Common definitions for V4L2 and V4L2 subdev interfaces 1255
3.2.8.1 Common selection definitions . 1255

3.2.9 Video For Linux Two Header File . 1256
3.2.9.1 videodev2.h . 1256

3.2.10 Video Capture Example . 1313
3.2.10.1file: media/v4l/capture.c . 1313

3.2.11 Video Grabber example using libv4l . 1325
3.2.11.1file: media/v4l/v4l2grab.c . 1325

3.2.12 References . 1328

viii

3.2.12.1CEA 608-E . 1328
3.2.12.2EN 300 294 . 1328
3.2.12.3ETS 300 231 . 1328
3.2.12.4ETS 300 706 . 1328
3.2.12.5ISO 13818-1 . 1328
3.2.12.6ISO 13818-2 . 1328
3.2.12.7ITU BT.470 . 1329
3.2.12.8ITU BT.601 . 1329
3.2.12.9ITU BT.653 . 1329
3.2.12.10ITU BT.709 . 1329
3.2.12.11ITU BT.1119 . 1329
3.2.12.12ITU-T Rec. H.264 Specification (04/2017 Edition) 1329
3.2.12.13ITU H.265/HEVC . 1329
3.2.12.14JFIF . 1330
3.2.12.15ITU-T.81 . 1330
3.2.12.16W3C JPEG JFIF . 1330
3.2.12.17SMPTE 12M . 1330
3.2.12.18SMPTE 170M . 1330
3.2.12.19SMPTE 240M . 1330
3.2.12.20SMPTE RP 431-2 . 1330
3.2.12.21SMPTE ST 2084 . 1331
3.2.12.22sRGB . 1331
3.2.12.23sYCC . 1331
3.2.12.24xvYCC . 1331
3.2.12.25opRGB . 1331
3.2.12.26ITU BT.2020 . 1331
3.2.12.27EBU Tech 3213 . 1332
3.2.12.28EBU Tech 3321 . 1332
3.2.12.29IEC 62106 . 1332
3.2.12.30NRSC-4-B . 1332
3.2.12.31ISO 12232:2006 . 1332
3.2.12.32CEA-861-E . 1332
3.2.12.33VESA DMT . 1332
3.2.12.34EDID . 1333
3.2.12.35HDCP . 1333
3.2.12.36HDMI . 1333
3.2.12.37HDMI2 . 1333
3.2.12.38DP . 1333
3.2.12.39poynton . 1333
3.2.12.40colimg . 1334
3.2.12.41VP8 . 1334
3.2.12.42VP9 . 1334

3.2.13 Revision and Copyright . 1334
3.2.14 Revision History . 1335

3.3 Part II - Digital TV API . 1339
3.3.1 Introduction . 1339

3.3.1.1 What you need to know . 1339
3.3.1.2 History . 1340
3.3.1.3 Overview . 1340
3.3.1.4 Linux Digital TV Devices . 1341
3.3.1.5 API include files . 1342

ix

3.3.2 Digital TV Frontend API . 1342
3.3.2.1 Querying frontend information . 1343
3.3.2.2 Querying frontend status and statistics 1343
3.3.2.3 Property types . 1343
3.3.2.4 Frontend Function Calls . 1380

3.3.3 Digital TV Demux Device . 1391
3.3.3.1 Demux Data Types . 1392
3.3.3.2 Demux Function Calls . 1396

3.3.4 Digital TV CA Device . 1415
3.3.4.1 CA Data Types . 1415
3.3.4.2 CA Function Calls . 1418
3.3.4.3 The High level CI API . 1425

3.3.5 Digital TV Network API . 1427
3.3.5.1 Digital TV net Function Calls . 1428

3.3.6 Digital TV Deprecated APIs . 1431
3.3.6.1 Digital TV Frontend legacy API (a. k. a. DVBv3) 1431

3.3.7 Examples . 1441
3.3.8 Digital TV uAPI header files . 1441

3.3.8.1 Digital TV uAPI headers . 1441
3.3.9 Revision and Copyright . 1472
3.3.10 Revision History . 1473

3.4 Part III - Remote Controller API . 1473
3.4.1 Introduction . 1473
3.4.2 Remote Controller’s sysfs nodes . 1474

3.4.2.1 /sys/class/rc/ . 1474
3.4.2.2 /sys/class/rc/rcN/ . 1474
3.4.2.3 /sys/class/rc/rcN/protocols . 1474
3.4.2.4 /sys/class/rc/rcN/filter . 1474
3.4.2.5 /sys/class/rc/rcN/filter_mask . 1475
3.4.2.6 /sys/class/rc/rcN/wakeup_protocols . 1475
3.4.2.7 /sys/class/rc/rcN/wakeup_filter . 1475
3.4.2.8 /sys/class/rc/rcN/wakeup_filter_mask 1475

3.4.3 Remote Controller Protocols and Scancodes 1476
3.4.3.1 rc-5 (RC_PROTO_RC5) . 1476
3.4.3.2 rc-5-sz (RC_PROTO_RC5_SZ) . 1476
3.4.3.3 rc-5x-20 (RC_PROTO_RC5X_20) . 1477
3.4.3.4 jvc (RC_PROTO_JVC) . 1477
3.4.3.5 sony-12 (RC_PROTO_SONY12) . 1477
3.4.3.6 sony-15 (RC_PROTO_SONY15) . 1477
3.4.3.7 sony-20 (RC_PROTO_SONY20) . 1478
3.4.3.8 nec (RC_PROTO_NEC) . 1478
3.4.3.9 nec-x (RC_PROTO_NECX) . 1478
3.4.3.10nec-32 (RC_PROTO_NEC32) . 1478
3.4.3.11sanyo (RC_PROTO_SANYO) . 1479
3.4.3.12mcir2-kbd (RC_PROTO_MCIR2_KBD) 1479
3.4.3.13mcir2-mse (RC_PROTO_MCIR2_MSE) 1479
3.4.3.14rc-6-0 (RC_PROTO_RC6_0) . 1479
3.4.3.15rc-6-6a-20 (RC_PROTO_RC6_6A_20) . 1479
3.4.3.16rc-6-6a-24 (RC_PROTO_RC6_6A_24) . 1479
3.4.3.17rc-6-6a-32 (RC_PROTO_RC6_6A_32) . 1479
3.4.3.18rc-6-mce (RC_PROTO_RC6_MCE) . 1480

x

3.4.3.19sharp (RC_PROTO_SHARP) . 1480
3.4.3.20xmp (RC_PROTO_XMP) . 1480
3.4.3.21cec (RC_PROTO_CEC) . 1480
3.4.3.22imon (RC_PROTO_IMON) . 1480
3.4.3.23rc-mm-12 (RC_PROTO_RCMM12) . 1480
3.4.3.24rc-mm-24 (RC_PROTO_RCMM24) . 1480
3.4.3.25rc-mm-32 (RC_PROTO_RCMM32) . 1481
3.4.3.26xbox-dvd (RC_PROTO_XBOX_DVD) . 1481

3.4.4 Remote controller tables . 1481
3.4.5 Changing default Remote Controller mappings 1484

3.4.5.1 file: uapi/v4l/keytable.c . 1484
3.4.6 LIRC Device Interface . 1488

3.4.6.1 Introduction . 1488
3.4.6.2 LIRC modes . 1488
3.4.6.3 Data types used by LIRC_MODE_SCANCODE 1489
3.4.6.4 BPF based IR decoder . 1491
3.4.6.5 LIRC Function Reference . 1491
3.4.6.6 LIRC Header File . 1506

3.4.7 Revision and Copyright . 1511
3.4.8 Revision History . 1511

3.5 Part IV - Media Controller API . 1511
3.5.1 Introduction . 1511
3.5.2 Media device model . 1512
3.5.3 Types and flags used to represent the media graph elements 1512
3.5.4 Request API . 1517

3.5.4.1 General Usage . 1518
3.5.4.2 Request Allocation . 1518
3.5.4.3 Request Preparation . 1518
3.5.4.4 Request Submission . 1518
3.5.4.5 Recycling and Destruction . 1519
3.5.4.6 Example for a Codec Device . 1519
3.5.4.7 Example for a Simple Capture Device 1521

3.5.5 Function Reference . 1521
3.5.5.1 media open() . 1521
3.5.5.2 media close() . 1522
3.5.5.3 media ioctl() . 1523
3.5.5.4 ioctl MEDIA_IOC_DEVICE_INFO . 1524
3.5.5.5 ioctl MEDIA_IOC_G_TOPOLOGY . 1526
3.5.5.6 ioctl MEDIA_IOC_ENUM_ENTITIES . 1529
3.5.5.7 ioctl MEDIA_IOC_ENUM_LINKS . 1531
3.5.5.8 ioctl MEDIA_IOC_SETUP_LINK . 1532
3.5.5.9 ioctl MEDIA_IOC_REQUEST_ALLOC 1533
3.5.5.10request close() . 1534
3.5.5.11request ioctl() . 1535
3.5.5.12request poll() . 1536
3.5.5.13ioctl MEDIA_REQUEST_IOC_QUEUE 1537
3.5.5.14ioctl MEDIA_REQUEST_IOC_REINIT 1538

3.5.6 Media Controller Header File . 1539
3.5.6.1 media.h . 1539

3.5.7 Revision and Copyright . 1548
3.5.8 Revision History . 1548

xi

3.6 Part V - Consumer Electronics Control API . 1549
3.6.1 Introduction . 1549
3.6.2 Function Reference . 1549

3.6.2.1 cec open() . 1549
3.6.2.2 cec close() . 1550
3.6.2.3 cec ioctl() . 1551
3.6.2.4 cec poll() . 1552
3.6.2.5 ioctl CEC_ADAP_G_CAPS . 1553
3.6.2.6 ioctls CEC_ADAP_G_LOG_ADDRS and CEC_ADAP_S_LOG_ADDRS . 1556
3.6.2.7 ioctls CEC_ADAP_G_PHYS_ADDR and CEC_ADAP_S_PHYS_ADDR . 1561
3.6.2.8 ioctl CEC_ADAP_G_CONNECTOR_INFO 1562
3.6.2.9 ioctl CEC_DQEVENT . 1563
3.6.2.10ioctls CEC_G_MODE and CEC_S_MODE 1568
3.6.2.11ioctls CEC_RECEIVE and CEC_TRANSMIT 1573

3.6.3 CEC Pin Framework Error Injection . 1579
3.6.3.1 Basic Syntax . 1580
3.6.3.2 Clear Error Injections . 1581
3.6.3.3 Receive Messages . 1581
3.6.3.4 Transmit Messages . 1582
3.6.3.5 Custom Pulses . 1583

3.6.4 CEC Header File . 1584
3.6.4.1 cec.h . 1584

3.6.5 Revision and Copyright . 1607
3.6.6 Revision History . 1607

3.7 Generic Error Codes . 1607
3.8 Glossary . 1608
3.9 GNU Free Documentation License . 1610

3.9.1 0. PREAMBLE . 1610
3.9.2 1. APPLICABILITY AND DEFINITIONS . 1611
3.9.3 2. VERBATIM COPYING . 1612
3.9.4 3. COPYING IN QUANTITY . 1612
3.9.5 4. MODIFICATIONS . 1612
3.9.6 5. COMBINING DOCUMENTS . 1614
3.9.7 6. COLLECTIONS OF DOCUMENTS . 1614
3.9.8 7. AGGREGATION WITH INDEPENDENT WORKS 1614
3.9.9 8. TRANSLATION . 1615
3.9.10 9. TERMINATION . 1615
3.9.11 10. FUTURE REVISIONS OF THIS LICENSE 1615
3.9.12 Addendum . 1615

3.10 Video4Linux (V4L) driver-specific documentation . 1616
3.10.1 MIPI CCS camera sensor driver . 1616

3.10.1.1Pixel Array sub-device . 1616
3.10.1.2Binner . 1616
3.10.1.3Scaler . 1617
3.10.1.4Digital and analogue crop . 1617
3.10.1.5Private controls . 1617

3.10.2 The cx2341x driver . 1618
3.10.2.1Non-compressed file format . 1618
3.10.2.2Format of embedded V4L2_MPEG_STREAM_VBI_FMT_IVTV VBI data1620

3.10.3 Hantro video decoder driver . 1621
3.10.4 i.MX Video Capture Driver . 1621

xii

3.10.4.1Events . 1621
3.10.4.2Controls . 1621

3.10.5 Maxim Integrated MAX2175 RF to bits tuner driver 1623
3.10.5.1V4L2_CID_MAX2175_I2S_ENABLE . 1623
3.10.5.2V4L2_CID_MAX2175_HSLS . 1623
3.10.5.3V4L2_CID_MAX2175_RX_MODE (menu) 1623

3.10.6 Vaio Picturebook Motion Eye Camera Driver 1624
3.10.6.1Private API . 1624

3.10.7 OMAP 3 Image Signal Processor (ISP) driver 1625
3.10.7.1Events . 1625
3.10.7.2Private IOCTLs . 1625
3.10.7.3CCDC and preview block IOCTLs . 1626
3.10.7.4Statistic blocks IOCTLs . 1627
3.10.7.5VIDIOC_OMAP3ISP_STAT_EN . 1627
3.10.7.6VIDIOC_OMAP3ISP_AEWB_CFG, VIDIOC_OMAP3ISP_HIST_CFG

and VIDIOC_OMAP3ISP_AF_CFG . 1627
3.10.7.7VIDIOC_OMAP3ISP_STAT_REQ . 1628
3.10.7.8References . 1628

3.10.8 The Linux USB Video Class (UVC) driver . 1628
3.10.8.1Extension Unit (XU) support . 1628

Index 1633

xiii

xiv

Linux Media Documentation

Copyright © 1991-: LinuxTV Developers

CONTENTS 1

Linux Media Documentation

2 CONTENTS

CHAPTER

ONE

MEDIA SUBSYSTEM ADMIN AND USER GUIDE

This section contains usage information about media subsystem and its supported drivers.

Please see:

Documentation/userspace-api/media/index.rst

• for the userspace APIs used on media devices.

Documentation/driver-api/media/index.rst

• for driver development information and Kernel APIs used by media devices;

1.1 The media subsystem

1.1.1 Introduction

The media subsystem consists on Linux support for several different types of devices:

• Audio and video grabbers;

• PC and Laptop Cameras;

• Complex cameras found on Embedded hardware;

• Analog and digital TV;

• HDMI Customer Electronics Control (CEC);

• Multi-touch input devices;

• Remote Controllers;

• Media encoders and decoders.

Due to the diversity of devices, the subsystem provides several different APIs:

• Remote Controller API;

• HDMI CEC API;

• Video4Linux API;

• Media controller API;

• Video4Linux Request API (experimental);

• Digital TV API (also known as DVB API).

3

Linux Media Documentation

1.1.2 Building support for a media device

The first step is to download the Kernel’s source code, either via a distribution-specific source
file or via the Kernel’s main git tree1.

Please notice, however, that, if:

• you’re a braveheart and want to experiment with new stuff;

• if you want to report a bug;

• if you’re developing new patches

you should use the main media development tree master branch:

https://git.linuxtv.org/media_tree.git/

In this case, you may find some useful information at the LinuxTv wiki pages:

https://linuxtv.org/wiki/index.php/How_to_Obtain,_Build_and_Install_V4L-DVB_
Device_Drivers

1.1.2.1 Configuring the Linux Kernel

You can access a menu of Kernel building options with:

$ make menuconfig

Then, select all desired options and exit it, saving the configuration.

The changed configuration will be at the .config file. It would look like:

...
CONFIG_RC_CORE is not set
CONFIG_CEC_CORE is not set
CONFIG_MEDIA_SUPPORT=m
CONFIG_MEDIA_SUPPORT_FILTER=y
...

The media subsystem is controlled by those menu configuration options:

Device Drivers --->
<M> Remote Controller support --->
[] HDMI CEC RC integration
[] Enable CEC error injection support
[*] HDMI CEC drivers --->
<*> Multimedia support --->

The Remote Controller support option enables the core support for remote controllers2.

The HDMI CEC RC integration option enables integration of HDMI CEC with Linux, allowing
to receive data via HDMI CEC as if it were produced by a remote controller directly connected
to the machine.

1 The upstream Linux Kernel development tree is located at
https://git.kernel.org/pub/scm/li nux/kernel/git/torvalds/linux.git/
2 Remote Controller support should also be enabled if you want to use some TV card drivers that may depend

on the remote controller core support.

4 Chapter 1. Media subsystem admin and user guide

https://git.linuxtv.org/media_tree.git/
https://linuxtv.org/wiki
https://linuxtv.org/wiki/index.php/How_to_Obtain,_Build_and_Install_V4L-DVB_Device_Drivers
https://linuxtv.org/wiki/index.php/How_to_Obtain,_Build_and_Install_V4L-DVB_Device_Drivers
https://git.kernel.org/pub/scm/li

Linux Media Documentation

The HDMI CEC drivers option allow selecting platform and USB drivers that receives and/or
transmits CEC codes via HDMI interfaces3.

The last option (Multimedia support) enables support for cameras, audio/video grabbers and
TV.

The media subsystem support can either be built together with the main Kernel or as a module.
For most use cases, it is preferred to have it built as modules.

Note: Instead of using a menu, the Kernel provides a script with allows enabling configuration
options directly. To enable media support and remote controller support using Kernel modules,
you could use:

$ scripts/config -m RC_CORE
$ scripts/config -m MEDIA_SUPPORT

Media dependencies

It should be noticed that enabling the above from a clean config is usually not enough. The
media subsystem depends on several other Linux core support in order to work.

For example, most media devices use a serial communication bus in order to talk with some
peripherals. Such bus is called I2C (Inter-Integrated Circuit). In order to be able to build
support for such hardware, the I2C bus support should be enabled, either via menu or with:

./scripts/config -m I2C

Another example: the remote controller core requires support for input devices, with can be
enabled with:

./scripts/config -m INPUT

Other core functionality may also be needed (like PCI and/or USB support), depending on the
specific driver(s) you would like to enable.

Enabling Remote Controller Support

The remote controller menu allows selecting drivers for specific devices. It’s menu looks like
this:

--- Remote Controller support
<M> Compile Remote Controller keymap modules
[*] LIRC user interface
[*] Support for eBPF programs attached to lirc devices
[*] Remote controller decoders --->
[*] Remote Controller devices --->

3 Please notice that the DRM subsystem also have drivers for GPUs that use the media HDMI CEC support.
Those GPU-specific drivers are selected via the Graphics support menu, under Device Drivers.
When a GPU driver supports HDMI CEC, it will automatically enable the CEC core support at the media subsystem.

1.1. The media subsystem 5

Linux Media Documentation

The Compile Remote Controller keymap modules option creates key maps for several popu-
lar remote controllers.

The LIRC user interface option adds enhanced functionality when using the lirc program,
by enabling an API that allows userspace to receive raw data from remote controllers.

The Support for eBPF programs attached to lirc devices option allows the usage of spe-
cial programs (called eBPF) that would allow aplications to add extra remote controller decod-
ing functionality to the Linux Kernel.

The Remote controller decoders option allows selecting the protocols that will be recognized
by the Linux Kernel. Except if you want to disable some specific decoder, it is suggested to keep
all sub-options enabled.

The Remote Controller devices allows you to select the drivers that would be needed to sup-
port your device.

The same configuration can also be set via the script/config script. So, for instance, in or-
der to support the ITE remote controller driver (found on Intel NUCs and on some ASUS x86
desktops), you could do:

$ scripts/config -e INPUT
$ scripts/config -e ACPI
$ scripts/config -e MODULES
$ scripts/config -m RC_CORE
$ scripts/config -e RC_DEVICES
$ scripts/config -e RC_DECODERS
$ scripts/config -m IR_RC5_DECODER
$ scripts/config -m IR_ITE_CIR

Enabling HDMI CEC Support

The HDMI CEC support is set automatically when a driver requires it. So, all you need to do
is to enable support either for a graphics card that needs it or by one of the existing HDMI
drivers.

The HDMI-specific drivers are available at the HDMI CEC drivers menu4:

--- HDMI CEC drivers
< > ChromeOS EC CEC driver
< > Amlogic Meson AO CEC driver
< > Amlogic Meson G12A AO CEC driver
< > Generic GPIO-based CEC driver
< > Samsung S5P CEC driver
< > STMicroelectronics STiH4xx HDMI CEC driver
< > STMicroelectronics STM32 HDMI CEC driver
< > Tegra HDMI CEC driver
< > SECO Boards HDMI CEC driver
[] SECO Boards IR RC5 support
< > Pulse Eight HDMI CEC
< > RainShadow Tech HDMI CEC

4 The above contents is just an example. The actual options for HDMI devices depends on the system’s architec-
ture and may vary on new Kernels.

6 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Enabling Media Support

The Media menu has a lot more options than the remote controller menu. Once selected, you
should see the following options:

--- Media support
[] Filter media drivers
[*] Autoselect ancillary drivers

Media device types --->
Media core support --->
Video4Linux options --->
Media controller options --->
Digital TV options --->
HDMI CEC options --->
Media drivers --->
Media ancillary drivers --->

Except if you know exactly what you’re doing, or if you want to build a driver for a SoC platform,
it is strongly recommended to keep the Autoselect ancillary drivers option turned on, as
it will auto-select the needed I2C ancillary drivers.

There are now two ways to select media device drivers, as described below.

Filter media drivers menu

This menu is meant to easy setup for PC and Laptop hardware. It works by letting the user to
specify what kind of media drivers are desired, with those options:

[] Cameras and video grabbers
[] Analog TV
[] Digital TV
[] AM/FM radio receivers/transmitters
[] Software defined radio
[] Platform-specific devices
[] Test drivers

So, if you want to add support to a camera or video grabber only, select just the first option.
Multiple options are allowed.

Once the options on this menu are selected, the building system will auto-select the needed
core drivers in order to support the selected functionality.

Note: Most TV cards are hybrid: they support both Analog TV and Digital TV.
If you have an hybrid card, you may need to enable both Analog TV and Digital TV at the
menu.

When using this option, the defaults for the media support core functionality are usually good
enough to provide the basic functionality for the driver. Yet, you could manually enable some de-
sired extra (optional) functionality using the settings under each of the following Media support
sub-menus:

1.1. The media subsystem 7

Linux Media Documentation

Media core support --->
Video4Linux options --->
Media controller options --->
Digital TV options --->
HDMI CEC options --->

Once you select the desired filters, the drivers that matches the filtering criteria will be available
at the Media support->Media drivers sub-menu.

Media Core Support menu without filtering

If you disable the Filter media drivers menu, all drivers available for your system whose
dependencies are met should be shown at the Media drivers menu.

Please notice, however, that you should first ensure that the Media Core Supportmenu has all
the core functionality your drivers would need, as otherwise the corresponding device drivers
won’t be shown.

Example

In order to enable modular support for one of the boards listed on this table, with modular
media core modules, the .config file should contain those lines:

CONFIG_MODULES=y
CONFIG_USB=y
CONFIG_I2C=y
CONFIG_INPUT=y
CONFIG_RC_CORE=m
CONFIG_MEDIA_SUPPORT=m
CONFIG_MEDIA_SUPPORT_FILTER=y
CONFIG_MEDIA_ANALOG_TV_SUPPORT=y
CONFIG_MEDIA_DIGITAL_TV_SUPPORT=y
CONFIG_MEDIA_USB_SUPPORT=y
CONFIG_VIDEO_CX231XX=y
CONFIG_VIDEO_CX231XX_DVB=y

1.1.2.2 Building and installing a new Kernel

Once the .config file has everything needed, all it takes to build is to run the make command:

$ make

And then install the new Kernel and its modules:

$ sudo make modules_install
$ sudo make install

8 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

1.1.2.3 Building just the new media drivers and core

Running a new development Kernel from the development tree is usually risky, because it may
have experimental changes that may have bugs. So, there are some ways to build just the new
drivers, using alternative trees.

There is the Linux Kernel backports project, with contains newer drivers meant to be compiled
against stable Kernels.

The LinuxTV developers, with are responsible for maintaining the media subsystem also main-
tains a backport tree, with just the media drivers daily updated from the newest kernel. Such
tree is available at:

https://git.linuxtv.org/media_build.git/

It should be noticed that, while it should be relatively safe to use the media_build tree for
testing purposes, there are not warranties that it would work (or even build) on a random
Kernel. This tree is maintained using a “best-efforts” principle, as time permits us to fix issues
there.

If you notice anything wrong on it, feel free to submit patches at the Linux media subsystem’s
mailing list: media@vger.kernel.org. Please add [PATCH media-build] at the e-mail’s subject
if you submit a new patch for the media-build.

Before using it, you should run:

$./build

Note:
1) you may need to run it twice if the media-build tree gets updated;

2) you may need to do a make distclean if you had built it in the past for a different Kernel
version than the one you’re currently using;

3) by default, it will use the same config options for media as the ones defined on the Kernel
you’re running.

In order to select different drivers or different config options, use:

$ make menuconfig

Then, you can build and install the new drivers:

$ make && sudo make install

This will override the previous media drivers that your Kernel were using.

1.1. The media subsystem 9

https://backports.wiki.kernel.org/index.php/Main_Page
https://git.linuxtv.org/media_build.git/
mailto:media@vger.kernel.org

Linux Media Documentation

1.1.3 Infrared remote control support in video4linux drivers

Authors: Gerd Hoffmann, Mauro Carvalho Chehab

1.1.3.1 Basics

Most analog and digital TV boards support remote controllers. Several of them have a micro-
processor that receives the IR carriers, convert into pulse/space sequences and then to scan
codes, returning such codes to userspace (“scancode mode”). Other boards return just the
pulse/space sequences (“raw mode”).

The support for remote controller in scancode mode is provided by the standard Linux input
layer. The support for raw mode is provided via LIRC.

In order to check the support and test it, it is suggested to download the v4l-utils. It provides
two tools to handle remote controllers:

• ir-keytable: provides a way to query the remote controller, list the protocols it supports,
enable in-kernel support for IR decoder or switch the protocol and to test the reception of
scan codes;

• ir-ctl: provide tools to handle remote controllers that support rawmode via LIRC interface.

Usually, the remote controller module is auto-loaded when the TV card is detected. However,
for a few devices, you need to manually load the ir-kbd-i2c module.

1.1.3.2 How it works

The modules register the remote as keyboard within the linux input layer, i.e. you’ll see the
keys of the remote as normal key strokes (if CONFIG_INPUT_KEYBOARD is enabled).

Using the event devices (CONFIG_INPUT_EVDEV) it is possible for applications to access the
remote via /dev/input/event<n> devices. The udev/systemd will automatically create the de-
vices. If you install the v4l-utils, it may also automatically load a different keytable than the
default one. Please see v4l-utils ir-keytable.1 man page for details.

The ir-keytable tool is nice for trouble shooting, i.e. to check whenever the input device is
really present, which of the devices it is, check whenever pressing keys on the remote actually
generates events and the like. You can also use any other input utility that changes the keymaps,
like the input kbd utility.

Using with lircd

The latest versions of the lircd daemon supports reading events from the linux input layer (via
event device). It also supports receiving IR codes in lirc mode.

10 Chapter 1. Media subsystem admin and user guide

https://git.linuxtv.org/v4l-utils.git/
https://git.linuxtv.org/v4l-utils.git/
https://git.linuxtv.org/v4l-utils.git/

Linux Media Documentation

Using without lircd

Xorg recognizes several IR keycodes that have its numerical value lower than 247. With the
advent of Wayland, the input driver got updated too, and should now accept all keycodes. Yet,
you may want to just reassign the keycodes to something that your favorite media application
likes.

This can be done by setting v4l-utils to load your own keytable in runtime. Please read ir-
keytable.1 man page for details.

1.1.4 Digital TV

1.1.4.1 Using the Digital TV Framework

Introduction

One significant difference between Digital TV and Analogue TV that the unwary (like myself)
should consider is that, although the component structure of DVB-T cards are substantially
similar to Analogue TV cards, they function in substantially different ways.

The purpose of an Analogue TV is to receive and display an Analogue Television signal. An Ana-
logue TV signal (otherwise known as composite video) is an analogue encoding of a sequence
of image frames (25 frames per second in Europe) rasterised using an interlacing technique.
Interlacing takes two fields to represent one frame. Therefore, an Analogue TV card for a PC
has the following purpose:

• Tune the receiver to receive a broadcast signal

• demodulate the broadcast signal

• demultiplex the analogue video signal and analogue audio signal.

Note: some countries employ a digital audio signal embedded within the modulated
composite analogue signal - using NICAM signaling.)

• digitize the analogue video signal and make the resulting datastream available to the data
bus.

The digital datastream from an Analogue TV card is generated by circuitry on the card and is
often presented uncompressed. For a PAL TV signal encoded at a resolution of 768x576 24-
bit color pixels over 25 frames per second - a fair amount of data is generated and must be
processed by the PC before it can be displayed on the video monitor screen. Some Analogue
TV cards for PCs have onboard MPEG2 encoders which permit the raw digital data stream to
be presented to the PC in an encoded and compressed form - similar to the form that is used in
Digital TV.

The purpose of a simple budget digital TV card (DVB-T,C or S) is to simply:

• Tune the received to receive a broadcast signal. * Extract the encoded digital datastream
from the broadcast signal.

• Make the encoded digital datastream (MPEG2) available to the data bus.

1.1. The media subsystem 11

https://git.linuxtv.org/v4l-utils.git/

Linux Media Documentation

The significant difference between the two is that the tuner on the analogue TV card spits out
an Analogue signal, whereas the tuner on the digital TV card spits out a compressed encoded
digital datastream. As the signal is already digitised, it is trivial to pass this datastream to the
PC databus with minimal additional processing and then extract the digital video and audio
datastreams passing them to the appropriate software or hardware for decoding and viewing.

Getting the card going

The Device Driver API for DVB under Linux will the following device nodes via the devfs filesys-
tem:

• /dev/dvb/adapter0/demux0

• /dev/dvb/adapter0/dvr0

• /dev/dvb/adapter0/frontend0

The /dev/dvb/adapter0/dvr0 device node is used to read the MPEG2 Data Stream and the
/dev/dvb/adapter0/frontend0 device node is used to tune the frontend tuner module. The
/dev/dvb/adapter0/demux0 is used to control what programs will be received.

Depending on the card’s feature set, the Device Driver API could also expose other device
nodes:

• /dev/dvb/adapter0/ca0

• /dev/dvb/adapter0/audio0

• /dev/dvb/adapter0/net0

• /dev/dvb/adapter0/osd0

• /dev/dvb/adapter0/video0

The /dev/dvb/adapter0/ca0 is used to decode encrypted channels. The other device nodes
are found only on devices that use the av7110 driver, with is now obsoleted, together with the
extra API whose such devices use.

Receiving a digital TV channel

This section attempts to explain how it works and how this affects the configuration of a Digital
TV card.

On this example, we’re considering tuning into DVB-T channels in Australia, at the Melbourne
region.

The frequencies broadcast by Mount Dandenong transmitters are, currently:

Table 1. Transponder Frequencies Mount Dandenong, Vic, Aus.

12 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Broadcaster Frequency
Seven 177.500 Mhz
SBS 184.500 Mhz
Nine 191.625 Mhz
Ten 219.500 Mhz
ABC 226.500 Mhz
Channel 31 557.625 Mhz

The digital TV Scan utilities (like dvbv5-scan) have use a set of compiled-in defaults for various
countries and regions. Those are currently provided as a separate package, called dtv-scan-
tables. It’s git tree is located at LinuxTV.org:

https://git.linuxtv.org/dtv-scan-tables.git/

If none of the tables there suit, you can specify a data file on the command line which contains
the transponder frequencies. Here is a sample file for the above channel transponders, in the
old “channel” format:

Data file for DVB scan program
#
C Frequency SymbolRate FEC QAM
S Frequency Polarisation SymbolRate FEC
T Frequency Bandwidth FEC FEC2 QAM Mode Guard Hier

T 177500000 7MHz AUTO AUTO QAM64 8k 1/16 NONE
T 184500000 7MHz AUTO AUTO QAM64 8k 1/8 NONE
T 191625000 7MHz AUTO AUTO QAM64 8k 1/16 NONE
T 219500000 7MHz AUTO AUTO QAM64 8k 1/16 NONE
T 226500000 7MHz AUTO AUTO QAM64 8k 1/16 NONE
T 557625000 7MHz AUTO AUTO QPSK 8k 1/16 NONE

Nowadays, we prefer to use a newer format, with is more verbose and easier to understand.
With the new format, the “Seven” channel transponder’s data is represented by:

[Seven]
DELIVERY_SYSTEM = DVBT
FREQUENCY = 177500000
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = AUTO
CODE_RATE_LP = AUTO
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE
INVERSION = AUTO

For an updated version of the complete table, please see:

https://git.linuxtv.org/dtv-scan-tables.git/tree/dvb-t/au-Melbourne

When the Digital TV scanning utility runs, it will output a file containing the information for
all the audio and video programs that exists into each channel’s transponders which the card’s
frontend can lock onto. (i.e. any whose signal is strong enough at your antenna).

Here’s the output of the dvbv5 tools from a channel scan took from Melburne:

1.1. The media subsystem 13

https://git.linuxtv.org/dtv-scan-tables.git/
https://git.linuxtv.org/dtv-scan-tables.git/tree/dvb-t/au-Melbourne

Linux Media Documentation

[ABC HDTV]
SERVICE_ID = 560
VIDEO_PID = 2307
AUDIO_PID = 0
DELIVERY_SYSTEM = DVBT
FREQUENCY = 226500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 3/4
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE

[ABC TV Melbourne]
SERVICE_ID = 561
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 226500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 3/4
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE

[ABC TV 2]
SERVICE_ID = 562
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 226500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 3/4
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE

[ABC TV 3]
SERVICE_ID = 563
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 226500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 3/4
MODULATION = QAM/64
TRANSMISSION_MODE = 8K

14 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

GUARD_INTERVAL = 1/16
HIERARCHY = NONE

[ABC TV 4]
SERVICE_ID = 564
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 226500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 3/4
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE

[ABC DiG Radio]
SERVICE_ID = 566
VIDEO_PID = 0
AUDIO_PID = 2311
DELIVERY_SYSTEM = DVBT
FREQUENCY = 226500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 3/4
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE

[TEN Digital]
SERVICE_ID = 1585
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE

[TEN Digital 1]
SERVICE_ID = 1586
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4

1.1. The media subsystem 15

Linux Media Documentation

CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE

[TEN Digital 2]
SERVICE_ID = 1587
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE

[TEN Digital 3]
SERVICE_ID = 1588
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE

[TEN Digital]
SERVICE_ID = 1589
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE

[TEN Digital 4]
SERVICE_ID = 1590
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 219500000

16 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE

[TEN Digital]
SERVICE_ID = 1591
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE

[TEN HD]
SERVICE_ID = 1592
VIDEO_PID = 514
AUDIO_PID = 0
DELIVERY_SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE

[TEN Digital]
SERVICE_ID = 1593
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE

[Nine Digital]
SERVICE_ID = 1072
VIDEO_PID = 513

1.1. The media subsystem 17

Linux Media Documentation

AUDIO_PID = 660
DELIVERY_SYSTEM = DVBT
FREQUENCY = 191625000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE

[Nine Digital HD]
SERVICE_ID = 1073
VIDEO_PID = 512
AUDIO_PID = 0
DELIVERY_SYSTEM = DVBT
FREQUENCY = 191625000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE

[Nine Guide]
SERVICE_ID = 1074
VIDEO_PID = 514
AUDIO_PID = 670
DELIVERY_SYSTEM = DVBT
FREQUENCY = 191625000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE

[7 Digital]
SERVICE_ID = 1328
VIDEO_PID = 769
AUDIO_PID = 770
DELIVERY_SYSTEM = DVBT
FREQUENCY = 177500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE

18 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

[7 Digital 1]
SERVICE_ID = 1329
VIDEO_PID = 769
AUDIO_PID = 770
DELIVERY_SYSTEM = DVBT
FREQUENCY = 177500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE

[7 Digital 2]
SERVICE_ID = 1330
VIDEO_PID = 769
AUDIO_PID = 770
DELIVERY_SYSTEM = DVBT
FREQUENCY = 177500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE

[7 Digital 3]
SERVICE_ID = 1331
VIDEO_PID = 769
AUDIO_PID = 770
DELIVERY_SYSTEM = DVBT
FREQUENCY = 177500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE

[7 HD Digital]
SERVICE_ID = 1332
VIDEO_PID = 833
AUDIO_PID = 834
DELIVERY_SYSTEM = DVBT
FREQUENCY = 177500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K

1.1. The media subsystem 19

Linux Media Documentation

GUARD_INTERVAL = 1/8
HIERARCHY = NONE

[7 Program Guide]
SERVICE_ID = 1334
VIDEO_PID = 865
AUDIO_PID = 866
DELIVERY_SYSTEM = DVBT
FREQUENCY = 177500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE

[SBS HD]
SERVICE_ID = 784
VIDEO_PID = 102
AUDIO_PID = 103
DELIVERY_SYSTEM = DVBT
FREQUENCY = 536500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE

[SBS DIGITAL 1]
SERVICE_ID = 785
VIDEO_PID = 161
AUDIO_PID = 81
DELIVERY_SYSTEM = DVBT
FREQUENCY = 536500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE

[SBS DIGITAL 2]
SERVICE_ID = 786
VIDEO_PID = 162
AUDIO_PID = 83
DELIVERY_SYSTEM = DVBT
FREQUENCY = 536500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3

20 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE

[SBS EPG]
SERVICE_ID = 787
VIDEO_PID = 163
AUDIO_PID = 85
DELIVERY_SYSTEM = DVBT
FREQUENCY = 536500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE

[SBS RADIO 1]
SERVICE_ID = 798
VIDEO_PID = 0
AUDIO_PID = 201
DELIVERY_SYSTEM = DVBT
FREQUENCY = 536500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE

[SBS RADIO 2]
SERVICE_ID = 799
VIDEO_PID = 0
AUDIO_PID = 202
DELIVERY_SYSTEM = DVBT
FREQUENCY = 536500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE

1.1. The media subsystem 21

Linux Media Documentation

1.1.4.2 Digital TV Conditional Access Interface

Note: This documentation is outdated.

This document describes the usage of the high level CI API as in accordance to the Linux DVB
API. This is a not a documentation for the, existing low level CI API.

Note: For the Twinhan/Twinhan clones, the dst_ca module handles the CI hardware handling.
This module is loaded automatically if a CI (Common Interface, that holds the CAM (Conditional
Access Module) is detected.

ca_zap

A userspace application, like ca_zap is required to handle encrypted MPEG-TS streams.

The ca_zap userland application is in charge of sending the descrambling related information
to the Conditional Access Module (CAM).

This application requires the following to function properly as of now.

a) Tune to a valid channel, with szap.

eg: $ szap -c channels.conf -r “TMC” -x

b) a channels.conf containing a valid PMT PID

eg: TMC:11996:h:0:27500:278:512:650:321

here 278 is a valid PMT PID. the rest of the values are the same ones that szap uses.

c) after running a szap, you have to run ca_zap, for the descrambler to function,

eg: $ ca_zap channels.conf “TMC”

d) Hopefully enjoy your favourite subscribed channel as you do with a FTA card.

Note: Currently ca_zap, and dst_test, both are meant for demonstration purposes only, they
can become full fledged applications if necessary.

Cards that fall in this category

At present the cards that fall in this category are the Twinhan and its clones, these cards are
available as VVMER, Tomato, Hercules, Orange and so on.

22 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

CI modules that are supported

The CI module support is largely dependent upon the firmware on the cards Some cards do
support almost all of the available CI modules. There is nothing much that can be done in order
to make additional CI modules working with these cards.

Modules that have been tested by this driver at present are

(1) Irdeto 1 and 2 from SCM

(2) Viaccess from SCM

(3) Dragoncam

1.1.4.3 FAQ

Note:
1. With Digital TV, a single physical channel may have different contents inside it. The specs
call each one as a service. This is what a TV user would call “channel”. So, in order to avoid
confusion, we’re calling transponders as the physical channel on this FAQ, and services for
the logical channel.

2. The LinuxTV community maintains some Wiki pages with contain a lot of information re-
lated to the media subsystem. If you don’t find an answer for your needs here, it is likely
that you’ll be able to get something useful there. It is hosted at:

https://www.linuxtv.org/wiki/

Some very frequently asked questions about Linux Digital TV support

1. The signal seems to die a few seconds after tuning.

It’s not a bug, it’s a feature. Because the frontends have significant power re-
quirements (and hence get very hot), they are powered down if they are un-
used (i.e. if the frontend device is closed). The dvb-core module parameter
dvb_shutdown_timeout allow you to change the timeout (default 5 seconds). Set-
ting the timeout to 0 disables the timeout feature.

2. How can I watch TV?

Together with the Linux Kernel, the Digital TV developers support some sim-
ple utilities which are mainly intended for testing and to demonstrate how the
DVB API works. This is called DVB v5 tools and are grouped together with the
v4l-utils git repository:

https://git.linuxtv.org/v4l-utils.git/

You can find more information at the LinuxTV wiki:

https://www.linuxtv.org/wiki/index.php/DVBv5_Tools

The first step is to get a list of services that are transmitted.

This is done by using several existing tools. You can use for example the
dvbv5-scan tool. You can find more information about it at:

1.1. The media subsystem 23

https://www.linuxtv.org/wiki/
https://git.linuxtv.org/v4l-utils.git/
https://www.linuxtv.org/wiki/index.php/DVBv5_Tools

Linux Media Documentation

https://www.linuxtv.org/wiki/index.php/Dvbv5-scan

There are some other applications like w_scan1 that do a blind scan, trying hard
to find all possible channels, but those consumes a large amount of time to run.

Also, some applications like kaffeine have their own code to scan for services.
So, you don’t need to use an external application to obtain such list.

Most of such tools need a file containing a list of channel transponders avail-
able on your area. So, LinuxTV developers maintain tables of Digital TV channel
transponders, receiving patches from the community to keep them updated.

This list is hosted at:

https://git.linuxtv.org/dtv-scan-tables.git

And packaged on several distributions.

Kaffeine has some blind scan support for some terrestrial standards. It also relies
on DTV scan tables, although it contains a copy of it internally (and, if requested
by the user, it will download newer versions of it).

If you are lucky you can just use one of the supplied channel transponders. If not,
you may need to seek for such info at the Internet and create a new file. There are
several sites with contains physical channel lists. For cable and satellite, usually
knowing how to tune into a single channel is enough for the scanning tool to
identify the other channels. On some places, this could also work for terrestrial
transmissions.

Once you have a transponders list, you need to generate a services list with a tool
like dvbv5-scan.

Almost all modern Digital TV cards don’t have built-in hardware MPEG-decoders.
So, it is up to the application to get a MPEG-TS stream provided by the board,
split it into audio, video and other data and decode.

3. Which Digital TV applications exist?

Several media player applications are capable of tuning into digital TV channels,
including Kaffeine, Vlc, mplayer and MythTV.

Kaffeine aims to be very user-friendly, and it is maintained by one of the Kernel
driver developers.

A comprehensive list of those and other apps can be found at:

https://www.linuxtv.org/wiki/index.php/TV_Related_Software

Some of the most popular ones are linked below:

https://kde.org/applications/multimedia/org.kde.kaffeine KDE media
player, focused on Digital TV support

https://www.linuxtv.org/vdrwiki/index.php/Main_Page Klaus Schmidinger’s
Video Disk Recorder

https://linuxtv.org/downloads and https://git.linuxtv.org/ Digital TV and
other media-related applications and Kernel drivers. The v4l-utils package
there contains several swiss knife tools for using with Digital TV.

1 https://www.linuxtv.org/wiki/index.php/W_scan

24 Chapter 1. Media subsystem admin and user guide

https://www.linuxtv.org/wiki/index.php/Dvbv5-scan
https://git.linuxtv.org/dtv-scan-tables.git
https://www.linuxtv.org/wiki/index.php/TV_Related_Software
https://kde.org/applications/multimedia/org.kde.kaffeine
https://www.linuxtv.org/vdrwiki/index.php/Main_Page
https://linuxtv.org/downloads
https://git.linuxtv.org/
https://www.linuxtv.org/wiki/index.php/W_scan

Linux Media Documentation

http://sourceforge.net/projects/dvbtools/ Dave Chapman’s dvbtools package,
including dvbstream and dvbtune

http://www.dbox2.info/ LinuxDVB on the dBox2
http://www.tuxbox.org/ the TuxBox CVSmany interesting DVB applications and

the dBox2 DVB source

http://www.nenie.org/misc/mpsys/ MPSYS: a MPEG2 system library and tools

https://www.videolan.org/vlc/index.pt.html Vlc
http://mplayerhq.hu/ MPlayer
http://xine.sourceforge.net/ and http://xinehq.de/ Xine
http://www.mythtv.org/ MythTV - analog TV and digital TV PVR
http://dvbsnoop.sourceforge.net/ DVB sniffer program to monitor, analyze,

debug, dump or view dvb/mpeg/dsm-cc/mhp stream information (TS, PES,
SECTION)

4. Can’t get a signal tuned correctly

That could be due to a lot of problems. On my personal experience, usually TV
cards need stronger signals than TV sets, and are more sensitive to noise. So,
perhaps you just need a better antenna or cabling. Yet, it could also be some
hardware or driver issue.

For example, if you are using a Technotrend/Hauppauge DVB-C card without ana-
log module, you might have to use module parameter adac=-1 (dvb-ttpci.o).

Please see the FAQ page at linuxtv.org, as it could contain some valuable infor-
mation:

https://www.linuxtv.org/wiki/index.php/FAQ_%26_Troubleshooting

If that doesn’t work, check at the linux-media ML archives, to see if someone else
had a similar problem with your hardware and/or digital TV service provider:

https://lore.kernel.org/linux-media/

If none of this works, you can try sending an e-mail to the linux-mediaML and see if
someone else could shed some light. The e-mail is linux-media AT vger.kernel.org.

5. The dvb_net device doesn’t give me any packets at all

Run tcpdump on the dvb0_0 interface. This sets the interface into promiscuous
mode so it accepts any packets from the PID you have configured with the dvbnet
utility. Check if there are any packets with the IP addr and MAC addr you have
configured with ifconfig or with ip addr.

If tcpdump doesn’t give you any output, check the statistics which ifconfig or
netstat -ni outputs. (Note: If the MAC address is wrong, dvb_net won’t get
any input; thus you have to run tcpdump before checking the statistics.) If there
are no packets at all then maybe the PID is wrong. If there are error packets, then
either the PID is wrong or the stream does not conform to the MPE standard (EN
301 192, http://www.etsi.org/). You can use e.g. dvbsnoop for debugging.

6. The dvb_net device doesn’t give me any multicast packets

1.1. The media subsystem 25

http://sourceforge.net/projects/dvbtools/
http://www.dbox2.info/
http://www.tuxbox.org/
http://www.nenie.org/misc/mpsys/
https://www.videolan.org/vlc/index.pt.html
http://mplayerhq.hu/
http://xine.sourceforge.net/
http://xinehq.de/
http://www.mythtv.org/
http://dvbsnoop.sourceforge.net/
https://www.linuxtv.org/wiki/index.php/FAQ_%26_Troubleshooting
https://lore.kernel.org/linux-media/
http://www.etsi.org/

Linux Media Documentation

Check your routes if they include the multicast address range. Additionally make
sure that “source validation by reversed path lookup” is disabled:

$ "echo 0 > /proc/sys/net/ipv4/conf/dvb0/rp_filter"

7. What are all those modules that need to be loaded?

In order to make it more flexible and support different hardware combinations,
the media subsystem is written on a modular way.

So, besides the Digital TV hardware module for the main chipset, it also needs
to load a frontend driver, plus the Digital TV core. If the board also has remote
controller, it will also need the remote controller core and the remote controller
tables. The same happens if the board has support for analog TV: the core support
for video4linux need to be loaded.

The actual module names are Linux-kernel version specific, as, from time to time,
things change, in order to make the media support more flexible.

1.1.4.4 References

The main development site and GIT repository for Digital TV drivers is https://linuxtv.org.

The DVB mailing list linux-dvb is hosted at vger. Please see http://vger.kernel.org/vger-lists.
html#linux-media for details.

There are also some other old lists hosted at: https://linuxtv.org/lists.php. If you’re interested
on that for historic reasons, please check the archive at https://linuxtv.org/pipermail/linux-dvb/.

The media subsystem Wiki is hosted at https://linuxtv.org/wiki/. There, you’ll find lots of in-
formation, from both development and usage of media boards. Please check it before asking
newbie questions on the mailing list or IRC channels.

The API documentation is documented at the Kernel tree. You can find it in both html and pdf
formats, together with other useful documentation at:

• https://linuxtv.org/docs.php.

You may also find useful material at https://linuxtv.org/downloads/.

In order to get the needed firmware for some drivers to work, there’s a script at the kernel tree,
at scripts/get_dvb_firmware.

1.1.5 Cards List

The media subsystem provide support for lots of PCI and USB drivers, plus platform-specific
drivers. It also contains several ancillary I2C drivers.

The platform-specific drivers are usually present on embedded systems, or are supported by
the main board. Usually, setting them is done via OpenFirmware or ACPI.

The PCI and USB drivers, however, are independent of the system’s board, and may be
added/removed by the user.

Youmay also take a look at https://linuxtv.org/wiki/index.php/Hardware_Device_Information for
more details about supported cards.

26 Chapter 1. Media subsystem admin and user guide

https://linuxtv.org
http://vger.kernel.org/vger-lists.html#linux-media
http://vger.kernel.org/vger-lists.html#linux-media
https://linuxtv.org/lists.php
https://linuxtv.org/pipermail/linux-dvb/
https://linuxtv.org/wiki/
https://linuxtv.org/docs.php
https://linuxtv.org/downloads/
https://linuxtv.org/wiki/index.php/Hardware_Device_Information

Linux Media Documentation

1.1.5.1 USB drivers

The USB boards are identified by an identification called USB ID.

The lsusb command allows identifying the USB IDs:

$ lsusb
...
Bus 001 Device 015: ID 046d:082d Logitech, Inc. HD Pro Webcam C920
Bus 001 Device 074: ID 2040:b131 Hauppauge
Bus 001 Device 075: ID 2013:024f PCTV Systems nanoStick T2 290e
...

Newer camera devices use a standard way to expose themselves as such, via USB Video Class.
Those cameras are automatically supported by the uvc-driver.

Older cameras and TV USB devices uses USB Vendor Classes: each vendor defines its own way
to access the device. This section contains card lists for such vendor-class devices.

While this is not as common as on PCI, sometimes the sameUSB ID is used by different products.
So, several media drivers allow passing a card= parameter, in order to setup a card number
that would match the correct settings for an specific product type.

The current supported USB cards (not including staging drivers) are listed below1.

Driver Name
airspy AirSpy
au0828 Auvitek AU0828
b2c2-flexcop-usb Technisat/B2C2 Air/Sky/Cable2PC USB
cpia2 CPiA2 Video For Linux
cx231xx Conexant cx231xx USB video capture
dvb-as102 Abilis AS102 DVB receiver
dvb-ttusb-budget Technotrend/Hauppauge Nova - USB devices
dvb-usb-a800 AVerMedia AverTV DVB-T USB 2.0 (A800)
dvb-usb-af9005 Afatech AF9005 DVB-T USB1.1
dvb-usb-af9015 Afatech AF9015 DVB-T USB2.0
dvb-usb-af9035 Afatech AF9035 DVB-T USB2.0
dvb-usb-anysee Anysee DVB-T/C USB2.0
dvb-usb-au6610 Alcor Micro AU6610 USB2.0
dvb-usb-az6007 AzureWave 6007 and clones DVB-T/C USB2.0
dvb-usb-az6027 Azurewave DVB-S/S2 USB2.0 AZ6027
dvb-usb-ce6230 Intel CE6230 DVB-T USB2.0
dvb-usb-cinergyT2 Terratec CinergyT2/qanu USB 2.0 DVB-T
dvb-usb-cxusb Conexant USB2.0 hybrid
dvb-usb-dib0700 DiBcom DiB0700
dvb-usb-dibusb-common DiBcom DiB3000M-B
dvb-usb-dibusb-mc DiBcom DiB3000M-C/P
dvb-usb-digitv Nebula Electronics uDigiTV DVB-T USB2.0
dvb-usb-dtt200u WideView WT-200U and WT-220U (pen) DVB-T
dvb-usb-dtv5100 AME DTV-5100 USB2.0 DVB-T

Continued on next page
1 some of the drivers have sub-drivers, not shown at this table. In particular, gspca driver has lots of sub-drivers,

for cameras not supported by the USB Video Class (UVC) driver, as shown at gspca card list.

1.1. The media subsystem 27

Linux Media Documentation

Table 1 – continued from previous page
Driver Name
dvb-usb-dvbsky DVBSky USB
dvb-usb-dw2102 DvbWorld & TeVii DVB-S/S2 USB2.0
dvb-usb-ec168 E3C EC168 DVB-T USB2.0
dvb-usb-gl861 Genesys Logic GL861 USB2.0
dvb-usb-gp8psk GENPIX 8PSK->USB module
dvb-usb-lmedm04 LME DM04/QQBOX DVB-S USB2.0
dvb-usb-m920x Uli m920x DVB-T USB2.0
dvb-usb-nova-t-usb2 Hauppauge WinTV-NOVA-T usb2 DVB-T USB2.0
dvb-usb-opera Opera1 DVB-S USB2.0 receiver
dvb-usb-pctv452e Pinnacle PCTV HDTV Pro USB device/TT Connect S2-3600
dvb-usb-rtl28xxu Realtek RTL28xxU DVB USB
dvb-usb-technisat-usb2 Technisat DVB-S/S2 USB2.0
dvb-usb-ttusb2 Pinnacle 400e DVB-S USB2.0
dvb-usb-umt-010 HanfTek UMT-010 DVB-T USB2.0
dvb_usb_v2 Support for various USB DVB devices v2
dvb-usb-vp702x TwinhanDTV StarBox and clones DVB-S USB2.0
dvb-usb-vp7045 TwinhanDTV Alpha/MagicBoxII, DNTV tinyUSB2, Beetle USB2.0
em28xx Empia EM28xx USB devices
go7007 WIS GO7007 MPEG encoder
gspca Drivers for several USB Cameras
hackrf HackRF
hdpvr Hauppauge HD PVR
msi2500 Mirics MSi2500
mxl111sf-tuner MxL111SF DTV USB2.0
pvrusb2 Hauppauge WinTV-PVR USB2
pwc USB Philips Cameras
s2250 Sensoray 2250/2251
s2255drv USB Sensoray 2255 video capture device
smsusb Siano SMS1xxx based MDTV receiver
stkwebcam USB Syntek DC1125 Camera
tm6000-alsa TV Master TM5600/6000/6010 audio
tm6000-dvb DVB Support for tm6000 based TV cards
tm6000 TV Master TM5600/6000/6010 driver
ttusb_dec Technotrend/Hauppauge USB DEC devices
usbtv USBTV007 video capture
uvcvideo USB Video Class (UVC)
zd1301 ZyDAS ZD1301
zr364xx USB ZR364XX Camera

28 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

AU0828 cards list

Card
num-
ber

Card name USB IDs

0 Unknown board
1 Hauppauge HVR950Q 2040:7200, 2040:7210, 2040:7217, 2040:721b,

2040:721e, 2040:721f, 2040:7280, 0fd9:0008,
2040:7260, 2040:7213, 2040:7270

2 Hauppauge HVR850 2040:7240
3 DViCO FusionHDTV USB 0fe9:d620
4 Hauppauge HVR950Q rev xxF8 2040:7201, 2040:7211, 2040:7281
5 Hauppauge Woodbury 05e1:0480, 2040:8200

1.1. The media subsystem 29

Linux Media Documentation

cx231xx cards list

Card
num-
ber

Card name USB IDs

0 Unknown CX231xx video grabber 0572:5A3C
1 Conexant Hybrid TV - CARRAERA 0572:58A2
2 Conexant Hybrid TV - SHELBY 0572:58A1
3 Conexant Hybrid TV - RDE253S 0572:58A4
4 Conexant Hybrid TV - RDU253S 0572:58A5
5 Conexant VIDEO GRABBER 0572:58A6, 07ca:c039
6 Conexant Hybrid TV - rde 250 0572:589E
7 Conexant Hybrid TV - RDU 250 0572:58A0
8 Hauppauge EXETER 2040:b120, 2040:b140
9 Hauppauge USB Live 2 2040:c200
10 Pixelview PlayTV USB Hybrid 4000:4001
11 Pixelview Xcapture USB 1D19:6109, 4000:4001
12 Kworld UB430 USB Hybrid 1b80:e424
13 Iconbit Analog Stick U100 FM 1f4d:0237
14 Hauppauge WinTV USB2 FM (PAL) 2040:b110
15 Hauppauge WinTV USB2 FM (NTSC) 2040:b111
16 Elgato Video Capture V2 0fd9:0037
17 Geniatech OTG102 1f4d:0102
18 Kworld UB445 USB Hybrid 1b80:e421
19 Hauppauge WinTV 930C-HD (1113xx) / HVR-900H

(111xxx) / PCTV QuatroStick 521e
2040:b130, 2040:b138,
2013:0259

20 Hauppauge WinTV 930C-HD (1114xx) / HVR-901H
(1114xx) / PCTV QuatroStick 522e

2040:b131, 2040:b139,
2013:025e

21 Hauppauge WinTV-HVR-955Q (111401) 2040:b123, 2040:b124
22 Terratec Grabby 1f4d:0102
23 Evromedia USB Full Hybrid Full HD 1b80:d3b2
24 Astrometa T2hybrid 15f4:0135
25 The Imaging Source DFG/USB2pro 199e:8002
26 Hauppauge WinTV-HVR-935C 2040:b151
27 Hauppauge WinTV-HVR-975 2040:b150

EM28xx cards list

Card
num-
ber

Card name Empia
Chip

USB IDs

0 Unknown EM2800 video grabber em2800 eb1a:2800
Continued on next page

30 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 2 – continued from previous page
Card
num-
ber

Card name Empia
Chip

USB IDs

1 Unknown EM2750/28xx video grabber em2820
or
em2840

eb1a:2710,
eb1a:2820,
eb1a:2821,
eb1a:2860,
eb1a:2861,
eb1a:2862,
eb1a:2863,
eb1a:2870,
eb1a:2881,
eb1a:2883,
eb1a:2868,
eb1a:2875

2 Terratec Cinergy 250 USB em2820
or
em2840

0ccd:0036

3 Pinnacle PCTV USB 2 em2820
or
em2840

2304:0208

4 Hauppauge WinTV USB 2 em2820
or
em2840

2040:4200,
2040:4201

5 MSI VOX USB 2.0 em2820
or
em2840

6 Terratec Cinergy 200 USB em2800
7 Leadtek Winfast USB II em2800 0413:6023
8 Kworld USB2800 em2800
9 Pinnacle Dazzle DVC 90/100/101/107 / Kaiser Baas

Video to DVDmaker / Kworld DVDMaker 2 / Plextor
ConvertX PX-AV100U

em2820
or
em2840

1b80:e302,
1b80:e304,
2304:0207,
2304:021a,
093b:a003

10 Hauppauge WinTV HVR 900 em2880 2040:6500
11 Terratec Hybrid XS em2880
12 Kworld PVR TV 2800 RF em2820

or
em2840

13 Terratec Prodigy XS em2880
14 SIIG AVTuner-PVR / Pixelview Prolink PlayTV USB

2.0
em2820
or
em2840

15 V-Gear PocketTV em2800
16 Hauppauge WinTV HVR 950 em2883 2040:6513,

2040:6517,
2040:651b

17 Pinnacle PCTV HD Pro Stick em2880 2304:0227
Continued on next page

1.1. The media subsystem 31

Linux Media Documentation

Table 2 – continued from previous page
Card
num-
ber

Card name Empia
Chip

USB IDs

18 Hauppauge WinTV HVR 900 (R2) em2880 2040:6502
19 EM2860/SAA711X Reference Design em2860
20 AMD ATI TV Wonder HD 600 em2880 0438:b002
21 eMPIA Technology, Inc. GrabBeeX+ Video Encoder em2800 eb1a:2801
22 EM2710/EM2750/EM2751 webcam grabber em2750 eb1a:2750,

eb1a:2751
23 Huaqi DLCW-130 em2750
24 D-Link DUB-T210 TV Tuner em2820

or
em2840

2001:f112

25 Gadmei UTV310 em2820
or
em2840

26 Hercules Smart TV USB 2.0 em2820
or
em2840

27 Pinnacle PCTV USB 2 (Philips FM1216ME) em2820
or
em2840

28 Leadtek Winfast USB II Deluxe em2820
or
em2840

29 EM2860/TVP5150 Reference Design em2860 eb1a:5051
30 Videology 20K14XUSB USB2.0 em2820

or
em2840

31 Usbgear VD204v9 em2821
32 Supercomp USB 2.0 TV em2821
33 Elgato Video Capture em2860 0fd9:0033
34 Terratec Cinergy A Hybrid XS em2860 0ccd:004f
35 Typhoon DVD Maker em2860
36 NetGMBH Cam em2860
37 Gadmei UTV330 em2860 eb1a:50a6
38 Yakumo MovieMixer em2861
39 KWorld PVRTV 300U em2861 eb1a:e300
40 Plextor ConvertX PX-TV100U em2861 093b:a005
41 Kworld 350 U DVB-T em2870 eb1a:e350
42 Kworld 355 U DVB-T em2870 eb1a:e355,

eb1a:e357,
eb1a:e359

43 Terratec Cinergy T XS em2870
44 Terratec Cinergy T XS (MT2060) em2870 0ccd:0043
45 Pinnacle PCTV DVB-T em2870
46 Compro, VideoMate U3 em2870 185b:2870
47 KWorld DVB-T 305U em2880 eb1a:e305

Continued on next page

32 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 2 – continued from previous page
Card
num-
ber

Card name Empia
Chip

USB IDs

48 KWorld DVB-T 310U em2880
49 MSI DigiVox A/D em2880 eb1a:e310
50 MSI DigiVox A/D II em2880 eb1a:e320
51 Terratec Hybrid XS Secam em2880 0ccd:004c
52 DNT DA2 Hybrid em2881
53 Pinnacle Hybrid Pro em2881
54 Kworld VS-DVB-T 323UR em2882 eb1a:e323
55 Terratec Cinergy Hybrid T USB XS (em2882) em2882 0ccd:005e,

0ccd:0042
56 Pinnacle Hybrid Pro (330e) em2882 2304:0226
57 Kworld PlusTV HD Hybrid 330 em2883 eb1a:a316
58 Compro VideoMate ForYou/Stereo em2820

or
em2840

185b:2041

59 Pinnacle PCTV HD Mini em2874 2304:023f
60 Hauppauge WinTV HVR 850 em2883 2040:651f
61 Pixelview PlayTV Box 4 USB 2.0 em2820

or
em2840

62 Gadmei TVR200 em2820
or
em2840

63 Kaiomy TVnPC U2 em2860 eb1a:e303
64 Easy Cap Capture DC-60 em2860 1b80:e309
65 IO-DATA GV-MVP/SZ em2820

or
em2840

04bb:0515

66 Empire dual TV em2880
67 Terratec Grabby em2860 0ccd:0096,

0ccd:10AF
68 Terratec AV350 em2860 0ccd:0084
69 KWorld ATSC 315U HDTV TV Box em2882 eb1a:a313
70 Evga inDtube em2882
71 Silvercrest Webcam 1.3mpix em2820

or
em2840

72 Gadmei UTV330+ em2861
73 Reddo DVB-C USB TV Box em2870
74 Actionmaster/LinXcel/Digitus VC211A em2800
75 Dikom DK300 em2882
76 KWorld PlusTV 340U or UB435-Q (ATSC) em2870 1b80:a340
77 EM2874 Leadership ISDBT em2874
78 PCTV nanoStick T2 290e em28174 2013:024f

Continued on next page

1.1. The media subsystem 33

Linux Media Documentation

Table 2 – continued from previous page
Card
num-
ber

Card name Empia
Chip

USB IDs

79 Terratec Cinergy H5 em2884 eb1a:2885,
0ccd:10a2,
0ccd:10ad,
0ccd:10b6

80 PCTV DVB-S2 Stick (460e) em28174 2013:024c
81 Hauppauge WinTV HVR 930C em2884 2040:1605
82 Terratec Cinergy HTC Stick em2884 0ccd:00b2
83 Honestech Vidbox NW03 em2860 eb1a:5006
84 MaxMedia UB425-TC em2874 1b80:e425
85 PCTV QuatroStick (510e) em2884 2304:0242
86 PCTV QuatroStick nano (520e) em2884 2013:0251
87 Terratec Cinergy HTC USB XS em2884 0ccd:008e,

0ccd:00ac
88 C3 Tech Digital Duo HDTV/SDTV USB em2884 1b80:e755
89 Delock 61959 em2874 1b80:e1cc
90 KWorld USB ATSC TV Stick UB435-Q V2 em2874 1b80:e346
91 SpeedLink Vicious And Devine Laplace webcam em2765 1ae7:9003,

1ae7:9004
92 PCTV DVB-S2 Stick (461e) em28178 2013:0258
93 KWorld USB ATSC TV Stick UB435-Q V3 em2874 1b80:e34c
94 PCTV tripleStick (292e) em28178 2013:025f,

2013:0264,
2040:0264,
2040:8264,
2040:8268

95 Leadtek VC100 em2861 0413:6f07
96 Terratec Cinergy T2 Stick HD em28178 eb1a:8179
97 Elgato EyeTV Hybrid 2008 INT em2884 0fd9:0018
98 PLEX PX-BCUD em28178 3275:0085
99 Hauppauge WinTV-dualHD DVB em28174 2040:0265,

2040:8265
100 Hauppauge WinTV-dualHD 01595 ATSC/QAM em28174 2040:026d,

2040:826d
101 Terratec Cinergy H6 rev. 2 em2884 0ccd:10b2
102 :ZOLID HYBRID TV STICK em2882
103 Magix USB Videowandler-2 em2861 1b80:e349
104 PCTV DVB-S2 Stick (461e v2) em28178 2013:0461,

2013:0259
105 MyGica iGrabber em2860 1f4d:1abe

34 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

TM6000 cards list

Card
num-
ber

Card name USB IDs

0 Unknown tm6000 video grabber
1 Generic tm5600 board 6000:0001
2 Generic tm6000 board
3 Generic tm6010 board 6000:0002
4 10Moons UT 821
5 10Moons UT 330
6 ADSTECH Dual TV USB 06e1:f332
7 Freecom Hybrid Stick / Moka DVB-T Receiver Dual 14aa:0620
8 ADSTECH Mini Dual TV USB 06e1:b339
9 Hauppauge WinTV HVR-900H / WinTV USB2-Stick 2040:6600,

2040:6601,
2040:6610,
2040:6611

10 Beholder Wander DVB-T/TV/FM USB2.0 6000:dec0
11 Beholder Voyager TV/FM USB2.0 6000:dec1
12 Terratec Cinergy Hybrid XE / Cinergy Hybrid-Stick 0ccd:0086,

0ccd:00A5
13 Twinhan TU501(704D1) 13d3:3240,

13d3:3241,
13d3:3243,
13d3:3264

14 Beholder Wander Lite DVB-T/TV/FM USB2.0 6000:dec2
15 Beholder Voyager Lite TV/FM USB2.0 6000:dec3
16 Terratec Grabster AV 150/250 MX 0ccd:0079

1.1. The media subsystem 35

Linux Media Documentation

Siano cards list

Card name USB IDs
Hauppauge Catamount 2040:1700
Hauppauge Okemo-A 2040:1800
Hauppauge Okemo-B 2040:1801
Hauppauge WinTV MiniCard 2040:2000,

2040:200a,
2040:2010,
2040:2011,
2040:2019

Hauppauge WinTV MiniCard Rev 2 2040:2009
Hauppauge WinTV MiniStick 2040:5500,

2040:5510,
2040:5520,
2040:5530,
2040:5580,
2040:5590,
2040:b900,
2040:b910,
2040:b980,
2040:b990,
2040:c000,
2040:c010,
2040:c080,
2040:c090,
2040:c0a0,
2040:f5a0

Hauppauge microStick 77e 2013:0257
ONDA Data Card Digital Receiver 19D2:0078
Siano Denver (ATSC-M/H) Digital Receiver 187f:0800
Siano Denver (TDMB) Digital Receiver 187f:0700
Siano Ming Digital Receiver 187f:0310
Siano Nice Digital Receiver 187f:0202, 187f:0202
Siano Nova A Digital Receiver 187f:0200
Siano Nova B Digital Receiver 187f:0201
Siano Pele Digital Receiver 187f:0500
Siano Rio Digital Receiver 187f:0600,

3275:0080
Siano Stellar Digital Receiver 187f:0100
Siano Stellar Digital Receiver ROM 187f:0010
Siano Vega Digital Receiver 187f:0300
Siano Venice Digital Receiver 187f:0301,

187f:0301, 187f:0302
ZTE Data Card Digital Receiver 19D2:0086

36 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

The gspca cards list

The modules for the gspca webcam drivers are:

• gspca_main: main driver

• gspca_driver: subdriver module with driver as follows

driver vend:prod Device
spca501 0000:0000 MystFromOri Unknown Camera
spca508 0130:0130 Clone Digital Webcam 11043
se401 03e8:0004 Endpoints/AoxSE401
zc3xx 03f0:1b07 HP Premium Starter Cam
m5602 0402:5602 ALi Video Camera Controller
spca501 040a:0002 Kodak DVC-325
spca500 040a:0300 Kodak EZ200
zc3xx 041e:041e Creative WebCam Live!
ov519 041e:4003 Video Blaster WebCam Go Plus
stv0680 041e:4007 Go Mini
spca500 041e:400a Creative PC-CAM 300
sunplus 041e:400b Creative PC-CAM 600
sunplus 041e:4012 PC-Cam350
sunplus 041e:4013 Creative Pccam750
zc3xx 041e:4017 Creative Webcam Mobile PD1090
spca508 041e:4018 Creative Webcam Vista (PD1100)
spca561 041e:401a Creative Webcam Vista (PD1100)
zc3xx 041e:401c Creative NX
spca505 041e:401d Creative Webcam NX ULTRA
zc3xx 041e:401e Creative Nx Pro
zc3xx 041e:401f Creative Webcam Notebook PD1171
zc3xx 041e:4022 Webcam NX Pro
pac207 041e:4028 Creative Webcam Vista Plus
zc3xx 041e:4029 Creative WebCam Vista Pro
zc3xx 041e:4034 Creative Instant P0620
zc3xx 041e:4035 Creative Instant P0620D
zc3xx 041e:4036 Creative Live !
sq930x 041e:4038 Creative Joy-IT
zc3xx 041e:403a Creative Nx Pro 2
spca561 041e:403b Creative Webcam Vista (VF0010)
sq930x 041e:403c Creative Live! Ultra
sq930x 041e:403d Creative Live! Ultra for Notebooks
sq930x 041e:4041 Creative Live! Motion
zc3xx 041e:4051 Creative Live!Cam Notebook Pro (VF0250)
ov519 041e:4052 Creative Live! VISTA IM
zc3xx 041e:4053 Creative Live!Cam Video IM
vc032x 041e:405b Creative Live! Cam Notebook Ultra (VC0130)
ov519 041e:405f Creative Live! VISTA VF0330
ov519 041e:4060 Creative Live! VISTA VF0350
ov519 041e:4061 Creative Live! VISTA VF0400

Continued on next page

1.1. The media subsystem 37

Linux Media Documentation

Table 3 – continued from previous page
driver vend:prod Device
ov519 041e:4064 Creative Live! VISTA VF0420
ov519 041e:4067 Creative Live! Cam Video IM (VF0350)
ov519 041e:4068 Creative Live! VISTA VF0470
sn9c2028 0458:7003 GeniusVideocam Live v2
spca561 0458:7004 Genius VideoCAM Express V2
sn9c2028 0458:7005 Genius Smart 300, version 2
sunplus 0458:7006 Genius Dsc 1.3 Smart
zc3xx 0458:7007 Genius VideoCam V2
zc3xx 0458:700c Genius VideoCam V3
zc3xx 0458:700f Genius VideoCam Web V2
sonixj 0458:7025 Genius Eye 311Q
sn9c20x 0458:7029 Genius Look 320s
sonixj 0458:702e Genius Slim 310 NB
sn9c20x 0458:7045 Genius Look 1320 V2
sn9c20x 0458:704a Genius Slim 1320
sn9c20x 0458:704c Genius i-Look 1321
sn9c20x 045e:00f4 LifeCam VX-6000 (SN9C20x + OV9650)
sonixj 045e:00f5 MicroSoft VX3000
sonixj 045e:00f7 MicroSoft VX1000
ov519 045e:028c Micro$oft xbox cam
kinect 045e:02ae Xbox NUI Camera
kinect 045e:02bf Kinect for Windows NUI Camera
spca561 0461:0815 Micro Innovations IC200 Webcam
sunplus 0461:0821 Fujifilm MV-1
zc3xx 0461:0a00 MicroInnovation WebCam320
stv06xx 046D:08F0 QuickCamMessenger
stv06xx 046D:08F5 QuickCamCommunicate
stv06xx 046D:08F6 QuickCamMessenger (new)
stv06xx 046d:0840 QuickCamExpress
stv06xx 046d:0850 LEGOcam / QuickCam Web
stv06xx 046d:0870 DexxaWebCam USB
spca500 046d:0890 Logitech QuickCam traveler
vc032x 046d:0892 Logitech Orbicam
vc032x 046d:0896 Logitech Orbicam
vc032x 046d:0897 Logitech QuickCam for Dell notebooks
zc3xx 046d:089d Logitech QuickCam E2500
zc3xx 046d:08a0 Logitech QC IM
zc3xx 046d:08a1 Logitech QC IM 0x08A1 +sound
zc3xx 046d:08a2 Labtec Webcam Pro
zc3xx 046d:08a3 Logitech QC Chat
zc3xx 046d:08a6 Logitech QCim
zc3xx 046d:08a7 Logitech QuickCam Image
zc3xx 046d:08a9 Logitech Notebook Deluxe
zc3xx 046d:08aa Labtec Webcam Notebook
zc3xx 046d:08ac Logitech QuickCam Cool
zc3xx 046d:08ad Logitech QCCommunicate STX
zc3xx 046d:08ae Logitech QuickCam for Notebooks

Continued on next page

38 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 3 – continued from previous page
driver vend:prod Device
zc3xx 046d:08af Logitech QuickCam Cool
zc3xx 046d:08b9 Logitech QuickCam Express
zc3xx 046d:08d7 Logitech QCam STX
zc3xx 046d:08d8 Logitech Notebook Deluxe
zc3xx 046d:08d9 Logitech QuickCam IM/Connect
zc3xx 046d:08da Logitech QuickCam Messenger
zc3xx 046d:08dd Logitech QuickCam for Notebooks
spca500 046d:0900 Logitech Inc. ClickSmart 310
spca500 046d:0901 Logitech Inc. ClickSmart 510
sunplus 046d:0905 Logitech ClickSmart 820
tv8532 046d:0920 Logitech QuickCam Express
tv8532 046d:0921 Labtec Webcam
spca561 046d:0928 Logitech QC Express Etch2
spca561 046d:0929 Labtec Webcam Elch2
spca561 046d:092a Logitech QC for Notebook
spca561 046d:092b Labtec Webcam Plus
spca561 046d:092c Logitech QC chat Elch2
spca561 046d:092d Logitech QC Elch2
spca561 046d:092e Logitech QC Elch2
spca561 046d:092f Logitech QuickCam Express Plus
sunplus 046d:0960 Logitech ClickSmart 420
nw80x 046d:d001 Logitech QuickCam Pro (dark focus ring)
se401 0471:030b PhilipsPCVC665K
sunplus 0471:0322 Philips DMVC1300K
zc3xx 0471:0325 Philips SPC 200 NC
zc3xx 0471:0326 Philips SPC 300 NC
sonixj 0471:0327 Philips SPC 600 NC
sonixj 0471:0328 Philips SPC 700 NC
zc3xx 0471:032d Philips SPC 210 NC
zc3xx 0471:032e Philips SPC 315 NC
sonixj 0471:0330 Philips SPC 710 NC
se401 047d:5001 Kensington67014
se401 047d:5002 Kensington6701(5/7)
se401 047d:5003 Kensington67016
spca501 0497:c001 Smile International
sunplus 04a5:3003 Benq DC 1300
sunplus 04a5:3008 Benq DC 1500
sunplus 04a5:300a Benq DC 3410
spca500 04a5:300c Benq DC 1016
benq 04a5:3035 Benq DC E300
vicam 04c1:009d HomeConnect Webcam [vicam]
konica 04c8:0720 IntelYC 76
finepix 04cb:0104 Fujifilm FinePix 4800
finepix 04cb:0109 Fujifilm FinePix A202
finepix 04cb:010b Fujifilm FinePix A203
finepix 04cb:010f Fujifilm FinePix A204
finepix 04cb:0111 Fujifilm FinePix A205

Continued on next page

1.1. The media subsystem 39

Linux Media Documentation

Table 3 – continued from previous page
driver vend:prod Device
finepix 04cb:0113 Fujifilm FinePix A210
finepix 04cb:0115 Fujifilm FinePix A303
finepix 04cb:0117 Fujifilm FinePix A310
finepix 04cb:0119 Fujifilm FinePix F401
finepix 04cb:011b Fujifilm FinePix F402
finepix 04cb:011d Fujifilm FinePix F410
finepix 04cb:0121 Fujifilm FinePix F601
finepix 04cb:0123 Fujifilm FinePix F700
finepix 04cb:0125 Fujifilm FinePix M603
finepix 04cb:0127 Fujifilm FinePix S300
finepix 04cb:0129 Fujifilm FinePix S304
finepix 04cb:012b Fujifilm FinePix S500
finepix 04cb:012d Fujifilm FinePix S602
finepix 04cb:012f Fujifilm FinePix S700
finepix 04cb:0131 Fujifilm FinePix unknown model
finepix 04cb:013b Fujifilm FinePix unknown model
finepix 04cb:013d Fujifilm FinePix unknown model
finepix 04cb:013f Fujifilm FinePix F420
sunplus 04f1:1001 JVC GC A50
spca561 04fc:0561 Flexcam 100
spca1528 04fc:1528 Sunplus MD80 clone
sunplus 04fc:500c Sunplus CA500C
sunplus 04fc:504a Aiptek Mini PenCam 1.3
sunplus 04fc:504b Maxell MaxPocket LE 1.3
sunplus 04fc:5330 Digitrex 2110
sunplus 04fc:5360 Sunplus Generic
spca500 04fc:7333 PalmPixDC85
sunplus 04fc:ffff Pure DigitalDakota
nw80x 0502:d001 DVC V6
spca501 0506:00df 3Com HomeConnect Lite
sunplus 052b:1507 Megapixel 5 Pretec DC-1007
sunplus 052b:1513 Megapix V4
sunplus 052b:1803 MegaImage VI
nw80x 052b:d001 EZCam Pro p35u
tv8532 0545:808b Veo Stingray
tv8532 0545:8333 Veo Stingray
sunplus 0546:3155 Polaroid PDC3070
sunplus 0546:3191 Polaroid Ion 80
sunplus 0546:3273 Polaroid PDC2030
touptek 0547:6801 TTUCMOS08000KPB, AS MU800
dtcs033 0547:7303 Anchor Chips, Inc
ov519 054c:0154 Sonny toy4
ov519 054c:0155 Sonny toy5
cpia1 0553:0002 CPIA CPiA (version1) based cameras
stv0680 0553:0202 STV0680 Camera
zc3xx 055f:c005 Mustek Wcam300A
spca500 055f:c200 Mustek Gsmart 300

Continued on next page

40 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 3 – continued from previous page
driver vend:prod Device
sunplus 055f:c211 Kowa Bs888e Microcamera
spca500 055f:c220 Gsmart Mini
sunplus 055f:c230 Mustek Digicam 330K
sunplus 055f:c232 Mustek MDC3500
sunplus 055f:c360 Mustek DV4000 Mpeg4
sunplus 055f:c420 Mustek gSmart Mini 2
sunplus 055f:c430 Mustek Gsmart LCD 2
sunplus 055f:c440 Mustek DV 3000
sunplus 055f:c520 Mustek gSmart Mini 3
sunplus 055f:c530 Mustek Gsmart LCD 3
sunplus 055f:c540 Gsmart D30
sunplus 055f:c630 Mustek MDC4000
sunplus 055f:c650 Mustek MDC5500Z
nw80x 055f:d001 Mustek Wcam 300 mini
zc3xx 055f:d003 Mustek WCam300A
zc3xx 055f:d004 Mustek WCam300 AN
conex 0572:0041 Creative Notebook cx11646
ov519 05a9:0511 Video Blaster WebCam 3/WebCam Plus, D-Link USB Digital Video Camera
ov519 05a9:0518 Creative WebCam
ov519 05a9:0519 OV519 Microphone
ov519 05a9:0530 OmniVision
ov534_9 05a9:1550 OmniVision VEHO Filmscanner
ov519 05a9:2800 OmniVision SuperCAM
ov519 05a9:4519 Webcam Classic
ov534_9 05a9:8065 OmniVision test kit ov538+ov9712
ov519 05a9:8519 OmniVision
ov519 05a9:a511 D-Link USB Digital Video Camera
ov519 05a9:a518 D-Link DSB-C310 Webcam
sunplus 05da:1018 Digital Dream Enigma 1.3
stk014 05e1:0893 Syntek DV4000
gl860 05e3:0503 Genesys Logic PC Camera
gl860 05e3:f191 Genesys Logic PC Camera
vicam 0602:1001 ViCam Webcam
spca561 060b:a001 Maxell Compact Pc PM3
zc3xx 0698:2003 CTX M730V built in
topro 06a2:0003 TP6800 PC Camera, CmoX CX0342 webcam
topro 06a2:6810 Creative Qmax
nw80x 06a5:0000 Typhoon Webcam 100 USB
nw80x 06a5:d001 Divio based webcams
nw80x 06a5:d800 Divio Chicony TwinkleCam, Trust SpaceCam
spca500 06bd:0404 Agfa CL20
spca500 06be:0800 Optimedia
nw80x 06be:d001 EZCam Pro p35u
sunplus 06d6:0031 Trust 610 LCD PowerC@m Zoom
sunplus 06d6:0041 Aashima Technology B.V.
spca506 06e1:a190 ADS Instant VCD
ov534 06f8:3002 Hercules Blog Webcam

Continued on next page

1.1. The media subsystem 41

Linux Media Documentation

Table 3 – continued from previous page
driver vend:prod Device
ov534_9 06f8:3003 Hercules Dualpix HD Weblog
sonixj 06f8:3004 Hercules Classic Silver
sonixj 06f8:3008 Hercules Deluxe Optical Glass
pac7302 06f8:3009 Hercules Classic Link
pac7302 06f8:301b Hercules Link
nw80x 0728:d001 AVerMedia Camguard
spca508 0733:0110 ViewQuest VQ110
spca501 0733:0401 Intel Create and Share
spca501 0733:0402 ViewQuest M318B
spca505 0733:0430 Intel PC Camera Pro
sunplus 0733:1311 Digital Dream Epsilon 1.3
sunplus 0733:1314 Mercury 2.1MEG Deluxe Classic Cam
sunplus 0733:2211 Jenoptik jdc 21 LCD
sunplus 0733:2221 Mercury Digital Pro 3.1p
sunplus 0733:3261 Concord 3045 spca536a
sunplus 0733:3281 Cyberpix S550V
spca506 0734:043b 3DeMon USB Capture aka
cpia1 0813:0001 QX3 camera
ov519 0813:0002 Dual Mode USB Camera Plus
spca500 084d:0003 D-Link DSC-350
spca500 08ca:0103 Aiptek PocketDV
sunplus 08ca:0104 Aiptek PocketDVII 1.3
sunplus 08ca:0106 Aiptek Pocket DV3100+
mr97310a 08ca:0110 Trust Spyc@m 100
mr97310a 08ca:0111 Aiptek PenCam VGA+
sunplus 08ca:2008 Aiptek Mini PenCam 2 M
sunplus 08ca:2010 Aiptek PocketCam 3M
sunplus 08ca:2016 Aiptek PocketCam 2 Mega
sunplus 08ca:2018 Aiptek Pencam SD 2M
sunplus 08ca:2020 Aiptek Slim 3000F
sunplus 08ca:2022 Aiptek Slim 3200
sunplus 08ca:2024 Aiptek DV3500 Mpeg4
sunplus 08ca:2028 Aiptek PocketCam4M
sunplus 08ca:2040 Aiptek PocketDV4100M
sunplus 08ca:2042 Aiptek PocketDV5100
sunplus 08ca:2050 Medion MD 41437
sunplus 08ca:2060 Aiptek PocketDV5300
tv8532 0923:010f ICM532 cams
mr97310a 093a:010e All known CIF cams with this ID
mr97310a 093a:010f All known VGA cams with this ID
mars 093a:050f Mars-Semi Pc-Camera
pac207 093a:2460 Qtec Webcam 100
pac207 093a:2461 HP Webcam
pac207 093a:2463 Philips SPC 220 NC
pac207 093a:2464 Labtec Webcam 1200
pac207 093a:2468 Webcam WB-1400T
pac207 093a:2470 Genius GF112

Continued on next page

42 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 3 – continued from previous page
driver vend:prod Device
pac207 093a:2471 Genius VideoCam ge111
pac207 093a:2472 Genius VideoCam ge110
pac207 093a:2474 Genius iLook 111
pac207 093a:2476 Genius e-Messenger 112
pac7311 093a:2600 PAC7311 Typhoon
pac7311 093a:2601 Philips SPC 610 NC
pac7311 093a:2603 Philips SPC 500 NC
pac7311 093a:2608 Trust WB-3300p
pac7311 093a:260e Gigaware VGA PC Camera, Trust WB-3350p, SIGMA cam 2350
pac7311 093a:260f SnakeCam
pac7302 093a:2620 Apollo AC-905
pac7302 093a:2621 PAC731x
pac7302 093a:2622 Genius Eye 312
pac7302 093a:2623 Pixart Imaging, Inc.
pac7302 093a:2624 PAC7302
pac7302 093a:2625 Genius iSlim 310
pac7302 093a:2626 Labtec 2200
pac7302 093a:2627 Genius FaceCam 300
pac7302 093a:2628 Genius iLook 300
pac7302 093a:2629 Genius iSlim 300
pac7302 093a:262a Webcam 300k
pac7302 093a:262c Philips SPC 230 NC
jl2005bcd 0979:0227 Various brands, 19 known cameras supported
jeilinj 0979:0270 Sakar 57379
jeilinj 0979:0280 Sportscam DV15, Sakar 57379
zc3xx 0ac8:0301 Web Camera
zc3xx 0ac8:0302 Z-star Vimicro zc0302
vc032x 0ac8:0321 Vimicro generic vc0321
vc032x 0ac8:0323 Vimicro Vc0323
vc032x 0ac8:0328 A4Tech PK-130MG
zc3xx 0ac8:301b Z-Star zc301b
zc3xx 0ac8:303b Vimicro 0x303b
zc3xx 0ac8:305b Z-star Vimicro zc0305b
zc3xx 0ac8:307b PC Camera (ZS0211)
vc032x 0ac8:c001 Sony embedded vimicro
vc032x 0ac8:c002 Sony embedded vimicro
vc032x 0ac8:c301 Samsung Q1 Ultra Premium
spca508 0af9:0010 Hama USB Sightcam 100
spca508 0af9:0011 Hama USB Sightcam 100
ov519 0b62:0059 iBOT2 Webcam
sonixb 0c45:6001 Genius VideoCAM NB
sonixb 0c45:6005 Microdia Sweex Mini Webcam
sonixb 0c45:6007 Sonix sn9c101 + Tas5110D
sonixb 0c45:6009 spcaCam@120
sonixb 0c45:600d spcaCam@120
sonixb 0c45:6011 Microdia PC Camera (SN9C102)
sonixb 0c45:6019 Generic Sonix OV7630

Continued on next page

1.1. The media subsystem 43

mailto:spcaCam@120
mailto:spcaCam@120

Linux Media Documentation

Table 3 – continued from previous page
driver vend:prod Device
sonixb 0c45:6024 Generic Sonix Tas5130c
sonixb 0c45:6025 Xcam Shanga
sonixb 0c45:6027 GeniusEye 310
sonixb 0c45:6028 Sonix Btc Pc380
sonixb 0c45:6029 spcaCam@150
sonixb 0c45:602a Meade ETX-105EC Camera
sonixb 0c45:602c Generic Sonix OV7630
sonixb 0c45:602d LIC-200 LG
sonixb 0c45:602e Genius VideoCam Messenger
sonixj 0c45:6040 Speed NVC 350K
sonixj 0c45:607c Sonix sn9c102p Hv7131R
sonixb 0c45:6083 VideoCAM Look
sonixb 0c45:608c VideoCAM Look
sonixb 0c45:608f PC Camera (SN9C103 + OV7630)
sonixb 0c45:60a8 VideoCAM Look
sonixb 0c45:60aa VideoCAM Look
sonixb 0c45:60af VideoCAM Look
sonixb 0c45:60b0 Genius VideoCam Look
sonixj 0c45:60c0 Sangha Sn535
sonixj 0c45:60ce USB-PC-Camera-168 (TALK-5067)
sonixj 0c45:60ec SN9C105+MO4000
sonixj 0c45:60fb Surfer NoName
sonixj 0c45:60fc LG-LIC300
sonixj 0c45:60fe Microdia Audio
sonixj 0c45:6100 PC Camera (SN9C128)
sonixj 0c45:6102 PC Camera (SN9C128)
sonixj 0c45:610a PC Camera (SN9C128)
sonixj 0c45:610b PC Camera (SN9C128)
sonixj 0c45:610c PC Camera (SN9C128)
sonixj 0c45:610e PC Camera (SN9C128)
sonixj 0c45:6128 Microdia/Sonix SNP325
sonixj 0c45:612a Avant Camera
sonixj 0c45:612b Speed-Link REFLECT2
sonixj 0c45:612c Typhoon Rasy Cam 1.3MPix
sonixj 0c45:612e PC Camera (SN9C110)
sonixj 0c45:6130 Sonix Pccam
sonixj 0c45:6138 Sn9c120 Mo4000
sonixj 0c45:613a Microdia Sonix PC Camera
sonixj 0c45:613b Surfer SN-206
sonixj 0c45:613c Sonix Pccam168
sonixj 0c45:613e PC Camera (SN9C120)
sonixj 0c45:6142 Hama PC-Webcam AC-150
sonixj 0c45:6143 Sonix Pccam168
sonixj 0c45:6148 Digitus DA-70811/ZSMC USB PC Camera ZS211/Microdia
sonixj 0c45:614a Frontech E-Ccam (JIL-2225)
sn9c20x 0c45:6240 PC Camera (SN9C201 + MT9M001)
sn9c20x 0c45:6242 PC Camera (SN9C201 + MT9M111)

Continued on next page

44 Chapter 1. Media subsystem admin and user guide

mailto:spcaCam@150

Linux Media Documentation

Table 3 – continued from previous page
driver vend:prod Device
sn9c20x 0c45:6248 PC Camera (SN9C201 + OV9655)
sn9c20x 0c45:624c PC Camera (SN9C201 + MT9M112)
sn9c20x 0c45:624e PC Camera (SN9C201 + SOI968)
sn9c20x 0c45:624f PC Camera (SN9C201 + OV9650)
sn9c20x 0c45:6251 PC Camera (SN9C201 + OV9650)
sn9c20x 0c45:6253 PC Camera (SN9C201 + OV9650)
sn9c20x 0c45:6260 PC Camera (SN9C201 + OV7670)
sn9c20x 0c45:6270 PC Camera (SN9C201 + MT9V011/MT9V111/MT9V112)
sn9c20x 0c45:627b PC Camera (SN9C201 + OV7660)
sn9c20x 0c45:627c PC Camera (SN9C201 + HV7131R)
sn9c20x 0c45:627f PC Camera (SN9C201 + OV9650)
sn9c20x 0c45:6280 PC Camera (SN9C202 + MT9M001)
sn9c20x 0c45:6282 PC Camera (SN9C202 + MT9M111)
sn9c20x 0c45:6288 PC Camera (SN9C202 + OV9655)
sn9c20x 0c45:628c PC Camera (SN9C201 + MT9M112)
sn9c20x 0c45:628e PC Camera (SN9C202 + SOI968)
sn9c20x 0c45:628f PC Camera (SN9C202 + OV9650)
sn9c20x 0c45:62a0 PC Camera (SN9C202 + OV7670)
sn9c20x 0c45:62b0 PC Camera (SN9C202 + MT9V011/MT9V111/MT9V112)
sn9c20x 0c45:62b3 PC Camera (SN9C202 + OV9655)
sn9c20x 0c45:62bb PC Camera (SN9C202 + OV7660)
sn9c20x 0c45:62bc PC Camera (SN9C202 + HV7131R)
sn9c2028 0c45:8001 Wild Planet Digital Spy Camera
sn9c2028 0c45:8003 Sakar #11199, #6637x, #67480 keychain cams
sn9c2028 0c45:8008 Mini-Shotz ms-350
sn9c2028 0c45:800a Vivitar Vivicam 3350B
sunplus 0d64:0303 Sunplus FashionCam DXG
ov519 0e96:c001 TRUST 380 USB2 SPACEC@M
etoms 102c:6151 Qcam Sangha CIF
etoms 102c:6251 Qcam xxxxxx VGA
ov519 1046:9967 W9967CF/W9968CF WebCam IC, Video Blaster WebCam Go
zc3xx 10fd:0128 Typhoon Webshot II USB 300k 0x0128
spca561 10fd:7e50 FlyCam Usb 100
zc3xx 10fd:804d Typhoon Webshot II Webcam [zc0301]
zc3xx 10fd:8050 Typhoon Webshot II USB 300k
ov534 1415:2000 Sony HD Eye for PS3 (SLEH 00201)
pac207 145f:013a Trust WB-1300N
pac7302 145f:013c Trust
sn9c20x 145f:013d Trust WB-3600R
vc032x 15b8:6001 HP 2.0 Megapixel
vc032x 15b8:6002 HP 2.0 Megapixel rz406aa
stk1135 174f:6a31 ASUSlaptop, MT9M112 sensor
spca501 1776:501c Arowana 300K CMOS Camera
t613 17a1:0128 TASCORP JPEG Webcam, NGS Cyclops
vc032x 17ef:4802 Lenovo Vc0323+MI1310_SOC
pac7302 1ae7:2001 SpeedLinkSnappy Mic SL-6825-SBK
pac207 2001:f115 D-Link DSB-C120

Continued on next page

1.1. The media subsystem 45

Linux Media Documentation

Table 3 – continued from previous page
driver vend:prod Device
sq905c 2770:9050 Disney pix micro (CIF)
sq905c 2770:9051 Lego Bionicle
sq905c 2770:9052 Disney pix micro 2 (VGA)
sq905c 2770:905c All 11 known cameras with this ID
sq905 2770:9120 All 24 known cameras with this ID
sq905c 2770:913d All 4 known cameras with this ID
sq930x 2770:930b Sweex Motion Tracking / I-Tec iCam Tracer
sq930x 2770:930c Trust WB-3500T / NSG Robbie 2.0
spca500 2899:012c Toptro Industrial
ov519 8020:ef04 ov519
spca508 8086:0110 Intel Easy PC Camera
spca500 8086:0630 Intel Pocket PC Camera
spca506 99fa:8988 Grandtec V.cap
sn9c20x a168:0610 Dino-Lite Digital Microscope (SN9C201 + HV7131R)
sn9c20x a168:0611 Dino-Lite Digital Microscope (SN9C201 + HV7131R)
sn9c20x a168:0613 Dino-Lite Digital Microscope (SN9C201 + HV7131R)
sn9c20x a168:0614 Dino-Lite Digital Microscope (SN9C201 + MT9M111)
sn9c20x a168:0615 Dino-Lite Digital Microscope (SN9C201 + MT9M111)
sn9c20x a168:0617 Dino-Lite Digital Microscope (SN9C201 + MT9M111)
sn9c20x a168:0618 Dino-Lite Digital Microscope (SN9C201 + HV7131R)
spca561 abcd:cdee Petcam

dvb-usb-dib0700 cards list

Card name USB IDs
ASUSMy Cinema U3000Mini DVBT
Tuner

0b05:171f

ASUSMy Cinema U3100Mini DVBT
Tuner

0b05:173f

AVerMedia AVerTV DVB-T Express 07ca:b568
AVerMedia AVerTV DVB-T Volar 07ca:a807, 07ca:b808
Artec T14BR DVB-T 05d8:810f
Asus My Cinema-U3000Hybrid 0b05:1736
Compro Videomate U500 185b:1e78, 185b:1e80
DiBcom NIM7090 reference design 10b8:1bb2
DiBcom NIM8096MD reference de-
sign

10b8:1fa8

DiBcom NIM9090MD reference de-
sign

10b8:2384

DiBcom STK7070P reference design 10b8:1ebc
DiBcom STK7070PD reference de-
sign

10b8:1ebe

DiBcom STK7700D reference de-
sign

10b8:1ef0

DiBcom STK7700P reference design 10b8:1e14, 10b8:1e78
Continued on next page

46 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 4 – continued from previous page
Card name USB IDs
DiBcomSTK7770P reference design 10b8:1e80
DiBcom STK807xP reference design 10b8:1f90
DiBcom STK807xPVR reference de-
sign

10b8:1f98

DiBcom STK8096-PVR reference
design

2013:1faa, 10b8:1faa

DiBcom STK8096GP reference de-
sign

10b8:1fa0

DiBcom STK9090M reference de-
sign

10b8:2383

DiBcom TFE7090PVR reference de-
sign

10b8:1bb4

DiBcom TFE7790P reference design 10b8:1e6e
DiBcom TFE8096P reference design 10b8:1f9C
Elgato EyeTV DTT 0fd9:0021
Elgato EyeTV DTT rev. 2 0fd9:003f
Elgato EyeTV Diversity 0fd9:0011
Elgato EyeTV Dtt Dlx PD378S 0fd9:0020
EvolutePC TVWay+ 1e59:0002
Gigabyte U7000 1044:7001
Gigabyte U8000-RH 1044:7002
Hama DVB=T Hybrid USB Stick 147f:2758
Hauppauge ATSC MiniCard (B200) 2040:b200
Hauppauge ATSC MiniCard (B210) 2040:b210
Hauppauge Nova-T 500 Dual DVB-T 2040:9941, 2040:9950
Hauppauge Nova-T MyTV.t 2040:7080
Hauppauge Nova-T Stick 2040:7050, 2040:7060, 2040:7070
Hauppauge Nova-TD Stick (52009) 2040:5200
Hauppauge Nova-TD Stick/Elgato
Eye-TV Diversity

2040:9580

Hauppauge Nova-TD-500 (84xxx) 2040:8400
Leadtek WinFast DTV Dongle H 0413:60f6
Leadtek Winfast DTV Dongle
(STK7700P based)

0413:6f00, 0413:6f01

Medion CTX1921 DVB-T USB 1660:1921
Microsoft Xbox One Digital TV
Tuner

045e:02d5

PCTV 2002e 2013:025c
PCTV 2002e SE 2013:025d
Pinnacle Expresscard 320cx 2304:022e
Pinnacle PCTV 2000e 2304:022c
Pinnacle PCTV 282e 2013:0248, 2304:0248
Pinnacle PCTV 340e HD Pro USB
Stick

2304:023d

Pinnacle PCTV 72e 2304:0236
Pinnacle PCTV 73A 2304:0243
Pinnacle PCTV 73e 2304:0237

Continued on next page

1.1. The media subsystem 47

Linux Media Documentation

Table 4 – continued from previous page
Card name USB IDs
Pinnacle PCTV 73e SE 2013:0245, 2304:0245
Pinnacle PCTV DVB-T Flash Stick 2304:0228
Pinnacle PCTV Dual DVB-T Diver-
sity Stick

2304:0229

Pinnacle PCTV HD Pro USB Stick 2304:023a
Pinnacle PCTV HD USB Stick 2304:023b
Pinnacle PCTV Hybrid Stick Solo 2304:023e
Prolink Pixelview SBTVD 1554:5010
Sony PlayTV 1415:0003
TechniSat AirStar TeleStick 2 14f7:0004
Terratec Cinergy DT USB XS Diver-
sity/ T5

0ccd:0081, 0ccd:10a1

Terratec Cinergy DT XS Diversity 0ccd:005a
Terratec Cinergy HT Express 0ccd:0060
Terratec Cinergy HT USB XE 0ccd:0058
Terratec Cinergy T Express 0ccd:0062
Terratec Cinergy T USB XXS (HD)/
T3

0ccd:0078, 0ccd:10a0, 0ccd:00ab

Uniwill STK7700P based (Hama and
others)

1584:6003

YUAN High-Tech DiBcom
STK7700D

1164:1e8c

YUAN High-Tech MC770 1164:0871
YUAN High-Tech STK7700D 1164:1efc
YUAN High-Tech STK7700PH 1164:1f08
Yuan EC372S 1164:1edc
Yuan PD378S 1164:2edc

48 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

dvb-usb-dibusb-mb cards list

Card name USB IDs
AVerMedia AverTV DVBT USB1.1 14aa:0001, 14aa:0002
Artec T1 USB1.1 TVBOX with
AN2135

05d8:8105, 05d8:8106

Artec T1 USB1.1 TVBOX with
AN2235

05d8:8107, 05d8:8108

Artec T1 USB1.1 TVBOX with
AN2235 (faulty USB IDs)

0547:2235

Artec T1 USB2.0 05d8:8109, 05d8:810a
Compro Videomate DVB-U2000 -
DVB-T USB1.1 (please confirm to
linux-dvb)

185b:d000, 145f:010c, 185b:d001

DiBcom USB1.1 DVB-T reference
design (MOD3000)

10b8:0bb8, 10b8:0bb9

Grandtec USB1.1 DVB-T 5032:0fa0, 5032:0bb8, 5032:0fa1, 5032:0bb9
KWorld V-Stream XPERT DTV - DVB-
T USB1.1

eb1a:17de, eb1a:17df

KWorld Xpert DVB-T USB2.0 eb2a:17de
KWorld/ADSTech Instant DVB-T
USB2.0

06e1:a333, 06e1:a334

TwinhanDTV USB-Ter USB1.1 /
Magic Box I / HAMA USB1.1 DVB-T
device

13d3:3201, 1822:3201, 13d3:3202, 1822:3202

Unknown USB1.1 DVB-T device
???? please report the name to the
author

1025:005e, 1025:005f

VideoWalker DVB-T USB 0458:701e, 0458:701f

dvb-usb-dibusb-mc cards list

Card name USB IDs
Artec T1 USB2.0 TVBOX (please
check the warm ID)

05d8:8109, 05d8:810a

Artec T14 - USB2.0 DVB-T 05d8:810b, 05d8:810c
DiBcom USB2.0 DVB-T reference
design (MOD3000P)

10b8:0bc6, 10b8:0bc7

GRAND - USB2.0 DVB-T adapter 5032:0bc6, 5032:0bc7
Humax/Coex DVB-T USB Stick 2.0
High Speed

10b9:5000, 10b9:5001

LITE-ON USB2.0 DVB-T Tuner 04ca:f000, 04ca:f001
Leadtek - USB2.0 Winfast DTV don-
gle

0413:6025, 0413:6026

MSI Digivox Mini SL eb1a:e360, eb1a:e361

1.1. The media subsystem 49

Linux Media Documentation

dvb-usb-a800 cards list

Card name USB IDs
AVerMedia AverTV DVB-T USB 2.0
(A800)

07ca:a800, 07ca:a801

dvb-usb-af9005 cards list

Card name USB IDs
Afatech DVB-T USB1.1 stick 15a4:9020
Ansonic DVB-T USB1.1 stick 10b9:6000
TerraTec Cinergy T USB XE 0ccd:0055

dvb-usb-az6027 cards list

Card name USB IDs
AZUREWAVE DVB-S/S2 USB2.0
(AZ6027)

13d3:3275

Elgato EyeTV Sat 0fd9:002a, 0fd9:0025, 0fd9:0036
TERRATEC S7 0ccd:10a4
TERRATEC S7 MKII 0ccd:10ac
Technisat SkyStar USB 2 HD CI 14f7:0001, 14f7:0002

dvb-usb-cinergyT2 cards list

Card name USB IDs
TerraTec/qanu USB2.0 Highspeed
DVB-T Receiver

0ccd:0x0038

50 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

dvb-usb-cxusb cards list

Card name USB IDs
AVerMedia AVerTVHD Volar
(A868R)
Conexant DMB-TH Stick
DViCO FusionHDTV DVB-T Dual
Digital 2
DViCO FusionHDTV DVB-T Dual
Digital 4
DViCO FusionHDTV DVB-T Dual
Digital 4 (rev 2)
DViCO FusionHDTV DVB-T Dual
USB
DViCO FusionHDTV DVB-T NANO2
DViCO FusionHDTV DVB-T USB
(LGZ201)
DViCO FusionHDTV DVB-T USB
(TH7579)
DViCO FusionHDTV5 USB Gold
DigitalNow DVB-T Dual USB
Medion MD95700 (MDUSBTV-
HYBRID)
Mygica D689 DMB-TH

dvb-usb-digitv cards list

Card name USB IDs
Nebula Electronics uDigiTV DVB-T
USB2.0)

0547:0201

dvb-usb-dtt200u cards list

Card name USB IDs
WideView WT-220U PenType Re-
ceiver (Miglia)

18f3:0220

WideView WT-220U PenType Re-
ceiver (Typhoon/Freecom)

14aa:0222, 14aa:0220, 14aa:0221, 14aa:0225,
14aa:0226

WideView WT-220U PenType Re-
ceiver (based on ZL353)

14aa:022a, 14aa:022b

WideView/Yuan/Yakumo/Hama/Typhoon
DVB-T USB2.0 (WT-200U)

14aa:0201, 14aa:0301

1.1. The media subsystem 51

Linux Media Documentation

dvb-usb-dtv5100 cards list

Card name USB IDs
AME DTV-5100 USB2.0 DVB-T 0x06be:0xa232

dvb-usb-dw2102 cards list

Card name USB IDs
DVBWorld DVB-C 3101 USB2.0 04b4:3101
DVBWorld DVB-S 2101 USB2.0 04b4:0x2101
DVBWorld DVB-S 2102 USB2.0 04b4:2102
DVBWorld DW2104 USB2.0 04b4:2104
GOTVIEW Satellite HD 0x1FE1:5456
Geniatech T220 DVB-T/T2 USB2.0 0x1f4d:0xD220
SU3000HD DVB-S USB2.0 0x1f4d:0x3000
TeVii S482 (tuner 1) 0x9022:0xd483
TeVii S482 (tuner 2) 0x9022:0xd484
TeVii S630 USB 0x9022:d630
TeVii S650 USB2.0 0x9022:d650
TeVii S662 0x9022:d662
TechnoTrend TT-connect S2-4600 0b48:3011
TerraTec Cinergy S USB 0ccd:0064
Terratec Cinergy S2 PCIe Dual Port
1

153b:1181

Terratec Cinergy S2 PCIe Dual Port
2

153b:1182

Terratec Cinergy S2 USB BOX 0ccd:0x0105
Terratec Cinergy S2 USB HD 0ccd:00a8
Terratec Cinergy S2 USB HD Rev.2 0ccd:00b0
Terratec Cinergy S2 USB HD Rev.3 0ccd:0102
X3M TV SPC1400HD PCI 0x1f4d:0x3100

dvb-usb-gp8psk cards list

Card name USB IDs
Genpix 8PSK-to-USB2 Rev.1 DVB-S
receiver

09c0:0200, 09c0:0201

Genpix 8PSK-to-USB2 Rev.2 DVB-S
receiver

09c0:0202

Genpix SkyWalker-1 DVB-S receiver 09c0:0203
Genpix SkyWalker-2 DVB-S receiver 09c0:0206

52 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

dvb-usb-m920x cards list

Card name USB IDs
DTV-DVB UDTT7049 13d3:3219
Dposh DVB-T USB2.0 1498:9206, 1498:a090
LifeView TV Walker Twin DVB-T
USB2.0

10fd:0514, 10fd:0513

MSI DIGI VOXmini II DVB-T USB2.0 10fd:1513
MSI Mega Sky 580 DVB-T USB2.0 0db0:5580
Pinnacle PCTV 310e 13d3:3211

dvb-usb-nova-t-usb2 cards list

Card name USB IDs
Hauppauge WinTV-NOVA-T usb2 2040:9300, 2040:9301

dvb-usb-opera1 cards list

Card name USB IDs
Opera1 DVB-S USB2.0 04b4:2830, 695c:3829

dvb-usb-pctv452e cards list

Card name USB IDs
PCTV HDTV USB 2304:021f
Technotrend TT Connect S2-3600 0b48:3007
Technotrend TT Connect S2-3650-
CI

0b48:300a

dvb-usb-technisat-usb2 cards list

Card name USB IDs
Technisat SkyStar USB HD (DVB-
S/S2)

14f7:0500

1.1. The media subsystem 53

Linux Media Documentation

dvb-usb-ttusb2 cards list

Card name USB IDs
Pinnacle 400e DVB-S USB2.0 2304:020f
Pinnacle 450e DVB-S USB2.0 2304:0222
Technotrend TT-connect CT-3650 0b48:300d
Technotrend TT-connect S-2400 0b48:3006
Technotrend TT-connect S-2400
(8kB EEPROM)

0b48:3009

dvb-usb-umt-010 cards list

Card name USB IDs
Hanftek UMT-010 DVB-T USB2.0 15f4:0001, 15f4:0015

dvb-usb-vp702x cards list

Card name USB IDs
TwinhanDTV StarBox DVB-S
USB2.0 (VP7021)

13d3:3207

dvb-usb-vp7045 cards list

Card name USB IDs
DigitalNow TinyUSB 2 DVB-t Re-
ceiver

13d3:3223, 13d3:3224

Twinhan USB2.0 DVB-T receiver
(TwinhanDTV Alpha/MagicBox II)

13d3:3205, 13d3:3206

dvb-usb-af9015 cards list

Card name USB IDs
AVerMedia A309 07ca:a309
AVerMedia AVerTV DVB-T Volar X 07ca:a815
Afatech AF9015 reference design 15a4:9015, 15a4:9016
AverMedia AVerTV Red HD+
(A850T)

07ca:850b

AverMedia AVerTV Volar Black HD
(A850)

07ca:850a

AverMedia AVerTV Volar GPS 805
(A805)

07ca:a805

Continued on next page

54 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 5 – continued from previous page
Card name USB IDs
AverMedia AVerTV Volar M
(A815Mac)

07ca:815a

Conceptronic USB2.0 DVB-T
CTVDIGRCU V3.0

1b80:e397

DigitalNow TinyTwin 13d3:3226
DigitalNow TinyTwin v2 1b80:e402
DigitalNow TinyTwin v3 1f4d:9016
Fujitsu-Siemens Slim Mobile USB
DVB-T

07ca:8150

Genius TVGo DVB-T03 0458:4012
KWorld Digital MC-810 1b80:c810
KWorld PlusTV DVB-T PCI Pro Card
(DVB-T PC160-T)

1b80:c161

KWorld PlusTV Dual DVB-T PCI
(DVB-T PC160-2T)

1b80:c160

KWorld PlusTV Dual DVB-T Stick
(DVB-T 399U)

1b80:e399, 1b80:e400

KWorld USB DVB-T Stick Mobile
(UB383-T)

1b80:e383

KWorld USB DVB-T TV Stick II (VS-
DVB-T 395U)

1b80:e396, 1b80:e39b, 1b80:e395, 1b80:e39a

Leadtek WinFast DTV Dongle Gold 0413:6029
Leadtek WinFast DTV2000DS 0413:6a04
MSI DIGIVOX Duo 1462:8801
MSI Digi VOX mini III 1462:8807
Pinnacle PCTV 71e 2304:022b
Sveon STV20 Tuner USB DVB-T
HDTV

1b80:e39d

Sveon STV22 Dual USB DVB-T
Tuner HDTV

1b80:e401

Telestar Starstick 2 10b9:8000
TerraTec Cinergy T Stick Dual RC 0ccd:0099
TerraTec Cinergy T Stick RC 0ccd:0097
TerraTec Cinergy T USB XE 0ccd:0069
TrekStor DVB-T USB Stick 15a4:901b
TwinHan AzureWave AD-
TU700(704J)

13d3:3237

Xtensions XD-380 1ae7:0381

1.1. The media subsystem 55

Linux Media Documentation

dvb-usb-af9035 cards list

Card name USB IDs
AVerMedia AVerTV Volar HD/PRO
(A835)

07ca:a835, 07ca:b835

AVerMedia HD Volar (A867) 07ca:1867, 07ca:a867, 07ca:0337
AVerMedia TD310 DVB-T2 07ca:1871
AVerMedia Twinstar (A825) 07ca:0825
Afatech AF9035 reference design 15a4:9035, 15a4:1000, 15a4:1001, 15a4:1002,

15a4:1003
Asus U3100Mini Plus 0b05:1779
Avermedia A835B(1835) 07ca:1835
Avermedia A835B(2835) 07ca:2835
Avermedia A835B(3835) 07ca:3835
Avermedia A835B(4835) 07ca:4835
Avermedia AverTV Volar HD 2
(TD110)

07ca:a110

Avermedia H335 07ca:0335
Digital Dual TV Receiver CTVDIG-
DUAL_V2

1b80:e410

EVOLVEO XtraTV stick 1f4d:a115
Hauppauge WinTV-MiniStick 2 2040:f900
ITE 9135 Generic 048d:9135
ITE 9135(9005) Generic 048d:9005
ITE 9135(9006) Generic 048d:9006
ITE 9303 Generic 048d:9306
Kworld UB499-2T T09 1b80:e409
Leadtek WinFast DTV Dongle Dual 0413:6a05
Logilink VG0022A 1d19:0100
PCTV AndroiDTV (78e) 2013:025a
PCTV microStick (79e) 2013:0262
Sveon STV22 Dual DVB-T HDTV 1b80:e411
TerraTec Cinergy T Stick 0ccd:0093
TerraTec Cinergy T Stick (rev. 2) 0ccd:00aa
TerraTec Cinergy T Stick Dual RC
(rev. 2)

0ccd:0099

TerraTec Cinergy TC2 Stick 0ccd:10b2
TerraTec T1 0ccd:10ae

56 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

dvb-usb-anysee cards list

Card name USB IDs
Anysee 04b4:861f, 1c73:861f

dvb-usb-au6610 cards list

Card name USB IDs
Sigmatek DVB-110 058f:6610

dvb-usb-az6007 cards list

Card name USB IDs
Azurewave 6007 13d3:0ccd
Technisat CableStar Combo HD CI 14f7:0003
Terratec H7 0ccd:10b4, 0ccd:10a3

dvb-usb-ce6230 cards list

Card name USB IDs
AVerMedia A310 USB 2.0 DVB-T
tuner

07ca:a310

Intel CE9500 reference design 8086:9500

1.1. The media subsystem 57

Linux Media Documentation

dvb-usb-dvbsky cards list

Card name USB IDs
DVBSky S960/S860 0572:6831
DVBSky S960CI 0572:960c
DVBSky T330 0572:0320
DVBSky T680CI 0572:680c
MyGica Mini DVB-(T/T2/C) USB
Stick T230

0572:c688

MyGica Mini DVB-(T/T2/C) USB
Stick T230C

0572:c689

MyGica Mini DVB-(T/T2/C) USB
Stick T230C Lite

0572:c699

MyGica Mini DVB-(T/T2/C) USB
Stick T230C v2

0572:c68a

TechnoTrend TT-connect CT2-4650
CI

0b48:3012

TechnoTrend TT-connect CT2-4650
CI v1.1

0b48:3015

TechnoTrend TT-connect S2-4650
CI

0b48:3017

TechnoTrend TVStick CT2-4400 0b48:3014
Terratec Cinergy S2 Rev.4 0ccd:0105
Terratec H7 Rev.4 0ccd:10a5

dvb-usb-ec168 cards list

Card name USB IDs
E3C EC168 reference design 18b4:1689, 18b4:fffa, 18b4:fffb, 18b4:1001,

18b4:1002

dvb-usb-gl861 cards list

Card name USB IDs
774 Friio White ISDB-T USB2.0 7a69:0001
A-LINK DTU DVB-T USB2.0 05e3:f170
MSIMega Sky 55801 DVB-TUSB2.0 0db0:5581

58 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

dvb-usb-lmedm04 cards list

Card name USB IDs
DM04_LME2510C_DVB-S 3344:1120
DM04_LME2510C_DVB-S RS2000 3344:22f0
DM04_LME2510_DVB-S 3344:1122

dvb-usb-mxl111sf cards list

Card name USB IDs
HCW 117xxx 2040:b702
HCW 126xxx 2040:c602, 2040:c60a
Hauppauge 117xxx ATSC+ 2040:b700, 2040:b703, 2040:b753, 2040:b763,

2040:b757, 2040:b767
Hauppauge 117xxx DVBT 2040:b704, 2040:b764
Hauppauge 126xxx 2040:c612, 2040:c61a
Hauppauge 126xxx ATSC 2040:c601, 2040:c609, 2040:b701
Hauppauge 126xxx ATSC+ 2040:c600, 2040:c603, 2040:c60b, 2040:c653,

2040:c65b
Hauppauge 126xxx DVBT 2040:c604, 2040:c60c
Hauppauge 138xxx DVBT 2040:d854, 2040:d864, 2040:d8d4, 2040:d8e4
Hauppauge Mercury 2040:d853, 2040:d863, 2040:d8d3, 2040:d8e3,

2040:d8ff
Hauppauge WinTV-Aero-M 2040:c613, 2040:c61b

dvb-usb-rtl28xxu cards list

Card name USB IDs
ASUS My Cinema-U3100Mini Plus
V2

1b80:d3a8

Astrometa DVB-T2 15f4:0131
Compro VideoMate U620F 185b:0620
Compro VideoMate U650F 185b:0650
Crypto ReDi PC 50 A 1f4d:a803
Dexatek DK DVB-T Dongle 1d19:1101
Dexatek DK mini DVB-T Dongle 1d19:1102
DigitalNow Quad DVB-T Receiver 0413:6680
Freecom USB2.0 DVB-T 14aa:0160, 14aa:0161
G-Tek Electronics Group Lifeview
LV5TDLX DVB-T

1f4d:b803

GIGABYTE U7300 1b80:d393
Genius TVGo DVB-T03 0458:707f
GoTView MasterHD 3 5654:ca42
Leadtek WinFast DTV Dongle mini 0413:6a03

Continued on next page

1.1. The media subsystem 59

Linux Media Documentation

Table 7 – continued from previous page
Card name USB IDs
Leadtek WinFast DTV2000DS Plus 0413:6f12
Leadtek Winfast DTV Dongle Mini D 0413:6f0f
MSI DIGIVOX Micro HD 1d19:1104
MaxMedia HU394-T 1b80:d394
PROlectrix DV107669 1f4d:d803
Peak DVB-T USB 1b80:d395
Realtek RTL2831U reference de-
sign

0bda:2831

Realtek RTL2832U reference de-
sign

0bda:2832, 0bda:2838

Sveon STV20 1b80:d39d
Sveon STV21 1b80:d3b0
Sveon STV27 1b80:d3af
TURBO-X Pure TV Tuner DTT-2000 1b80:d3a4
TerraTec Cinergy T Stick Black 0ccd:00a9
TerraTec Cinergy T Stick RC (Rev.
3)

0ccd:00d3

TerraTec Cinergy T Stick+ 0ccd:00d7
TerraTec NOXON DAB Stick 0ccd:00b3
TerraTec NOXON DAB Stick (rev 2) 0ccd:00e0
TerraTec NOXON DAB Stick (rev 3) 0ccd:00b4
Trekstor DVB-T Stick Terres 2.0 1f4d:C803

dvb-usb-zd1301 cards list

Card name USB IDs
ZyDAS ZD1301 reference design 0ace:13a1

Other USB cards list

Driver Card name USB IDs
airspy Airspy 1d50:60a1
dvb-as102 Abilis Systems DVB-Titan 1BA6:0001
dvb-as102 PCTV Systems picoStick (74e) 2013:0246
dvb-as102 Elgato EyeTV DTT Deluxe 0fd9:002c
dvb-as102 nBox DVB-T Dongle 0b89:0007
dvb-as102 Sky IT Digital Key (green led) 2137:0001
b2c2-flexcop-usb Technisat/B2C2 FlexCop II/IIb/III Digital TV 0af7:0101
cpia2 Vision’s CPiA2 cameras such as the Digital Blue QX5 0553:0100, 0553:0140, 0553:0151
go7007 WIS GO7007 MPEG encoder 1943:a250, 093b:a002, 093b:a004, 0eb1:6666, 0eb1:6668
hackrf HackRF Software Decoder Radio 1d50:6089
hdpvr Hauppauge HD PVR 2040:4900, 2040:4901, 2040:4902, 2040:4982, 2040:4903
msi2500 Mirics MSi3101 SDR Dongle 1df7:2500, 2040:d300

Continued on next page

60 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 8 – continued from previous page
Driver Card name USB IDs
pvrusb2 Hauppauge WinTV-PVR USB2 2040:2900, 2040:2950, 2040:2400, 1164:0622, 1164:0602, 11ba:1003, 11ba:1001, 2040:7300, 2040:7500, 2040:7501, 0ccd:0039, 2040:7502, 2040:7510
pwc Creative Webcam 5 041E:400C
pwc Creative Webcam Pro Ex 041E:4011
pwc Logitech QuickCam 3000 Pro 046D:08B0
pwc Logitech QuickCam Notebook Pro 046D:08B1
pwc Logitech QuickCam 4000 Pro 046D:08B2
pwc Logitech QuickCam Zoom (old model) 046D:08B3
pwc Logitech QuickCam Zoom (new model) 046D:08B4
pwc Logitech QuickCam Orbit/Sphere 046D:08B5
pwc Logitech/Cisco VT Camera 046D:08B6
pwc Logitech ViewPort AV 100 046D:08B7
pwc Logitech QuickCam 046D:08B8
pwc Philips PCA645VC 0471:0302
pwc Philips PCA646VC 0471:0303
pwc Askey VC010 type 2 0471:0304
pwc Philips PCVC675K (Vesta) 0471:0307
pwc Philips PCVC680K (Vesta Pro) 0471:0308
pwc Philips PCVC690K (Vesta Pro Scan) 0471:030C
pwc Philips PCVC730K (ToUCam Fun), PCVC830 (ToUCam II) 0471:0310
pwc Philips PCVC740K (ToUCam Pro), PCVC840 (ToUCam II) 0471:0311
pwc Philips PCVC750K (ToUCam Pro Scan) 0471:0312
pwc Philips PCVC720K/40 (ToUCam XS) 0471:0313
pwc Philips SPC 900NC 0471:0329
pwc Philips SPC 880NC 0471:032C
pwc Sotec Afina Eye 04CC:8116
pwc Samsung MPC-C10 055D:9000
pwc Samsung MPC-C30 055D:9001
pwc Samsung SNC-35E (Ver3.0) 055D:9002
pwc Askey VC010 type 1 069A:0001
pwc AME Co. Afina Eye 06BE:8116
pwc Visionite VCS-UC300 0d81:1900
pwc Visionite VCS-UM100 0d81:1910
s2255drv Sensoray 2255 1943:2255, 1943:2257
stk1160 STK1160 USB video capture dongle 05e1:0408
stkwebcam Syntek DC1125 174f:a311, 05e1:0501
dvb-ttusb-budget Technotrend/Hauppauge Nova-USB devices 0b48:1003, 0b48:1004, 0b48:1005
dvb-ttusb_dec Technotrend/Hauppauge MPEG decoder DEC3000-s 0b48:1006
dvb-ttusb_dec Technotrend/Hauppauge MPEG decoder 0b48:1007
dvb-ttusb_dec Technotrend/Hauppauge MPEG decoder DEC2000-t 0b48:1008
dvb-ttusb_dec Technotrend/Hauppauge MPEG decoder DEC2540-t 0b48:1009
usbtv Fushicai USBTV007 Audio-Video Grabber 1b71:3002, 1f71:3301, 1f71:3306
zr364xx USB ZR364XX Camera 08ca:0109, 041e:4024, 0d64:0108, 0546:3187, 0d64:3108, 0595:4343, 0bb0:500d, 0feb:2004, 055f:b500, 08ca:2062, 052b:1a18, 04c8:0729, 04f2:a208, 0784:0040, 06d6:0034, 0a17:0062, 06d6:003b, 0a17:004e, 041e:405d, 08ca:2102, 06d6:003d

1.1. The media subsystem 61

Linux Media Documentation

1.1.5.2 PCI drivers

The PCI boards are identified by an identification called PCI ID. The PCI ID is actually composed
by two parts:

• Vendor ID and device ID;

• Subsystem ID and Subsystem device ID;

The lspci -nn command allows identifying the vendor/device PCI IDs:

$ lspci -nn
...
00:0a.0 Multimedia controller [0480]: Philips Semiconductors SAA7131/SAA7133/SAA7135␣
↪→Video Broadcast Decoder [1131:7133] (rev d1)
00:0b.0 Multimedia controller [0480]: Brooktree Corporation Bt878 Audio Capture␣
↪→[109e:0878] (rev 11)
01:00.0 Multimedia video controller [0400]: Conexant Systems, Inc. CX23887/8 PCIe␣
↪→Broadcast Audio and Video Decoder with 3D Comb [14f1:8880] (rev 0f)
02:01.0 Multimedia video controller [0400]: Internext Compression Inc iTVC15␣
↪→(CX23415) Video Decoder [4444:0803] (rev 01)
02:02.0 Multimedia video controller [0400]: Conexant Systems, Inc. CX23418 Single-
↪→Chip MPEG-2 Encoder with Integrated Analog Video/Broadcast Audio Decoder [14f1:5b7a]
02:03.0 Multimedia video controller [0400]: Brooktree Corporation Bt878 Video Capture␣
↪→[109e:036e] (rev 11)
...

The subsystem IDs can be obtained using lspci -vn

$ lspci -vn
...

00:0a.0 0480: 1131:7133 (rev d1)
Subsystem: 1461:f01d
Flags: bus master, medium devsel, latency 32, IRQ 209
Memory at e2002000 (32-bit, non-prefetchable) [size=2K]
Capabilities: [40] Power Management version 2

...

At the above example, the first card uses the saa7134 driver, and has a vendor/device PCI ID
equal to 1131:7133 and a PCI subsystem ID equal to 1461:f01d (see Saa7134 card list).

Unfortunately, sometimes the same PCI subsystem ID is used by different products. So, several
media drivers allow passing a card= parameter, in order to setup a card number that would
match the correct settings for an specific board.

The current supported PCI/PCIe cards (not including staging drivers) are listed below1.

Driver Name
altera-ci Altera FPGA based CI module
b2c2-flexcop-pci Technisat/B2C2 Air/Sky/Cable2PC PCI
bt878 DVB/ATSC Support for bt878 based TV cards
bttv BT8x8 Video For Linux
cobalt Cisco Cobalt
cx18 Conexant cx23418 MPEG encoder

Continued on next page

1 some of the drivers have sub-drivers, not shown at this table

62 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 9 – continued from previous page
Driver Name
cx23885 Conexant cx23885 (2388x successor)
cx25821 Conexant cx25821
cx88xx Conexant 2388x (bt878 successor)
ddbridge Digital Devices bridge
dm1105 SDMC DM1105 based PCI cards
dt3155 DT3155 frame grabber
dvb-ttpci AV7110 cards
earth-pt1 PT1 cards
earth-pt3 Earthsoft PT3 cards
hexium_gemini Hexium Gemini frame grabber
hexium_orion Hexium HV-PCI6 and Orion frame grabber
hopper HOPPER based cards
ipu3-cio2 Intel ipu3-cio2 driver
ivtv Conexant cx23416/cx23415 MPEG encoder/decoder
ivtvfb Conexant cx23415 framebuffer
mantis MANTIS based cards
meye Sony Vaio Picturebook Motion Eye
mxb Siemens-Nixdorf ‘Multimedia eXtension Board’
netup-unidvb NetUP Universal DVB card
ngene Micronas nGene
pluto2 Pluto2 cards
saa7134 Philips SAA7134
saa7164 NXP SAA7164
smipcie SMI PCIe DVBSky cards
solo6x10 Bluecherry / Softlogic 6x10 capture cards (MPEG-4/H.264)
sta2x11_vip STA2X11 VIP Video For Linux
tw5864 Techwell TW5864 video/audio grabber and encoder
tw686x Intersil/Techwell TW686x
tw68 Techwell tw68x Video For Linux
zoran Zoran-36057/36067 JPEG codec

Some of those drivers support multiple devices, as shown at the card lists below:

BTTV cards list

Card
num-
ber

Card name PCI subsystem IDs

0 * UNKNOWN/GENERIC *
1 MIRO PCTV
2 Hauppauge (bt848)
3 STB, Gateway P/N 6000699 (bt848)
4 Intel Create and Share PCI/ Smart Video Recorder III
5 Diamond DTV2000
6 AVerMedia TVPhone

Continued on next page

1.1. The media subsystem 63

Linux Media Documentation

Table 10 – continued from previous page
Card
num-
ber

Card name PCI subsystem IDs

7 MATRIX-Vision MV-Delta
8 Lifeview FlyVideo II (Bt848) LR26 / MAXI TV Video PCI2

LR26
9 IMS/IXmicro TurboTV
10 Hauppauge (bt878) 0070:13eb,

0070:3900,
2636:10b4

11 MIRO PCTV pro
12 ADS Technologies Channel Surfer TV (bt848)
13 AVerMedia TVCapture 98 1461:0002,

1461:0004,
1461:0300

14 Aimslab Video Highway Xtreme (VHX)
15 Zoltrix TV-Max a1a0:a0fc
16 Prolink Pixelview PlayTV (bt878)
17 Leadtek WinView 601
18 AVEC Intercapture
19 Lifeview FlyVideo II EZ /FlyKit LR38 Bt848 (capture only)
20 CEI Raffles Card
21 Lifeview FlyVideo 98/ Lucky Star Image World Confer-

enceTV LR50
22 Askey CPH050/ Phoebe Tv Master + FM 14ff:3002
23 Modular TechnologyMM201/MM202/MM205/MM210/MM215

PCTV, bt878
14c7:0101

24 Askey CPH05X/06X (bt878) [many vendors] 144f:3002,
144f:3005,
144f:5000, 14ff:3000

25 Terratec TerraTV+ Version 1.0 (Bt848)/ Terra TValue Ver-
sion 1.0/ Vobis TV-Boostar

26 Hauppauge WinCam newer (bt878)
27 Lifeview FlyVideo 98/ MAXI TV Video PCI2 LR50
28 Terratec TerraTV+ Version 1.1 (bt878) 153b:1127,

1852:1852
29 Imagenation PXC200 1295:200a
30 Lifeview FlyVideo 98 LR50 1f7f:1850
31 Formac iProTV, Formac ProTV I (bt848)
32 Intel Create and Share PCI/ Smart Video Recorder III
33 Terratec TerraTValue Version Bt878 153b:1117,

153b:1118,
153b:1119,
153b:111a,
153b:1134,
153b:5018

Continued on next page

64 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 10 – continued from previous page
Card
num-
ber

Card name PCI subsystem IDs

34 Leadtek WinFast 2000/ WinFast 2000 XP 107d:6606,
107d:6609,
6606:217d, f6ff:fff6

35 Lifeview FlyVideo 98 LR50 / Chronos Video Shuttle II 1851:1850,
1851:a050

36 Lifeview FlyVideo 98FM LR50 / Typhoon TView TV/FM
Tuner

1852:1852

37 Prolink PixelView PlayTV pro
38 Askey CPH06X TView99 144f:3000,

144f:a005, a04f:a0fc
39 Pinnacle PCTV Studio/Rave 11bd:0012,

bd11:1200,
bd11:ff00, 11bd:ff12

40 STB TV PCI FM, Gateway P/N 6000704 (bt878), 3Dfx
VoodooTV 100

10b4:2636,
10b4:2645,
121a:3060

41 AVerMedia TVPhone 98 1461:0001,
1461:0003

42 ProVideo PV951 aa0c:146c
43 Little OnAir TV
44 Sigma TVII-FM
45 MATRIX-Vision MV-Delta 2
46 Zoltrix Genie TV/FM 15b0:4000,

15b0:400a,
15b0:400d,
15b0:4010,
15b0:4016

47 Terratec TV/Radio+ 153b:1123
48 Askey CPH03x/ Dynalink Magic TView
49 IODATA GV-BCTV3/PCI 10fc:4020
50 Prolink PV-BT878P+4E / PixelView PlayTV PAK / Lenco

MXTV-9578 CP
51 Eagle Wireless Capricorn2 (bt878A)
52 Pinnacle PCTV Studio Pro
53 Typhoon TView RDS + FM Stereo / KNC1 TV Station RDS
54 Lifeview FlyVideo 2000 /FlyVideo A2/ Lifetec LT 9415 TV

[LR90]
55 Askey CPH031/ BESTBUY Easy TV
56 Lifeview FlyVideo 98FM LR50 a051:41a0
57 GrandTec ‘Grand Video Capture’ (Bt848) 4344:4142
58 Askey CPH060/ Phoebe TV Master Only (No FM)
59 Askey CPH03x TV Capturer
60 Modular Technology MM100PCTV
61 AG Electronics GMV1 15cb:0101
62 Askey CPH061/ BESTBUY Easy TV (bt878)

Continued on next page

1.1. The media subsystem 65

Linux Media Documentation

Table 10 – continued from previous page
Card
num-
ber

Card name PCI subsystem IDs

63 ATI TV-Wonder 1002:0001
64 ATI TV-Wonder VE 1002:0003
65 Lifeview FlyVideo 2000S LR90
66 Terratec TValueRadio 153b:1135, 153b:ff3b
67 IODATA GV-BCTV4/PCI 10fc:4050
68 3Dfx VoodooTV FM (Euro) 10b4:2637
69 Active Imaging AIMMS
70 Prolink Pixelview PV-BT878P+ (Rev.4C,8E)
71 Lifeview FlyVideo 98EZ (capture only) LR51 1851:1851
72 Prolink Pixelview PV-BT878P+9B (PlayTV Pro rev.9B

FM+NICAM)
1554:4011

73 Sensoray 311/611 6000:0311,
6000:0611

74 RemoteVision MX (RV605)
75 Powercolor MTV878/ MTV878R/ MTV878F
76 Canopus WinDVR PCI (COMPAQ Presario 3524JP,

5112JP)
0e11:0079

77 GrandTec Multi Capture Card (Bt878)
78 Jetway TV/Capture JW-TV878-FBK, Kworld KW-TV878RF 0a01:17de
79 DSP Design TCVIDEO
80 Hauppauge WinTV PVR 0070:4500
81 IODATA GV-BCTV5/PCI 10fc:4070, 10fc:d018
82 Osprey 100/150 (878) 0070:ff00
83 Osprey 100/150 (848)
84 Osprey 101 (848)
85 Osprey 101/151
86 Osprey 101/151 w/ svid
87 Osprey 200/201/250/251
88 Osprey 200/250 0070:ff01
89 Osprey 210/220/230
90 Osprey 500 0070:ff02
91 Osprey 540 0070:ff04
92 Osprey 2000 0070:ff03
93 IDS Eagle
94 Pinnacle PCTV Sat 11bd:001c
95 Formac ProTV II (bt878)
96 MachTV
97 Euresys Picolo

Continued on next page

66 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 10 – continued from previous page
Card
num-
ber

Card name PCI subsystem IDs

98 ProVideo PV150 aa00:1460,
aa01:1461,
aa02:1462,
aa03:1463,
aa04:1464,
aa05:1465,
aa06:1466,
aa07:1467

99 AD-TVK503
100 Hercules Smart TV Stereo
101 Pace TV & Radio Card
102 IVC-200 0000:a155,

0001:a155,
0002:a155,
0003:a155,
0100:a155,
0101:a155,
0102:a155,
0103:a155,
0800:a155,
0801:a155,
0802:a155,
0803:a155

103 Grand X-Guard / Trust 814PCI 0304:0102
104 Nebula Electronics DigiTV 0071:0101
105 ProVideo PV143 aa00:1430,

aa00:1431,
aa00:1432,
aa00:1433,
aa03:1433

106 PHYTEC VD-009-X1 VD-011 MiniDIN (bt878)
107 PHYTEC VD-009-X1 VD-011 Combi (bt878)
108 PHYTEC VD-009 MiniDIN (bt878)
109 PHYTEC VD-009 Combi (bt878)
110 IVC-100 ff00:a132
111 IVC-120G ff00:a182, ff01:a182,

ff02:a182, ff03:a182,
ff04:a182, ff05:a182,
ff06:a182, ff07:a182,
ff08:a182, ff09:a182,
ff0a:a182, ff0b:a182,
ff0c:a182, ff0d:a182,
ff0e:a182, ff0f:a182

112 pcHDTV HD-2000 TV 7063:2000
Continued on next page

1.1. The media subsystem 67

Linux Media Documentation

Table 10 – continued from previous page
Card
num-
ber

Card name PCI subsystem IDs

113 Twinhan DST + clones 11bd:0026,
1822:0001,
270f:fc00, 1822:0026

114 Winfast VC100 107d:6607
115 Teppro TEV-560/InterVision IV-560
116 SIMUS GVC1100 aa6a:82b2
117 NGS NGSTV+
118 LMLBT4
119 Tekram M205 PRO
120 Conceptronic CONTVFMi
121 Euresys Picolo Tetra 1805:0105,

1805:0106,
1805:0107,
1805:0108

122 Spirit TV Tuner
123 AVerMedia AVerTV DVB-T 771 1461:0771
124 AverMedia AverTV DVB-T 761 1461:0761
125 MATRIX Vision Sigma-SQ
126 MATRIX Vision Sigma-SLC
127 APAC Viewcomp 878(AMAX)
128 DViCO FusionHDTV DVB-T Lite 18ac:db10,

18ac:db11
129 V-Gear MyVCD
130 Super TV Tuner
131 Tibet Systems ‘Progress DVR’ CS16
132 Kodicom 4400R (master)
133 Kodicom 4400R (slave)
134 Adlink RTV24
135 DViCO FusionHDTV 5 Lite 18ac:d500
136 Acorp Y878F 9511:1540
137 Conceptronic CTVFMi v2 036e:109e
138 Prolink Pixelview PV-BT878P+ (Rev.2E)
139 Prolink PixelView PlayTV MPEG2 PV-M4900
140 Osprey 440 0070:ff07
141 Asound Skyeye PCTV
142 Sabrent TV-FM (bttv version)
143 Hauppauge ImpactVCB (bt878) 0070:13eb
144 MagicTV
145 SSAI Security Video Interface 4149:5353
146 SSAI Ultrasound Video Interface 414a:5353
147 VoodooTV 200 (USA) 121a:3000
148 DViCO FusionHDTV 2 dbc0:d200
149 Typhoon TV-Tuner PCI (50684)
150 Geovision GV-600 008a:763c
151 Kozumi KTV-01C

Continued on next page

68 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 10 – continued from previous page
Card
num-
ber

Card name PCI subsystem IDs

152 Encore ENL TV-FM-2 1000:1801
153 PHYTEC VD-012 (bt878)
154 PHYTEC VD-012-X1 (bt878)
155 PHYTEC VD-012-X2 (bt878)
156 IVCE-8784 0000:f050,

0001:f050,
0002:f050, 0003:f050

157 Geovision GV-800(S) (master) 800a:763d
158 Geovision GV-800(S) (slave) 800b:763d,

800c:763d,
800d:763d

159 ProVideo PV183 1830:1540,
1831:1540,
1832:1540,
1833:1540,
1834:1540,
1835:1540,
1836:1540,
1837:1540

160 Tongwei Video Technology TD-3116 f200:3116
161 Aposonic W-DVR 0279:0228
162 Adlink MPG24
163 Bt848 Capture 14MHz
164 CyberVision CV06 (SV)
165 Kworld V-Stream Xpert TV PVR878
166 PCI-8604PW

CX18 cards list

Those cards are supported by cx18 driver:

• Hauppauge HVR-1600 (ESMT memory)

• Hauppauge HVR-1600 (Samsung memory)

• Compro VideoMate H900

• Yuan MPC718 MiniPCI DVB-T/Analog

• Conexant Raptor PAL/SECAM

• Toshiba Qosmio DVB-T/Analog

• Leadtek WinFast PVR2100

• Leadtek WinFast DVR3100

• GoTView PCI DVD3 Hybrid

• Hauppauge HVR-1600 (s5h1411/tda18271)

1.1. The media subsystem 69

Linux Media Documentation

cx23885 cards list

Card
num-
ber

Card name PCI subsystem IDs

0 UNKNOWN/GENERIC 0070:3400
1 Hauppauge WinTV-HVR1800lp 0070:7600
2 Hauppauge WinTV-HVR1800 0070:7800,

0070:7801,
0070:7809

3 Hauppauge WinTV-HVR1250 0070:7911
4 DViCO FusionHDTV5 Express 18ac:d500
5 Hauppauge WinTV-HVR1500Q 0070:7790,

0070:7797
6 Hauppauge WinTV-HVR1500 0070:7710,

0070:7717
7 Hauppauge WinTV-HVR1200 0070:71d1,

0070:71d3
8 Hauppauge WinTV-HVR1700 0070:8101
9 Hauppauge WinTV-HVR1400 0070:8010
10 DViCO FusionHDTV7 Dual Express 18ac:d618
11 DViCO FusionHDTV DVB-T Dual Express 18ac:db78
12 Leadtek Winfast PxDVR3200 H 107d:6681
13 Compro VideoMate E650F 185b:e800
14 TurboSight TBS 6920 6920:8888
15 TeVii S470 d470:9022
16 DVBWorld DVB-S2 2005 0001:2005
17 NetUP Dual DVB-S2 CI 1b55:2a2c
18 Hauppauge WinTV-HVR1270 0070:2211
19 Hauppauge WinTV-HVR1275 0070:2215,

0070:221d,
0070:22f2

20 Hauppauge WinTV-HVR1255 0070:2251,
0070:22f1

21 Hauppauge WinTV-HVR1210 0070:2291,
0070:2295,
0070:2299,
0070:229d,
0070:22f0,
0070:22f3,
0070:22f4, 0070:22f5

22 Mygica X8506 DMB-TH 14f1:8651
23 Magic-Pro ProHDTV Extreme 2 14f1:8657
24 Hauppauge WinTV-HVR1850 0070:8541
25 Compro VideoMate E800 1858:e800
26 Hauppauge WinTV-HVR1290 0070:8551
27 Mygica X8558 PRO DMB-TH 14f1:8578
28 LEADTEK WinFast PxTV1200 107d:6f22

Continued on next page

70 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 11 – continued from previous page
Card
num-
ber

Card name PCI subsystem IDs

29 GoTView X5 3D Hybrid 5654:2390
30 NetUP Dual DVB-T/C-CI RF 1b55:e2e4
31 Leadtek Winfast PxDVR3200 H XC4000 107d:6f39
32 MPX-885
33 Mygica X8502/X8507 ISDB-T 14f1:8502
34 TerraTec Cinergy T PCIe Dual 153b:117e
35 TeVii S471 d471:9022
36 Hauppauge WinTV-HVR1255 0070:2259
37 Prof Revolution DVB-S2 8000 8000:3034
38 Hauppauge WinTV-HVR4400/HVR5500 0070:c108,

0070:c138,
0070:c1f8

39 AVerTV Hybrid Express Slim HC81R 1461:d939
40 TurboSight TBS 6981 6981:8888
41 TurboSight TBS 6980 6980:8888
42 Leadtek Winfast PxPVR2200 107d:6f21
43 Hauppauge ImpactVCB-e 0070:7133,

0070:7137
44 DViCO FusionHDTV DVB-T Dual Express2 18ac:db98
45 DVBSky T9580 4254:9580
46 DVBSky T980C 4254:980c
47 DVBSky S950C 4254:950c
48 Technotrend TT-budget CT2-4500 CI 13c2:3013
49 DVBSky S950 4254:0950
50 DVBSky S952 4254:0952
51 DVBSky T982 4254:0982
52 Hauppauge WinTV-HVR5525 0070:f038
53 Hauppauge WinTV Starburst 0070:c12a
54 ViewCast 260e 1576:0260
55 ViewCast 460e 1576:0460
56 Hauppauge WinTV-QuadHD-DVB 0070:6a28,

0070:6b28
57 Hauppauge WinTV-QuadHD-ATSC 0070:6a18,

0070:6b18
58 Hauppauge WinTV-HVR-1265(161111) 0070:2a18
59 Hauppauge WinTV-Starburst2 0070:f02a
60 Hauppauge WinTV-QuadHD-DVB(885)
61 Hauppauge WinTV-QuadHD-ATSC(885)
62 AVerMedia CE310B 1461:3100

1.1. The media subsystem 71

Linux Media Documentation

CX88 cards list

Card
num-
ber

Card name PCI subsystem IDs

0 UNKNOWN/GENERIC
1 Hauppauge WinTV 34xxx models 0070:3400,

0070:3401
2 GDI Black Gold 14c7:0106,

14c7:0107
3 PixelView 1554:4811
4 ATI TV Wonder Pro 1002:00f8, 1002:00f9
5 Leadtek Winfast 2000XP Expert 107d:6611,

107d:6613
6 AverTV Studio 303 (M126) 1461:000b
7 MSI TV-@nywhere Master 1462:8606
8 Leadtek Winfast DV2000 107d:6620,

107d:6621
9 Leadtek PVR 2000 107d:663b,

107d:663c,
107d:6632,
107d:6630,
107d:6638,
107d:6631,
107d:6637,
107d:663d

10 IODATA GV-VCP3/PCI 10fc:d003
11 Prolink PlayTV PVR
12 ASUS PVR-416 1043:4823,

1461:c111
13 MSI TV-@nywhere
14 KWorld/VStream XPert DVB-T 17de:08a6
15 DViCO FusionHDTV DVB-T1 18ac:db00
16 KWorld LTV883RF
17 DViCO FusionHDTV 3 Gold-Q 18ac:d810,

18ac:d800
18 Hauppauge Nova-T DVB-T 0070:9002,

0070:9001,
0070:9000

19 Conexant DVB-T reference design 14f1:0187
20 Provideo PV259 1540:2580
21 DViCO FusionHDTV DVB-T Plus 18ac:db10,

18ac:db11
22 pcHDTV HD3000 HDTV 7063:3000
23 digitalnow DNTV Live! DVB-T 17de:a8a6
24 Hauppauge WinTV 28xxx (Roslyn) models 0070:2801
25 Digital-LogicMICROSPACE Entertainment Center (MEC) 14f1:0342
26 IODATA GV/BCTV7E 10fc:d035

Continued on next page

72 Chapter 1. Media subsystem admin and user guide

mailto:TV-@nywhere
mailto:TV-@nywhere

Linux Media Documentation

Table 12 – continued from previous page
Card
num-
ber

Card name PCI subsystem IDs

27 PixelView PlayTV Ultra Pro (Stereo)
28 DViCO FusionHDTV 3 Gold-T 18ac:d820
29 ADS Tech Instant TV DVB-T PCI 1421:0334
30 TerraTec Cinergy 1400 DVB-T 153b:1166
31 DViCO FusionHDTV 5 Gold 18ac:d500
32 AverMedia UltraTV Media Center PCI 550 1461:8011
33 Kworld V-Stream Xpert DVD
34 ATI HDTV Wonder 1002:a101
35 WinFast DTV1000-T 107d:665f
36 AVerTV 303 (M126) 1461:000a
37 Hauppauge Nova-S-Plus DVB-S 0070:9201,

0070:9202
38 Hauppauge Nova-SE2 DVB-S 0070:9200
39 KWorld DVB-S 100 17de:08b2,

1421:0341
40 Hauppauge WinTV-HVR1100 DVB-T/Hybrid 0070:9400,

0070:9402
41 Hauppauge WinTV-HVR1100 DVB-T/Hybrid (Low Profile) 0070:9800,

0070:9802
42 digitalnow DNTV Live! DVB-T Pro 1822:0025,

1822:0019
43 KWorld/VStream XPert DVB-T with cx22702 17de:08a1,

12ab:2300
44 DViCO FusionHDTV DVB-T Dual Digital 18ac:db50,

18ac:db54
45 KWorld HardwareMpegTV XPert 17de:0840,

1421:0305
46 DViCO FusionHDTV DVB-T Hybrid 18ac:db40,

18ac:db44
47 pcHDTV HD5500 HDTV 7063:5500
48 Kworld MCE 200 Deluxe 17de:0841
49 PixelView PlayTV P7000 1554:4813
50 NPG Tech Real TV FM Top 10 14f1:0842
51 WinFast DTV2000 H 107d:665e
52 Geniatech DVB-S 14f1:0084
53 Hauppauge WinTV-HVR3000 TriMode Analog/DVB-

S/DVB-T
0070:1404,
0070:1400,
0070:1401,
0070:1402

54 Norwood Micro TV Tuner
55 Shenzhen Tungsten Ages Tech TE-DTV-250 / Swann OEM c180:c980
56 Hauppauge WinTV-HVR1300 DVB-T/Hybrid MPEG En-

coder
0070:9600,
0070:9601,
0070:9602

57 ADS Tech Instant Video PCI 1421:0390
Continued on next page

1.1. The media subsystem 73

Linux Media Documentation

Table 12 – continued from previous page
Card
num-
ber

Card name PCI subsystem IDs

58 Pinnacle PCTV HD 800i 11bd:0051
59 DViCO FusionHDTV 5 PCI nano 18ac:d530
60 Pinnacle Hybrid PCTV 12ab:1788
61 Leadtek TV2000 XP Global 107d:6f18,

107d:6618,
107d:6619

62 PowerColor RA330 14f1:ea3d
63 Geniatech X8000-MT DVBT 14f1:8852
64 DViCO FusionHDTV DVB-T PRO 18ac:db30
65 DViCO FusionHDTV 7 Gold 18ac:d610
66 Prolink Pixelview MPEG 8000GT 1554:4935
67 Kworld PlusTV HD PCI 120 (ATSC 120) 17de:08c1
68 Hauppauge WinTV-HVR4000 DVB-S/S2/T/Hybrid 0070:6900,

0070:6904,
0070:6902

69 Hauppauge WinTV-HVR4000(Lite) DVB-S/S2 0070:6905,
0070:6906

70 TeVii S460 DVB-S/S2 d460:9022
71 Omicom SS4 DVB-S/S2 PCI A044:2011
72 TBS 8920 DVB-S/S2 8920:8888
73 TeVii S420 DVB-S d420:9022
74 Prolink Pixelview Global Extreme 1554:4976
75 PROF 7300 DVB-S/S2 B033:3033
76 SATTRADE ST4200 DVB-S/S2 b200:4200
77 TBS 8910 DVB-S 8910:8888
78 Prof 6200 DVB-S b022:3022
79 Terratec Cinergy HT PCI MKII 153b:1177
80 Hauppauge WinTV-IR Only 0070:9290
81 Leadtek WinFast DTV1800 Hybrid 107d:6654
82 WinFast DTV2000 H rev. J 107d:6f2b
83 Prof 7301 DVB-S/S2 b034:3034
84 Samsung SMT 7020 DVB-S 18ac:dc00,

18ac:dccd
85 Twinhan VP-1027 DVB-S 1822:0023
86 TeVii S464 DVB-S/S2 d464:9022
87 Leadtek WinFast DTV2000 H PLUS 107d:6f42
88 Leadtek WinFast DTV1800 H (XC4000) 107d:6f38
89 Leadtek TV2000 XP Global (SC4100) 107d:6f36
90 Leadtek TV2000 XP Global (XC4100) 107d:6f43
91 NotOnlyTV LV3H

74 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

IVTV cards list

Card
num-
ber

Card name PCI subsystem
IDs

0 Hauppauge WinTV PVR-250 IVTV16
104d:813d

1 Hauppauge WinTV PVR-350 IVTV16
104d:813d

2 Hauppauge WinTV PVR-150 IVTV16
104d:813d

3 AVerMedia M179 IVTV15
1461:a3cf,
IVTV15
1461:a3ce

4 Yuan MPG600, Kuroutoshikou ITVC16-STVLP IVTV16
12ab:fff3,
IVTV16 12ab:ffff

5 YUAN MPG160, Kuroutoshikou ITVC15-STVLP, I/O Data GV-
M2TV/PCI

IVTV15
10fc:40a0

6 Yuan PG600, Diamond PVR-550 IVTV16
ff92:0070,
IVTV16 ffab:0600

7 Adaptec VideOh! AVC-2410 IVTV16
9005:0093

8 Adaptec VideOh! AVC-2010 IVTV16
9005:0092

9 Nagase Transgear 5000TV IVTV16 1461:bfff
10 AOpen VA2000MAX-SNT6 IVTV16 0000:ff5f
11 Yuan MPG600GR, Kuroutoshikou CX23416GYC-STVLP IVTV16

12ab:0600,
IVTV16
fbab:0600,
IVTV16
1154:0523

12 I/O Data GV-MVP/RX, GV-MVP/RX2W (dual tuner) IVTV16
10fc:d01e,
IVTV16
10fc:d038,
IVTV16
10fc:d039

13 I/O Data GV-MVP/RX2E IVTV16
10fc:d025

14 GotView PCI DVD IVTV16
12ab:0600

15 GotView PCI DVD2 Deluxe IVTV16 ffac:0600
16 Yuan MPC622 IVTV16

ff01:d998
17 Digital Cowboy DCT-MTVP1 IVTV16 1461:bfff

Continued on next page

1.1. The media subsystem 75

Linux Media Documentation

Table 13 – continued from previous page
Card
num-
ber

Card name PCI subsystem
IDs

18 Yuan PG600-2, GotView PCI DVD Lite IVTV16
ffab:0600,
IVTV16 ffad:0600

19 Club3D ZAP-TV1x01 IVTV16 ffab:0600
20 AVerTV MCE 116 Plus IVTV16

1461:c439
21 ASUS Falcon2 IVTV16

1043:4b66,
IVTV16
1043:462e,
IVTV16
1043:4b2e

22 AVerMedia PVR-150 Plus / AVerTVM113 Partsnic (Daewoo) Tuner IVTV16
1461:c034,
IVTV16
1461:c035

23 AVerMedia EZMaker PCI Deluxe IVTV16
1461:c03f

24 AVerMedia M104 IVTV16
1461:c136

25 Buffalo PC-MV5L/PCI IVTV16
1154:052b

26 AVerMedia UltraTV 1500 MCE / AVerTV M113 Philips Tuner IVTV16
1461:c019,
IVTV16
1461:c01b

27 Sony VAIO Giga Pocket (ENX Kikyou) IVTV16
104d:813d

28 Hauppauge WinTV PVR-350 (V1) IVTV16
104d:813d

29 Yuan MPG600GR, Kuroutoshikou CX23416GYC-STVLP (no GR) IVTV16
104d:813d

30 Yuan MPG600GR, Kuroutoshikou CX23416GYC-STVLP (no
GR/YCS)

IVTV16
104d:813d

SAA7134 cards list

Card
num-
ber

Card name PCI subsystem IDs

0 UNKNOWN/GENERIC
1 Proteus Pro [philips reference design] 1131:2001,

1131:2001
Continued on next page

76 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 14 – continued from previous page
Card
num-
ber

Card name PCI subsystem IDs

2 LifeView FlyVIDEO3000 5168:0138,
4e42:0138

3 LifeView/Typhoon FlyVIDEO2000 5168:0138,
4e42:0138

4 EMPRESS 1131:6752
5 SKNet Monster TV 1131:4e85
6 Tevion MD 9717
7 KNC One TV-Station RDS / Typhoon TV Tuner RDS 1131:fe01, 1894:fe01
8 Terratec Cinergy 400 TV 153b:1142
9 Medion 5044
10 Kworld/KuroutoShikou SAA7130-TVPCI
11 Terratec Cinergy 600 TV 153b:1143
12 Medion 7134 16be:0003,

16be:5000
13 Typhoon TV+Radio 90031
14 ELSA EX-VISION 300TV 1048:226b
15 ELSA EX-VISION 500TV 1048:226a
16 ASUS TV-FM 7134 1043:4842,

1043:4830,
1043:4840

17 AOPEN VA1000 POWER 1131:7133
18 BMK MPEX No Tuner
19 Compro VideoMate TV 185b:c100
20 Matrox CronosPlus 102B:48d0
21 10MOONS PCI TV CAPTURE CARD 1131:2001
22 AverMedia M156 / Medion 2819 1461:a70b
23 BMK MPEX Tuner
24 KNC One TV-Station DVR 1894:a006
25 ASUS TV-FM 7133 1043:4843
26 Pinnacle PCTV Stereo (saa7134) 11bd:002b
27 Manli MuchTV M-TV002
28 Manli MuchTV M-TV001
29 Nagase Sangyo TransGear 3000TV 1461:050c
30 Elitegroup ECS TVP3XP FM1216 Tuner Card(PAL-

BG,FM)
1019:4cb4

31 Elitegroup ECS TVP3XP FM1236 Tuner Card (NTSC,FM) 1019:4cb5
32 AVACS SmartTV
33 AVerMedia DVD EZMaker 1461:10ff
34 Noval Prime TV 7133
35 AverMedia AverTV Studio 305 1461:2115
36 UPMOST PURPLE TV 12ab:0800
37 Items MuchTV Plus / IT-005
38 Terratec Cinergy 200 TV 153b:1152

Continued on next page

1.1. The media subsystem 77

Linux Media Documentation

Table 14 – continued from previous page
Card
num-
ber

Card name PCI subsystem IDs

39 LifeView FlyTV Platinum Mini 5168:0212,
4e42:0212,
5169:1502

40 Compro VideoMate TV PVR/FM 185b:c100
41 Compro VideoMate TV Gold+ 185b:c100
42 Sabrent SBT-TVFM (saa7130)
43 :Zolid Xpert TV7134
44 Empire PCI TV-Radio LE
45 Avermedia AVerTV Studio 307 1461:9715
46 AVerMedia Cardbus TV/Radio (E500) 1461:d6ee
47 Terratec Cinergy 400 mobile 153b:1162
48 Terratec Cinergy 600 TV MK3 153b:1158
49 Compro VideoMate Gold+ Pal 185b:c200
50 Pinnacle PCTV 300i DVB-T + PAL 11bd:002d
51 ProVideo PV952 1540:9524
52 AverMedia AverTV/305 1461:2108
53 ASUS TV-FM 7135 1043:4845
54 LifeView FlyTV Platinum FM / Gold 5168:0214,

5168:5214,
1489:0214,
5168:0304

55 LifeView FlyDVB-T DUO / MSI TV@nywhere Duo 5168:0306,
4E42:0306

56 Avermedia AVerTV 307 1461:a70a
57 Avermedia AVerTV GO 007 FM 1461:f31f
58 ADS Tech Instant TV (saa7135) 1421:0350,

1421:0351,
1421:0370,
1421:1370

59 Kworld/Tevion V-Stream Xpert TV PVR7134
60 LifeView/Typhoon/Genius FlyDVB-T Duo Cardbus 5168:0502,

4e42:0502,
1489:0502

61 Philips TOUGH DVB-T reference design 1131:2004
62 Compro VideoMate TV Gold+II
63 Kworld Xpert TV PVR7134
64 FlyTV mini Asus Digimatrix 1043:0210
65 V-Stream Studio TV Terminator
66 Yuan TUN-900 (saa7135)
67 Beholder BeholdTV 409 FM 0000:4091
68 GoTView 7135 PCI 5456:7135
69 Philips EUROPA V3 reference design 1131:2004
70 Compro Videomate DVB-T300 185b:c900
71 Compro Videomate DVB-T200 185b:c901
72 RTD Embedded Technologies VFG7350 1435:7350

Continued on next page

78 Chapter 1. Media subsystem admin and user guide

mailto:TV@nywhere

Linux Media Documentation

Table 14 – continued from previous page
Card
num-
ber

Card name PCI subsystem IDs

73 RTD Embedded Technologies VFG7330 1435:7330
74 LifeView FlyTV Platinum Mini2 14c0:1212
75 AVerMedia AVerTVHD MCE A180 1461:1044
76 SKNet MonsterTV Mobile 1131:4ee9
77 Pinnacle PCTV 40i/50i/110i (saa7133) 11bd:002e
78 ASUSTeK P7131 Dual 1043:4862
79 Sedna/MuchTV PC TV Cardbus TV/Radio (ITO25 Rev:2B)
80 ASUS Digimatrix TV 1043:0210
81 Philips Tiger reference design 1131:2018
82 MSI TV@Anywhere plus 1462:6231,

1462:8624
83 Terratec Cinergy 250 PCI TV 153b:1160
84 LifeView FlyDVB Trio 5168:0319
85 AverTV DVB-T 777 1461:2c05,

1461:2c05
86 LifeView FlyDVB-T / Genius VideoWonder DVB-T 5168:0301,

1489:0301
87 ADS Instant TV Duo Cardbus PTV331 0331:1421
88 Tevion/KWorld DVB-T 220RF 17de:7201
89 ELSA EX-VISION 700TV 1048:226c
90 Kworld ATSC110/115 17de:7350,

17de:7352
91 AVerMedia A169 B 1461:7360
92 AVerMedia A169 B1 1461:6360
93 Medion 7134 Bridge #2 16be:0005
94 LifeView FlyDVB-T Hybrid Cardbus/MSI TV @nywhere

A/D NB
5168:3306,
5168:3502,
5168:3307,
4e42:3502

95 LifeView FlyVIDEO3000 (NTSC) 5169:0138
96 Medion Md8800 Quadro 16be:0007,

16be:0008,
16be:000d

97 LifeView FlyDVB-S /Acorp TV134DS 5168:0300,
4e42:0300

98 Proteus Pro 2309 0919:2003
99 AVerMedia TV Hybrid A16AR 1461:2c00
100 Asus Europa2 OEM 1043:4860
101 Pinnacle PCTV 310i 11bd:002f
102 Avermedia AVerTV Studio 507 1461:9715
103 Compro Videomate DVB-T200A

Continued on next page

1.1. The media subsystem 79

mailto:TV@Anywhere

Linux Media Documentation

Table 14 – continued from previous page
Card
num-
ber

Card name PCI subsystem IDs

104 Hauppauge WinTV-HVR1110 DVB-T/Hybrid 0070:6700,
0070:6701,
0070:6702,
0070:6703,
0070:6704,
0070:6705

105 Terratec Cinergy HT PCMCIA 153b:1172
106 Encore ENLTV 1131:2342,

1131:2341,
3016:2344

107 Encore ENLTV-FM 1131:230f
108 Terratec Cinergy HT PCI 153b:1175
109 Philips Tiger - S Reference design
110 Avermedia M102 1461:f31e
111 ASUS P7131 4871 1043:4871
112 ASUSTeK P7131 Hybrid 1043:4876
113 Elitegroup ECS TVP3XP FM1246 Tuner Card (PAL,FM) 1019:4cb6
114 KWorld DVB-T 210 17de:7250
115 Sabrent PCMCIA TV-PCB05 0919:2003
116 10MOONS TM300 TV Card 1131:2304
117 Avermedia Super 007 1461:f01d
118 Beholder BeholdTV 401 0000:4016
119 Beholder BeholdTV 403 0000:4036
120 Beholder BeholdTV 403 FM 0000:4037
121 Beholder BeholdTV 405 0000:4050
122 Beholder BeholdTV 405 FM 0000:4051
123 Beholder BeholdTV 407 0000:4070
124 Beholder BeholdTV 407 FM 0000:4071
125 Beholder BeholdTV 409 0000:4090
126 Beholder BeholdTV 505 FM 5ace:5050
127 Beholder BeholdTV 507 FM / BeholdTV 509 FM 5ace:5070,

5ace:5090
128 Beholder BeholdTV Columbus TV/FM 0000:5201
129 Beholder BeholdTV 607 FM 5ace:6070
130 Beholder BeholdTV M6 5ace:6190
131 Twinhan Hybrid DTV-DVB 3056 PCI 1822:0022
132 Genius TVGO AM11MCE
133 NXP Snake DVB-S reference design
134 Medion/Creatix CTX953 Hybrid 16be:0010
135 MSI TV@nywhere A/D v1.1 1462:8625
136 AVerMedia Cardbus TV/Radio (E506R) 1461:f436
137 AVerMedia Hybrid TV/Radio (A16D) 1461:f936
138 Avermedia M115 1461:a836
139 Compro VideoMate T750 185b:c900
140 Avermedia DVB-S Pro A700 1461:a7a1

Continued on next page

80 Chapter 1. Media subsystem admin and user guide

mailto:TV@nywhere

Linux Media Documentation

Table 14 – continued from previous page
Card
num-
ber

Card name PCI subsystem IDs

141 Avermedia DVB-S Hybrid+FM A700 1461:a7a2
142 Beholder BeholdTV H6 5ace:6290
143 Beholder BeholdTV M63 5ace:6191
144 Beholder BeholdTV M6 Extra 5ace:6193
145 AVerMedia MiniPCI DVB-T Hybrid M103 1461:f636, 1461:f736
146 ASUSTeK P7131 Analog
147 Asus Tiger 3in1 1043:4878
148 Encore ENLTV-FM v5.3 1a7f:2008
149 Avermedia PCI pure analog (M135A) 1461:f11d
150 Zogis Real Angel 220
151 ADS Tech Instant HDTV 1421:0380
152 Asus Tiger Rev:1.00 1043:4857
153 Kworld Plus TV Analog Lite PCI 17de:7128
154 Avermedia AVerTV GO 007 FM Plus 1461:f31d
155 Hauppauge WinTV-HVR1150 ATSC/QAM-Hybrid 0070:6706,

0070:6708
156 Hauppauge WinTV-HVR1120 DVB-T/Hybrid 0070:6707,

0070:6709,
0070:670a

157 Avermedia AVerTV Studio 507UA 1461:a11b
158 AVerMedia Cardbus TV/Radio (E501R) 1461:b7e9
159 Beholder BeholdTV 505 RDS 0000:505B
160 Beholder BeholdTV 507 RDS 0000:5071
161 Beholder BeholdTV 507 RDS 0000:507B
162 Beholder BeholdTV 607 FM 5ace:6071
163 Beholder BeholdTV 609 FM 5ace:6090
164 Beholder BeholdTV 609 FM 5ace:6091
165 Beholder BeholdTV 607 RDS 5ace:6072
166 Beholder BeholdTV 607 RDS 5ace:6073
167 Beholder BeholdTV 609 RDS 5ace:6092
168 Beholder BeholdTV 609 RDS 5ace:6093
169 Compro VideoMate S350/S300 185b:c900
170 AverMedia AverTV Studio 505 1461:a115
171 Beholder BeholdTV X7 5ace:7595
172 RoverMedia TV Link Pro FM 19d1:0138
173 Zolid Hybrid TV Tuner PCI 1131:2004
174 Asus Europa Hybrid OEM 1043:4847
175 Leadtek Winfast DTV1000S 107d:6655
176 Beholder BeholdTV 505 RDS 0000:5051
177 Hawell HW-404M7
178 Beholder BeholdTV H7 5ace:7190
179 Beholder BeholdTV A7 5ace:7090
180 Avermedia PCI M733A 1461:4155,

1461:4255
181 TechoTrend TT-budget T-3000 13c2:2804

Continued on next page

1.1. The media subsystem 81

Linux Media Documentation

Table 14 – continued from previous page
Card
num-
ber

Card name PCI subsystem IDs

182 Kworld PCI SBTVD/ISDB-T Full-Seg Hybrid 17de:b136
183 Compro VideoMate Vista M1F 185b:c900
184 Encore ENLTV-FM 3 1a7f:2108
185 MagicPro ProHDTV Pro2 DMB-TH/Hybrid 17de:d136
186 Beholder BeholdTV 501 5ace:5010
187 Beholder BeholdTV 503 FM 5ace:5030
188 Sensoray 811/911 6000:0811,

6000:0911
189 Kworld PC150-U 17de:a134
190 Asus My Cinema PS3-100 1043:48cd
191 Hawell HW-9004V1
192 AverMedia AverTV Satellite Hybrid+FM A706 1461:2055
193 WIS Voyager or compatible 1905:7007
194 AverMedia AverTV/505 1461:a10a
195 Leadtek Winfast TV2100 FM 107d:6f3a
196 SnaZio* TVPVR PRO 1779:13cf

SAA7164 cards list

Card
num-
ber

Card name PCI subsystem IDs

0 Unknown
1 Generic Rev2
2 Generic Rev3
3 Hauppauge WinTV-HVR2250 0070:8880,

0070:8810
4 Hauppauge WinTV-HVR2200 0070:8980
5 Hauppauge WinTV-HVR2200 0070:8900
6 Hauppauge WinTV-HVR2200 0070:8901
7 Hauppauge WinTV-HVR2250 0070:8891,

0070:8851
8 Hauppauge WinTV-HVR2250 0070:88A1
9 Hauppauge WinTV-HVR2200 0070:8940
10 Hauppauge WinTV-HVR2200 0070:8953
11 Hauppauge WinTV-HVR2255(proto) 0070:f111
12 Hauppauge WinTV-HVR2255 0070:f111
13 Hauppauge WinTV-HVR2205 0070:f123, 0070:f120

82 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Zoran cards list

Card
num-
ber

Card name PCI subsystem IDs

0 DC10(old) <any>
1 DC10(new) <any>
2 DC10_PLUS 1031:7efe
3 DC30 <any>
4 DC30_PLUS 1031:d801
5 LML33 <any>
6 LML33R10 12f8:8a02
7 Buz 13ca:4231
8 6-Eyes <any>

1.1.5.3 Platform drivers

There are several drivers that are focused on providing support for functionality that are already
included at the main board, and don’t use neither USB nor PCI bus. Those drivers are called
platform drivers, and are very popular on embedded devices.

The current supported of platform drivers (not including staging drivers) are listed below

Driver Name
am437x-vpfe TI AM437x VPFE
aspeed-video Aspeed AST2400 and AST2500
atmel-isc ATMEL Image Sensor Controller (ISC)
atmel-isi ATMEL Image Sensor Interface (ISI)
c8sectpfe SDR platform devices
c8sectpfe SDR platform devices
cafe_ccic Marvell 88ALP01 (Cafe) CMOS Camera Controller
cdns-csi2rx Cadence MIPI-CSI2 RX Controller
cdns-csi2tx Cadence MIPI-CSI2 TX Controller
coda-vpu Chips&Media Coda multi-standard codec IP
dm355_ccdc TI DM355 CCDC video capture
dm644x_ccdc TI DM6446 CCDC video capture
exynos-fimc-is EXYNOS4x12 FIMC-IS (Imaging Subsystem)
exynos-fimc-lite EXYNOS FIMC-LITE camera interface
exynos-gsc Samsung Exynos G-Scaler
exy Samsung S5P/EXYNOS4 SoC series Camera Subsystem
fsl-viu Freescale VIU
imx-pxp i.MX Pixel Pipeline (PXP)
isdf TI DM365 ISIF video capture
mmp_camera Marvell Armada 610 integrated camera controller
mtk_jpeg Mediatek JPEG Codec
mtk-mdp Mediatek MDP
mtk-vcodec-dec Mediatek Video Codec
mtk-vpu Mediatek Video Processor Unit

Continued on next page

1.1. The media subsystem 83

Linux Media Documentation

Table 15 – continued from previous page
Driver Name
mx2_emmaprp MX2 eMMa-PrP
omap3-isp OMAP 3 Camera
omap-vout OMAP2/OMAP3 V4L2-Display
pxa_camera PXA27x Quick Capture Interface
qcom-camss Qualcomm V4L2 Camera Subsystem
rcar-csi2 R-Car MIPI CSI-2 Receiver
rcar_drif Renesas Digital Radio Interface (DRIF)
rcar-fcp Renesas Frame Compression Processor
rcar_fdp1 Renesas Fine Display Processor
rcar_jpu Renesas JPEG Processing Unit
rcar-vin R-Car Video Input (VIN)
renesas-ceu Renesas Capture Engine Unit (CEU)
rockchip-rga Rockchip Raster 2d Graphic Acceleration Unit
s3c-camif Samsung S3C24XX/S3C64XX SoC Camera Interface
s5p-csis S5P/EXYNOS MIPI-CSI2 receiver (MIPI-CSIS)
s5p-fimc S5P/EXYNOS4 FIMC/CAMIF camera interface
s5p-g2d Samsung S5P and EXYNOS4 G2D 2d graphics accelerator
s5p-jpeg Samsung S5P/Exynos3250/Exynos4 JPEG codec
s5p-mfc Samsung S5P MFC Video Codec
sh_veu SuperH VEU mem2mem video processing
sh_vou SuperH VOU video output
stm32-dcmi STM32 Digital Camera Memory Interface (DCMI)
stm32-dma2d STM32 Chrom-Art Accelerator Unit
sun4i-csi Allwinner A10 CMOS Sensor Interface Support
sun6i-csi Allwinner V3s Camera Sensor Interface
sun8i-di Allwinner Deinterlace
sun8i-rotate Allwinner DE2 rotation
ti-cal TI Memory-to-memory multimedia devices
ti-csc TI DVB platform devices
ti-vpe TI VPE (Video Processing Engine)
venus-enc Qualcomm Venus V4L2 encoder/decoder
via-camera VIAFB camera controller
video-mux Video Multiplexer
vpif_display TI DaVinci VPIF V4L2-Display
vpif_capture TI DaVinci VPIF video capture
vpss TI DaVinci VPBE V4L2-Display
vsp1 Renesas VSP1 Video Processing Engine
xilinx-tpg Xilinx Video Test Pattern Generator
xilinx-video Xilinx Video IP (EXPERIMENTAL)
xilinx-vtc Xilinx Video Timing Controller

84 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

MMC/SDIO DVB adapters

Driver Name
smssdio Siano SMS1xxx based MDTV via SDIO interface

1.1.5.4 Radio drivers

There is also support for pure AM/FM radio, and even for some FM radio transmitters:

Driver Name
si4713 Silicon Labs Si4713 FM Radio Transmitter
radio-aztech Aztech/Packard Bell Radio
radio-cadet ADS Cadet AM/FM Tuner
radio-gemtek GemTek Radio card (or compatible)
radio-maxiradio Guillemot MAXI Radio FM 2000 radio
radio-miropcm20 miroSOUND PCM20 radio
radio-aimslab AIMSlab RadioTrack (aka RadioReveal)
radio-rtrack2 AIMSlab RadioTrack II
saa7706h SAA7706H Car Radio DSP
radio-sf16fmi SF16-FMI/SF16-FMP/SF16-FMD Radio
radio-sf16fmr2 SF16-FMR2/SF16-FMD2 Radio
radio-shark Griffin radioSHARK USB radio receiver
shark2 Griffin radioSHARK2 USB radio receiver
radio-si470x-common Silicon Labs Si470x FM Radio Receiver
radio-si476x Silicon Laboratories Si476x I2C FM Radio
radio-tea5764 TEA5764 I2C FM radio
tef6862 TEF6862 Car Radio Enhanced Selectivity Tuner
radio-terratec TerraTec ActiveRadio ISA Standalone
radio-timb Enable the Timberdale radio driver
radio-trust Trust FM radio card
radio-typhoon Typhoon Radio (a.k.a. EcoRadio)
radio-wl1273 Texas Instruments WL1273 I2C FM Radio
fm_drv ISA radio devices
fm_drv ISA radio devices
radio-zoltrix Zoltrix Radio
dsbr100 D-Link/GemTek USB FM radio
radio-keene Keene FM Transmitter USB
radio-ma901 Masterkit MA901 USB FM radio
radio-mr800 AverMedia MR 800 USB FM radio
radio-raremono Thanko’s Raremono AM/FM/SW radio
radio-si470x-usb Silicon Labs Si470x FM Radio Receiver support with USB
radio-usb-si4713 Silicon Labs Si4713 FM Radio Transmitter support with USB

1.1. The media subsystem 85

Linux Media Documentation

1.1.5.5 I2C drivers

The I2C (Inter-Integrated Circuit) bus is a three-wires bus used internally at the media cards
for communication between different chips. While the bus is not visible to the Linux Kernel,
drivers need to send and receive commands via the bus. The Linux Kernel driver abstraction
has support to implement different drivers for each component inside an I2C bus, as if the bus
were visible to the main system board.

One of the problems with I2C devices is that sometimes the same device may work with different
I2C hardware. This is common, for example, on devices that comes with a tuner for North
America market, and another one for Europe. Some drivers have a tuner=modprobe parameter
to allow using a different tuner number in order to address such issue.

The current supported of I2C drivers (not including staging drivers) are listed below.

Audio decoders, processors and mixers

Driver Name
cs3308 Cirrus Logic CS3308 audio ADC
cs5345 Cirrus Logic CS5345 audio ADC
cs53l32a Cirrus Logic CS53L32A audio ADC
msp3400 Micronas MSP34xx audio decoders
sony-btf-mpx Sony BTF’s internal MPX
tda1997x NXP TDA1997x HDMI receiver
tda7432 Philips TDA7432 audio processor
tda9840 Philips TDA9840 audio processor
tea6415c Philips TEA6415C audio processor
tea6420 Philips TEA6420 audio processor
tlv320aic23b Texas Instruments TLV320AIC23B audio codec
tvaudio Simple audio decoder chips
uda1342 Philips UDA1342 audio codec
vp27smpx Panasonic VP27’s internal MPX
wm8739 Wolfson Microelectronics WM8739 stereo audio ADC
wm8775 Wolfson Microelectronics WM8775 audio ADC with input mixer

86 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Audio/Video compression chips

Driver Name
saa6752hs Philips SAA6752HS MPEG-2 Audio/Video Encoder

Camera sensor devices

Driver Name
ccs MIPI CCS compliant camera sensors (also SMIA++ and SMIA)
et8ek8 ET8EK8 camera sensor
hi556 Hynix Hi-556 sensor
hi846 Hynix Hi-846 sensor
imx208 Sony IMX208 sensor
imx214 Sony IMX214 sensor
imx219 Sony IMX219 sensor
imx258 Sony IMX258 sensor
imx274 Sony IMX274 sensor
imx290 Sony IMX290 sensor
imx319 Sony IMX319 sensor
imx334 Sony IMX334 sensor
imx355 Sony IMX355 sensor
imx412 Sony IMX412 sensor
m5mols Fujitsu M-5MOLS 8MP sensor
mt9m001 mt9m001
mt9m032 MT9M032 camera sensor
mt9m111 mt9m111, mt9m112 and mt9m131
mt9p031 Aptina MT9P031
mt9t001 Aptina MT9T001
mt9t112 Aptina MT9T111/MT9T112
mt9v011 Micron mt9v011 sensor
mt9v032 Micron MT9V032 sensor
mt9v111 Aptina MT9V111 sensor
noon010pc30 Siliconfile NOON010PC30 sensor
ov13858 OmniVision OV13858 sensor
ov13b10 OmniVision OV13B10 sensor
ov2640 OmniVision OV2640 sensor
ov2659 OmniVision OV2659 sensor
ov2680 OmniVision OV2680 sensor
ov2685 OmniVision OV2685 sensor
ov5640 OmniVision OV5640 sensor
ov5645 OmniVision OV5645 sensor
ov5647 OmniVision OV5647 sensor
ov5670 OmniVision OV5670 sensor
ov5675 OmniVision OV5675 sensor
ov5695 OmniVision OV5695 sensor
ov6650 OmniVision OV6650 sensor

Continued on next page

1.1. The media subsystem 87

Linux Media Documentation

Table 17 – continued from previous page
Driver Name
ov7251 OmniVision OV7251 sensor
ov7640 OmniVision OV7640 sensor
ov7670 OmniVision OV7670 sensor
ov772x OmniVision OV772x sensor
ov7740 OmniVision OV7740 sensor
ov8856 OmniVision OV8856 sensor
ov9640 OmniVision OV9640 sensor
ov9650 OmniVision OV9650/OV9652 sensor
rj54n1cb0c Sharp RJ54N1CB0C sensor
s5c73m3 Samsung S5C73M3 sensor
s5k4ecgx Samsung S5K4ECGX sensor
s5k5baf Samsung S5K5BAF sensor
s5k6a3 Samsung S5K6A3 sensor
s5k6aa Samsung S5K6AAFX sensor
sr030pc30 Siliconfile SR030PC30 sensor
vs6624 ST VS6624 sensor

Flash devices

Driver Name
adp1653 ADP1653 flash
lm3560 LM3560 dual flash driver
lm3646 LM3646 dual flash driver

IR I2C driver

Driver Name
ir-kbd-i2c I2C module for IR

Lens drivers

Driver Name
ad5820 AD5820 lens voice coil
ak7375 AK7375 lens voice coil
dw9714 DW9714 lens voice coil
dw9768 DW9768 lens voice coil
dw9807-vcm DW9807 lens voice coil

88 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Miscellaneous helper chips

Driver Name
video-i2c I2C transport video
m52790 Mitsubishi M52790 A/V switch
st-mipid02 STMicroelectronics MIPID02 CSI-2 to PARALLEL bridge
ths7303 THS7303/53 Video Amplifier

RDS decoders

Driver Name
saa6588 SAA6588 Radio Chip RDS decoder

SDR tuner chips

Driver Name
max2175 Maxim 2175 RF to Bits tuner

Video and audio decoders

Driver Name
cx25840 Conexant CX2584x audio/video decoders
saa717x Philips SAA7171/3/4 audio/video decoders

1.1. The media subsystem 89

Linux Media Documentation

Video decoders

Driver Name
adv7180 Analog Devices ADV7180 decoder
adv7183 Analog Devices ADV7183 decoder
adv748x Analog Devices ADV748x decoder
adv7604 Analog Devices ADV7604 decoder
adv7842 Analog Devices ADV7842 decoder
bt819 BT819A VideoStream decoder
bt856 BT856 VideoStream decoder
bt866 BT866 VideoStream decoder
ks0127 KS0127 video decoder
ml86v7667 OKI ML86V7667 video decoder
saa7110 Philips SAA7110 video decoder
saa7115 Philips SAA7111/3/4/5 video decoders
tc358743 Toshiba TC358743 decoder
tvp514x Texas Instruments TVP514x video decoder
tvp5150 Texas Instruments TVP5150 video decoder
tvp7002 Texas Instruments TVP7002 video decoder
tw2804 Techwell TW2804 multiple video decoder
tw9903 Techwell TW9903 video decoder
tw9906 Techwell TW9906 video decoder
tw9910 Techwell TW9910 video decoder
vpx3220 vpx3220a, vpx3216b & vpx3214c video decoders

Video encoders

Driver Name
ad9389b Analog Devices AD9389B encoder
adv7170 Analog Devices ADV7170 video encoder
adv7175 Analog Devices ADV7175 video encoder
adv7343 ADV7343 video encoder
adv7393 ADV7393 video encoder
adv7511-v4l2 Analog Devices ADV7511 encoder
ak881x AK8813/AK8814 video encoders
saa7127 Philips SAA7127/9 digital video encoders
saa7185 Philips SAA7185 video encoder
ths8200 Texas Instruments THS8200 video encoder

90 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Video improvement chips

Driver Name
upd64031a NEC Electronics uPD64031A Ghost Reduction
upd64083 NEC Electronics uPD64083 3-Dimensional Y/C separation

Tuner drivers

Driver Name
e4000 Elonics E4000 silicon tuner
fc0011 Fitipower FC0011 silicon tuner
fc0012 Fitipower FC0012 silicon tuner
fc0013 Fitipower FC0013 silicon tuner
fc2580 FCI FC2580 silicon tuner
it913x ITE Tech IT913x silicon tuner
m88rs6000t Montage M88RS6000 internal tuner
max2165 Maxim MAX2165 silicon tuner
mc44s803 Freescale MC44S803 Low Power CMOS Broadband tuners
msi001 Mirics MSi001
mt2060 Microtune MT2060 silicon IF tuner
mt2063 Microtune MT2063 silicon IF tuner
mt20xx Microtune 2032 / 2050 tuners
mt2131 Microtune MT2131 silicon tuner
mt2266 Microtune MT2266 silicon tuner
mxl301rf MaxLinear MxL301RF tuner
mxl5005s MaxLinear MSL5005S silicon tuner
mxl5007t MaxLinear MxL5007T silicon tuner
qm1d1b0004 Sharp QM1D1B0004 tuner
qm1d1c0042 Sharp QM1D1C0042 tuner
qt1010 Quantek QT1010 silicon tuner
r820t Rafael Micro R820T silicon tuner
si2157 Silicon Labs Si2157 silicon tuner
tuner-types Simple tuner support
tda18212 NXP TDA18212 silicon tuner
tda18218 NXP TDA18218 silicon tuner
tda18250 NXP TDA18250 silicon tuner
tda18271 NXP TDA18271 silicon tuner
tda827x Philips TDA827X silicon tuner
tda8290 TDA 8290/8295 + 8275(a)/18271 tuner combo
tda9887 TDA 9885/6/7 analog IF demodulator
tea5761 TEA 5761 radio tuner
tea5767 TEA 5767 radio tuner
tua9001 Infineon TUA9001 silicon tuner
tuner-xc2028 XCeive xc2028/xc3028 tuners
xc4000 Xceive XC4000 silicon tuner
xc5000 Xceive XC5000 silicon tuner

1.1. The media subsystem 91

Linux Media Documentation

Tuner cards list

Tuner number Card name
0 Temic PAL (4002 FH5)
1 Philips PAL_I (FI1246 and compatibles)
2 Philips NTSC (FI1236,FM1236 and compatibles)
3 Philips (SECAM+PAL_BG) (FI1216MF, FM1216MF, FR1216MF)
4 NoTuner
5 Philips PAL_BG (FI1216 and compatibles)
6 Temic NTSC (4032 FY5)
7 Temic PAL_I (4062 FY5)
8 Temic NTSC (4036 FY5)
9 Alps HSBH1
10 Alps TSBE1
11 Alps TSBB5
12 Alps TSBE5
13 Alps TSBC5
14 Temic PAL_BG (4006FH5)
15 Alps TSCH6
16 Temic PAL_DK (4016 FY5)
17 Philips NTSC_M (MK2)
18 Temic PAL_I (4066 FY5)
19 Temic PAL* auto (4006 FN5)
20 Temic PAL_BG (4009 FR5) or PAL_I (4069 FR5)
21 Temic NTSC (4039 FR5)
22 Temic PAL/SECAM multi (4046 FM5)
23 Philips PAL_DK (FI1256 and compatibles)
24 Philips PAL/SECAM multi (FQ1216ME)
25 LG PAL_I+FM (TAPC-I001D)
26 LG PAL_I (TAPC-I701D)
27 LG NTSC+FM (TPI8NSR01F)
28 LG PAL_BG+FM (TPI8PSB01D)
29 LG PAL_BG (TPI8PSB11D)
30 Temic PAL* auto + FM (4009 FN5)
31 SHARP NTSC_JP (2U5JF5540)
32 Samsung PAL TCPM9091PD27
33 MT20xx universal
34 Temic PAL_BG (4106 FH5)
35 Temic PAL_DK/SECAM_L (4012 FY5)
36 Temic NTSC (4136 FY5)
37 LG PAL (newer TAPC series)
38 Philips PAL/SECAM multi (FM1216ME MK3)
39 LG NTSC (newer TAPC series)
40 HITACHI V7-J180AT
41 Philips PAL_MK (FI1216 MK)
42 Philips FCV1236D ATSC/NTSC dual in
43 Philips NTSC MK3 (FM1236MK3 or FM1236/F)
44 Philips 4 in 1 (ATI TV Wonder Pro/Conexant)

Continued on next page

92 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Table 19 – continued from previous page
Tuner number Card name
45 Microtune 4049 FM5
46 Panasonic VP27s/ENGE4324D
47 LG NTSC (TAPE series)
48 Tenna TNF 8831 BGFF)
49 Microtune 4042 FI5 ATSC/NTSC dual in
50 TCL 2002N
51 Philips PAL/SECAM_D (FM 1256 I-H3)
52 Thomson DTT 7610 (ATSC/NTSC)
53 Philips FQ1286
54 Philips/NXP TDA 8290/8295 + 8275/8275A/18271
55 TCL 2002MB
56 Philips PAL/SECAM multi (FQ1216AME MK4)
57 Philips FQ1236A MK4
58 Ymec TVision TVF-8531MF/8831MF/8731MF
59 Ymec TVision TVF-5533MF
60 Thomson DTT 761X (ATSC/NTSC)
61 Tena TNF9533-D/IF/TNF9533-B/DF
62 Philips TEA5767HN FM Radio
63 Philips FMD1216ME MK3 Hybrid Tuner
64 LG TDVS-H06xF
65 Ymec TVF66T5-B/DFF
66 LG TALN series
67 Philips TD1316 Hybrid Tuner
68 Philips TUV1236D ATSC/NTSC dual in
69 Tena TNF 5335 and similar models
70 Samsung TCPN 2121P30A
71 Xceive xc2028/xc3028 tuner
72 Thomson FE6600
73 Samsung TCPG 6121P30A
75 Philips TEA5761 FM Radio
76 Xceive 5000 tuner
77 TCL tuner MF02GIP-5N-E
78 Philips FMD1216MEX MK3 Hybrid Tuner
79 Philips PAL/SECAM multi (FM1216 MK5)
80 Philips FQ1216LME MK3 PAL/SECAM w/active loopthrough
81 Partsnic (Daewoo) PTI-5NF05
82 Philips CU1216L
83 NXP TDA18271
84 Sony BTF-Pxn01Z
85 Philips FQ1236 MK5
86 Tena TNF5337 MFD
87 Xceive 4000 tuner
88 Xceive 5000C tuner
89 Sony BTF-PG472Z PAL/SECAM
90 Sony BTF-PK467Z NTSC-M-JP
91 Sony BTF-PB463Z NTSC-M

1.1. The media subsystem 93

Linux Media Documentation

Frontend drivers

Note:
1) There is no guarantee that every frontend driver works out of the box with every card,
because of different wiring.

2) The demodulator chips can be used with a variety of tuner/PLL chips, and not all combi-
nations are supported. Often the demodulator and tuner/PLL chip are inside a metal box
for shielding, and the whole metal box has its own part number.

Common Interface (EN50221) controller drivers

Driver Name
cxd2099 Sony CXD2099AR Common Interface driver
sp2 CIMaX SP2

ATSC (North American/Korean Terrestrial/Cable DTV) frontends

Driver Name
au8522_dig Auvitek AU8522 based DTV demod
au8522_decoder Auvitek AU8522 based ATV demod
bcm3510 Broadcom BCM3510
lg2160 LG Electronics LG216x based
lgdt3305 LG Electronics LGDT3304 and LGDT3305 based
lgdt3306a LG Electronics LGDT3306A based
lgdt330x LG Electronics LGDT3302/LGDT3303 based
nxt200x NxtWave Communications NXT2002/NXT2004 based
or51132 Oren OR51132 based
or51211 Oren OR51211 based
s5h1409 Samsung S5H1409 based
s5h1411 Samsung S5H1411 based

DVB-C (cable) frontends

Driver Name
stv0297 ST STV0297 based
tda10021 Philips TDA10021 based
tda10023 Philips TDA10023 based
ves1820 VLSI VES1820 based

94 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

DVB-S (satellite) frontends

Driver Name
cx24110 Conexant CX24110 based
cx24116 Conexant CX24116 based
cx24117 Conexant CX24117 based
cx24120 Conexant CX24120 based
cx24123 Conexant CX24123 based
ds3000 Montage Technology DS3000 based
mb86a16 Fujitsu MB86A16 based
mt312 Zarlink VP310/MT312/ZL10313 based
s5h1420 Samsung S5H1420 based
si21xx Silicon Labs SI21XX based
stb6000 ST STB6000 silicon tuner
stv0288 ST STV0288 based
stv0299 ST STV0299 based
stv0900 ST STV0900 based
stv6110 ST STV6110 silicon tuner
tda10071 NXP TDA10071
tda10086 Philips TDA10086 based
tda8083 Philips TDA8083 based
tda8261 Philips TDA8261 based
tda826x Philips TDA826X silicon tuner
ts2020 Montage Technology TS2020 based tuners
tua6100 Infineon TUA6100 PLL
cx24113 Conexant CX24113/CX24128 tuner for DVB-S/DSS
itd1000 Integrant ITD1000 Zero IF tuner for DVB-S/DSS
ves1x93 VLSI VES1893 or VES1993 based
zl10036 Zarlink ZL10036 silicon tuner
zl10039 Zarlink ZL10039 silicon tuner

1.1. The media subsystem 95

Linux Media Documentation

DVB-T (terrestrial) frontends

Driver Name
af9013 Afatech AF9013 demodulator
cx22700 Conexant CX22700 based
cx22702 Conexant cx22702 demodulator (OFDM)
cxd2820r Sony CXD2820R
cxd2841er Sony CXD2841ER
cxd2880 Sony CXD2880 DVB-T2/T tuner + demodulator
dib3000mb DiBcom 3000M-B
dib3000mc DiBcom 3000P/M-C
dib7000m DiBcom 7000MA/MB/PA/PB/MC
dib7000p DiBcom 7000PC
dib9000 DiBcom 9000
drxd Micronas DRXD driver
ec100 E3C EC100
l64781 LSI L64781
mt352 Zarlink MT352 based
nxt6000 NxtWave Communications NXT6000 based
rtl2830 Realtek RTL2830 DVB-T
rtl2832 Realtek RTL2832 DVB-T
rtl2832_sdr Realtek RTL2832 SDR
s5h1432 Samsung s5h1432 demodulator (OFDM)
si2168 Silicon Labs Si2168
sp8870 Spase sp8870 based
sp887x Spase sp887x based
stv0367 ST STV0367 based
tda10048 Philips TDA10048HN based
tda1004x Philips TDA10045H/TDA10046H based
zd1301_demod ZyDAS ZD1301
zl10353 Zarlink ZL10353 based

Digital terrestrial only tuners/PLL

Driver Name
dvb-pll Generic I2C PLL based tuners
dib0070 DiBcom DiB0070 silicon base-band tuner
dib0090 DiBcom DiB0090 silicon base-band tuner

96 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

ISDB-S (satellite) & ISDB-T (terrestrial) frontends

Driver Name
mn88443x Socionext MN88443x
tc90522 Toshiba TC90522

ISDB-T (terrestrial) frontends

Driver Name
dib8000 DiBcom 8000MB/MC
mb86a20s Fujitsu mb86a20s
s921 Sharp S921 frontend

Multistandard (cable + terrestrial) frontends

Driver Name
drxk Micronas DRXK based
mn88472 Panasonic MN88472
mn88473 Panasonic MN88473
si2165 Silicon Labs si2165 based
tda18271c2dd NXP TDA18271C2 silicon tuner

Multistandard (satellite) frontends

Driver Name
m88ds3103 Montage Technology M88DS3103
mxl5xx MaxLinear MxL5xx based tuner-demodulators
stb0899 STB0899 based
stb6100 STB6100 based tuners
stv090x STV0900/STV0903(A/B) based
stv0910 STV0910 based
stv6110x STV6110/(A) based tuners
stv6111 STV6111 based tuners

1.1. The media subsystem 97

Linux Media Documentation

SEC control devices for DVB-S

Driver Name
a8293 Allegro A8293
af9033 Afatech AF9033 DVB-T demodulator
ascot2e Sony Ascot2E tuner
atbm8830 AltoBeam ATBM8830/8831 DMB-TH demodulator
drx39xyj Micronas DRX-J demodulator
helene Sony HELENE Sat/Ter tuner (CXD2858ER)
horus3a Sony Horus3A tuner
isl6405 ISL6405 SEC controller
isl6421 ISL6421 SEC controller
isl6423 ISL6423 SEC controller
ix2505v Sharp IX2505V silicon tuner
lgs8gl5 Silicon Legend LGS-8GL5 demodulator (OFDM)
lgs8gxx Legend Silicon LGS8913/LGS8GL5/LGS8GXX DMB-TH demodulator
lnbh25 LNBH25 SEC controller
lnbh29 LNBH29 SEC controller
lnbp21 LNBP21/LNBH24 SEC controllers
lnbp22 LNBP22 SEC controllers
m88rs2000 M88RS2000 DVB-S demodulator and tuner
tda665x TDA665x tuner

Tools to develop new frontends

Driver Name
dvb_dummy_fe Dummy frontend driver

1.1.5.6 Firewire driver

The media subsystem also provides a firewire driver for digital TV:

Driver Name
firedtv FireDTV and FloppyDTV

1.1.5.7 Test drivers

In order to test userspace applications, there’s a number of virtual drivers, with provide test
functionality, simulating real hardware devices:

Driver Name
vicodec Virtual Codec Driver
vim2m Virtual Memory-to-Memory Driver
vimc Virtual Media Controller Driver (VIMC)
vivid Virtual Video Test Driver

98 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

1.1.6 Video4Linux (V4L) driver-specific documentation

1.1.6.1 The bttv driver

Release notes for bttv

You’ll need at least these config options for bttv:

./scripts/config -e PCI

./scripts/config -m I2C

./scripts/config -m INPUT

./scripts/config -m MEDIA_SUPPORT

./scripts/config -e MEDIA_PCI_SUPPORT

./scripts/config -e MEDIA_ANALOG_TV_SUPPORT

./scripts/config -e MEDIA_DIGITAL_TV_SUPPORT

./scripts/config -e MEDIA_RADIO_SUPPORT

./scripts/config -e RC_CORE

./scripts/config -m VIDEO_BT848

If your board has digital TV, you’ll also need:

./scripts/config -m DVB_BT8XX

In this case, please see Documentation/admin-guide/media/bt8xx.rst for additional notes.

Make bttv work with your card

If you have bttv compiled and installed, just booting the Kernel should be enough for it to try
probing it. However, depending on the model, the Kernel may require additional information
about the hardware, as the device may not be able to provide such info directly to the Kernel.

If it doesn’t bttv likely could not autodetect your card and needs some insmod options. The
most important insmod option for bttv is “card=n” to select the correct card type. If you get
video but no sound you’ve very likely specified the wrong (or no) card type. A list of supported
cards is in Documentation/admin-guide/media/bttv-cardlist.rst.

If bttv takes very long to load (happens sometimes with the cheap cards which have no tuner),
try adding this to your modules configuration file (usually, it is either /etc/modules.conf or
some file at /etc/modules-load.d/, but the actual place depends on your distribution):

options i2c-algo-bit bit_test=1

Some cards may require an extra firmware file to work. For example, for the WinTV/PVR you
need one firmware file from its driver CD, called: hcwamc.rbf. It is inside a self-extracting zip
file called pvr45xxx.exe. Just placing it at the /etc/firmware directory should be enough for
it to be autoload during the driver’s probing mode (e. g. when the Kernel boots or when the
driver is manually loaded via modprobe command).

If your card isn’t listed in Documentation/admin-guide/media/bttv-cardlist.rst or if you have
trouble making audio work, please read Still doesn’t work?.

1.1. The media subsystem 99

Linux Media Documentation

Autodetecting cards

bttv uses the PCI Subsystem ID to autodetect the card type. lspci lists the Subsystem ID in the
second line, looks like this:

00:0a.0 Multimedia video controller: Brooktree Corporation Bt878 (rev 02)
Subsystem: Hauppauge computer works Inc. WinTV/GO
Flags: bus master, medium devsel, latency 32, IRQ 5
Memory at e2000000 (32-bit, prefetchable) [size=4K]

only bt878-based cards can have a subsystem ID (which does not mean that every card really
has one). bt848 cards can’t have a Subsystem ID and therefore can’t be autodetected. There
is a list with the ID’s at Documentation/admin-guide/media/bttv-cardlist.rst (in case you are
interested or want to mail patches with updates).

Still doesn’t work?

I do NOT have a lab with 30+ different grabber boards and a PAL/NTSC/SECAM test signal
generator at home, so I often can’t reproduce your problems. This makes debugging very
difficult for me.

If you have some knowledge and spare time, please try to fix this yourself (patches very welcome
of course…) You know: The linux slogan is “Do it yourself”.

There is a mailing list at http://vger.kernel.org/vger-lists.html#linux-media

If you have trouble with some specific TV card, try to ask there instead of mailing me directly.
The chance that someone with the same card listens there is much higher…

For problems with sound: There are a lot of different systems used for TV sound all over the
world. And there are also different chips which decode the audio signal. Reports about sound
problems (“stereo doesn’t work”) are pretty useless unless you include some details about your
hardware and the TV sound scheme used in your country (or at least the country you are living
in).

Modprobe options

Note: The following argument list can be outdated, as we might add more options if ever
needed. In case of doubt, please check with modinfo <module>.

This command prints various information about a kernel module, among them a complete and
up-to-date list of insmod options.

bttv
The bt848/878 (grabber chip) driver

insmod args:

card=n card type, see CARDLIST for a list.
tuner=n tuner type, see CARDLIST for a list.
radio=0/1 card supports radio

100 Chapter 1. Media subsystem admin and user guide

http://vger.kernel.org/vger-lists.html#linux-media

Linux Media Documentation

pll=0/1/2 pll settings

0: don't use PLL
1: 28 MHz crystal installed
2: 35 MHz crystal installed

triton1=0/1 for Triton1 (+others) compatibility
vsfx=0/1 yet another chipset bug compatibility bit

see README.quirks for details on these two.

bigendian=n Set the endianness of the gfx framebuffer.
Default is native endian.

fieldnr=0/1 Count fields. Some TV descrambling software
needs this, for others it only generates
50 useless IRQs/sec. default is 0 (off).

autoload=0/1 autoload helper modules (tuner, audio).
default is 1 (on).

bttv_verbose=0/1/2 verbose level (at insmod time, while
looking at the hardware). default is 1.

bttv_debug=0/1 debug messages (for capture).
default is 0 (off).

irq_debug=0/1 irq handler debug messages.
default is 0 (off).

gbuffers=2-32 number of capture buffers for mmap'ed capture.
default is 4.

gbufsize= size of capture buffers. default and
maximum value is 0x208000 (~2MB)

no_overlay=0 Enable overlay on broken hardware. There
are some chipsets (SIS for example) which
are known to have problems with the PCI DMA
push used by bttv. bttv will disable overlay
by default on this hardware to avoid crashes.
With this insmod option you can override this.

no_overlay=1 Disable overlay. It should be used by broken
hardware that doesn't support PCI2PCI direct
transfers.

automute=0/1 Automatically mutes the sound if there is
no TV signal, on by default. You might try
to disable this if you have bad input signal
quality which leading to unwanted sound
dropouts.

chroma_agc=0/1 AGC of chroma signal, off by default.
adc_crush=0/1 Luminance ADC crush, on by default.
i2c_udelay= Allow reduce I2C speed. Default is 5 usecs

(meaning 66,67 Kbps). The default is the
maximum supported speed by kernel bitbang
algorithm. You may use lower numbers, if I2C
messages are lost (16 is known to work on
all supported cards).

bttv_gpio=0/1
gpiomask=
audioall=
audiomux=

See Sound-FAQ for a detailed description.

remap, card, radio and pll accept up to four comma-separated arguments

1.1. The media subsystem 101

Linux Media Documentation

(for multiple boards).

tuner The tuner driver. You need this unless you want to use only with a camera or the board
doesn’t provide analog TV tuning.

insmod args:

debug=1 print some debug info to the syslog
type=n type of the tuner chip. n as follows:

see CARDLIST for a complete list.
pal=[bdgil] select PAL variant (used for some tuners

only, important for the audio carrier).

tvaudio Provide a single driver for all simple i2c audio control chips (tda/tea*).
insmod args:

tda8425 = 1 enable/disable the support for the
tda9840 = 1 various chips.
tda9850 = 1 The tea6300 can't be autodetected and is
tda9855 = 1 therefore off by default, if you have
tda9873 = 1 this one on your card (STB uses these)
tda9874a = 1 you have to enable it explicitly.
tea6300 = 0 The two tda985x chips use the same i2c
tea6420 = 1 address and can't be disturgished from
pic16c54 = 1 each other, you might have to disable

the wrong one.
debug = 1 print debug messages

msp3400 The driver for the msp34xx sound processor chips. If you have a stereo card, you
probably want to insmod this one.

insmod args:

debug=1/2 print some debug info to the syslog,
2 is more verbose.

simple=1 Use the "short programming" method. Newer
msp34xx versions support this. You need this
for dbx stereo. Default is on if supported by
the chip.

once=1 Don't check the TV-stations Audio mode
every few seconds, but only once after
channel switches.

amsound=1 Audio carrier is AM/NICAM at 6.5 Mhz. This
should improve things for french people, the
carrier autoscan seems to work with FM only...

102 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

If the box freezes hard with bttv

It might be a bttv driver bug. It also might be bad hardware. It also might be something else …

Just mailing me “bttv freezes” isn’t going to help much. This README has a few hints how you
can help to pin down the problem.

bttv bugs

If some version works and another doesn’t it is likely to be a driver bug. It is very helpful if you
can tell where exactly it broke (i.e. the last working and the first broken version).

With a hard freeze you probably doesn’t find anything in the logfiles. The only way to capture
any kernel messages is to hook up a serial console and let some terminal application log the
messages. /me uses screen. See Documentation/admin-guide/serial-console.rst for details on
setting up a serial console.

Read Documentation/admin-guide/bug-hunting.rst to learn how to get any useful information
out of a register+stack dump printed by the kernel on protection faults (so-called “kernel oops”).

If you run into some kind of deadlock, you can try to dump a call trace for each process us-
ing sysrq-t (see Documentation/admin-guide/sysrq.rst). This way it is possible to figure where
exactly some process in “D” state is stuck.

I’ve seen reports that bttv 0.7.x crashes whereas 0.8.x works rock solid for some people. Thus
probably a small buglet left somewhere in bttv 0.7.x. I have no idea where exactly, it works
stable for me and a lot of other people. But in case you have problems with the 0.7.x versions
you can give 0.8.x a try …

hardware bugs

Some hardware can’t deal with PCI-PCI transfers (i.e. grabber => vga). Sometimes problems
show up with bttv just because of the high load on the PCI bus. The bt848/878 chips have a few
workarounds for known incompatibilities, see README.quirks.

Some folks report that increasing the pci latency helps too, althrought I’m not sure whenever
this really fixes the problems or only makes it less likely to happen. Both bttv and btaudio have
a insmod option to set the PCI latency of the device.

Some mainboard have problems to deal correctly with multiple devices doing DMA at the same
time. bttv + ide seems to cause this sometimes, if this is the case you likely see freezes only
with video and hard disk access at the same time. Updating the IDE driver to get the latest and
greatest workarounds for hardware bugs might fix these problems.

1.1. The media subsystem 103

Linux Media Documentation

other

If you use some binary-only yunk (like nvidia module) try to reproduce the problem without.

IRQ sharing is known to cause problems in some cases. It works just fine in theory and many
configurations. Neverless it might be worth a try to shuffle around the PCI cards to give bttv
another IRQ or make it share the IRQ with some other piece of hardware. IRQ sharing with
VGA cards seems to cause trouble sometimes. I’ve also seen funny effects with bttv sharing the
IRQ with the ACPI bridge (and apci-enabled kernel).

Bttv quirks

Below is what the bt878 data book says about the PCI bug compatibility modes of the bt878
chip.

The triton1 insmod option sets the EN_TBFX bit in the control register. The vsfx insmod option
does the same for EN_VSFX bit. If you have stability problems you can try if one of these options
makes your box work solid.

drivers/pci/quirks.c knows about these issues, this way these bits are enabled automagically
for known-buggy chipsets (look at the kernel messages, bttv tells you).

Normal PCI Mode

The PCI REQ signal is the logical-or of the incoming function requests. The inter-nal GNT[0:1]
signals are gated asynchronously with GNT and demultiplexed by the audio request signal.
Thus the arbiter defaults to the video function at power-up and parks there during no requests
for bus access. This is desirable since the video will request the bus more often. However, the
audio will have highest bus access priority. Thus the audio will have first access to the bus even
when issuing a request after the video request but before the PCI external arbiter has granted
access to the Bt879. Neither function can preempt the other once on the bus. The duration
to empty the entire video PCI FIFO onto the PCI bus is very short compared to the bus access
latency the audio PCI FIFO can tolerate.

430FX Compatibility Mode

When using the 430FX PCI, the following rules will ensure compatibility:

(1) Deassert REQ at the same time as asserting FRAME.

(2) Do not reassert REQ to request another bus transaction until after finish-ing the previous
transaction.

Since the individual bus masters do not have direct control of REQ, a simple logical-or of video
and audio requests would violate the rules. Thus, both the arbiter and the initiator contain
430FX compatibility mode logic. To enable 430FX mode, set the EN_TBFX bit as indicated in
Device Control Register on page 104.

When EN_TBFX is enabled, the arbiter ensures that the two compatibility rules are satisfied.
Before GNT is asserted by the PCI arbiter, this internal arbiter may still logical-or the two
requests. However, once the GNT is issued, this arbiter must lock in its decision and now route
only the granted request to the REQ pin. The arbiter decision lock happens regardless of the

104 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

state of FRAME because it does not knowwhen FRAMEwill be asserted (typically - each initiator
will assert FRAME on the cycle following GNT). When FRAME is asserted, it is the initiator s
responsibility to remove its request at the same time. It is the arbiters responsibility to allow
this request to flow through to REQ and not allow the other request to hold REQ asserted. The
decision lock may be removed at the end of the transaction: for example, when the bus is idle
(FRAME and IRDY). The arbiter decision may then continue asynchronously until GNT is again
asserted.

Interfacing with Non-PCI 2.1 Compliant Core Logic

A small percentage of core logic devices may start a bus transaction during the same cycle that
GNT is de-asserted. This is non PCI 2.1 compliant. To ensure compatibility when using PCs
with these PCI controllers, the EN_VSFX bit must be enabled (refer to Device Control Register
on page 104). When in this mode, the arbiter does not pass GNT to the internal functions
unless REQ is asserted. This prevents a bus transaction from starting the same cycle as GNT
is de-asserted. This also has the side effect of not being able to take advantage of bus parking,
thus lowering arbitration performance. The Bt879 drivers must query for these non-compliant
devices, and set the EN_VSFX bit only if required.

Other elements of the tvcards array

If you are trying to make a new card work you might find it useful to know what the other
elements in the tvcards array are good for:

video_inputs - # of video inputs the card has
audio_inputs - historical cruft, not used any more.
tuner - which input is the tuner
svhs - which input is svhs (all others are labeled composite)
muxsel - video mux, input->registervalue mapping
pll - same as pll= insmod option
tuner_type - same as tuner= insmod option
*_modulename - hint whenever some card needs this or that audio

module loaded to work properly.
has_radio - whenever this TV card has a radio tuner.
no_msp34xx - "1" disables loading of msp3400.o module
no_tda9875 - "1" disables loading of tda9875.o module
needs_tvaudio - set to "1" to load tvaudio.o module

If some config item is specified both from the tvcards array and as insmod option, the insmod
option takes precedence.

Cards

Note: For a more updated list, please check https://linuxtv.org/wiki/index.php/Hardware_
Device_Information

1.1. The media subsystem 105

https://linuxtv.org/wiki/index.php/Hardware_Device_Information
https://linuxtv.org/wiki/index.php/Hardware_Device_Information

Linux Media Documentation

Supported cards: Bt848/Bt848a/Bt849/Bt878/Bt879 cards

All cards with Bt848/Bt848a/Bt849/Bt878/Bt879 and normal Composite/S-VHS inputs are sup-
ported. Teletext and Intercast support (PAL only) for ALL cards via VBI sample decoding in
software.

Some cards with additional multiplexing of inputs or other additional fancy chips are only par-
tially supported (unless specifications by the card manufacturer are given). When a card is
listed here it isn’t necessarily fully supported.

All other cards only differ by additional components as tuners, sound decoders, EEPROMs,
teletext decoders …

MATRIX Vision

MV-Delta - Bt848A - 4 Composite inputs, 1 S-VHS input (shared with 4th composite) - EEPROM

http://www.matrix-vision.de/

This card has no tuner but supports all 4 composite (1 shared with an S-VHS input) of the
Bt848A. Very nice card if you only have satellite TV but several tuners connected to the card
via composite.

Many thanks to Matrix-Vision for giving us 2 cards for free which made Bt848a/Bt849 single
crystal operation support possible!!!

Miro/Pinnacle PCTV

• Bt848 some (all??) come with 2 crystals for PAL/SECAM and NTSC

• PAL, SECAM or NTSC TV tuner (Philips or TEMIC)

• MSP34xx sound decoder on add on board decoder is supported but AFAIK does not yet
work (other sound MUX setting in GPIO port needed??? somebody who fixed this???)

• 1 tuner, 1 composite and 1 S-VHS input

• tuner type is autodetected

http://www.miro.de/ http://www.miro.com/

Many thanks for the free card which made first NTSC support possible back in 1997!

Hauppauge Win/TV pci

There are many different versions of the Hauppauge cards with different tuners (TV+Radio …),
teletext decoders. Note that even cards with same model numbers have (depending on the
revision) different chips on it.

• Bt848 (and others but always in 2 crystal operation???) newer cards have a Bt878

• PAL, SECAM, NTSC or tuner with or without Radio support

e.g.:

• PAL:

106 Chapter 1. Media subsystem admin and user guide

http://www.matrix-vision.de/
http://www.miro.de/
http://www.miro.com/

Linux Media Documentation

– TDA5737: VHF, hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners
– TSA5522: 1.4 GHz I2C-bus controlled synthesizer, I2C 0xc2-0xc3

• NTSC:

– TDA5731: VHF, hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners
– TSA5518: no datasheet available on Philips site

• Philips SAA5246 or SAA5284 (or no) Teletext decoder chip with buffer RAM (e.g. Winbond
W24257AS-35: 32Kx8 CMOS static RAM) SAA5246 (I2C 0x22) is supported

• 256 bytes EEPROM: Microchip 24LC02B or Philips 8582E2Y with configuration informa-
tion I2C address 0xa0 (24LC02B also responds to 0xa2-0xaf)

• 1 tuner, 1 composite and (depending on model) 1 S-VHS input

• 14052B: mux for selection of sound source

• sound decoder: TDA9800, MSP34xx (stereo cards)

Askey CPH-Series

Developed by TelSignal(?), OEMed by many vendors (Typhoon, Anubis, Dynalink)

• Card series: - CPH01x: BT848 capture only - CPH03x: BT848 - CPH05x: BT878 with FM
- CPH06x: BT878 (w/o FM) - CPH07x: BT878 capture only

• TV standards: - CPH0x0: NTSC-M/M - CPH0x1: PAL-B/G - CPH0x2: PAL-I/I - CPH0x3:
PAL-D/K - CPH0x4: SECAM-L/L - CPH0x5: SECAM-B/G - CPH0x6: SECAM-D/K - CPH0x7:
PAL-N/N - CPH0x8: PAL-B/H - CPH0x9: PAL-M/M

• CPH03x was often sold as “TV capturer”.

Identifying:

1) 878 cards can be identified by PCI Subsystem-ID: - 144f:3000 = CPH06x -
144F:3002 = CPH05x w/ FM - 144F:3005 = CPH06x_LC (w/o remote control)

2) The cards have a sticker with “CPH”-model on the back.

3) These cards have a number printed on the PCB just above the tuner metal box: -
“80-CP2000300-x” = CPH03X - “80-CP2000500-x” = CPH05X - “80-CP2000600-
x” = CPH06X / CPH06x_LC

Askey sells these cards as “Magic TView series”, Brand “MagicXpress”. Other OEM
often call these “Tview”, “TView99” or else.

1.1. The media subsystem 107

Linux Media Documentation

Lifeview Flyvideo Series:

The naming of these series differs in time and space.

Identifying:
1) Some models can be identified by PCI subsystem ID:

• 1852:1852 = Flyvideo 98 FM

• 1851:1850 = Flyvideo 98

• 1851:1851 = Flyvideo 98 EZ (capture only)

2) There is a print on the PCB:

• LR25 = Flyvideo (Zoran ZR36120, SAA7110A)

• LR26 Rev.N = Flyvideo II (Bt848)

• LR26 Rev.O = Flyvideo II (Bt878)

• LR37 Rev.C = Flyvideo EZ (Capture only, ZR36120 + SAA7110)

• LR38 Rev.A1= Flyvideo II EZ (Bt848 capture only)

• LR50 Rev.Q = Flyvideo 98 (w/eeprom and PCI subsystem ID)

• LR50 Rev.W = Flyvideo 98 (no eeprom)

• LR51 Rev.E = Flyvideo 98 EZ (capture only)

• LR90 = Flyvideo 2000 (Bt878)

• LR90 Flyvideo 2000S (Bt878) w/Stereo TV (Package incl. LR91 daughterboard)

• LR91 = Stereo daughter card for LR90

• LR97 = Flyvideo DVBS

• LR99 Rev.E = Low profile card for OEM integration (only internal audio!) bt878

• LR136 = Flyvideo 2100/3100 (Low profile, SAA7130/SAA7134)

• LR137 = Flyvideo DV2000/DV3000 (SAA7130/SAA7134 + IEEE1394)

• LR138 Rev.C= Flyvideo 2000 (SAA7130)

• LR138 Flyvideo 3000 (SAA7134) w/Stereo TV

– These exist in variations w/FM and w/Remote sometimes denoted by suffixes
“FM” and “R”.

3) You have a laptop (miniPCI card):

• Product = FlyTV Platinum Mini

• Model/Chip = LR212/saa7135

• Lifeview.com.tw states (Feb. 2002): “The FlyVideo2000 and FlyVideo2000s prod-
uct name have renamed to FlyVideo98.” Their Bt8x8 cards are listed as discontin-
ued.

• Flyvideo 2000S was probably sold as Flyvideo 3000 in some countries(Europe?).
The new Flyvideo 2000/3000 are SAA7130/SAA7134 based.

108 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

“Flyvideo II” had been the name for the 848 cards, nowadays (in Germany) this name is re-used
for LR50 Rev.W.

The Lifeview website mentioned Flyvideo III at some time, but such a card has not yet been
seen (perhaps it was the german name for LR90 [stereo]). These cards are sold by many OEMs
too.

FlyVideo A2 (Elta 8680)= LR90 Rev.F (w/Remote, w/o FM, stereo TV by tda9821) {Germany}

Lifeview 3000 (Elta 8681) as sold by Plus(April 2002), Germany = LR138 w/ saa7134

lifeview config coding on gpio pins 0-9

• LR50 rev. Q (“PARTS: 7031505116), Tuner wurde als Nr. 5 erkannt, Eingänge SVideo, TV,
Composite, Audio, Remote:

• CP9..1=100001001 (1: 0-Ohm-Widerstand gegen GND unbestückt; 0: bestückt)

Typhoon TV card series:

These can be CPH, Flyvideo, Pixelview or KNC1 series.

Typhoon is the brand of Anubis.

Model 50680 got re-used, some model no. had different contents over time.

Models:

• 50680 “TV Tuner PCI Pal BG”(old,red package)=can be CPH03x(bt848) or
CPH06x(bt878)

• 50680 “TV Tuner Pal BG” (blue package)= Pixelview PV-BT878P+ (Rev 9B)

• 50681 “TV Tuner PCI Pal I” (variant of 50680)

• 50682 “TView TV/FM Tuner Pal BG” = Flyvideo 98FM (LR50 Rev.Q)

Note: The package has a picture of CPH05x (which would be a real TView)

• 50683 “TV Tuner PCI SECAM” (variant of 50680)

• 50684 “TV Tuner Pal BG” = Pixelview 878TV(Rev.3D)

• 50686 “TV Tuner” = KNC1 TV Station

• 50687 “TV Tuner stereo” = KNC1 TV Station pro

• 50688 “TV Tuner RDS” (black package) = KNC1 TV Station RDS

• 50689 TV SAT DVB-S CARD CI PCI (SAA7146AH, SU1278?) = “KNC1 TV Station
DVB-S”

• 50692 “TV/FM Tuner” (small PCB)

• 50694 TV TUNER CARD RDS (PHILIPS CHIPSET SAA7134HL)

• 50696 TV TUNER STEREO (PHILIPS CHIPSET SAA7134HL, MK3ME Tuner)

1.1. The media subsystem 109

Linux Media Documentation

• 50804 PC-SAT TV/Audio Karte = Techni-PC-Sat (ZORAN 36120PQC, Tuner:Alps)

• 50866 TVIEW SAT RECEIVER+ADR

• 50868 “TV/FM Tuner Pal I” (variant of 50682)

• 50999 “TV/FM Tuner Secam” (variant of 50682)

Guillemot

Models:

• Maxi-TV PCI (ZR36120)

• Maxi TV Video 2 = LR50 Rev.Q (FI1216MF, PAL BG+SECAM)

• Maxi TV Video 3 = CPH064 (PAL BG + SECAM)

Mentor

Mentor TV card (“55-878TV-U1”) = Pixelview 878TV(Rev.3F) (w/FM w/Remote)

Prolink

• TV cards:

– PixelView Play TV pro - (Model: PV-BT878P+ REV 8E)
– PixelView Play TV pro - (Model: PV-BT878P+ REV 9D)
– PixelView Play TV pro - (Model: PV-BT878P+ REV 4C / 8D / 10A)
– PixelView Play TV - (Model: PV-BT848P+)
– 878TV - (Model: PV-BT878TV)

• Multimedia TV packages (card + software pack):

– PixelView Play TV Theater - (Model: PV-M4200) = PixelView Play TV pro + Software
– PixelView Play TV PAK - (Model: PV-BT878P+ REV 4E)
– PixelView Play TV/VCR - (Model: PV-M3200 REV 4C / 8D / 10A)
– PixelView Studio PAK - (Model: M2200 REV 4C / 8D / 10A)
– PixelView PowerStudio PAK - (Model: PV-M3600 REV 4E)
– PixelView DigitalVCR PAK - (Model: PV-M2400 REV 4C / 8D / 10A)
– PixelView PlayTV PAK II (TV/FM card + usb camera) PV-M3800

– PixelView PlayTV XP PV-M4700,PV-M4700(w/FM)
– PixelView PlayTV DVR PV-M4600 package contents:PixelView PlayTV pro, windvr &
videoMail s/w

• Further Cards:

– PV-BT878P+rev.9B (Play TV Pro, opt. w/FM w/NICAM)

110 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

– PV-BT878P+rev.2F
– PV-BT878P Rev.1D (bt878, capture only)
– XCapture PV-CX881P (cx23881)
– PlayTV HD PV-CX881PL+, PV-CX881PL+(w/FM) (cx23881)
– DTV3000 PV-DTV3000P+ DVB-S CI = Twinhan VP-1030
– DTV2000 DVB-S = Twinhan VP-1020

• Video Conferencing:

– PixelView Meeting PAK - (Model: PV-BT878P)
– PixelView Meeting PAK Lite - (Model: PV-BT878P)
– PixelView Meeting PAK plus - (Model: PV-BT878P+rev 4C/8D/10A)
– PixelView Capture - (Model: PV-BT848P)
– PixelView PlayTV USB pro
– Model No. PV-NT1004+, PV-NT1004+ (w/FM) = NT1004 USB decoder chip +
SAA7113 video decoder chip

Dynalink

These are CPH series.

Phoebemicro

• TV Master = CPH030 or CPH060

• TV Master FM = CPH050

Genius/Kye

• Video Wonder/Genius Internet Video Kit = LR37 Rev.C

• Video Wonder Pro II (848 or 878) = LR26

Tekram

• VideoCap C205 (Bt848)

• VideoCap C210 (zr36120 +Philips)

• CaptureTV M200 (ISA)

• CaptureTV M205 (Bt848)

1.1. The media subsystem 111

Linux Media Documentation

Lucky Star

• Image World Conference TV = LR50 Rev. Q

Leadtek

• WinView 601 (Bt848)

• WinView 610 (Zoran)

• WinFast2000

• WinFast2000 XP

Support for the Leadtek WinView 601 TV/FM

Author of this section: Jon Tombs <jon@gte.esi.us.es>

This card is basically the same as all the rest (Bt484A, Philips tuner), the main difference is that
they have attached a programmable attenuator to 3 GPIO lines in order to give some volume
control. They have also stuck an infra-red remote control decoded on the board, I will add
support for this when I get time (it simple generates an interrupt for each key press, with the
key code is placed in the GPIO port).

I don’t yet have any application to test the radio support. The tuner frequency setting should
work but it is possible that the audio multiplexer is wrong. If it doesn’t work, send me email.

• No Thanks to Leadtek they refused to answer any questions about their hardware. The
driver was written by visual inspection of the card. If you use this driver, send an email
insult to them, and tell them you won’t continue buying their hardware unless they support
Linux.

• Little thanks to Princeton Technology Corp (http://www.princeton.com.tw) who make the
audio attenuator. Their publicly available data-sheet available on their web site doesn’t
include the chip programming information! Hidden on their server are the full data-sheets,
but don’t ask how I found it.

To use the driver I use the following options, the tuner and pll settings might be different in
your country. You can force it via modprobe parameters. For example:

modprobe bttv tuner=1 pll=28 radio=1 card=17

Sets tuner type 1 (Philips PAL_I), PLL with a 28 MHz crystal, enables FM radio and selects bttv
card ID 17 (Leadtek WinView 601).

112 Chapter 1. Media subsystem admin and user guide

mailto:jon@gte.esi.us.es
http://www.princeton.com.tw

Linux Media Documentation

KNC One

• TV-Station

• TV-Station SE (+Software Bundle)

• TV-Station pro (+TV stereo)

• TV-Station FM (+Radio)

• TV-Station RDS (+RDS)

• TV Station SAT (analog satellite)

• TV-Station DVB-S

Note: newer Cards have saa7134, but model name stayed the same?

Provideo

• PV951 or PV-951, now named PV-951T (also are sold as: Boeder TV-FM Video Capture
Card, Titanmedia Supervision TV-2400, Provideo PV951 TF, 3DeMon PV951, MediaForte
TV-Vision PV951, Yoko PV951, Vivanco Tuner Card PCI Art.-Nr.: 68404)

• Surveillance Series:

• PV-141

• PV-143

• PV-147

• PV-148 (capture only)

• PV-150

• PV-151

• TV-FM Tuner Series:

• PV-951TDV (tv tuner + 1394)

• PV-951T/TF

• PV-951PT/TF

• PV-956T/TF Low Profile

• PV-911

1.1. The media subsystem 113

Linux Media Documentation

Highscreen

Models:

• TV Karte = LR50 Rev.S

• TV-Boostar = Terratec Terra TV+ Version 1.0 (Bt848, tda9821) “ceb105.pcb”

Zoltrix

Models:

• Face to Face Capture (Bt848 capture only) (PCB “VP-2848”)

• Face To Face TV MAX (Bt848) (PCB “VP-8482 Rev1.3”)

• Genie TV (Bt878) (PCB “VP-8790 Rev 2.1”)

• Genie Wonder Pro

AVerMedia

• AVer FunTV Lite (ISA, AV3001 chipset) “M101.C”

• AVerTV

• AVerTV Stereo

• AVerTV Studio (w/FM)

• AVerMedia TV98 with Remote

• AVerMedia TV/FM98 Stereo

• AVerMedia TVCAM98

• TVCapture (Bt848)

• TVPhone (Bt848)

• TVCapture98 (=”AVerMedia TV98” in USA) (Bt878)

• TVPhone98 (Bt878, w/FM)

PCB PCI-ID Model-Name Eeprom Tuner Sound Country
M101.C ISA !
M108-B Bt848 – FR1236 US2,3
M1A8-A Bt848 AVer TV-Phone FM1216 –
M168-T 1461:0003 AVerTV Studio 48:17 FM1216 TDA9840T D1 w/FM

w/Remote
M168-U 1461:0004 TVCapture98 40:11 FI1216 – D w/Remote
M168II-B 1461:0003 Medion

MD9592
48:16 FM1216 TDA9873H D w/FM

2 Sony NE41S soldered (stereo sound?)
3 Daughterboard M118-A w/ pic 16c54 and 4 MHz quartz
1 Daughterboard MB68-A with TDA9820T and TDA9840T

114 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

• US site has different drivers for (as of 09/2002):

– EZ Capture/InterCam PCI (BT-848 chip)

– EZ Capture/InterCam PCI (BT-878 chip)

– TV-Phone (BT-848 chip)
– TV98 (BT-848 chip)
– TV98 With Remote (BT-848 chip)
– TV98 (BT-878 chip)
– TV98 With Remote (BT-878)
– TV/FM98 (BT-878 chip)
– AVerTV
– AverTV Stereo
– AVerTV Studio

DE hat diverse Treiber fuer diese Modelle (Stand 09/2002):

• TVPhone (848) mit Philips tuner FR12X6 (w/ FM radio)

• TVPhone (848) mit Philips tuner FM12X6 (w/ FM radio)

• TVCapture (848) w/Philips tuner FI12X6

• TVCapture (848) non-Philips tuner

• TVCapture98 (Bt878)

• TVPhone98 (Bt878)

• AVerTV und TVCapture98 w/VCR (Bt 878)

• AVerTVStudio und TVPhone98 w/VCR (Bt878)

• AVerTV GO Serie (Kein SVideo Input)

• AVerTV98 (BT-878 chip)

• AVerTV98 mit Fernbedienung (BT-878 chip)

• AVerTV/FM98 (BT-878 chip)

• VDOmate (www.averm.com.cn) = M168U ?

Aimslab

Models:

• Video Highway or “Video Highway TR200” (ISA)

• Video Highway Xtreme (aka “VHX”) (Bt848, FM w/ TEA5757)

1.1. The media subsystem 115

Linux Media Documentation

IXMicro (former: IMS=Integrated Micro Solutions)

Models:

• IXTV BT848 (=TurboTV)

• IXTV BT878

• IMS TurboTV (Bt848)

Lifetec/Medion/Tevion/Aldi

Models:

• LT9306/MD9306 = CPH061

• LT9415/MD9415 = LR90 Rev.F or Rev.G

• MD9592 = Avermedia TVphone98 (PCI_ID=1461:0003), PCB-Rev=M168II-B
(w/TDA9873H)

• MD9717 = KNC One (Rev D4, saa7134, FM1216 MK2 tuner)

• MD5044 = KNC One (Rev D4, saa7134, FM1216ME MK3 tuner)

Modular Technologies (www.modulartech.com) UK

Models:

• MM100 PCTV (Bt848)

• MM201 PCTV (Bt878, Bt832) w/ Quartzsight camera

• MM202 PCTV (Bt878, Bt832, tda9874)

• MM205 PCTV (Bt878)

• MM210 PCTV (Bt878) (Galaxy TV, Galaxymedia ?)

Terratec

Models:

• Terra TV+ Version 1.0 (Bt848), “ceb105.PCB” printed on the PCB, TDA9821

• Terra TV+ Version 1.1 (Bt878), “LR74 Rev.E” printed on the PCB, TDA9821

• Terra TValueRadio, “LR102 Rev.C” printed on the PCB

• Terra TV/Radio+ Version 1.0, “80-CP2830100-0” TTTV3 printed on the PCB, “CPH010-
E83” on the back, SAA6588T, TDA9873H

• Terra TValue Version BT878, “80-CP2830110-0 TTTV4” printed on the PCB, “CPH011-D83”
on back

• Terra TValue Version 1.0 “ceb105.PCB” (really identical to Terra TV+ Version 1.0)

• Terra TValue New Revision “LR102 Rec.C”

116 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

• Terra Active Radio Upgrade (tea5757h, saa6588t)

• LR74 is a newer PCB revision of ceb105 (both incl. connector for Active Radio Upgrade)

• Cinergy 400 (saa7134), “E877 11(S)”, “PM820092D” printed on PCB

• Cinergy 600 (saa7134)

Technisat

Models:

• Discos ADR PC-Karte ISA (no TV!)

• Discos ADR PC-Karte PCI (probably no TV?)

• Techni-PC-Sat (Sat. analog) Rev 1.2 (zr36120, vpx3220, stv0030, saa5246, BSJE3-494A)

• Mediafocus I (zr36120/zr36125, drp3510, Sat. analog + ADR Radio)

• Mediafocus II (saa7146, Sat. analog)

• SatADR Rev 2.1 (saa7146a, saa7113h, stv0056a, msp3400c, drp3510a, BSKE3-307A)

• SkyStar 1 DVB (AV7110) = Technotrend Premium

• SkyStar 2 DVB (B2C2) (=Sky2PC)

Siemens

Multimedia eXtension Board (MXB) (SAA7146, SAA7111)

Powercolor

Models:

• MTV878 Package comes with different contents:
a) pcb “MTV878” (CARD=75)

b) Pixelview Rev. 4_

• MTV878R w/Remote Control

• MTV878F w/Remote Control w/FM radio

Pinnacle

PCTV models:

• Mirovideo PCTV (Bt848)

• Mirovideo PCTV SE (Bt848)

• Mirovideo PCTV Pro (Bt848 + Daughterboard for TV Stereo and FM)

• Studio PCTV Rave (Bt848 Version = Mirovideo PCTV)

1.1. The media subsystem 117

Linux Media Documentation

• Studio PCTV Rave (Bt878 package w/o infrared)

• Studio PCTV (Bt878)

• Studio PCTV Pro (Bt878 stereo w/ FM)

• Pinnacle PCTV (Bt878, MT2032)

• Pinnacle PCTV Pro (Bt878, MT2032)

• Pinncale PCTV Sat (bt878a, HM1821/1221) [“Conexant CX24110 with CX24108 tuner, aka
HM1221/HM1811”]

• Pinnacle PCTV Sat XE

M(J)PEG capture and playback models:

• DC1+ (ISA)

• DC10 (zr36057, zr36060, saa7110, adv7176)

• DC10+ (zr36067, zr36060, saa7110, adv7176)

• DC20 (ql16x24b,zr36050, zr36016, saa7110, saa7187 …)

• DC30 (zr36057, zr36050, zr36016, vpx3220, adv7176, ad1843, tea6415, miro FST97A1)

• DC30+ (zr36067, zr36050, zr36016, vpx3220, adv7176)

• DC50 (zr36067, zr36050, zr36016, saa7112, adv7176 (2 pcs.?), ad1843, miro FST97A1,
Lattice ???)

Lenco

Models:

• MXR-9565 (=Technisat Mediafocus?)

• MXR-9571 (Bt848) (=CPH031?)

• MXR-9575

• MXR-9577 (Bt878) (=Prolink 878TV Rev.3x)

• MXTV-9578CP (Bt878) (= Prolink PV-BT878P+4E)

Iomega

Buz (zr36067, zr36060, saa7111, saa7185)

118 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

LML

LML33 (zr36067, zr36060, bt819, bt856)

Grandtec

Models:

• Grand Video Capture (Bt848)

• Multi Capture Card (Bt878)

Koutech

Models:

• KW-606 (Bt848)

• KW-607 (Bt848 capture only)

• KW-606RSF

• KW-607A (capture only)

• KW-608 (Zoran capture only)

IODATA (jp)

Models:

• GV-BCTV/PCI

• GV-BCTV2/PCI

• GV-BCTV3/PCI

• GV-BCTV4/PCI

• GV-VCP/PCI (capture only)

• GV-VCP2/PCI (capture only)

Canopus (jp)

WinDVR = Kworld “KW-TVL878RF”

1.1. The media subsystem 119

Linux Media Documentation

www.sigmacom.co.kr

Sigma Cyber TV II

www.sasem.co.kr

Litte OnAir TV

hama

TV/Radio-Tuner Card, PCI (Model 44677) = CPH051

Sigma Designs

Hollywood plus (em8300, em9010, adv7175), (PCB “M340-10”) MPEG DVD decoder

Formac

Models:

• iProTV (Card for iMac Mezzanine slot, Bt848+SCSI)

• ProTV (Bt848)

• ProTV II = ProTV Stereo (Bt878) [“stereo” means FM stereo, tv is still mono]

ATI

Models:

• TV-Wonder

• TV-Wonder VE

Diamond Multimedia

DTV2000 (Bt848, tda9875)

Aopen

• VA1000 Plus (w/ Stereo)

• VA1000 Lite

• VA1000 (=LR90)

120 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Intel

Models:

• Smart Video Recorder (ISA full-length)

• Smart Video Recorder pro (ISA half-length)

• Smart Video Recorder III (Bt848)

STB

Models:

• STB Gateway 6000704 (bt878)

• STB Gateway 6000699 (bt848)

• STB Gateway 6000402 (bt848)

• STB TV130 PCI

Videologic

Models:

• Captivator Pro/TV (ISA?)

• Captivator PCI/VC (Bt848 bundled with camera) (capture only)

Technotrend

Models:

• TT-SAT PCI (PCB “Sat-PCI Rev.:1.3.1”; zr36125, vpx3225d, stc0056a, Tuner:BSKE6-155A

• TT-DVB-Sat
– revisions 1.1, 1.3, 1.5, 1.6 and 2.1
– This card is sold as OEM from:

∗ Siemens DVB-s Card

∗ Hauppauge WinTV DVB-S

∗ Technisat SkyStar 1 DVB

∗ Galaxis DVB Sat

– Now this card is called TT-PCline Premium Family

– TT-Budget (saa7146, bsru6-701a) This card is sold as OEM from:

∗ Hauppauge WinTV Nova

∗ Satelco Standard PCI (DVB-S)

– TT-DVB-C PCI

1.1. The media subsystem 121

Linux Media Documentation

Teles

DVB-s (Rev. 2.2, BSRV2-301A, data only?)

Remote Vision

MX RV605 (Bt848 capture only)

Boeder

Models:

• PC ChatCam (Model 68252) (Bt848 capture only)

• Tv/Fm Capture Card (Model 68404) = PV951

Media-Surfer (esc-kathrein.de)

Models:

• Sat-Surfer (ISA)

• Sat-Surfer PCI = Techni-PC-Sat

• Cable-Surfer 1

• Cable-Surfer 2

• Cable-Surfer PCI (zr36120)

• Audio-Surfer (ISA Radio card)

Jetway (www.jetway.com.tw)

Models:

• JW-TV 878M

• JW-TV 878 = KWorld KW-TV878RF

Galaxis

Models:

• Galaxis DVB Card S CI

• Galaxis DVB Card C CI

• Galaxis DVB Card S

• Galaxis DVB Card C

• Galaxis plug.in S [neuer Name: Galaxis DVB Card S CI

122 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Hauppauge

Models:

• many many WinTV models …

• WinTV DVBs = Technotrend Premium 1.3

• WinTV NOVA = Technotrend Budget 1.1 “S-DVB DATA”

• WinTV NOVA-CI “SDVBACI”

• WinTV Nova USB (=Technotrend USB 1.0)

• WinTV-Nexus-s (=Technotrend Premium 2.1 or 2.2)

• WinTV PVR

• WinTV PVR 250

• WinTV PVR 450

US models

-990 WinTV-PVR-350 (249USD) (iTVC15 chipset + radio) -980 WinTV-PVR-250 (149USD)
(iTVC15 chipset) -880 WinTV-PVR-PCI (199USD) (KFIR chipset + bt878) -881 WinTV-PVR-USB
-190 WinTV-GO -191 WinTV-GO-FM -404 WinTV -401 WinTV-radio -495 WinTV-Theater -602
WinTV-USB -621 WinTV-USB-FM -600 USB-Live -698 WinTV-HD -697 WinTV-D -564 WinTV-
Nexus-S

Deutsche Modelle:

-603 WinTV GO -719 WinTV Primio-FM -718 WinTV PCI-FM -497 WinTV Theater -569 WinTV
USB -568 WinTV USB-FM -882 WinTV PVR -981 WinTV PVR 250 -891 WinTV-PVR-USB -541
WinTV Nova -488 WinTV Nova-Ci -564 WinTV-Nexus-s -727 WinTV-DVB-c -545 Common Inter-
face -898 WinTV-Nova-USB

UK models:

-607 WinTV Go -693,793 WinTV Primio FM -647,747 WinTV PCI FM -498 WinTV Theater -883
WinTV PVR -893 WinTV PVR USB (Duplicate entry) -566 WinTV USB (UK) -573 WinTV USB FM
-429 Impact VCB (bt848) -600 USB Live (Video-In 1x Comp, 1xSVHS) -542 WinTV Nova -717
WinTV DVB-S -909 Nova-t PCI -893 Nova-t USB (Duplicate entry) -802 MyTV -804 MyView -809
MyVideo -872 MyTV2Go FM -546 WinTV Nova-S CI -543 WinTV Nova -907 Nova-S USB -908
Nova-T USB -717 WinTV Nexus-S -157 DEC3000-s Standalone + USB

Spain:

-685 WinTV-Go -690 WinTV-PrimioFM -416 WinTV-PCI Nicam Estereo -677 WinTV-PCI-FM -699
WinTV-Theater -683 WinTV-USB -678 WinTV-USB-FM -983 WinTV-PVR-250 -883 WinTV-PVR-
PCI -993 WinTV-PVR-350 -893 WinTV-PVR-USB -728 WinTV-DVB-C PCI -832 MyTV2Go -869
MyTV2Go-FM -805 MyVideo (USB)

1.1. The media subsystem 123

Linux Media Documentation

Matrix-Vision

Models:

• MATRIX-Vision MV-Delta

• MATRIX-Vision MV-Delta 2

• MVsigma-SLC (Bt848)

Conceptronic (.net)

Models:

• TVCON FM, TV card w/ FM = CPH05x

• TVCON = CPH06x

BestData

Models:

• HCC100 = VCC100rev1 + camera

• VCC100 rev1 (bt848)

• VCC100 rev2 (bt878)

Gallant (www.gallantcom.com) www.minton.com.tw

Models:

• Intervision IV-510 (capture only bt8x8)

• Intervision IV-550 (bt8x8)

• Intervision IV-100 (zoran)

• Intervision IV-1000 (bt8x8)

Asonic (www.asonic.com.cn) (website down)

SkyEye tv 878

124 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Hoontech

878TV/FM

Teppro (www.itcteppro.com.tw)

Models:

• ITC PCITV (Card Ver 1.0) “Teppro TV1/TVFM1 Card”

• ITC PCITV (Card Ver 2.0)

• ITC PCITV (Card Ver 3.0) = “PV-BT878P+ (REV.9D)”

• ITC PCITV (Card Ver 4.0)

• TEPPRO IV-550 (For BT848 Main Chip)

• ITC DSTTV (bt878, satellite)

• ITC VideoMaker (saa7146, StreamMachine sm2110, tvtuner) “PV-SM2210P+ (REV:1C)”

Kworld (www.kworld.com.tw)

PC TV Station:

• KWORLD KW-TV878R TV (no radio)

• KWORLD KW-TV878RF TV (w/ radio)

• KWORLD KW-TVL878RF (low profile)

• KWORLD KW-TV713XRF (saa7134)

MPEG TV Station (same cards as above plus WinDVR Software MPEG en/decoder)

• KWORLD KW-TV878R -Pro TV (no Radio)

• KWORLD KW-TV878RF-Pro TV (w/ Radio)

• KWORLD KW-TV878R -Ultra TV (no Radio)

• KWORLD KW-TV878RF-Ultra TV (w/ Radio)

JTT/ Justy Corp.(http://www.jtt.ne.jp/)

JTT-02 (JTT TV) “TV watchmate pro” (bt848)

1.1. The media subsystem 125

Linux Media Documentation

ADS www.adstech.com

Models:

• Channel Surfer TV (CHX-950)

• Channel Surfer TV+FM (CHX-960FM)

AVEC www.prochips.com

AVEC Intercapture (bt848, tea6320)

NoBrand

TV Excel = Australian Name for “PV-BT878P+ 8E” or “878TV Rev.3_”

Mach www.machspeed.com

Mach TV 878

Eline www.eline-net.com/

Models:

• Eline Vision TVMaster / TVMaster FM (ELV-TVM/ ELV-TVM-FM) = LR26 (bt878)

• Eline Vision TVMaster-2000 (ELV-TVM-2000, ELV-TVM-2000-FM)= LR138 (saa713x)

Spirit

• Spirit TV Tuner/Video Capture Card (bt848)

Boser www.boser.com.tw

Models:

• HS-878 Mini PCI Capture Add-on Card

• HS-879 Mini PCI 3D Audio and Capture Add-on Card (w/ ES1938 Solo-1)

126 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Satelco www.citycom-gmbh.de, www.satelco.de

Models:

• TV-FM =KNC1 saa7134

• Standard PCI (DVB-S) = Technotrend Budget

• Standard PCI (DVB-S) w/ CI

• Satelco Highend PCI (DVB-S) = Technotrend Premium

Sensoray www.sensoray.com

Models:

• Sensoray 311 (PC/104 bus)

• Sensoray 611 (PCI)

CEI (Chartered Electronics Industries Pte Ltd [CEI] [FCC ID HBY])

Models:

• TV Tuner - HBY-33A-RAFFLES Brooktree Bt848KPF + Philips

• TV Tuner MG9910 - HBY33A-TVO CEI + Philips SAA7110 + OKI M548262 + ST
STV8438CV

• Primetime TV (ISA)

– acquired by Singapore Technologies
– now operating as Chartered Semiconductor Manufacturing
– Manufacturer of video cards is listed as:

∗ Cogent Electronics Industries [CEI]

AITech

Models:

• Wavewatcher TV (ISA)

• AITech WaveWatcher TV-PCI = can be LR26 (Bt848) or LR50 (BT878)

• WaveWatcher TVR-202 TV/FM Radio Card (ISA)

1.1. The media subsystem 127

Linux Media Documentation

MAXRON

Maxron MaxTV/FM Radio (KW-TV878-FNT) = Kworld or JW-TV878-FBK

www.ids-imaging.de

Models:

• Falcon Series (capture only)

In USA: http://www.theimagingsource.com/ - DFG/LC1

www.sknet-web.co.jp

SKnet Monster TV (saa7134)

A-Max www.amaxhk.com (Colormax, Amax, Napa)

APAC Viewcomp 878

Cybertainment

Models:

• CyberMail AV Video Email Kit w/ PCI Capture Card (capture only)

• CyberMail Xtreme

These are Flyvideo

VCR (http://www.vcrinc.com/)

Video Catcher 16

Twinhan

Models:

• DST Card/DST-IP (bt878, twinhan asic) VP-1020 - Sold as:

– KWorld DVBS Satellite TV-Card
– Powercolor DSTV Satellite Tuner Card
– Prolink Pixelview DTV2000
– Provideo PV-911 Digital Satellite TV Tuner Card With Common Interface ?

• DST-CI Card (DVB Satellite) VP-1030

• DCT Card (DVB cable)

128 Chapter 1. Media subsystem admin and user guide

http://www.theimagingsource.com/

Linux Media Documentation

MSI

Models:

• MSI TV@nywhere Tuner Card (MS-8876) (CX23881/883) Not Bt878 compatible.

• MS-8401 DVB-S

Focus www.focusinfo.com

InVideo PCI (bt878)

Sdisilk www.sdisilk.com/

Models:

• SDI Silk 100

• SDI Silk 200 SDI Input Card

www.euresys.com

PICOLO series

PMC/Pace

www.pacecom.co.uk website closed

Mercury www.kobian.com (UK and FR)

Models:

• LR50

• LR138RBG-Rx == LR138

TEC sound

TV-Mate = Zoltrix VP-8482

Though educated googling found: www.techmakers.com

(package and manuals don’t have any other manufacturer info) TecSound

1.1. The media subsystem 129

mailto:TV@nywhere

Linux Media Documentation

Lorenzen www.lorenzen.de

SL DVB-S PCI = Technotrend Budget PCI (su1278 or bsru version)

Origo (.uk) www.origo2000.com

PC TV Card = LR50

I/O Magic www.iomagic.com

PC PVR - Desktop TV Personal Video Recorder DR-PCTV100 = Pinnacle ROB2D-51009464 4.0
+ Cyberlink PowerVCR II

Arowana

TV-Karte / Poso Power TV (?) = Zoltrix VP-8482 (?)

iTVC15 boards

kuroutoshikou.com ITVC15 yuan.com MPG160 PCI TV (Internal PCI MPEG2 encoder card plus
TV-tuner)

Asus www.asuscom.com

Models:

• Asus TV Tuner Card 880 NTSC (low profile, cx23880)

• Asus TV (saa7134)

Hoontech

http://www.hoontech.de/

• HART Vision 848 (H-ART Vision 848)

• HART Vision 878 (H-Art Vision 878)

130 Chapter 1. Media subsystem admin and user guide

http://www.hoontech.de/

Linux Media Documentation

Chips used at bttv devices

• all boards:

– Brooktree Bt848/848A/849/878/879: video capture chip
• Board specific

– Miro PCTV:
∗ Philips or Temic Tuner

– Hauppauge Win/TV pci (version 405):
∗ Microchip 24LC02B or Philips 8582E2Y:

· 256 Byte EEPROM with configuration information

· I2C 0xa0-0xa1, (24LC02B also responds to 0xa2-0xaf)

∗ Philips SAA5246AGP/E: Videotext decoder chip, I2C 0x22-0x23

∗ TDA9800: sound decoder

∗ Winbond W24257AS-35: 32Kx8 CMOS static RAM (Videotext buffer mem)

∗ 14052B: analog switch for selection of sound source

• PAL:

– TDA5737: VHF, hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners
– TSA5522: 1.4 GHz I2C-bus controlled synthesizer, I2C 0xc2-0xc3

• NTSC:

– TDA5731: VHF, hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners
– TSA5518: no datasheet available on Philips site

• STB TV pci:

– ???
– if you want better support for STB cards send me info! Look at the board! What chips
are on it?

Specs

Philips http://www.Semiconductors.COM/pip/

Conexant http://www.conexant.com/

Micronas http://www.micronas.com/en/home/index.html

1.1. The media subsystem 131

http://www.Semiconductors.COM/pip/
http://www.conexant.com/
http://www.micronas.com/en/home/index.html

Linux Media Documentation

Thanks

Many thanks to:

• Markus Schroeder <schroedm@uni-duesseldorf.de> for information on the Bt848 and
tuner programming and his control program xtvc.

• Martin Buck <martin-2.buck@student.uni-ulm.de> for his great Videotext package.

• Gerd Hoffmann for the MSP3400 support and the modular I2C, tuner, … support.

• MATRIX Vision for giving us 2 cards for free, which made support of single crystal opera-
tion possible.

• MIRO for providing a free PCTV card and detailed information about the components on
their cards. (E.g. how the tuner type is detected) Without their card I could not have
debugged the NTSC mode.

• Hauppauge for telling how the sound input is selected and what components they do and
will use on their radio cards. Also many thanks for faxing me the FM1216 data sheet.

Contributors

Michael Chu <mmchu@pobox.com> AverMedia fix and more flexible card recognition

Alan Cox <alan@lxorguk.ukuu.org.uk> Video4Linux interface and 2.1.x kernel adaptation

Chris Kleitsch Hardware I2C
Gerd Hoffmann Radio card (ITT sound processor)
bigfoot <bigfoot@net-way.net>

Ragnar Hojland Espinosa <ragnar@macula.net> ConferenceTV card

• many more (please mail me if you are missing in this list and would like to be
mentioned)

1.1.6.2 The cafe_ccic driver

Author: Jonathan Corbet <corbet@lwn.net>

Introduction

“cafe_ccic” is a driver for the Marvell 88ALP01 “cafe” CMOS camera controller. This is the
controller found in first-generation OLPC systems, and this driver was written with support
from the OLPC project.

Current status: the core driver works. It can generate data in YUV422, RGB565, and RGB444
formats. (Anybody looking at the code will see RGB32 as well, but that is a debugging aid which
will be removed shortly). VGA and QVGA modes work; CIF is there but the colors remain funky.
Only the OV7670 sensor is known to work with this controller at this time.

To try it out: either of these commands will work:

132 Chapter 1. Media subsystem admin and user guide

mailto:schroedm@uni-duesseldorf.de
mailto:martin-2.buck@student.uni-ulm.de
mailto:mmchu@pobox.com
mailto:alan@lxorguk.ukuu.org.uk
mailto:bigfoot@net-way.net
mailto:ragnar@macula.net
mailto:corbet@lwn.net

Linux Media Documentation

$ mplayer tv:// -tv driver=v4l2:width=640:height=480 -nosound
$ mplayer tv:// -tv driver=v4l2:width=640:height=480:outfmt=bgr16 -nosound

The “xawtv” utility also works; gqcam does not, for unknown reasons.

Load time options

There are a few load-time options, most of which can be changed after loading via sysfs as well:

• alloc_bufs_at_load: Normally, the driver will not allocate any DMA buffers until the time
comes to transfer data. If this option is set, then worst-case-sized buffers will be allocated
at module load time. This option nails down the memory for the life of the module, but
perhaps decreases the chances of an allocation failure later on.

• dma_buf_size: The size of DMA buffers to allocate. Note that this option is only consulted
for load-time allocation; when buffers are allocated at run time, they will be sized appro-
priately for the current camera settings.

• n_dma_bufs: The controller can cycle through either two or three DMA buffers. Normally,
the driver tries to use three buffers; on faster systems, however, it will work well with only
two.

• min_buffers: The minimum number of streaming I/O buffers that the driver will consent
to work with. Default is one, but, on slower systems, better behavior with mplayer can be
achieved by setting to a higher value (like six).

• max_buffers: The maximum number of streaming I/O buffers; default is ten. That number
was carefully picked out of a hat and should not be assumed to actually mean much of
anything.

• flip: If this boolean parameter is set, the sensor will be instructed to invert the video image.
Whether it makes sense is determined by how your particular camera is mounted.

1.1.6.3 The cpia2 driver

Authors: Peter Pregler <Peter_Pregler@email.com>, Scott J. Bertin <scot-
tbertin@yahoo.com>, and Jarl Totland <Jarl.Totland@bdc.no> for the original cpia driver,
which this one was modelled from.

Introduction

This is a driver for STMicroelectronics’s CPiA2 (second generation Colour Processor Interface
ASIC) based cameras. This camera outputs an MJPEG stream at up to vga size. It implements
the Video4Linux interface as much as possible. Since the V4L interface does not support com-
pressed formats, only an mjpeg enabled application can be used with the camera. We have
modified the gqcam application to view this stream.

The driver is implemented as two kernel modules. The cpia2 module contains the camera func-
tions and the V4L interface. The cpia2_usb module contains usb specific functions. The main
reason for this was the size of the module was getting out of hand, so I separated them. It is
not likely that there will be a parallel port version.

1.1. The media subsystem 133

mailto:Peter_Pregler@email.com
mailto:scottbertin@yahoo.com
mailto:scottbertin@yahoo.com
mailto:Jarl.Totland@bdc.no

Linux Media Documentation

Features

• Supports cameras with the Vision stv6410 (CIF) and stv6500 (VGA) cmos sensors. I only
have the vga sensor, so can’t test the other.

• Image formats: VGA, QVGA, CIF, QCIF, and a number of sizes in between. VGA and QVGA
are the native image sizes for the VGA camera. CIF is done in the coprocessor by scaling
QVGA. All other sizes are done by clipping.

• Palette: YCrCb, compressed with MJPEG.

• Some compression parameters are settable.

• Sensor framerate is adjustable (up to 30 fps CIF, 15 fps VGA).

• Adjust brightness, color, contrast while streaming.

• Flicker control settable for 50 or 60 Hz mains frequency.

Making and installing the stv672 driver modules

Requirements

Video4Linux must be either compiled into the kernel or available as a module. Video4Linux2 is
automatically detected and made available at compile time.

Setup

Use modprobe cpia2 to load and modprobe -r cpia2 to unload. This may be done automati-
cally by your distribution.

Driver options

Option Description
video_nr video device to register (0=/dev/video0, etc) range -1 to 64. default is -1

(first available) If you have more than 1 camera, this MUST be -1.
buffer_size Size for each frame buffer in bytes (default 68k)
num_buffers Number of frame buffers (1-32, default 3)
alternate USB Alternate (2-7, default 7)
flicker_freq Frequency for flicker reduction(50 or 60, default 60)
flicker_mode 0 to disable, or 1 to enable flicker reduction. (default 0). This is only

effective if the camera uses a stv0672 coprocessor.

134 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Setting the options

If you are using modules, edit /etc/modules.conf and add an options line like this:

options cpia2 num_buffers=3 buffer_size=65535

If the driver is compiled into the kernel, at boot time specify them like this:

cpia2.num_buffers=3 cpia2.buffer_size=65535

What buffer size should I use?

The maximum image size depends on the alternate you choose, and the frame rate achieved by
the camera. If the compression engine is able to keep up with the frame rate, the maximum
image size is given by the table below.

The compression engine starts out at maximum compression, and will increase image quality
until it is close to the size in the table. As long as the compression engine can keep up with the
frame rate, after a short time the images will all be about the size in the table, regardless of
resolution.

At low alternate settings, the compression engine may not be able to compress the image
enough and will reduce the frame rate by producing larger images.

The default of 68k should be good for most users. This will handle any alternate at frame rates
down to 15fps. For lower frame rates, it may be necessary to increase the buffer size to avoid
having frames dropped due to insufficient space.

Alternate bytes/ms 15fps 30fps
2 128 8533 4267
3 384 25600 12800
4 640 42667 21333
5 768 51200 25600
6 896 59733 29867
7 1023 68200 34100

Table: Image size(bytes)

How many buffers should I use?

For normal streaming, 3 should give the best results. With only 2, it is possible for the camera
to finish sending one image just after a program has started reading the other. If this happens,
the driver must drop a frame. The exception to this is if you have a heavily loaded machine. In
this case use 2 buffers. You are probably not reading at the full frame rate. If the camera can
send multiple images before a read finishes, it could overwrite the third buffer before the read
finishes, leading to a corrupt image. Single and double buffering have extra checks to avoid
overwriting.

1.1. The media subsystem 135

Linux Media Documentation

Using the camera

We are providing a modified gqcam application to view the output. In order to avoid confusion,
here it is called mview. There is also the qx5view program which can also control the lights
on the qx5 microscope. MJPEG Tools (http://mjpeg.sourceforge.net) can also be used to record
from the camera.

1.1.6.4 The cx88 driver

Author: Gerd Hoffmann

This is a v4l2 device driver for the cx2388x chip.

Current status

video
• Works.

• Overlay isn’t supported.

audio
• Works. The TV standard detection is made by the driver, as the hardware has bugs to
auto-detect.

• audio data dma (i.e. recording without loopback cable to the sound card) is supported
via cx88-alsa.

vbi
• Works.

How to add support for new cards

The driver needs some config info for the TV cards. This stuff is in cx88-cards.c. If the driver
doesn’t work well you likely need a new entry for your card in that file. Check the kernel log
(using dmesg) to see whenever the driver knows your card or not. There is a line like this one:

cx8800[0]: subsystem: 0070:3400, board: Hauppauge WinTV \
34xxx models [card=1,autodetected]

If your card is listed as “board: UNKNOWN/GENERIC” it is unknown to the driver. What to do
then?

1) Try upgrading to the latest snapshot, maybe it has been added meanwhile.

2) You can try to create a new entry yourself, have a look at cx88-cards.c. If that worked,
mail me your changes as unified diff (“diff -u”).

3) Or you can mail me the config information. We need at least the following information to
add the card:

• the PCI Subsystem ID (“0070:3400” from the line above, “lspci -v” output is fine too).

136 Chapter 1. Media subsystem admin and user guide

http://mjpeg.sourceforge.net

Linux Media Documentation

• the tuner type used by the card. You can try to find one by trial-and-error using the
tuner=<n> insmod option. If you know which one the card has you can also have a
look at the list in CARDLIST.tuner

1.1.6.5 The VPBE V4L2 driver design

Functional partitioning

Consists of the following:

1. V4L2 display driver

Implements creation of video2 and video3 device nodes and provides v4l2 device interface
to manage VID0 and VID1 layers.

2. Display controller

Loads up VENC, OSD and external encoders such as ths8200. It provides a set of API
calls to V4L2 drivers to set the output/standards in the VENC or external sub devices. It
also provides a device object to access the services from OSD subdevice using sub device
ops. The connection of external encoders to VENC LCD controller port is done at init time
based on default output and standard selection or at run time when application change
the output through V4L2 IOCTLs.

When connected to an external encoder, vpbe controller is also responsible for setting
up the interface between VENC and external encoders based on board specific settings
(specified in board-xxx-evm.c). This allows interfacing external encoders such as ths8200.
The setup_if_config() is implemented for this as well as configure_venc() (part of the next
patch) API to set timings in VENC for a specific display resolution. As of this patch series,
the interconnection and enabling and setting of the external encoders is not present, and
would be a part of the next patch series.

3. VENC subdevice module

Responsible for setting outputs provided through internal DACs and also setting timings
at LCD controller port when external encoders are connected at the port or LCD panel
timings required. When external encoder/LCD panel is connected, the timings for a spe-
cific standard/preset is retrieved from the board specific table and the values are used to
set the timings in venc using non-standard timing mode.

Support LCD Panel displays using the VENC. For example to support a Logic PD display,
it requires setting up the LCD controller port with a set of timings for the resolution sup-
ported and setting the dot clock. So we could add the available outputs as a board specific
entry (i.e add the “LogicPD” output name to board-xxx-evm.c). A table of timings for vari-
ous LCDs supported can be maintained in the board specific setup file to support various
LCD displays.As of this patch a basic driver is present, and this support for external en-
coders and displays forms a part of the next patch series.

4. OSD module

OSD module implements all OSD layer management and hardware specific features. The
VPBE module interacts with the OSD for enabling and disabling appropriate features of
the OSD.

1.1. The media subsystem 137

Linux Media Documentation

Current status

A fully functional working version of the V4L2 driver is available. This driver has been tested
with NTSC and PAL standards and buffer streaming.

1.1.6.6 The Samsung S5P/Exynos4 FIMC driver

Copyright © 2012 - 2013 Samsung Electronics Co., Ltd.

The FIMC (Fully Interactive Mobile Camera) device available in Samsung SoC Application Pro-
cessors is an integrated camera host interface, color space converter, image resizer and rota-
tor. It’s also capable of capturing data from LCD controller (FIMD) through the SoC internal
writeback data path. There are multiple FIMC instances in the SoCs (up to 4), having slightly
different capabilities, like pixel alignment constraints, rotator availability, LCD writeback sup-
port, etc. The driver is located at drivers/media/platform/exynos4-is directory.

Supported SoCs

S5PC100 (mem-to-mem only), S5PV210, Exynos4210

Supported features

• camera parallel interface capture (ITU-R.BT601/565);

• camera serial interface capture (MIPI-CSI2);

• memory-to-memory processing (color space conversion, scaling, mirror and rotation);

• dynamic pipeline re-configuration at runtime (re-attachment of any FIMC instance to any
parallel video input or any MIPI-CSI front-end);

• runtime PM and system wide suspend/resume

Not currently supported

• LCD writeback input

• per frame clock gating (mem-to-mem)

User space interfaces

Media device interface

The driver supports Media Controller API as defined at Part IV - Media Controller API. The
media device driver name is “Samsung S5P FIMC”.

The purpose of this interface is to allow changing assignment of FIMC instances to the SoC
peripheral camera input at runtime and optionally to control internal connections of the MIPI-
CSIS device(s) to the FIMC entities.

138 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Themedia device interface allows to configure the SoC for capturing image data from the sensor
throughmore than one FIMC instance (e.g. for simultaneous viewfinder and still capture setup).

Reconfiguration is done by enabling/disabling media links created by the driver during initial-
ization. The internal device topology can be easily discovered through media entity and links
enumeration.

Memory-to-memory video node

V4L2 memory-to-memory interface at /dev/video? device node. This is standalone video device,
it has no media pads. However please note the mem-to-mem and capture video node operation
on same FIMC instance is not allowed. The driver detects such cases but the applications should
prevent them to avoid an undefined behaviour.

Capture video node

The driver supports V4L2 Video Capture Interface as defined at Interfaces.

At the capture and mem-to-mem video nodes only the multi-planar API is supported. For more
details see: Single- and multi-planar APIs.

Camera capture subdevs

Each FIMC instance exports a sub-device node (/dev/v4l-subdev?), a sub-device node is also
created per each available and enabled at the platform level MIPI-CSI receiver device (currently
up to two).

sysfs

In order to enable more precise camera pipeline control through the sub-device API the
driver creates a sysfs entry associated with “s5p-fimc-md” platform device. The entry path
is: /sys/platform/devices/s5p-fimc-md/subdev_conf_mode.

In typical use case there could be a following capture pipeline configuration: sensor subdev ->
mipi-csi subdev -> fimc subdev -> video node

When we configure these devices through sub-device API at user space, the configuration flow
must be from left to right, and the video node is configured as last one.

When we don’t use sub-device user space API the whole configuration of all devices belonging
to the pipeline is done at the video node driver. The sysfs entry allows to instruct the capture
node driver not to configure the sub-devices (format, crop), to avoid resetting the subdevs’
configuration when the last configuration steps at the video node is performed.

For full sub-device control support (subdevs configured at user space before starting stream-
ing):

echo "sub-dev" > /sys/platform/devices/s5p-fimc-md/subdev_conf_mode

For V4L2 video node control only (subdevs configured internally by the host driver):

1.1. The media subsystem 139

Linux Media Documentation

echo "vid-dev" > /sys/platform/devices/s5p-fimc-md/subdev_conf_mode

This is a default option.

5. Device mapping to video and subdev device nodes

There are associated two video device nodes with each device instance in hardware - video
capture and mem-to-mem and additionally a subdev node for more precise FIMC capture sub-
system control. In addition a separate v4l2 sub-device node is created per each MIPI-CSIS
device.

How to find out which /dev/video? or /dev/v4l-subdev? is assigned to which device?

You can either grep through the kernel log to find relevant information, i.e.

dmesg | grep -i fimc

(note that udev, if present, might still have rearranged the video nodes),

or retrieve the information from /dev/media? with help of the media-ctl tool:

media-ctl -p

7. Build

If the driver is built as a loadable kernel module (CONFIG_VIDEO_SAMSUNG_S5P_FIMC=m)
two modules are created (in addition to the core v4l2 modules): s5p-fimc.ko and optional s5p-
csis.ko (MIPI-CSI receiver subdev).

1.1.6.7 i.MX Video Capture Driver

Introduction

The Freescale i.MX5/6 contains an Image Processing Unit (IPU), which handles the flow of
image frames to and from capture devices and display devices.

For image capture, the IPU contains the following internal subunits:

• Image DMA Controller (IDMAC)

• Camera Serial Interface (CSI)

• Image Converter (IC)

• Sensor Multi-FIFO Controller (SMFC)

• Image Rotator (IRT)

• Video De-Interlacing or Combining Block (VDIC)

The IDMAC is the DMA controller for transfer of image frames to and from memory. Various
dedicated DMA channels exist for both video capture and display paths. During transfer, the
IDMAC is also capable of vertical image flip, 8x8 block transfer (see IRT description), pixel
component re-ordering (for example UYVY to YUYV) within the same colorspace, and packed

140 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

<–> planar conversion. The IDMAC can also perform a simple de-interlacing by interweaving
even and odd lines during transfer (without motion compensation which requires the VDIC).

The CSI is the backend capture unit that interfaces directly with camera sensors over Parallel,
BT.656/1120, and MIPI CSI-2 buses.

The IC handles color-space conversion, resizing (downscaling and upscaling), horizontal flip,
and 90/270 degree rotation operations.

There are three independent “tasks” within the IC that can carry out conversions concurrently:
pre-process encoding, pre-process viewfinder, and post-processing. Within each task, conver-
sions are split into three sections: downsizing section, main section (upsizing, flip, colorspace
conversion, and graphics plane combining), and rotation section.

The IPU time-shares the IC task operations. The time-slice granularity is one burst of eight
pixels in the downsizing section, one image line in the main processing section, one image
frame in the rotation section.

The SMFC is composed of four independent FIFOs that each can transfer captured frames from
sensors directly to memory concurrently via four IDMAC channels.

The IRT carries out 90 and 270 degree image rotation operations. The rotation operation is
carried out on 8x8 pixel blocks at a time. This operation is supported by the IDMAC which
handles the 8x8 block transfer along with block reordering, in coordination with vertical flip.

The VDIC handles the conversion of interlaced video to progressive, with support for different
motion compensation modes (low, medium, and high motion). The deinterlaced output frames
from the VDIC can be sent to the IC pre-process viewfinder task for further conversions. The
VDIC also contains a Combiner that combines two image planes, with alpha blending and color
keying.

In addition to the IPU internal subunits, there are also two units outside the IPU that are also
involved in video capture on i.MX:

• MIPI CSI-2 Receiver for camera sensors with the MIPI CSI-2 bus interface. This is a Syn-
opsys DesignWare core.

• Two video multiplexers for selecting among multiple sensor inputs to send to a CSI.

For more info, refer to the latest versions of the i.MX5/6 reference manuals1 and2.

Features

Some of the features of this driver include:

• Many different pipelines can be configured via media controller API, that correspond to
the hardware video capture pipelines supported in the i.MX.

• Supports parallel, BT.565, and MIPI CSI-2 interfaces.

• Concurrent independent streams, by configuring pipelines to multiple video capture inter-
faces using independent entities.

• Scaling, color-space conversion, horizontal and vertical flip, and image rotation via IC task
subdevs.

1 http://www.nxp.com/assets/documents/data/en/reference-manuals/IMX6DQRM.pdf
2 http://www.nxp.com/assets/documents/data/en/reference-manuals/IMX6SDLRM.pdf

1.1. The media subsystem 141

http://www.nxp.com/assets/documents/data/en/reference-manuals/IMX6DQRM.pdf
http://www.nxp.com/assets/documents/data/en/reference-manuals/IMX6SDLRM.pdf

Linux Media Documentation

• Many pixel formats supported (RGB, packed and planar YUV, partial planar YUV).

• The VDIC subdev supports motion compensated de-interlacing, with three motion com-
pensation modes: low, medium, and high motion. Pipelines are defined that allow sending
frames to the VDIC subdev directly from the CSI. There is also support in the future for
sending frames to the VDIC from memory buffers via a output/mem2mem devices.

• Includes a Frame Interval Monitor (FIM) that can correct vertical sync problems with the
ADV718x video decoders.

Topology

The following shows the media topologies for the i.MX6Q SabreSD and i.MX6Q SabreAuto.
Refer to these diagrams in the entity descriptions in the next section.

The i.MX5/6 topologies can differ upstream from the IPUv3 CSI video multiplexers, but the in-
ternal IPUv3 topology downstream from there is common to all i.MX5/6 platforms. For example,
the SabreSD, with the MIPI CSI-2 OV5640 sensor, requires the i.MX6 MIPI CSI-2 receiver. But
the SabreAuto has only the ADV7180 decoder on a parallel bt.656 bus, and therefore does not
require the MIPI CSI-2 receiver, so it is missing in its graph.

Entities

imx6-mipi-csi2

This is the MIPI CSI-2 receiver entity. It has one sink pad to receive the MIPI CSI-2 stream
(usually from a MIPI CSI-2 camera sensor). It has four source pads, corresponding to the
four MIPI CSI-2 demuxed virtual channel outputs. Multiple source pads can be enabled to
independently stream from multiple virtual channels.

This entity actually consists of two sub-blocks. One is the MIPI CSI-2 core. This is a Synopsys
Designware MIPI CSI-2 core. The other sub-block is a “CSI-2 to IPU gasket”. The gasket acts
as a demultiplexer of the four virtual channels streams, providing four separate parallel buses
containing each virtual channel that are routed to CSIs or videomultiplexers as described below.

On i.MX6 solo/dual-lite, all four virtual channel buses are routed to two video multiplexers.
Both CSI0 and CSI1 can receive any virtual channel, as selected by the video multiplexers.

On i.MX6 Quad, virtual channel 0 is routed to IPU1-CSI0 (after selected by a video mux), virtual
channels 1 and 2 are hard-wired to IPU1-CSI1 and IPU2-CSI0, respectively, and virtual channel
3 is routed to IPU2-CSI1 (again selected by a video mux).

ipuX_csiY_mux

These are the video multiplexers. They have two or more sink pads to select from either camera
sensors with a parallel interface, or fromMIPI CSI-2 virtual channels from imx6-mipi-csi2 entity.
They have a single source pad that routes to a CSI (ipuX_csiY entities).

On i.MX6 solo/dual-lite, there are two video mux entities. One sits in front of IPU1-CSI0 to
select between a parallel sensor and any of the four MIPI CSI-2 virtual channels (a total of five
sink pads). The other mux sits in front of IPU1-CSI1, and again has five sink pads to select
between a parallel sensor and any of the four MIPI CSI-2 virtual channels.

142 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

0

ipu1_csi0
/dev/v4l-subdev0

1 2

ipu1_csi0 capture
/dev/video0

0

ipu1_ic_prp
/dev/v4l-subdev2

1 2

0 1

ipu1_vdic
/dev/v4l-subdev1

2

0

ipu1_ic_prpenc
/dev/v4l-subdev3

1

0

ipu1_ic_prpvf
/dev/v4l-subdev4

1

ipu1_ic_prpenc capture
/dev/video1

ipu1_ic_prpvf capture
/dev/video2

0

ipu1_csi1
/dev/v4l-subdev5

1 2

ipu1_csi1 capture
/dev/video3

0

ipu2_csi0
/dev/v4l-subdev6

1 2

ipu2_csi0 capture
/dev/video4

0

ipu2_ic_prp
/dev/v4l-subdev8

1 2

0 1

ipu2_vdic
/dev/v4l-subdev7

2

0

ipu2_ic_prpenc
/dev/v4l-subdev9

1

0

ipu2_ic_prpvf
/dev/v4l-subdev10

1

ipu2_ic_prpenc capture
/dev/video5

ipu2_ic_prpvf capture
/dev/video6

0

ipu2_csi1
/dev/v4l-subdev11

1 2

ipu2_csi1 capture
/dev/video7

0

imx6-mipi-csi2
/dev/v4l-subdev12

1 2 3 4

0 1

ipu1_csi0_mux
/dev/v4l-subdev13

2

0 1

ipu2_csi1_mux
/dev/v4l-subdev14

2

ov5640 1-003c
/dev/v4l-subdev15

0

Fig. 1: Media pipeline graph on i.MX6Q SabreSD

1.1. The media subsystem 143

Linux Media Documentation

0

ipu1_csi0
/dev/v4l-subdev0

1 2

ipu1_csi0 capture
/dev/video0

0

ipu1_ic_prp
/dev/v4l-subdev2

1 2

0 1

ipu1_vdic
/dev/v4l-subdev1

2

0

ipu1_ic_prpenc
/dev/v4l-subdev3

1

0

ipu1_ic_prpvf
/dev/v4l-subdev4

1

ipu1_ic_prpenc capture
/dev/video1

ipu1_ic_prpvf capture
/dev/video2

0

ipu1_csi1
/dev/v4l-subdev5

1 2

ipu1_csi1 capture
/dev/video3

0

ipu2_csi0
/dev/v4l-subdev6

1 2

ipu2_csi0 capture
/dev/video4

0

ipu2_ic_prp
/dev/v4l-subdev8

1 2

0 1

ipu2_vdic
/dev/v4l-subdev7

2

0

ipu2_ic_prpenc
/dev/v4l-subdev9

1

0

ipu2_ic_prpvf
/dev/v4l-subdev10

1

ipu2_ic_prpenc capture
/dev/video5

ipu2_ic_prpvf capture
/dev/video6

0

ipu2_csi1
/dev/v4l-subdev11

1 2

ipu2_csi1 capture
/dev/video7

0 1

ipu1_csi0_mux
/dev/v4l-subdev12

2

0 1

ipu2_csi1_mux
/dev/v4l-subdev13

2

adv7180 3-0021
/dev/v4l-subdev14

0

Fig. 2: Media pipeline graph on i.MX6Q SabreAuto

144 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

On i.MX6 Quad, there are two video mux entities. One sits in front of IPU1-CSI0 to select
between a parallel sensor and MIPI CSI-2 virtual channel 0 (two sink pads). The other mux sits
in front of IPU2-CSI1 to select between a parallel sensor and MIPI CSI-2 virtual channel 3 (two
sink pads).

ipuX_csiY

These are the CSI entities. They have a single sink pad receiving from either a video mux or
from a MIPI CSI-2 virtual channel as described above.

This entity has two source pads. The first source pad can link directly to the ipuX_vdic entity
or the ipuX_ic_prp entity, using hardware links that require no IDMAC memory buffer transfer.

When the direct source pad is routed to the ipuX_ic_prp entity, frames from the CSI can be
processed by one or both of the IC pre-processing tasks.

When the direct source pad is routed to the ipuX_vdic entity, the VDIC will carry out motion-
compensated de-interlace using “high motion” mode (see description of ipuX_vdic entity).

The second source pad sends video frames directly to memory buffers via the SMFC and an
IDMAC channel, bypassing IC pre-processing. This source pad is routed to a capture device
node, with a node name of the format “ipuX_csiY capture”.

Note that since the IDMAC source pad makes use of an IDMAC channel, pixel reordering within
the same colorspace can be carried out by the IDMAC channel. For example, if the CSI sink
pad is receiving in UYVY order, the capture device linked to the IDMAC source pad can capture
in YUYV order. Also, if the CSI sink pad is receiving a packed YUV format, the capture device
can capture a planar YUV format such as YUV420.

The IDMAC channel at the IDMAC source pad also supports simple interweave without mo-
tion compensation, which is activated if the source pad’s field type is sequential top-bottom
or bottom-top, and the requested capture interface field type is set to interlaced (t-b, b-t, or
unqualified interlaced). The capture interface will enforce the same field order as the source
pad field order (interlaced-bt if source pad is seq-bt, interlaced-tb if source pad is seq-tb).

For events produced by ipuX_csiY, see ref:imx_api_ipuX_csiY.

Cropping in ipuX_csiY

The CSI supports cropping the incoming raw sensor frames. This is implemented in the
ipuX_csiY entities at the sink pad, using the crop selection subdev API.

The CSI also supports fixed divide-by-two downscaling independently in width and height. This
is implemented in the ipuX_csiY entities at the sink pad, using the compose selection subdev
API.

The output rectangle at the ipuX_csiY source pad is the same as the compose rectangle at the
sink pad. So the source pad rectangle cannot be negotiated, it must be set using the compose
selection API at sink pad (if /2 downscale is desired, otherwise source pad rectangle is equal to
incoming rectangle).

To give an example of crop and /2 downscale, this will crop a 1280x960 input frame to
640x480, and then /2 downscale in both dimensions to 320x240 (assumes ipu1_csi0 is linked to
ipu1_csi0_mux):

1.1. The media subsystem 145

Linux Media Documentation

media-ctl -V "'ipu1_csi0_mux':2[fmt:UYVY2X8/1280x960]"
media-ctl -V "'ipu1_csi0':0[crop:(0,0)/640x480]"
media-ctl -V "'ipu1_csi0':0[compose:(0,0)/320x240]"

Frame Skipping in ipuX_csiY

The CSI supports frame rate decimation, via frame skipping. Frame rate decimation is specified
by setting the frame intervals at sink and source pads. The ipuX_csiY entity then applies the
best frame skip setting to the CSI to achieve the desired frame rate at the source pad.

The following example reduces an assumed incoming 60 Hz frame rate by half at the IDMAC
output source pad:

media-ctl -V "'ipu1_csi0':0[fmt:UYVY2X8/640x480@1/60]"
media-ctl -V "'ipu1_csi0':2[fmt:UYVY2X8/640x480@1/30]"

Frame Interval Monitor in ipuX_csiY

See ref:imx_api_FIM.

ipuX_vdic

The VDIC carries out motion compensated de-interlacing, with three motion compensation
modes: low, medium, and high motion. The mode is specified with the menu control
V4L2_CID_DEINTERLACING_MODE. The VDIC has two sink pads and a single source pad.

The direct sink pad receives from an ipuX_csiY direct pad. With this link the VDIC can only
operate in high motion mode.

When the IDMAC sink pad is activated, it receives from an output or mem2mem device node.
With this pipeline, the VDIC can also operate in low and medium modes, because these modes
require receiving frames from memory buffers. Note that an output or mem2mem device is not
implemented yet, so this sink pad currently has no links.

The source pad routes to the IC pre-processing entity ipuX_ic_prp.

ipuX_ic_prp

This is the IC pre-processing entity. It acts as a router, routing data from its sink pad to one or
both of its source pads.

This entity has a single sink pad. The sink pad can receive from the ipuX_csiY direct pad, or
from ipuX_vdic.

This entity has two source pads. One source pad routes to the pre-process encode task en-
tity (ipuX_ic_prpenc), the other to the pre-process viewfinder task entity (ipuX_ic_prpvf). Both
source pads can be activated at the same time if the sink pad is receiving from ipuX_csiY. Only
the source pad to the pre-process viewfinder task entity can be activated if the sink pad is receiv-
ing from ipuX_vdic (frames from the VDIC can only be processed by the pre-process viewfinder
task).

146 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

ipuX_ic_prpenc

This is the IC pre-processing encode entity. It has a single sink pad from ipuX_ic_prp, and a
single source pad. The source pad is routed to a capture device node, with a node name of the
format “ipuX_ic_prpenc capture”.

This entity performs the IC pre-process encode task operations: color-space conversion, resiz-
ing (downscaling and upscaling), horizontal and vertical flip, and 90/270 degree rotation. Flip
and rotation are provided via standard V4L2 controls.

Like the ipuX_csiY IDMAC source, this entity also supports simple de-interlace without motion
compensation, and pixel reordering.

ipuX_ic_prpvf

This is the IC pre-processing viewfinder entity. It has a single sink pad from ipuX_ic_prp, and a
single source pad. The source pad is routed to a capture device node, with a node name of the
format “ipuX_ic_prpvf capture”.

This entity is identical in operation to ipuX_ic_prpenc, with the same resizing and CSC op-
erations and flip/rotation controls. It will receive and process de-interlaced frames from the
ipuX_vdic if ipuX_ic_prp is receiving from ipuX_vdic.

Like the ipuX_csiY IDMAC source, this entity supports simple interweaving without motion
compensation. However, note that if the ipuX_vdic is included in the pipeline (ipuX_ic_prp
is receiving from ipuX_vdic), it’s not possible to use interweave in ipuX_ic_prpvf, since the
ipuX_vdic has already carried out de-interlacing (with motion compensation) and therefore the
field type output from ipuX_vdic can only be none (progressive).

Capture Pipelines

The following describe the various use-cases supported by the pipelines.

The links shown do not include the backend sensor, video mux, or mipi csi-2 receiver links. This
depends on the type of sensor interface (parallel or mipi csi-2). So these pipelines begin with:

sensor -> ipuX_csiY_mux -> …

for parallel sensors, or:

sensor -> imx6-mipi-csi2 -> (ipuX_csiY_mux) -> …

for mipi csi-2 sensors. The imx6-mipi-csi2 receiver may need to route to the video mux
(ipuX_csiY_mux) before sending to the CSI, depending on the mipi csi-2 virtual channel, hence
ipuX_csiY_mux is shown in parenthesis.

1.1. The media subsystem 147

Linux Media Documentation

Unprocessed Video Capture:

Send frames directly from sensor to camera device interface node, with no conversions, via
ipuX_csiY IDMAC source pad:

-> ipuX_csiY:2 -> ipuX_csiY capture

IC Direct Conversions:

This pipeline uses the preprocess encode entity to route frames directly from the CSI to the IC,
to carry out scaling up to 1024x1024 resolution, CSC, flipping, and image rotation:

-> ipuX_csiY:1 -> 0:ipuX_ic_prp:1 -> 0:ipuX_ic_prpenc:1 -> ipuX_ic_prpenc capture

Motion Compensated De-interlace:

This pipeline routes frames from the CSI direct pad to the VDIC entity to support motion-
compensated de-interlacing (high motion mode only), scaling up to 1024x1024, CSC, flip, and
rotation:

-> ipuX_csiY:1 -> 0:ipuX_vdic:2 -> 0:ipuX_ic_prp:2 -> 0:ipuX_ic_prpvf:1 -> ipuX_ic_prpvf cap-
ture

Usage Notes

To aid in configuration and for backward compatibility with V4L2 applications that access con-
trols only from video device nodes, the capture device interfaces inherit controls from the active
entities in the current pipeline, so controls can be accessed either directly from the subdev or
from the active capture device interface. For example, the FIM controls are available either
from the ipuX_csiY subdevs or from the active capture device.

The following are specific usage notes for the Sabre* reference boards:

i.MX6Q SabreLite with OV5642 and OV5640

This platform requires the OmniVision OV5642 module with a parallel camera interface, and
the OV5640 module with a MIPI CSI-2 interface. Both modules are available from Boundary
Devices:

• https://boundarydevices.com/product/nit6x_5mp

• https://boundarydevices.com/product/nit6x_5mp_mipi

Note that if only one camera module is available, the other sensor node can be disabled in the
device tree.

The OV5642 module is connected to the parallel bus input on the i.MX internal video mux to
IPU1 CSI0. It’s i2c bus connects to i2c bus 2.

The MIPI CSI-2 OV5640 module is connected to the i.MX internal MIPI CSI-2 receiver, and
the four virtual channel outputs from the receiver are routed as follows: vc0 to the IPU1 CSI0
mux, vc1 directly to IPU1 CSI1, vc2 directly to IPU2 CSI0, and vc3 to the IPU2 CSI1 mux. The

148 Chapter 1. Media subsystem admin and user guide

https://boundarydevices.com/product/nit6x_5mp
https://boundarydevices.com/product/nit6x_5mp_mipi

Linux Media Documentation

OV5640 is also connected to i2c bus 2 on the SabreLite, therefore the OV5642 and OV5640
must not share the same i2c slave address.

The following basic example configures unprocessed video capture pipelines for both sensors.
The OV5642 is routed to ipu1_csi0, and the OV5640, transmitting on MIPI CSI-2 virtual channel
1 (which is imx6-mipi-csi2 pad 2), is routed to ipu1_csi1. Both sensors are configured to output
640x480, and the OV5642 outputs YUYV2X8, the OV5640 UYVY2X8:

Setup links for OV5642
media-ctl -l "'ov5642 1-0042':0 -> 'ipu1_csi0_mux':1[1]"
media-ctl -l "'ipu1_csi0_mux':2 -> 'ipu1_csi0':0[1]"
media-ctl -l "'ipu1_csi0':2 -> 'ipu1_csi0 capture':0[1]"
Setup links for OV5640
media-ctl -l "'ov5640 1-0040':0 -> 'imx6-mipi-csi2':0[1]"
media-ctl -l "'imx6-mipi-csi2':2 -> 'ipu1_csi1':0[1]"
media-ctl -l "'ipu1_csi1':2 -> 'ipu1_csi1 capture':0[1]"
Configure pads for OV5642 pipeline
media-ctl -V "'ov5642 1-0042':0 [fmt:YUYV2X8/640x480 field:none]"
media-ctl -V "'ipu1_csi0_mux':2 [fmt:YUYV2X8/640x480 field:none]"
media-ctl -V "'ipu1_csi0':2 [fmt:AYUV32/640x480 field:none]"
Configure pads for OV5640 pipeline
media-ctl -V "'ov5640 1-0040':0 [fmt:UYVY2X8/640x480 field:none]"
media-ctl -V "'imx6-mipi-csi2':2 [fmt:UYVY2X8/640x480 field:none]"
media-ctl -V "'ipu1_csi1':2 [fmt:AYUV32/640x480 field:none]"

Streaming can then begin independently on the capture device nodes “ipu1_csi0 capture” and
“ipu1_csi1 capture”. The v4l2-ctl tool can be used to select any supported YUV pixelformat on
the capture device nodes, including planar.

i.MX6Q SabreAuto with ADV7180 decoder

On the i.MX6Q SabreAuto, an on-board ADV7180 SD decoder is connected to the parallel bus
input on the internal video mux to IPU1 CSI0.

The following example configures a pipeline to capture from the ADV7180 video decoder, as-
suming NTSC 720x480 input signals, using simple interweave (unconverted and without motion
compensation). The adv7180 must output sequential or alternating fields (field type ‘seq-bt’ for
NTSC, or ‘alternate’):

Setup links
media-ctl -l "'adv7180 3-0021':0 -> 'ipu1_csi0_mux':1[1]"
media-ctl -l "'ipu1_csi0_mux':2 -> 'ipu1_csi0':0[1]"
media-ctl -l "'ipu1_csi0':2 -> 'ipu1_csi0 capture':0[1]"
Configure pads
media-ctl -V "'adv7180 3-0021':0 [fmt:UYVY2X8/720x480 field:seq-bt]"
media-ctl -V "'ipu1_csi0_mux':2 [fmt:UYVY2X8/720x480]"
media-ctl -V "'ipu1_csi0':2 [fmt:AYUV32/720x480]"
Configure "ipu1_csi0 capture" interface (assumed at /dev/video4)
v4l2-ctl -d4 --set-fmt-video=field=interlaced_bt

Streaming can then begin on /dev/video4. The v4l2-ctl tool can also be used to select any
supported YUV pixelformat on /dev/video4.

This example configures a pipeline to capture from the ADV7180 video decoder, assuming PAL
720x576 input signals, with Motion Compensated de-interlacing. The adv7180 must output

1.1. The media subsystem 149

Linux Media Documentation

sequential or alternating fields (field type ‘seq-tb’ for PAL, or ‘alternate’).

Setup links
media-ctl -l "'adv7180 3-0021':0 -> 'ipu1_csi0_mux':1[1]"
media-ctl -l "'ipu1_csi0_mux':2 -> 'ipu1_csi0':0[1]"
media-ctl -l "'ipu1_csi0':1 -> 'ipu1_vdic':0[1]"
media-ctl -l "'ipu1_vdic':2 -> 'ipu1_ic_prp':0[1]"
media-ctl -l "'ipu1_ic_prp':2 -> 'ipu1_ic_prpvf':0[1]"
media-ctl -l "'ipu1_ic_prpvf':1 -> 'ipu1_ic_prpvf capture':0[1]"
Configure pads
media-ctl -V "'adv7180 3-0021':0 [fmt:UYVY2X8/720x576 field:seq-tb]"
media-ctl -V "'ipu1_csi0_mux':2 [fmt:UYVY2X8/720x576]"
media-ctl -V "'ipu1_csi0':1 [fmt:AYUV32/720x576]"
media-ctl -V "'ipu1_vdic':2 [fmt:AYUV32/720x576 field:none]"
media-ctl -V "'ipu1_ic_prp':2 [fmt:AYUV32/720x576 field:none]"
media-ctl -V "'ipu1_ic_prpvf':1 [fmt:AYUV32/720x576 field:none]"
Configure "ipu1_ic_prpvf capture" interface (assumed at /dev/video2)
v4l2-ctl -d2 --set-fmt-video=field=none

Streaming can then begin on /dev/video2. The v4l2-ctl tool can also be used to select any
supported YUV pixelformat on /dev/video2.

This platform accepts Composite Video analog inputs to the ADV7180 on Ain1 (connector J42).

i.MX6DL SabreAuto with ADV7180 decoder

On the i.MX6DL SabreAuto, an on-board ADV7180 SD decoder is connected to the parallel bus
input on the internal video mux to IPU1 CSI0.

The following example configures a pipeline to capture from the ADV7180 video decoder, as-
suming NTSC 720x480 input signals, using simple interweave (unconverted and without motion
compensation). The adv7180 must output sequential or alternating fields (field type ‘seq-bt’ for
NTSC, or ‘alternate’):

Setup links
media-ctl -l "'adv7180 4-0021':0 -> 'ipu1_csi0_mux':4[1]"
media-ctl -l "'ipu1_csi0_mux':5 -> 'ipu1_csi0':0[1]"
media-ctl -l "'ipu1_csi0':2 -> 'ipu1_csi0 capture':0[1]"
Configure pads
media-ctl -V "'adv7180 4-0021':0 [fmt:UYVY2X8/720x480 field:seq-bt]"
media-ctl -V "'ipu1_csi0_mux':5 [fmt:UYVY2X8/720x480]"
media-ctl -V "'ipu1_csi0':2 [fmt:AYUV32/720x480]"
Configure "ipu1_csi0 capture" interface (assumed at /dev/video0)
v4l2-ctl -d0 --set-fmt-video=field=interlaced_bt

Streaming can then begin on /dev/video0. The v4l2-ctl tool can also be used to select any
supported YUV pixelformat on /dev/video0.

This example configures a pipeline to capture from the ADV7180 video decoder, assuming PAL
720x576 input signals, with Motion Compensated de-interlacing. The adv7180 must output
sequential or alternating fields (field type ‘seq-tb’ for PAL, or ‘alternate’).

Setup links
media-ctl -l "'adv7180 4-0021':0 -> 'ipu1_csi0_mux':4[1]"
media-ctl -l "'ipu1_csi0_mux':5 -> 'ipu1_csi0':0[1]"
media-ctl -l "'ipu1_csi0':1 -> 'ipu1_vdic':0[1]"

150 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

media-ctl -l "'ipu1_vdic':2 -> 'ipu1_ic_prp':0[1]"
media-ctl -l "'ipu1_ic_prp':2 -> 'ipu1_ic_prpvf':0[1]"
media-ctl -l "'ipu1_ic_prpvf':1 -> 'ipu1_ic_prpvf capture':0[1]"
Configure pads
media-ctl -V "'adv7180 4-0021':0 [fmt:UYVY2X8/720x576 field:seq-tb]"
media-ctl -V "'ipu1_csi0_mux':5 [fmt:UYVY2X8/720x576]"
media-ctl -V "'ipu1_csi0':1 [fmt:AYUV32/720x576]"
media-ctl -V "'ipu1_vdic':2 [fmt:AYUV32/720x576 field:none]"
media-ctl -V "'ipu1_ic_prp':2 [fmt:AYUV32/720x576 field:none]"
media-ctl -V "'ipu1_ic_prpvf':1 [fmt:AYUV32/720x576 field:none]"
Configure "ipu1_ic_prpvf capture" interface (assumed at /dev/video2)
v4l2-ctl -d2 --set-fmt-video=field=none

Streaming can then begin on /dev/video2. The v4l2-ctl tool can also be used to select any
supported YUV pixelformat on /dev/video2.

This platform accepts Composite Video analog inputs to the ADV7180 on Ain1 (connector J42).

i.MX6Q SabreSD with MIPI CSI-2 OV5640

Similarly to i.MX6Q SabreLite, the i.MX6Q SabreSD supports a parallel interface OV5642 mod-
ule on IPU1 CSI0, and a MIPI CSI-2 OV5640 module. The OV5642 connects to i2c bus 1 and
the OV5640 to i2c bus 2.

The device tree for SabreSD includes OF graphs for both the parallel OV5642 and the MIPI CSI-
2 OV5640, but as of this writing only the MIPI CSI-2 OV5640 has been tested, so the OV5642
node is currently disabled. The OV5640 module connects to MIPI connector J5. The NXP part
number for the OV5640 module that connects to the SabreSD board is H120729.

The following example configures unprocessed video capture pipeline to capture from the
OV5640, transmitting on MIPI CSI-2 virtual channel 0:

Setup links
media-ctl -l "'ov5640 1-003c':0 -> 'imx6-mipi-csi2':0[1]"
media-ctl -l "'imx6-mipi-csi2':1 -> 'ipu1_csi0_mux':0[1]"
media-ctl -l "'ipu1_csi0_mux':2 -> 'ipu1_csi0':0[1]"
media-ctl -l "'ipu1_csi0':2 -> 'ipu1_csi0 capture':0[1]"
Configure pads
media-ctl -V "'ov5640 1-003c':0 [fmt:UYVY2X8/640x480]"
media-ctl -V "'imx6-mipi-csi2':1 [fmt:UYVY2X8/640x480]"
media-ctl -V "'ipu1_csi0_mux':0 [fmt:UYVY2X8/640x480]"
media-ctl -V "'ipu1_csi0':0 [fmt:AYUV32/640x480]"

Streaming can then begin on “ipu1_csi0 capture” node. The v4l2-ctl tool can be used to select
any supported pixelformat on the capture device node.

To determine what is the /dev/video node correspondent to “ipu1_csi0 capture”:

media-ctl -e "ipu1_csi0 capture"
/dev/video0

/dev/video0 is the streaming element in this case.

Starting the streaming via v4l2-ctl:

1.1. The media subsystem 151

Linux Media Documentation

v4l2-ctl --stream-mmap -d /dev/video0

Starting the streaming via Gstreamer and sending the content to the display:

gst-launch-1.0 v4l2src device=/dev/video0 ! kmssink

The following example configures a direct conversion pipeline to capture from the OV5640,
transmitting on MIPI CSI-2 virtual channel 0. It also shows colorspace conversion and scaling
at IC output.

Setup links
media-ctl -l "'ov5640 1-003c':0 -> 'imx6-mipi-csi2':0[1]"
media-ctl -l "'imx6-mipi-csi2':1 -> 'ipu1_csi0_mux':0[1]"
media-ctl -l "'ipu1_csi0_mux':2 -> 'ipu1_csi0':0[1]"
media-ctl -l "'ipu1_csi0':1 -> 'ipu1_ic_prp':0[1]"
media-ctl -l "'ipu1_ic_prp':1 -> 'ipu1_ic_prpenc':0[1]"
media-ctl -l "'ipu1_ic_prpenc':1 -> 'ipu1_ic_prpenc capture':0[1]"
Configure pads
media-ctl -V "'ov5640 1-003c':0 [fmt:UYVY2X8/640x480]"
media-ctl -V "'imx6-mipi-csi2':1 [fmt:UYVY2X8/640x480]"
media-ctl -V "'ipu1_csi0_mux':2 [fmt:UYVY2X8/640x480]"
media-ctl -V "'ipu1_csi0':1 [fmt:AYUV32/640x480]"
media-ctl -V "'ipu1_ic_prp':1 [fmt:AYUV32/640x480]"
media-ctl -V "'ipu1_ic_prpenc':1 [fmt:ARGB8888_1X32/800x600]"
Set a format at the capture interface
v4l2-ctl -d /dev/video1 --set-fmt-video=pixelformat=RGB3

Streaming can then begin on “ipu1_ic_prpenc capture” node.

To determine what is the /dev/video node correspondent to “ipu1_ic_prpenc capture”:

media-ctl -e "ipu1_ic_prpenc capture"
/dev/video1

/dev/video1 is the streaming element in this case.

Starting the streaming via v4l2-ctl:

v4l2-ctl --stream-mmap -d /dev/video1

Starting the streaming via Gstreamer and sending the content to the display:

gst-launch-1.0 v4l2src device=/dev/video1 ! kmssink

Known Issues

1. When using 90 or 270 degree rotation control at capture resolutions near the IC resizer
limit of 1024x1024, and combined with planar pixel formats (YUV420, YUV422p), frame
capture will often fail with no end-of-frame interrupts from the IDMAC channel. To work
around this, use lower resolution and/or packed formats (YUYV, RGB3, etc.) when 90 or
270 rotations are needed.

152 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

File list

drivers/staging/media/imx/ include/media/imx.h include/linux/imx-media.h

References

Authors

• Steve Longerbeam <steve_longerbeam@mentor.com>

• Philipp Zabel <kernel@pengutronix.de>

• Russell King <linux@armlinux.org.uk>

Copyright (C) 2012-2017 Mentor Graphics Inc.

1.1.6.8 i.MX7 Video Capture Driver

Introduction

The i.MX7 contrary to the i.MX5/6 family does not contain an Image Processing Unit (IPU);
because of that the capabilities to perform operations or manipulation of the capture frames
are less feature rich.

For image capture the i.MX7 has three units: - CMOS Sensor Interface (CSI) - Video Multiplexer
- MIPI CSI-2 Receiver

MIPI Camera Input ---> MIPI CSI-2 --- > |\
| \
| \
| M |
| U | ------> CSI ---> Capture
| X |
| /

Parallel Camera Input ----------------> | /
|/

For additional information, please refer to the latest versions of the i.MX7 reference manual1.

Entities

imx7-mipi-csi2

This is the MIPI CSI-2 receiver entity. It has one sink pad to receive the pixel data from MIPI
CSI-2 camera sensor. It has one source pad, corresponding to the virtual channel 0. This module
is compliant to previous version of Samsung D-phy, and supports two D-PHY Rx Data lanes.

1 https://www.nxp.com/docs/en/reference-manual/IMX7SRM.pdf

1.1. The media subsystem 153

mailto:steve_longerbeam@mentor.com
mailto:kernel@pengutronix.de
mailto:linux@armlinux.org.uk
https://www.nxp.com/docs/en/reference-manual/IMX7SRM.pdf

Linux Media Documentation

csi-mux

This is the video multiplexer. It has two sink pads to select from either camera sensor with a
parallel interface or from MIPI CSI-2 virtual channel 0. It has a single source pad that routes
to the CSI.

csi

The CSI enables the chip to connect directly to external CMOS image sensor. CSI can interface
directly with Parallel and MIPI CSI-2 buses. It has 256 x 64 FIFO to store received image pixel
data and embedded DMA controllers to transfer data from the FIFO through AHB bus.

This entity has one sink pad that receives from the csi-mux entity and a single source pad that
routes video frames directly to memory buffers. This pad is routed to a capture device node.

Usage Notes

To aid in configuration and for backward compatibility with V4L2 applications that access con-
trols only from video device nodes, the capture device interfaces inherit controls from the active
entities in the current pipeline, so controls can be accessed either directly from the subdev or
from the active capture device interface. For example, the sensor controls are available either
from the sensor subdevs or from the active capture device.

Warp7 with OV2680

On this platform an OV2680MIPI CSI-2 module is connected to the internal MIPI CSI-2 receiver.
The following example configures a video capture pipeline with an output of 800x600, and BGGR
10 bit bayer format:

Setup links
media-ctl -l "'ov2680 1-0036':0 -> 'imx7-mipi-csis.0':0[1]"
media-ctl -l "'imx7-mipi-csis.0':1 -> 'csi-mux':1[1]"
media-ctl -l "'csi-mux':2 -> 'csi':0[1]"
media-ctl -l "'csi':1 -> 'csi capture':0[1]"

Configure pads for pipeline
media-ctl -V "'ov2680 1-0036':0 [fmt:SBGGR10_1X10/800x600 field:none]"
media-ctl -V "'csi-mux':1 [fmt:SBGGR10_1X10/800x600 field:none]"
media-ctl -V "'csi-mux':2 [fmt:SBGGR10_1X10/800x600 field:none]"
media-ctl -V "'imx7-mipi-csis.0':0 [fmt:SBGGR10_1X10/800x600 field:none]"
media-ctl -V "'csi':0 [fmt:SBGGR10_1X10/800x600 field:none]"

After this streaming can start. The v4l2-ctl tool can be used to select any of the resolutions
supported by the sensor.

media-ctl -p
Media controller API version 5.2.0

Media device information

driver imx7-csi

154 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

model imx-media
serial
bus info
hw revision 0x0
driver version 5.2.0

Device topology
- entity 1: csi (2 pads, 2 links)

type V4L2 subdev subtype Unknown flags 0
device node name /dev/v4l-subdev0

pad0: Sink
[fmt:SBGGR10_1X10/800x600 field:none colorspace:srgb xfer:srgb␣

↪→ycbcr:601 quantization:full-range]
<- "csi-mux":2 [ENABLED]

pad1: Source
[fmt:SBGGR10_1X10/800x600 field:none colorspace:srgb xfer:srgb␣

↪→ycbcr:601 quantization:full-range]
-> "csi capture":0 [ENABLED]

- entity 4: csi capture (1 pad, 1 link)
type Node subtype V4L flags 0
device node name /dev/video0

pad0: Sink
<- "csi":1 [ENABLED]

- entity 10: csi-mux (3 pads, 2 links)
type V4L2 subdev subtype Unknown flags 0
device node name /dev/v4l-subdev1

pad0: Sink
[fmt:Y8_1X8/1x1 field:none]

pad1: Sink
[fmt:SBGGR10_1X10/800x600 field:none]
<- "imx7-mipi-csis.0":1 [ENABLED]

pad2: Source
[fmt:SBGGR10_1X10/800x600 field:none]
-> "csi":0 [ENABLED]

- entity 14: imx7-mipi-csis.0 (2 pads, 2 links)
type V4L2 subdev subtype Unknown flags 0
device node name /dev/v4l-subdev2

pad0: Sink
[fmt:SBGGR10_1X10/800x600 field:none]
<- "ov2680 1-0036":0 [ENABLED]

pad1: Source
[fmt:SBGGR10_1X10/800x600 field:none]
-> "csi-mux":1 [ENABLED]

- entity 17: ov2680 1-0036 (1 pad, 1 link)
type V4L2 subdev subtype Sensor flags 0
device node name /dev/v4l-subdev3

pad0: Source
[fmt:SBGGR10_1X10/800x600@1/30 field:none colorspace:srgb]
-> "imx7-mipi-csis.0":0 [ENABLED]

1.1. The media subsystem 155

Linux Media Documentation

i.MX6ULL-EVK with OV5640

On this platform a parallel OV5640 sensor is connected to the CSI port. The following example
configures a video capture pipeline with an output of 640x480 and UYVY8_2X8 format:

Setup links
media-ctl -l "'ov5640 1-003c':0 -> 'csi':0[1]"
media-ctl -l "'csi':1 -> 'csi capture':0[1]"

Configure pads for pipeline
media-ctl -v -V "'ov5640 1-003c':0 [fmt:UYVY8_2X8/640x480 field:none]"

After this streaming can start:

gst-launch-1.0 -v v4l2src device=/dev/video1 ! video/x-raw,format=UYVY,width=640,
↪→height=480 ! v4l2convert ! fbdevsink

media-ctl -p
Media controller API version 5.14.0

Media device information

driver imx7-csi
model imx-media
serial
bus info
hw revision 0x0
driver version 5.14.0

Device topology
- entity 1: csi (2 pads, 2 links)

type V4L2 subdev subtype Unknown flags 0
device node name /dev/v4l-subdev0

pad0: Sink
[fmt:UYVY8_2X8/640x480 field:none colorspace:srgb xfer:srgb ycbcr:601␣

↪→quantization:full-range]
<- "ov5640 1-003c":0 [ENABLED,IMMUTABLE]

pad1: Source
[fmt:UYVY8_2X8/640x480 field:none colorspace:srgb xfer:srgb ycbcr:601␣

↪→quantization:full-range]
-> "csi capture":0 [ENABLED,IMMUTABLE]

- entity 4: csi capture (1 pad, 1 link)
type Node subtype V4L flags 0
device node name /dev/video1

pad0: Sink
<- "csi":1 [ENABLED,IMMUTABLE]

- entity 10: ov5640 1-003c (1 pad, 1 link)
type V4L2 subdev subtype Sensor flags 0
device node name /dev/v4l-subdev1

pad0: Source
[fmt:UYVY8_2X8/640x480@1/30 field:none colorspace:srgb xfer:srgb␣

↪→ycbcr:601 quantization:full-range]
-> "csi":0 [ENABLED,IMMUTABLE]

156 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

References

1.1.6.9 Intel Image Processing Unit 3 (IPU3) Imaging Unit (ImgU) driver

Copyright © 2018 Intel Corporation

Introduction

This file documents the Intel IPU3 (3rd generation Image Processing Unit) Imaging Unit drivers
located under drivers/media/pci/intel/ipu3 (CIO2) as well as under drivers/staging/media/ipu3
(ImgU).

The Intel IPU3 found in certain Kaby Lake (as well as certain Sky Lake) platforms (U/Y processor
lines) is made up of two parts namely the Imaging Unit (ImgU) and the CIO2 device (MIPI CSI2
receiver).

The CIO2 device receives the raw Bayer data from the sensors and outputs the frames
in a format that is specific to the IPU3 (for consumption by the IPU3 ImgU). The CIO2
driver is available as drivers/media/pci/intel/ipu3/ipu3-cio2* and is enabled through the CON-
FIG_VIDEO_IPU3_CIO2 config option.

The Imaging Unit (ImgU) is responsible for processing images captured by the IPU3 CIO2 de-
vice. The ImgU driver sources can be found under drivers/staging/media/ipu3 directory. The
driver is enabled through the CONFIG_VIDEO_IPU3_IMGU config option.

The two driver modules are named ipu3_csi2 and ipu3_imgu, respectively.

The drivers has been tested on Kaby Lake platforms (U/Y processor lines).

Both of the drivers implement V4L2, Media Controller and V4L2 sub-device interfaces. The
IPU3CIO2 driver supports camera sensors connected to the CIO2MIPI CSI-2 interfaces through
V4L2 sub-device sensor drivers.

CIO2

The CIO2 is represented as a single V4L2 subdev, which provides a V4L2 subdev interface to
the user space. There is a video node for each CSI-2 receiver, with a single media controller
interface for the entire device.

The CIO2 contains four independent capture channel, each with its own MIPI CSI-2 receiver
and DMA engine. Each channel is modelled as a V4L2 sub-device exposed to userspace as a
V4L2 sub-device node and has two pads:

Pad Direction Purpose
0 sink MIPI CSI-2 input,

connected to the
sensor subdev

1 source Raw video capture,
connected to the
V4L2 video inter-
face

1.1. The media subsystem 157

Linux Media Documentation

The V4L2 video interfaces model the DMA engines. They are exposed to userspace as V4L2
video device nodes.

Capturing frames in raw Bayer format

CIO2 MIPI CSI2 receiver is used to capture frames (in packed raw Bayer format) from the raw
sensors connected to the CSI2 ports. The captured frames are used as input to the ImgU driver.

Image processing using IPU3 ImgU requires tools such as raw2pnm2, and yavta3 due to the
following unique requirements and / or features specific to IPU3.

– The IPU3 CSI2 receiver outputs the captured frames from the sensor in packed raw Bayer
format that is specific to IPU3.

– Multiple video nodes have to be operated simultaneously.

Let us take the example of ov5670 sensor connected to CSI2 port 0, for a 2592x1944 image
capture.

Using the media controller APIs, the ov5670 sensor is configured to send frames in packed raw
Bayer format to IPU3 CSI2 receiver.

This example assumes /dev/media0 as the CIO2 media device
export MDEV=/dev/media0

and that ov5670 sensor is connected to i2c bus 10 with address 0x36
export SDEV=$(media-ctl -d $MDEV -e "ov5670 10-0036")

Establish the link for the media devices using media-ctl [#f3]_
media-ctl -d $MDEV -l "ov5670:0 -> ipu3-csi2 0:0[1]"

Set the format for the media devices
media-ctl -d $MDEV -V "ov5670:0 [fmt:SGRBG10/2592x1944]"
media-ctl -d $MDEV -V "ipu3-csi2 0:0 [fmt:SGRBG10/2592x1944]"
media-ctl -d $MDEV -V "ipu3-csi2 0:1 [fmt:SGRBG10/2592x1944]"

Once the media pipeline is configured, desired sensor specific settings (such as exposure and
gain settings) can be set, using the yavta tool.

e.g

yavta -w 0x009e0903 444 $SDEV
yavta -w 0x009e0913 1024 $SDEV
yavta -w 0x009e0911 2046 $SDEV

Once the desired sensor settings are set, frame captures can be done as below.

e.g

yavta --data-prefix -u -c10 -n5 -I -s2592x1944 --file=/tmp/frame-#.bin \
-f IPU3_SGRBG10 $(media-ctl -d $MDEV -e "ipu3-cio2 0")

With the above command, 10 frames are captured at 2592x1944 resolution, with sGRBG10
format and output as IPU3_SGRBG10 format.

2 https://github.com/intel/nvt
3 http://git.ideasonboard.org/yavta.git

158 Chapter 1. Media subsystem admin and user guide

https://github.com/intel/nvt
http://git.ideasonboard.org/yavta.git

Linux Media Documentation

The captured frames are available as /tmp/frame-#.bin files.

ImgU

The ImgU is represented as two V4L2 subdevs, each of which provides a V4L2 subdev interface
to the user space.

Each V4L2 subdev represents a pipe, which can support a maximum of 2 streams. This helps
to support advanced camera features like Continuous View Finder (CVF) and Snapshot During
Video(SDV).

The ImgU contains two independent pipes, each modelled as a V4L2 sub-device exposed to
userspace as a V4L2 sub-device node.

Each pipe has two sink pads and three source pads for the following purpose:

Pad Direction Purpose
0 sink Input raw video

stream
1 sink Processing parame-

ters
2 source Output processed

video stream
3 source Output viewfinder

video stream
4 source 3A statistics

Each pad is connected to a corresponding V4L2 video interface, exposed to userspace as a V4L2
video device node.

Device operation

With ImgU, once the input video node (“ipu3-imgu 0/1”:0, in <entity>:<pad-number> format)
is queued with buffer (in packed raw Bayer format), ImgU starts processing the buffer and
produces the video output in YUV format and statistics output on respective output nodes. The
driver is expected to have buffers ready for all of parameter, output and statistics nodes, when
input video node is queued with buffer.

At a minimum, all of input, main output, 3A statistics and viewfinder video nodes should be
enabled for IPU3 to start image processing.

Each ImgU V4L2 subdev has the following set of video nodes.

1.1. The media subsystem 159

Linux Media Documentation

input, output and viewfinder video nodes

The frames (in packed raw Bayer format specific to the IPU3) received by the input video node
is processed by the IPU3 Imaging Unit and are output to 2 video nodes, with each targeting a
different purpose (main output and viewfinder output).

Details onand the Bayer format specific to the IPU3 can be found in
V4L2_PIX_FMT_IPU3_SBGGR10 (‘ip3b’), V4L2_PIX_FMT_IPU3_SGBRG10 (‘ip3g’),
V4L2_PIX_FMT_IPU3_SGRBG10 (‘ip3G’), V4L2_PIX_FMT_IPU3_SRGGB10 (‘ip3r’).

The driver supports V4L2 Video Capture Interface as defined at Interfaces.

Only the multi-planar API is supported. More details can be found at Single- and multi-planar
APIs.

Parameters video node

The parameters video node receives the ImgU algorithm parameters that are used to configure
how the ImgU algorithms process the image.

Details on processing parameters specific to the IPU3 can be found in
V4L2_META_FMT_IPU3_PARAMS (‘ip3p’), V4L2_META_FMT_IPU3_3A (‘ip3s’).

3A statistics video node

3A statistics video node is used by the ImgU driver to output the 3A (auto focus, auto exposure
and auto white balance) statistics for the frames that are being processed by the ImgU to user
space applications. User space applications can use this statistics data to compute the desired
algorithm parameters for the ImgU.

Configuring the Intel IPU3

The IPU3 ImgU pipelines can be configured using the Media Controller, defined at Part IV -
Media Controller API.

Running mode and firmware binary selection

ImgU works based on firmware, currently the ImgU firmware support run 2 pipes in time-
sharing with single input frame data. Each pipe can run at certain mode - “VIDEO” or “STILL”,
“VIDEO” mode is commonly used for video frames capture, and “STILL” is used for still frame
capture. However, you can also select “VIDEO” to capture still frames if you want to capture
images with less system load and power. For “STILL” mode, ImgU will try to use smaller BDS
factor and output larger bayer frame for further YUV processing than “VIDEO” mode to get
high quality images. Besides, “STILL” mode need XNR3 to do noise reduction, hence “STILL”
mode will need more power and memory bandwidth than “VIDEO” mode. TNR will be en-
abled in “VIDEO” mode and bypassed by “STILL” mode. ImgU is running at “VIDEO” mode
by default, the user can use v4l2 control V4L2_CID_INTEL_IPU3_MODE (currently defined in
drivers/staging/media/ipu3/include/uapi/intel-ipu3.h) to query and set the running mode. For
user, there is no difference for buffer queueing between the “VIDEO” and “STILL” mode,

160 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

mandatory input and main output node should be enabled and buffers need be queued, the
statistics and the view-finder queues are optional.

The firmware binary will be selected according to current running mode, such log “using binary
if_to_osys_striped ” or “using binary if_to_osys_primary_striped” could be observed if you enable
the ImgU dynamic debug, the binary if_to_osys_striped is selected for “VIDEO” and the binary
“if_to_osys_primary_striped” is selected for “STILL”.

Processing the image in raw Bayer format

Configuring ImgU V4L2 subdev for image processing

The ImgU V4L2 subdevs have to be configured with media controller APIs to have all the video
nodes setup correctly.

Let us take “ipu3-imgu 0” subdev as an example.

media-ctl -d $MDEV -r
media-ctl -d $MDEV -l "ipu3-imgu 0 input":0 -> "ipu3-imgu 0":0[1]
media-ctl -d $MDEV -l "ipu3-imgu 0":2 -> "ipu3-imgu 0 output":0[1]
media-ctl -d $MDEV -l "ipu3-imgu 0":3 -> "ipu3-imgu 0 viewfinder":0[1]
media-ctl -d $MDEV -l "ipu3-imgu 0":4 -> "ipu3-imgu 0 3a stat":0[1]

Also the pipe mode of the corresponding V4L2 subdev should be set as desired (e.g 0 for video
mode or 1 for still mode) through the control id 0x009819a1 as below.

yavta -w "0x009819A1 1" /dev/v4l-subdev7

Certain hardware blocks in ImgU pipeline can change the frame resolution by cropping or scal-
ing, these hardware blocks include Input Feeder(IF), Bayer Down Scaler (BDS) and Geometric
Distortion Correction (GDC). There is also a block which can change the frame resolution - YUV
Scaler, it is only applicable to the secondary output.

RAW Bayer frames go through these ImgU pipeline hardware blocks and the final processed
image output to the DDR memory.

Fig. 3: IPU3 resolution change hardware blocks

Input Feeder
Input Feeder gets the Bayer frame data from the sensor, it can enable cropping of lines and
columns from the frame and then store pixels into device’s internal pixel buffer which are ready
to readout by following blocks.

Bayer Down Scaler

1.1. The media subsystem 161

Linux Media Documentation

Bayer Down Scaler is capable of performing image scaling in Bayer domain, the downscale
factor can be configured from 1X to 1/4X in each axis with configuration steps of 0.03125 (1/32).

Geometric Distortion Correction
Geometric Distortion Correction is used to perform correction of distortions and image filtering.
It needs some extra filter and envelope padding pixels to work, so the input resolution of GDC
should be larger than the output resolution.

YUV Scaler
YUV Scaler which similar with BDS, but it is mainly do image down scaling in YUV domain, it
can support up to 1/12X down scaling, but it can not be applied to the main output.

The ImgU V4L2 subdev has to be configured with the supported resolutions in all the above
hardware blocks, for a given input resolution. For a given supported resolution for an input
frame, the Input Feeder, Bayer Down Scaler and GDC blocks should be configured with the
supported resolutions as each hardware block has its own alignment requirement.

You must configure the output resolution of the hardware blocks smartly to meet the hardware
requirement along with keeping the maximum field of view. The intermediate resolutions can
be generated by specific tool -

https://github.com/intel/intel-ipu3-pipecfg

This tool can be used to generate intermediate resolutions. More information can be obtained
by looking at the following IPU3 ImgU configuration table.

https://chromium.googlesource.com/chromiumos/overlays/board-overlays/+/master

Under baseboard-poppy/media-libs/cros-camera-hal-configs-poppy/files/gcss directory,
graph_settings_ov5670.xml can be used as an example.

The following steps prepare the ImgU pipeline for the image processing.

1. The ImgU V4L2 subdev data format should be set by using the VIDIOC_SUBDEV_S_FMT on
pad 0, using the GDC width and height obtained above.

2. The ImgU V4L2 subdev cropping should be set by using the VIDIOC_SUBDEV_S_SELECTION
on pad 0, with V4L2_SEL_TGT_CROP as the target, using the input feeder height and width.

3. The ImgU V4L2 subdev composing should be set by using the VID-
IOC_SUBDEV_S_SELECTION on pad 0, with V4L2_SEL_TGT_COMPOSE as the target,
using the BDS height and width.

For the ov5670 example, for an input frame with a resolution of 2592x1944 (which is input
to the ImgU subdev pad 0), the corresponding resolutions for input feeder, BDS and GDC are
2592x1944, 2592x1944 and 2560x1920 respectively.

Once this is done, the received raw Bayer frames can be input to the ImgU V4L2 subdev as
below, using the open source application v4l2n2.

For an image captured with 2592x19445 resolution, with desired output resolution as
2560x1920 and viewfinder resolution as 2560x1920, the following v4l2n command can be used.
This helps process the raw Bayer frames and produces the desired results for the main output
image and the viewfinder output, in NV12 format.

5 ImgU limitation requires an additional 16x16 for all input resolutions

162 Chapter 1. Media subsystem admin and user guide

https://github.com/intel/intel-ipu3-pipecfg
https://chromium.googlesource.com/chromiumos/overlays/board-overlays/+/master

Linux Media Documentation

v4l2n --pipe=4 --load=/tmp/frame-#.bin --open=/dev/video4
--fmt=type:VIDEO_OUTPUT_MPLANE,width=2592,height=1944,pixelformat=0X47337069 \
--reqbufs=type:VIDEO_OUTPUT_MPLANE,count:1 --pipe=1 \
--output=/tmp/frames.out --open=/dev/video5 \
--fmt=type:VIDEO_CAPTURE_MPLANE,width=2560,height=1920,pixelformat=NV12 \
--reqbufs=type:VIDEO_CAPTURE_MPLANE,count:1 --pipe=2 \
--output=/tmp/frames.vf --open=/dev/video6 \
--fmt=type:VIDEO_CAPTURE_MPLANE,width=2560,height=1920,pixelformat=NV12 \
--reqbufs=type:VIDEO_CAPTURE_MPLANE,count:1 --pipe=3 --open=/dev/video7 \
--output=/tmp/frames.3A --fmt=type:META_CAPTURE,? \
--reqbufs=count:1,type:META_CAPTURE --pipe=1,2,3,4 --stream=5

You can also use yavta3 command to do same thing as above:

yavta --data-prefix -Bcapture-mplane -c10 -n5 -I -s2592x1944 \
--file=frame-#.out-f NV12 /dev/video5 & \

yavta --data-prefix -Bcapture-mplane -c10 -n5 -I -s2592x1944 \
--file=frame-#.vf -f NV12 /dev/video6 & \

yavta --data-prefix -Bmeta-capture -c10 -n5 -I \
--file=frame-#.3a /dev/video7 & \

yavta --data-prefix -Boutput-mplane -c10 -n5 -I -s2592x1944 \
--file=/tmp/frame-in.cio2 -f IPU3_SGRBG10 /dev/video4

where /dev/video4, /dev/video5, /dev/video6 and /dev/video7 devices point to input, output,
viewfinder and 3A statistics video nodes respectively.

Converting the raw Bayer image into YUV domain

The processed images after the above step, can be converted to YUV domain as below.

Main output frames

raw2pnm -x2560 -y1920 -fNV12 /tmp/frames.out /tmp/frames.out.ppm

where 2560x1920 is output resolution, NV12 is the video format, followed by input frame and
output PNM file.

Viewfinder output frames

raw2pnm -x2560 -y1920 -fNV12 /tmp/frames.vf /tmp/frames.vf.ppm

where 2560x1920 is output resolution, NV12 is the video format, followed by input frame and
output PNM file.

1.1. The media subsystem 163

Linux Media Documentation

Example user space code for IPU3

User space code that configures and uses IPU3 is available here.

https://chromium.googlesource.com/chromiumos/platform/arc-camera/+/master/

The source can be located under hal/intel directory.

Overview of IPU3 pipeline

IPU3 pipeline has a number of image processing stages, each of which takes a set of parameters
as input. The major stages of pipelines are shown here:

Raw pixels

Bayer Downscaling

Color Correction Matrix

Optical Black Correction

Linearization

Lens Shading Correction

White Balance / Exposure / Focus Apply

Bayer Noise Reduction

ANR

Demosaicing

Gamma correction

Color Space Conversion

Chroma Down Scaling

Chromatic Noise Reduction

Total Color Correction

XNR3

TNR DDR

YUV Downscaling

DDR

Fig. 4: IPU3 ImgU Pipeline Diagram

The table below presents a description of the above algorithms.

164 Chapter 1. Media subsystem admin and user guide

https://chromium.googlesource.com/chromiumos/platform/arc-camera/+/master/

Linux Media Documentation

Name Description
Optical Black Correction Optical Black Correction block subtracts a pre-defined value from

the respective pixel values to obtain better image quality. Defined
in struct ipu3_uapi_obgrid_param.

Linearization This algo block uses linearization parameters to address non-
linearity sensor effects. The Lookup table table is defined in
struct ipu3_uapi_isp_lin_vmem_params.

SHD Lens shading correction is used to correct spatial non-uniformity
of the pixel response due to optical lens shading. This is done by
applying a different gain for each pixel. The gain, black level etc
are configured in struct ipu3_uapi_shd_config_static.

BNR Bayer noise reduction block removes image noise by applying a
bilateral filter. See struct ipu3_uapi_bnr_static_config for
details.

ANR Advanced Noise Reduction is a block based algorithm that per-
forms noise reduction in the Bayer domain. The convolution ma-
trix etc can be found in struct ipu3_uapi_anr_config.

DM Demosaicing converts raw sensor data in Bayer format into RGB
(Red, Green, Blue) presentation. Then add outputs of estimation
of Y channel for following stream processing by Firmware. The
struct is defined as struct ipu3_uapi_dm_config.

Color Correction Color Correction algo transforms sensor specific color space to
the standard “sRGB” color space. This is done by applying 3x3
matrix defined in struct ipu3_uapi_ccm_mat_config.

Gamma correction Gamma correction struct ipu3_uapi_gamma_config is a basic
non-linear tone mapping correction that is applied per pixel for
each pixel component.

CSC Color space conversion transforms each pixel from the RGB pri-
mary presentation to YUV (Y: brightness, UV: Luminance) presen-
tation. This is done by applying a 3x3 matrix defined in struct
ipu3_uapi_csc_mat_config

CDS Chroma down sampling After the CSC is performed, the Chroma
Down Sampling is applied for a UV plane down sampling by a
factor of 2 in each direction for YUV 4:2:0 using a 4x2 configurable
filter struct ipu3_uapi_cds_params.

CHNR Chroma noise reduction This block processes only the chromi-
nance pixels and performs noise reduction by cleaning the high
frequency noise. See struct struct ipu3_uapi_yuvp1_chnr_config.

TCC Total color correction as defined in struct struct
ipu3_uapi_yuvp2_tcc_static_config.

XNR3 eXtreme Noise Reduction V3 is the third revision of noise reduc-
tion algorithm used to improve image quality. This removes the
low frequency noise in the captured image. Two related structs
are being defined, struct ipu3_uapi_isp_xnr3_params for ISP
data memory and struct ipu3_uapi_isp_xnr3_vmem_params for
vector memory.

TNR Temporal Noise Reduction block compares successive
frames in time to remove anomalies / noise in pixel val-
ues. struct ipu3_uapi_isp_tnr3_vmem_params and struct
ipu3_uapi_isp_tnr3_params are defined for ISP vector and data
memory respectively.

1.1. The media subsystem 165

Linux Media Documentation

Other often encountered acronyms not listed in above table:

ACC Accelerator cluster

AWB_FR Auto white balance filter response statistics

BDS Bayer downscaler parameters
CCM Color correction matrix coefficients

IEFd Image enhancement filter directed
Obgrid Optical black level compensation
OSYS Output system configuration

ROI Region of interest
YDS Y down sampling
YTM Y-tone mapping

A few stages of the pipeline will be executed by firmware running on the ISP processor, while
many others will use a set of fixed hardware blocks also called accelerator cluster (ACC) to
crunch pixel data and produce statistics.

ACC parameters of individual algorithms, as defined by struct ipu3_uapi_acc_param, can
be chosen to be applied by the user space through struct struct ipu3_uapi_flags embedded in
struct ipu3_uapi_params structure. For parameters that are configured as not enabled by
the user space, the corresponding structs are ignored by the driver, in which case the existing
configuration of the algorithm will be preserved.

References

1.1.6.10 The ivtv driver

Author: Hans Verkuil <hverkuil@xs4all.nl>

This is a v4l2 device driver for the Conexant cx23415/6 MPEG encoder/decoder. The cx23415
can do both encoding and decoding, the cx23416 can only do MPEG encoding. Currently the
only card featuring full decoding support is the Hauppauge PVR-350.

Note:
1) This driver requires the latest encoder firmware (version 2.06.039, size 376836 bytes).
Get the firmware from here:

https://linuxtv.org/downloads/firmware/#conexant

2) ‘normal’ TV applications do not work with this driver, you need an application that can
handle MPEG input such as mplayer, xine, MythTV, etc.

The primary goal of the IVTV project is to provide a “clean room” Linux Open Source driver
implementation for video capture cards based on the iCompression iTVC15 or Conexant
CX23415/CX23416 MPEG Codec.

166 Chapter 1. Media subsystem admin and user guide

mailto:hverkuil@xs4all.nl
https://linuxtv.org/downloads/firmware/#conexant

Linux Media Documentation

Features

• Hardware mpeg2 capture of broadcast video (and sound) via the tuner or S-
Video/Composite and audio line-in.

• Hardware mpeg2 capture of FM radio where hardware support exists

• Supports NTSC, PAL, SECAM with stereo sound

• Supports SAP and bilingual transmissions.

• Supports raw VBI (closed captions and teletext).

• Supports sliced VBI (closed captions and teletext) and is able to insert this into the captured
MPEG stream.

• Supports raw YUV and PCM input.

Additional features for the PVR-350 (CX23415 based)

• Provides hardware mpeg2 playback

• Provides comprehensive OSD (On Screen Display: ie. graphics overlaying the video signal)

• Provides a framebuffer (allowing X applications to appear on the video device)

• Supports raw YUV output.

IMPORTANT: In case of problems first read this page: https://help.ubuntu.com/
community/Install_IVTV_Troubleshooting

See also

https://linuxtv.org

IRC

irc://irc.freenode.net/#v4l

Devices

A maximum of 12 ivtv boards are allowed at the moment.

Cards that don’t have a video output capability (i.e. non PVR350 cards) lack the vbi8, vbi16,
video16 and video48 devices. They also do not support the framebuffer device /dev/fbx for OSD.

The radio0 device may or may not be present, depending on whether the card has a radio tuner
or not.

Here is a list of the base v4l devices:

1.1. The media subsystem 167

https://help.ubuntu.com/community/Install_IVTV_Troubleshooting
https://help.ubuntu.com/community/Install_IVTV_Troubleshooting
https://linuxtv.org
irc://irc.freenode.net/#v4l

Linux Media Documentation

crw-rw---- 1 root video 81, 0 Jun 19 22:22 /dev/video0
crw-rw---- 1 root video 81, 16 Jun 19 22:22 /dev/video16
crw-rw---- 1 root video 81, 24 Jun 19 22:22 /dev/video24
crw-rw---- 1 root video 81, 32 Jun 19 22:22 /dev/video32
crw-rw---- 1 root video 81, 48 Jun 19 22:22 /dev/video48
crw-rw---- 1 root video 81, 64 Jun 19 22:22 /dev/radio0
crw-rw---- 1 root video 81, 224 Jun 19 22:22 /dev/vbi0
crw-rw---- 1 root video 81, 228 Jun 19 22:22 /dev/vbi8
crw-rw---- 1 root video 81, 232 Jun 19 22:22 /dev/vbi16

Base devices

For every extra card you have the numbers increased by one. For example, /dev/video0 is listed
as the ‘base’ encoding capture device so we have:

• /dev/video0 is the encoding capture device for the first card (card 0)

• /dev/video1 is the encoding capture device for the second card (card 1)

• /dev/video2 is the encoding capture device for the third card (card 2)

Note that if the first card doesn’t have a feature (eg no decoder, so no video16, the second card
will still use video17. The simple rule is ‘add the card number to the base device number’. If
you have other capture cards (e.g. WinTV PCI) that are detected first, then you have to tell the
ivtv module about it so that it will start counting at 1 (or 2, or whatever). Otherwise the device
numbers can get confusing. The ivtv ‘ivtv_first_minor’ module option can be used for that.

• /dev/video0

The encoding capture device(s).

Read-only.

Reading from this device gets you the MPEG1/2 program stream. Example:

cat /dev/video0 > my.mpg (you need to hit ctrl-c to exit)

• /dev/video16

The decoder output device(s)

Write-only. Only present if the MPEG decoder (i.e. CX23415) exists.

An mpeg2 stream sent to this device will appear on the selected video display, audio will
appear on the line-out/audio out. It is only available for cards that support video out.
Example:

cat my.mpg >/dev/video16

• /dev/video24

The raw audio capture device(s).

Read-only

The raw audio PCM stereo stream from the currently selected tuner or audio line-in. Read-
ing from this device results in a raw (signed 16 bit Little Endian, 48000 Hz, stereo pcm)
capture. This device only captures audio. This should be replaced by an ALSA device in the

168 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

future. Note that there is no corresponding raw audio output device, this is not supported
in the decoder firmware.

• /dev/video32

The raw video capture device(s)

Read-only

The raw YUV video output from the current video input. The YUV format is a 16x16 linear
tiled NV12 format (V4L2_PIX_FMT_NV12_16L16)

Note that the YUV and PCM streams are not synchronized, so they are of limited use.

• /dev/video48

The raw video display device(s)

Write-only. Only present if the MPEG decoder (i.e. CX23415) exists.

Writes a YUV stream to the decoder of the card.

• /dev/radio0

The radio tuner device(s)

Cannot be read or written.

Used to enable the radio tuner and tune to a frequency. You cannot read or write audio
streams with this device. Once you use this device to tune the radio, use /dev/video24 to
read the raw pcm stream or /dev/video0 to get an mpeg2 stream with black video.

• /dev/vbi0

The ‘vertical blank interval’ (Teletext, CC, WSS etc) capture device(s)

Read-only

Captures the raw (or sliced) video data sent during the Vertical Blank Interval. This data is
used to encode teletext, closed captions, VPS, widescreen signalling, electronic program
guide information, and other services.

• /dev/vbi8

Processed vbi feedback device(s)

Read-only. Only present if the MPEG decoder (i.e. CX23415) exists.

The sliced VBI data embedded in an MPEG stream is reproduced on this device. So while
playing back a recording on /dev/video16, you can read the embedded VBI data from
/dev/vbi8.

• /dev/vbi16

The vbi ‘display’ device(s)

Write-only. Only present if the MPEG decoder (i.e. CX23415) exists.

Can be used to send sliced VBI data to the video-out connector.

1.1. The media subsystem 169

Linux Media Documentation

1.1.6.11 Vaio Picturebook Motion Eye Camera Driver

Copyright © 2001-2004 Stelian Pop <stelian@popies.net>

Copyright © 2001-2002 Alcôve <www.alcove.com>

Copyright © 2000 Andrew Tridgell <tridge@samba.org>

This driver enable the use of video4linux compatible applications with the Motion Eye camera.
This driver requires the “Sony Laptop Extras” driver (which can be found in the “Misc devices”
section of the kernel configuration utility) to be compiled and installed (using its “camera=1”
parameter).

It can do at maximum 30 fps @ 320x240 or 15 fps @ 640x480.

Grabbing is supported in packed YUV colorspace only.

MJPEG hardware grabbing is supported via a private API (see below).

Hardware supported

This driver supports the ‘second’ version of the MotionEye camera :)

The first version was connected directly on the video bus of the Neomagic video card and is
unsupported.

The second one, made by Kawasaki Steel is fully supported by this driver (PCI vendor/device is
0x136b/0xff01)

The third one, present in recent (more or less last year) Picturebooks (C1M* models), is not
supported. The manufacturer has given the specs to the developers under a NDA (which allows
the development of a GPL driver however), but things are not moving very fast (see http://
r-engine.sourceforge.net/) (PCI vendor/device is 0x10cf/0x2011).

There is a forth model connected on the USB bus in TR1* Vaio laptops. This camera is not
supported at all by the current driver, in fact little information if any is available for this camera
(USB vendor/device is 0x054c/0x0107).

Driver options

Several options can be passed to the meye driver using the standard module argument syntax
(<param>=<value> when passing the option to the module or meye.<param>=<value> on
the kernel boot line when meye is statically linked into the kernel). Those options are:

gbuffers: number of capture buffers, default is 2 (32 max)

gbufsize: size of each capture buffer, default is 614400

video_nr: video device to register (0 = /dev/video0, etc)

170 Chapter 1. Media subsystem admin and user guide

mailto:stelian@popies.net
mailto:tridge@samba.org
http://r-engine.sourceforge.net/
http://r-engine.sourceforge.net/

Linux Media Documentation

Module use

In order to automatically load the meye module on use, you can put those lines in your
/etc/modprobe.d/meye.conf file:

alias char-major-81 videodev
alias char-major-81-0 meye
options meye gbuffers=32

Usage:

xawtv >= 3.49 (<http://bytesex.org/xawtv/>)
for display and uncompressed video capture:

xawtv -c /dev/video0 -geometry 640x480
or

xawtv -c /dev/video0 -geometry 320x240

motioneye (<http://popies.net/meye/>)
for getting ppm or jpg snapshots, mjpeg video

Bugs / Todo

• ‘motioneye’ still uses the meye private v4l1 API extensions.

1.1.6.12 OMAP 3 Image Signal Processor (ISP) driver

Copyright © 2010 Nokia Corporation

Copyright © 2009 Texas Instruments, Inc.

Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>, Sakari Ailus
<sakari.ailus@iki.fi>, David Cohen <dacohen@gmail.com>

Introduction

This file documents the Texas Instruments OMAP 3 Image Signal Processor (ISP) driver located
under drivers/media/platform/omap3isp. The original driver was written by Texas Instruments
but since that it has been rewritten (twice) at Nokia.

The driver has been successfully used on the following versions of OMAP 3:

• 3430

• 3530

• 3630

The driver implements V4L2, Media controller and v4l2_subdev interfaces. Sensor, lens and
flash drivers using the v4l2_subdev interface in the kernel are supported.

1.1. The media subsystem 171

mailto:laurent.pinchart@ideasonboard.com
mailto:sakari.ailus@iki.fi
mailto:dacohen@gmail.com

Linux Media Documentation

Split to subdevs

The OMAP 3 ISP is split into V4L2 subdevs, each of the blocks inside the ISP having one subdev
to represent it. Each of the subdevs provide a V4L2 subdev interface to userspace.

• OMAP3 ISP CCP2

• OMAP3 ISP CSI2a

• OMAP3 ISP CCDC

• OMAP3 ISP preview

• OMAP3 ISP resizer

• OMAP3 ISP AEWB

• OMAP3 ISP AF

• OMAP3 ISP histogram

Each possible link in the ISP is modelled by a link in the Media controller interface. For an
example program see1.

Controlling the OMAP 3 ISP

In general, the settings given to the OMAP 3 ISP take effect at the beginning of the following
frame. This is done when the module becomes idle during the vertical blanking period on the
sensor. In memory-to-memory operation the pipe is run one frame at a time. Applying the
settings is done between the frames.

All the blocks in the ISP, excluding the CSI-2 and possibly the CCP2 receiver, insist on receiving
complete frames. Sensors must thus never send the ISP partial frames.

Autoidle does have issues with some ISP blocks on the 3430, at least. Autoidle is only enabled
on 3630 when the omap3isp module parameter autoidle is non-zero.

Technical reference manuals (TRMs) and other documentation

OMAP 3430 TRM:<URL:http://focus.ti.com/pdfs/wtbu/OMAP34xx_ES3.1.x_PUBLIC_TRM_vZM.zip>
Referenced 2011-03-05.

OMAP 35xx TRM: <URL:http://www.ti.com/litv/pdf/spruf98o> Referenced 2011-03-05.

OMAP 3630 TRM:<URL:http://focus.ti.com/pdfs/wtbu/OMAP36xx_ES1.x_PUBLIC_TRM_vQ.zip>
Referenced 2011-03-05.

DM 3730 TRM: <URL:http://www.ti.com/litv/pdf/sprugn4h> Referenced 2011-03-06.
1 http://git.ideasonboard.org/?p=media-ctl.git;a=summary

172 Chapter 1. Media subsystem admin and user guide

http://git.ideasonboard.org/?p=media-ctl.git;a=summary

Linux Media Documentation

References

1.1.6.13 OMAP4 ISS Driver

Author: Sergio Aguirre <sergio.a.aguirre@gmail.com>

Copyright (C) 2012, Texas Instruments

Introduction

The OMAP44XX family of chips contains the Imaging SubSystem (a.k.a. ISS), Which contains
several components that can be categorized in 3 big groups:

• Interfaces (2 Interfaces: CSI2-A & CSI2-B/CCP2)

• ISP (Image Signal Processor)

• SIMCOP (Still Image Coprocessor)

For more information, please look in1 for latest version of: “OMAP4430 Multimedia Device
Silicon Revision 2.x”

As of Revision AB, the ISS is described in detail in section 8.

This driver is supporting only the CSI2-A/B interfaces for now.
It makes use of the Media Controller framework2, and inherited most of the code from OMAP3
ISP driver (found under drivers/media/platform/omap3isp/*), except that it doesn’t need an
IOMMU now for ISS buffers memory mapping.

Supports usage of MMAP buffers only (for now).

Tested platforms

• OMAP4430SDP, w/ ES2.1 GP & SEVM4430-CAM-V1-0 (Contains IMX060 & OV5640, in
which only the last one is supported, outputting YUV422 frames).

• TI Blaze MDP, w/ OMAP4430 ES2.2 EMU (Contains 1 IMX060 & 2 OV5650 sensors, in
which only the OV5650 are supported, outputting RAW10 frames).

• PandaBoard, Rev. A2, w/ OMAP4430 ES2.1 GP & OV adapter board, tested with following
sensors: * OV5640 * OV5650

• Tested on mainline kernel:

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=summary

Tag: v3.3 (commit c16fa4f2ad19908a47c63d8fa436a1178438c7e7)
1 http://focus.ti.com/general/docs/wtbu/wtbudocumentcenter.tsp?navigationId=12037&templateId=6123#62
2 http://lwn.net/Articles/420485/

1.1. The media subsystem 173

mailto:sergio.a.aguirre@gmail.com
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=summary
http://focus.ti.com/general/docs/wtbu/wtbudocumentcenter.tsp?navigationId=12037&templateId=6123#62
http://lwn.net/Articles/420485/

Linux Media Documentation

File list

drivers/staging/media/omap4iss/ include/linux/platform_data/media/omap4iss.h

References

1.1.6.14 Philips webcams (pwc driver)

This file contains some additional information for the Philips and OEM webcams. E-mail: web-
cam@smcc.demon.nl Last updated: 2004-01-19 Site: http://www.smcc.demon.nl/webcam/

As of this moment, the following cameras are supported:

• Philips PCA645

• Philips PCA646

• Philips PCVC675

• Philips PCVC680

• Philips PCVC690

• Philips PCVC720/40

• Philips PCVC730

• Philips PCVC740

• Philips PCVC750

• Askey VC010

• Creative Labs Webcam 5

• Creative Labs Webcam Pro Ex

• Logitech QuickCam 3000 Pro

• Logitech QuickCam 4000 Pro

• Logitech QuickCam Notebook Pro

• Logitech QuickCam Zoom

• Logitech QuickCam Orbit

• Logitech QuickCam Sphere

• Samsung MPC-C10

• Samsung MPC-C30

• Sotec Afina Eye

• AME CU-001

• Visionite VCS-UM100

• Visionite VCS-UC300

174 Chapter 1. Media subsystem admin and user guide

mailto:webcam@smcc.demon.nl
mailto:webcam@smcc.demon.nl
http://www.smcc.demon.nl/webcam/

Linux Media Documentation

The main webpage for the Philips driver is at the address above. It contains a lot of extra
information, a FAQ, and the binary plugin ‘PWCX’. This plugin contains decompression routines
that allow you to use higher image sizes and framerates; in addition the webcam uses less
bandwidth on the USB bus (handy if you want to run more than 1 camera simultaneously).
These routines fall under a NDA, and may therefore not be distributed as source; however, its
use is completely optional.

You can build this code either into your kernel, or as a module. I recommend the latter, since
it makes troubleshooting a lot easier. The built-in microphone is supported through the USB
Audio class.

When you load the module you can set some default settings for the camera; some programs
depend on a particular image-size or -format and don’t know how to set it properly in the driver.
The options are:

size Can be one of ‘sqcif’, ‘qsif’, ‘qcif’, ‘sif’, ‘cif’ or ‘vga’, for an image size of resp. 128x96,
160x120, 176x144, 320x240, 352x288 and 640x480 (of course, only for those cameras that
support these resolutions).

fps Specifies the desired framerate. Is an integer in the range of 4-30.
fbufs This parameter specifies the number of internal buffers to use for storing frames from

the cam. This will help if the process that reads images from the cam is a bit slow or
momentarily busy. However, on slow machines it only introduces lag, so choose carefully.
The default is 3, which is reasonable. You can set it between 2 and 5.

mbufs This is an integer between 1 and 10. It will tell the module the number of buffers to
reserve for mmap(), VIDIOCCGMBUF, VIDIOCMCAPTURE and friends. The default is 2,
which is adequate for most applications (double buffering).

Should you experience a lot of ‘Dumping frame…’ messages during grabbing with a tool
that uses mmap(), you might want to increase if. However, it doesn’t really buffer images,
it just gives you a bit more slack when your program is behind. But you need a multi-
threaded or forked program to really take advantage of these buffers.

The absolute maximum is 10, but don’t set it too high! Every buffer takes up 460 KB
of RAM, so unless you have a lot of memory setting this to something more than 4 is an
absolute waste. This memory is only allocated during open(), so nothing is wasted when
the camera is not in use.

power_save When power_save is enabled (set to 1), themodule will try to shut down the cam on
close() and re-activate on open(). This will save power and turn off the LED. Not all cameras
support this though (the 645 and 646 don’t have power saving at all), and some models
don’t work either (they will shut down, but never wake up). Consider this experimental.
By default this option is disabled.

compression (only useful with the plugin) With this option you can control the compres-
sion factor that the camera uses to squeeze the image through the USB bus. You can set
the parameter between 0 and 3:

0 = prefer uncompressed images; if the requested mode is not available
in an uncompressed format, the driver will silently switch to low
compression.

1 = low compression.
2 = medium compression.
3 = high compression.

1.1. The media subsystem 175

Linux Media Documentation

High compression takes less bandwidth of course, but it could also introduce some un-
wanted artefacts. The default is 2, medium compression. See the FAQ on the website for
an overview of which modes require compression.

The compression parameter does not apply to the 645 and 646 cameras and OEM models
derived from those (only a few). Most cams honour this parameter.

leds This settings takes 2 integers, that define the on/off time for the LED (in milliseconds).
One of the interesting things that you can do with this is let the LED blink while the camera
is in use. This:

leds=500,500

will blink the LED once every second. But with:

leds=0,0

the LED never goes on, making it suitable for silent surveillance.

By default the camera’s LED is on solid while in use, and turned off when the camera is
not used anymore.

This parameter works only with the ToUCam range of cameras (720, 730, 740, 750) and
OEMs. For other cameras this command is silently ignored, and the LED cannot be con-
trolled.

Finally: this parameters does not take effect UNTIL the first time you open the camera
device. Until then, the LED remains on.

dev_hint A long standing problem with USB devices is their dynamic nature: you never know
what device a camera gets assigned; it depends on module load order, the hub config-
uration, the order in which devices are plugged in, and the phase of the moon (i.e. it
can be random). With this option you can give the driver a hint as to what video device
node (/dev/videoX) it should use with a specific camera. This is also handy if you have two
cameras of the same model.

A camera is specified by its type (the number from the camera model,
like PCA645, PCVC750VC, etc) and optionally the serial number (visible in
/sys/kernel/debug/usb/devices). A hint consists of a string with the following format:

[type[.serialnumber]:]node

The square brackets mean that both the type and the serialnumber are optional, but a
serialnumber cannot be specified without a type (which would be rather pointless). The
serialnumber is separated from the type by a ‘.’; the node number by a ‘:’.

This somewhat cryptic syntax is best explained by a few examples:

dev_hint=3,5 The first detected cam gets assigned
/dev/video3, the second /dev/video5. Any
other cameras will get the first free
available slot (see below).

dev_hint=645:1,680:2 The PCA645 camera will get /dev/video1,
and a PCVC680 /dev/video2.

dev_hint=645.0123:3,645.4567:0 The PCA645 camera with serialnumber

176 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

0123 goes to /dev/video3, the same
camera model with the 4567 serial
gets /dev/video0.

dev_hint=750:1,4,5,6 The PCVC750 camera will get /dev/video1, the
next 3 Philips cams will use /dev/video4
through /dev/video6.

Some points worth knowing:

• Serialnumbers are case sensitive and must be written full, including leading zeroes
(it’s treated as a string).

• If a device node is already occupied, registration will fail and the webcam is not avail-
able.

• You can have up to 64 video devices; be sure tomake enough device nodes in /dev if you
want to spread the numbers. After /dev/video9 comes /dev/video10 (not /dev/videoA).

• If a camera does not match any dev_hint, it will simply get assigned the first available
device node, just as it used to be.

trace In order to better detect problems, it is now possible to turn on a ‘trace’ of some of the
calls the module makes; it logs all items in your kernel log at debug level.

The trace variable is a bitmask; each bit represents a certain feature. If you want to trace
something, look up the bit value(s) in the table below, add the values together and supply
that to the trace variable.

Value Value Description Default
(dec) (hex)
1 0x1 Module initialization; this will log messages while loading and

unloading the module
On

2 0x2 probe() and disconnect() traces On
4 0x4 Trace open() and close() calls Off
8 0x8 read(), mmap() and associated ioctl() calls Off
16 0x10 Memory allocation of buffers, etc. Off
32 0x20 Showing underflow, overflow and Dumping frame messages On
64 0x40 Show viewport and image sizes Off
128 0x80 PWCX debugging Off

For example, to trace the open() & read() functions, sum 8 + 4 = 12, so you would supply
trace=12 during insmod or modprobe. If you want to turn the initialization and probing
tracing off, set trace=0. The default value for trace is 35 (0x23).

Example:

modprobe pwc size=cif fps=15 power_save=1

The fbufs, mbufs and trace parameters are global and apply to all connected cameras. Each
camera has its own set of buffers.

size and fps only specify defaults when you open() the device; this is to accommodate some
tools that don’t set the size. You can change these settings after open() with the Video4Linux
ioctl() calls. The default of defaults is QCIF size at 10 fps.

1.1. The media subsystem 177

Linux Media Documentation

The compression parameter is semiglobal; it sets the initial compression preference for all
camera’s, but this parameter can be set per camera with the VIDIOCPWCSCQUAL ioctl() call.

All parameters are optional.

1.1.6.15 Qualcomm Camera Subsystem driver

Introduction

This file documents the Qualcomm Camera Subsystem driver located under
drivers/media/platform/qcom/camss.

The current version of the driver supports the Camera Subsystem found on Qualcomm
MSM8916/APQ8016 and MSM8996/APQ8096 processors.

The driver implements V4L2, Media controller and V4L2 subdev interfaces. Camera sensor
using V4L2 subdev interface in the kernel is supported.

The driver is implemented using as a reference the Qualcomm Camera Subsystem driver for
Android as found in Code Aurora12.

Qualcomm Camera Subsystem hardware

The Camera Subsystem hardware found on 8x16 / 8x96 processors and supported by the driver
consists of:

• 2 / 3 CSIPHY modules. They handle the Physical layer of the CSI2 receivers. A separate
camera sensor can be connected to each of the CSIPHY module;

• 2 / 4 CSID (CSI Decoder) modules. They handle the Protocol and Application layer of
the CSI2 receivers. A CSID can decode data stream from any of the CSIPHY. Each CSID
also contains a TG (Test Generator) block which can generate artificial input data for test
purposes;

• ISPIF (ISP Interface) module. Handles the routing of the data streams from the CSIDs to
the inputs of the VFE;

• 1 / 2 VFE (Video Front End) module(s). Contain a pipeline of image processing hardware
blocks. The VFE has different input interfaces. The PIX (Pixel) input interface feeds the
input data to the image processing pipeline. The image processing pipeline contains also
a scale and crop module at the end. Three RDI (Raw Dump Interface) input interfaces
bypass the image processing pipeline. The VFE also contains the AXI bus interface which
writes the output data to memory.

1 https://source.codeaurora.org/quic/la/kernel/msm-3.10/
2 https://source.codeaurora.org/quic/la/kernel/msm-3.18/

178 Chapter 1. Media subsystem admin and user guide

https://source.codeaurora.org/quic/la/kernel/msm-3.10/
https://source.codeaurora.org/quic/la/kernel/msm-3.18/

Linux Media Documentation

Supported functionality

The current version of the driver supports:

• Input from camera sensor via CSIPHY;

• Generation of test input data by the TG in CSID;

• RDI interface of VFE

– Raw dump of the input data to memory.
Supported formats:

∗ YUYV/UYVY/YVYU/VYUY (packed YUV 4:2:2 - V4L2_PIX_FMT_YUYV /
V4L2_PIX_FMT_UYVY / V4L2_PIX_FMT_YVYU / V4L2_PIX_FMT_VYUY);

∗ MIPI RAW8 (8bit Bayer RAW - V4L2_PIX_FMT_SRGGB8 / V4L2_PIX_FMT_SGRBG8
/ V4L2_PIX_FMT_SGBRG8 / V4L2_PIX_FMT_SBGGR8);

∗ MIPI RAW10 (10bit packed Bayer RAW - V4L2_PIX_FMT_SBGGR10P
/ V4L2_PIX_FMT_SGBRG10P / V4L2_PIX_FMT_SGRBG10P /
V4L2_PIX_FMT_SRGGB10P / V4L2_PIX_FMT_Y10P);

∗ MIPI RAW12 (12bit packed Bayer RAW - V4L2_PIX_FMT_SRGGB12P
/ V4L2_PIX_FMT_SGBRG12P / V4L2_PIX_FMT_SGRBG12P /
V4L2_PIX_FMT_SRGGB12P).

∗ (8x96 only) MIPI RAW14 (14bit packed Bayer RAW - V4L2_PIX_FMT_SRGGB14P
/ V4L2_PIX_FMT_SGBRG14P / V4L2_PIX_FMT_SGRBG14P /
V4L2_PIX_FMT_SRGGB14P).

– (8x96 only) Format conversion of the input data.
Supported input formats:

∗ MIPI RAW10 (10bit packed Bayer RAW - V4L2_PIX_FMT_SBGGR10P /
V4L2_PIX_FMT_Y10P).

Supported output formats:

∗ Plain16 RAW10 (10bit unpacked Bayer RAW - V4L2_PIX_FMT_SBGGR10 /
V4L2_PIX_FMT_Y10).

• PIX interface of VFE

– Format conversion of the input data.
Supported input formats:

∗ YUYV/UYVY/YVYU/VYUY (packed YUV 4:2:2 - V4L2_PIX_FMT_YUYV /
V4L2_PIX_FMT_UYVY / V4L2_PIX_FMT_YVYU / V4L2_PIX_FMT_VYUY).

Supported output formats:

∗ NV12/NV21 (two plane YUV 4:2:0 - V4L2_PIX_FMT_NV12 /
V4L2_PIX_FMT_NV21);

∗ NV16/NV61 (two plane YUV 4:2:2 - V4L2_PIX_FMT_NV16 / V4L2_PIX_FMT_NV61).

∗ (8x96 only) YUYV/UYVY/YVYU/VYUY (packed YUV 4:2:2 - V4L2_PIX_FMT_YUYV /
V4L2_PIX_FMT_UYVY / V4L2_PIX_FMT_YVYU / V4L2_PIX_FMT_VYUY).

1.1. The media subsystem 179

Linux Media Documentation

– Scaling support. Configuration of the VFE Encoder Scale module for downscalling
with ratio up to 16x.

– Cropping support. Configuration of the VFE Encoder Crop module.
• Concurrent and independent usage of two (8x96: three) data inputs - could be camera
sensors and/or TG.

Driver Architecture and Design

The driver implements the V4L2 subdev interface. With the goal to model the hardware links
between the modules and to expose a clean, logical and usable interface, the driver is split into
V4L2 sub-devices as follows (8x16 / 8x96):

• 2 / 3 CSIPHY sub-devices - each CSIPHY is represented by a single sub-device;

• 2 / 4 CSID sub-devices - each CSID is represented by a single sub-device;

• 2 / 4 ISPIF sub-devices - ISPIF is represented by a number of sub-devices equal to the
number of CSID sub-devices;

• 4 / 8 VFE sub-devices - VFE is represented by a number of sub-devices equal to the number
of the input interfaces (3 RDI and 1 PIX for each VFE).

The considerations to split the driver in this particular way are as follows:

• representing CSIPHY and CSID modules by a separate sub-device for each module allows
to model the hardware links between these modules;

• representing VFE by a separate sub-devices for each input interface allows to use the input
interfaces concurrently and independently as this is supported by the hardware;

• representing ISPIF by a number of sub-devices equal to the number of CSID sub-devices
allows to create linear media controller pipelines when using two cameras simultaneously.
This avoids branches in the pipelines which otherwise will require a) userspace and b)
media framework (e.g. power on/off operations) to make assumptions about the data flow
from a sink pad to a source pad on a single media entity.

Each VFE sub-device is linked to a separate video device node.

The media controller pipeline graph is as follows (with connected two / three OV5645 camera
sensors):

Implementation

Runtime configuration of the hardware (updating settings while streaming) is not required to
implement the currently supported functionality. The complete configuration on each hardware
module is applied on STREAMON ioctl based on the current active media links, formats and
controls set.

The output size of the scaler module in the VFE is configured with the actual compose selection
rectangle on the sink pad of the ‘msm_vfe0_pix’ entity.

The crop output area of the crop module in the VFE is configured with the actual crop selection
rectangle on the source pad of the ‘msm_vfe0_pix’ entity.

180 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

0

msm_csiphy0
/dev/v4l-subdev0

1

0

msm_csid0
/dev/v4l-subdev2

1

0

msm_csid1
/dev/v4l-subdev3

1

0

msm_ispif0
/dev/v4l-subdev4

1

0

msm_ispif1
/dev/v4l-subdev5

1

0

msm_csiphy1
/dev/v4l-subdev1

1

0

msm_vfe0_rdi0
/dev/v4l-subdev6

1

0

msm_vfe0_rdi1
/dev/v4l-subdev7

1

0

msm_vfe0_rdi2
/dev/v4l-subdev8

1

0

msm_vfe0_pix
/dev/v4l-subdev9

1

msm_vfe0_video0
/dev/video0

msm_vfe0_video1
/dev/video1

msm_vfe0_video2
/dev/video2

msm_vfe0_video3
/dev/video3

ov5645 1-0076
/dev/v4l-subdev10

0

ov5645 1-0074
/dev/v4l-subdev11

0

Fig. 5: Media pipeline graph 8x16

1.1. The media subsystem 181

Linux Media Documentation

0

msm_csiphy0
/dev/v4l-subdev0

1

0

msm_csid0
/dev/v4l-subdev3

1

0

msm_csid1
/dev/v4l-subdev4

1

0

msm_csid2
/dev/v4l-subdev5

1

0

msm_csid3
/dev/v4l-subdev6

1

0

msm_ispif0
/dev/v4l-subdev7

1

0

msm_ispif1
/dev/v4l-subdev8

1

0

msm_ispif2
/dev/v4l-subdev9

1

0

msm_ispif3
/dev/v4l-subdev10

1

0

msm_csiphy1
/dev/v4l-subdev1

1

0

msm_csiphy2
/dev/v4l-subdev2

1

0

msm_vfe0_rdi0
/dev/v4l-subdev11

1

0

msm_vfe0_rdi1
/dev/v4l-subdev12

1

0

msm_vfe0_rdi2
/dev/v4l-subdev13

1

0

msm_vfe0_pix
/dev/v4l-subdev14

1

0

msm_vfe1_rdi0
/dev/v4l-subdev15

1

0

msm_vfe1_rdi1
/dev/v4l-subdev16

1

0

msm_vfe1_rdi2
/dev/v4l-subdev17

1

0

msm_vfe1_pix
/dev/v4l-subdev18

1

msm_vfe0_video0
/dev/video0

msm_vfe0_video1
/dev/video1

msm_vfe0_video2
/dev/video2

msm_vfe0_video3
/dev/video3

msm_vfe1_video0
/dev/video4

msm_vfe1_video1
/dev/video5

msm_vfe1_video2
/dev/video6

msm_vfe1_video3
/dev/video7

ov5645 3-0039
/dev/v4l-subdev19

0

ov5645 3-003a
/dev/v4l-subdev20

0

ov5645 3-003b
/dev/v4l-subdev21

0

Fig. 6: Media pipeline graph 8x96

Documentation

APQ8016 Specification: https://developer.qualcomm.com/download/sd410/
snapdragon-410-processor-device-specification.pdf Referenced 2016-11-24.

APQ8096 Specification: https://developer.qualcomm.com/download/sd820e/
qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf Referenced
2018-06-22.

References

1.1.6.16 Renesas R-Car Fine Display Processor (FDP1) Driver

The R-Car FDP1 driver implements driver-specific controls as follows.

V4L2_CID_DEINTERLACING_MODE (menu) The video deinterlacing mode (such as Bob, Weave,
…). The R-Car FDP1 driver implements the following modes.

182 Chapter 1. Media subsystem admin and user guide

https://developer.qualcomm.com/download/sd410/snapdragon-410-processor-device-specification.pdf
https://developer.qualcomm.com/download/sd410/snapdragon-410-processor-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf

Linux Media Documentation

"Progressive" (0) The input image video stream is progressive (not interlaced). No
deinterlacing is performed. Apart from (optional) format and en-
coding conversion output frames are identical to the input frames.

"Adaptive 2D/3D" (1) Motion adaptive version of 2D and 3D deinterlacing. Use 3D dein-
terlacing in the presence of fast motion and 2D deinterlacing with
diagonal interpolation otherwise.

"Fixed 2D" (2) The current field is scaled vertically by averaging adjacent lines to
recover missing lines. This method is also known as blending or
Line Averaging (LAV).

"Fixed 3D" (3) The previous and next fields are averaged to recover lines missing
from the current field. This method is also known as Field Averag-
ing (FAV).

"Previous field" (4) The current field is weaved with the previous field, i.e. the previous
field is used to fill missing lines from the current field. This method
is also known as weave deinterlacing.

"Next field" (5) The current field is weaved with the next field, i.e. the next field
is used to fill missing lines from the current field. This method is
also known as weave deinterlacing.

1.1.6.17 Rockchip Image Signal Processor (rkisp1)

Introduction

This file documents the driver for the Rockchip ISP1 that is part of RK3288 and RK3399 SoCs.
The driver is located under drivers/staging/media/rkisp1 and uses the Media-Controller API.

Revisions

There exist multiple smaller revisions to this ISP that got introduced in later SoCs. Revisions can
be found in the enum rkisp1_cif_isp_version in the UAPI and the revision of the ISP inside
the running SoC can be read in the field hw_revision of struct media_device_info as returned
by ioctl MEDIA_IOC_DEVICE_INFO.

Versions in use are:

• RKISP1_V10: used at least in rk3288 and rk3399

• RKISP1_V11: declared in the original vendor code, but not used

• RKISP1_V12: used at least in rk3326 and px30

• RKISP1_V13: used at least in rk1808

1.1. The media subsystem 183

Linux Media Documentation

Topology

0 1

rkisp1_isp
/dev/v4l-subdev0

2 3

0

rkisp1_resizer_mainpath
/dev/v4l-subdev1

1

0

rkisp1_resizer_selfpath
/dev/v4l-subdev2

1

rkisp1_stats
/dev/video2

rkisp1_mainpath
/dev/video0

rkisp1_selfpath
/dev/video1

rkisp1_params
/dev/video3

imx219 4-0010
/dev/v4l-subdev3

0

The driver has 4 video devices:

• rkisp1_mainpath: capture device for retrieving images, usually in higher resolution.

• rkisp1_selfpath: capture device for retrieving images.

• rkisp1_stats: a metadata capture device that sends statistics.

• rkisp1_params: a metadata output device that receives parameters configurations from
userspace.

The driver has 3 subdevices:

• rkisp1_resizer_mainpath: used to resize and downsample frames for the mainpath capture
device.

• rkisp1_resizer_selfpath: used to resize and downsample frames for the selfpath capture
device.

• rkisp1_isp: is connected to the sensor and is responsible for all the isp operations.

184 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

rkisp1_mainpath, rkisp1_selfpath - Frames Capture Video Nodes

Those are the mainpath and selfpath capture devices to capture frames. Those entities are the
DMA engines that write the frames to memory. The selfpath video device can capture YUV/RGB
formats. Its input is YUV encoded stream and it is able to convert it to RGB. The selfpath is not
able to capture bayer formats. The mainpath can capture both bayer and YUV formats but it is
not able to capture RGB formats. Both capture videos support the V4L2_CAP_IO_MC capability.

rkisp1_resizer_mainpath, rkisp1_resizer_selfpath - Resizers Subdevices Nodes

Those are resizer entities for the mainpath and the selfpath. Those entities can scale the
frames up and down and also change the YUV sampling (for example YUV4:2:2 -> YUV4:2:0).
They also have cropping capability on the sink pad. The resizers entities can only operate on
YUV:4:2:2 format (MEDIA_BUS_FMT_YUYV8_2X8). The mainpath capture device supports cap-
turing video in bayer formats. In that case the resizer of the mainpath is set to ‘bypass’ mode -
it just forward the frame without operating on it.

rkisp1_isp - Image Signal Processing Subdevice Node

This is the isp entity. It is connected to the sensor on sink pad 0 and receives the frames
using the CSI-2 protocol. It is responsible of configuring the CSI-2 protocol. It has a cropping
capability on sink pad 0 that is connected to the sensor and on source pad 2 connected to the
resizer entities. Cropping on sink pad 0 defines the image region from the sensor. Cropping on
source pad 2 defines the region for the Image Stabilizer (IS).

rkisp1_stats - Statistics Video Node

The statistics video node outputs the 3A (auto focus, auto exposure and auto white balance)
statistics, and also histogram statistics for the frames that are being processed by the rkisp1
to userspace applications. Using these data, applications can implement algorithms and re-
parameterize the driver through the rkisp_params node to improve image quality during a video
stream. The buffer format is defined by struct rkisp1_stat_buffer, and userspace should set
V4L2_META_FMT_RK_ISP1_STAT_3A as the dataformat.

rkisp1_params - Parameters Video Node

The rkisp1_params video node receives a set of parameters from userspace to be applied to
the hardware during a video stream, allowing userspace to dynamically modify values such as
black level, cross talk corrections and others.

The buffer format is defined by struct rkisp1_params_cfg, and userspace should set
V4L2_META_FMT_RK_ISP1_PARAMS as the dataformat.

1.1. The media subsystem 185

Linux Media Documentation

Capturing Video Frames Example

In the following example, the sensor connected to pad 0 of ‘rkisp1_isp’ is imx219.

The following commands can be used to capture video from the selfpath video node with di-
mension 900x800 planar format YUV 4:2:2. It uses all cropping capabilities possible, (see ex-
planation right below)

set the links
"media-ctl" "-d" "platform:rkisp1" "-r"
"media-ctl" "-d" "platform:rkisp1" "-l" "'imx219 4-0010':0 -> 'rkisp1_isp':0 [1]"
"media-ctl" "-d" "platform:rkisp1" "-l" "'rkisp1_isp':2 -> 'rkisp1_resizer_selfpath':0␣
↪→[1]"
"media-ctl" "-d" "platform:rkisp1" "-l" "'rkisp1_isp':2 -> 'rkisp1_resizer_mainpath':0␣
↪→[0]"

set format for imx219 4-0010:0
"media-ctl" "-d" "platform:rkisp1" "--set-v4l2" '"imx219 4-0010":0 [fmt:SRGGB10_1X10/
↪→1640x1232]'

set format for rkisp1_isp pads:
"media-ctl" "-d" "platform:rkisp1" "--set-v4l2" '"rkisp1_isp":0 [fmt:SRGGB10_1X10/
↪→1640x1232 crop: (0,0)/1600x1200]'
"media-ctl" "-d" "platform:rkisp1" "--set-v4l2" '"rkisp1_isp":2 [fmt:YUYV8_2X8/
↪→1600x1200 crop: (0,0)/1500x1100]'

set format for rkisp1_resizer_selfpath pads:
"media-ctl" "-d" "platform:rkisp1" "--set-v4l2" '"rkisp1_resizer_selfpath":0␣
↪→[fmt:YUYV8_2X8/1500x1100 crop: (300,400)/1400x1000]'
"media-ctl" "-d" "platform:rkisp1" "--set-v4l2" '"rkisp1_resizer_selfpath":1␣
↪→[fmt:YUYV8_2X8/900x800]'

set format for rkisp1_selfpath:
"v4l2-ctl" "-z" "platform:rkisp1" "-d" "rkisp1_selfpath" "-v" "width=900,height=800,"
"v4l2-ctl" "-z" "platform:rkisp1" "-d" "rkisp1_selfpath" "-v" "pixelformat=422P"

start streaming:
v4l2-ctl "-z" "platform:rkisp1" "-d" "rkisp1_selfpath" "--stream-mmap" "--stream-count
↪→" "10"

In the above example the sensor is configured to bayer format: SRGGB10_1X10/1640x1232.
The rkisp1_isp:0 pad should be configured to the same mbus format and dimensions as
the sensor, otherwise streaming will fail with ‘EPIPE’ error. So it is also configured to
SRGGB10_1X10/1640x1232. In addition, the rkisp1_isp:0 pad is configured to cropping
(0,0)/1600x1200.

The cropping dimensions are automatically propagated to be the format of the isp source pad
rkisp1_isp:2. Another cropping operation is configured on the isp source pad: (0,0)/1500x1100.

The resizer’s sink pad rkisp1_resizer_selfpath should be configured to format
YUYV8_2X8/1500x1100 in order to match the format on the other side of the link. In
addition a cropping (300,400)/1400x1000 is configured on it.

The source pad of the resizer, rkisp1_resizer_selfpath:1 is configured to format
YUYV8_2X8/900x800. That means that the resizer first crop a window of (300,400)/1400x100
from the received frame and then scales this window to dimension 900x800.

186 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Note that the above example does not uses the stats-params control loop. Therefore the capture
frames will not go through the 3A algorithms and probably won’t have a good quality, and can
even look dark and greenish.

Configuring Quantization

The driver supports limited and full range quantization on YUV formats, where limited is
the default. To switch between one or the other, userspace should use the Colorspace Con-
version API (CSC) for subdevices on source pad 2 of the isp (rkisp1_isp:2). The quantiza-
tion configured on this pad is the quantization of the captured video frames on the main-
path and selfpath video nodes. Note that the resizer and capture entities will always re-
port V4L2_QUANTIZATION_DEFAULT even if the quantization is configured to full range on rk-
isp1_isp:2. So in order to get the configured quantization, application should get it from pad
rkisp1_isp:2.

1.1.6.18 The saa7134 driver

Author Gerd Hoffmann

This is a v4l2/oss device driver for saa7130/33/34/35 based capture / TV boards.

Status

Almost everything is working. video, sound, tuner, radio, mpeg ts, …

As with bttv, card-specific tweaks are needed. Check CARDLIST for a list of known TV cards
and saa7134-cards.c for the drivers card configuration info.

Build

Once you pick up a Kernel source, you should configure, build, install and boot the new kernel.
You’ll need at least these config options:

./scripts/config -e PCI

./scripts/config -e INPUT

./scripts/config -m I2C

./scripts/config -m MEDIA_SUPPORT

./scripts/config -e MEDIA_PCI_SUPPORT

./scripts/config -e MEDIA_ANALOG_TV_SUPPORT

./scripts/config -e MEDIA_DIGITAL_TV_SUPPORT

./scripts/config -e MEDIA_RADIO_SUPPORT

./scripts/config -e RC_CORE

./scripts/config -e MEDIA_SUBDRV_AUTOSELECT

./scripts/config -m VIDEO_SAA7134

./scripts/config -e SAA7134_ALSA

./scripts/config -e VIDEO_SAA7134_RC

./scripts/config -e VIDEO_SAA7134_DVB

./scripts/config -e VIDEO_SAA7134_GO7007

To build and install, you should run:

1.1. The media subsystem 187

Linux Media Documentation

make && make modules_install && make install

Once the new Kernel is booted, saa7134 driver should be loaded automatically.

Depending on the card you might have to pass card=<nr> as insmod option. If so, please check
Documentation/admin-guide/media/saa7134-cardlist.rst for valid choices.

Once you have your card type number, you can pass a modules configuration via a file (usually,
it is either /etc/modules.conf or some file at /etc/modules-load.d/, but the actual place
depends on your distribution), with this content:

options saa7134 card=13 # Assuming that your card type is #13

Changes / Fixes

Please mail to linux-media AT vger.kernel.org unified diffs against the linux media git tree:

https://git.linuxtv.org/media_tree.git/

This is done by committing a patch at a clone of the git tree and submitting the patch using
git send-email. Don’t forget to describe at the lots what it changes / which problem it fixes /
whatever it is good for …

Known Problems

• The tuner for the flyvideos isn’t detected automatically and the default might not work for
you depending on which version you have. There is a tuner= insmod option to override
the driver’s default.

Credits

andrew.stevens@philips.com + werner.leeb@philips.com for providing saa7134 hardware
specs and sample board.

1.1.6.19 The Silicon Labs Si470x FM Radio Receivers driver

Copyright © 2009 Tobias Lorenz <tobias.lorenz@gmx.net>

Information from Silicon Labs

Silicon Laboratories is the manufacturer of the radio ICs, that nowadays are the most often used
radio receivers in cell phones. Usually they are connected with I2C. But SiLabs also provides a
reference design, which integrates this IC, together with a small microcontroller C8051F321,
to form a USB radio. Part of this reference design is also a radio application in binary and
source code. The software also contains an automatic firmware upgrade to the most current
version. Information on these can be downloaded here: http://www.silabs.com/usbradio

188 Chapter 1. Media subsystem admin and user guide

https://git.linuxtv.org/media_tree.git/
mailto:andrew.stevens@philips.com
mailto:werner.leeb@philips.com
mailto:tobias.lorenz@gmx.net
http://www.silabs.com/usbradio

Linux Media Documentation

Supported ICs

The following ICs have a very similar register set, so that they are or will be supported some-
when by the driver:

• Si4700: FM radio receiver

• Si4701: FM radio receiver, RDS Support

• Si4702: FM radio receiver

• Si4703: FM radio receiver, RDS Support

• Si4704: FM radio receiver, no external antenna required

• Si4705: FM radio receiver, no external antenna required, RDS support, Dig I/O

• Si4706: Enhanced FM RDS/TMC radio receiver, no external antenna required, RDS
Support

• Si4707: Dedicated weather band radio receiver with SAME decoder, RDS Support

• Si4708: Smallest FM receivers

• Si4709: Smallest FM receivers, RDS Support

More information on these can be downloaded here: http://www.silabs.com/products/mcu/
Pages/USBFMRadioRD.aspx

Supported USB devices

Currently the following USB radios (vendor:product) with the Silicon Labs si470x chips are
known to work:

• 10c4:818a: Silicon Labs USB FM Radio Reference Design

• 06e1:a155: ADS/Tech FM Radio Receiver (formerly Instant FM Music) (RDX-155-EF)

• 1b80:d700: KWorld USB FM Radio SnapMusic Mobile 700 (FM700)

• 10c5:819a: Sanei Electric, Inc. FM USB Radio (sold as DealExtreme.com PCear)

Software

Testing is usually done with most application under Debian/testing:

• fmtools - Utility for managing FM tuner cards

• gnomeradio - FM-radio tuner for the GNOME desktop

• gradio - GTK FM radio tuner

• kradio - Comfortable Radio Application for KDE

• radio - ncurses-based radio application

• mplayer - The Ultimate Movie Player For Linux

• v4l2-ctl - Collection of command line video4linux utilities

For example, you can use:

1.1. The media subsystem 189

http://www.silabs.com/products/mcu/Pages/USBFMRadioRD.aspx
http://www.silabs.com/products/mcu/Pages/USBFMRadioRD.aspx

Linux Media Documentation

v4l2-ctl -d /dev/radio0 --set-ctrl=volume=10,mute=0 --set-freq=95.21 --all

There is also a library libv4l, which can be used. It’s going to have a function for frequency
seeking, either by using hardware functionality as in radio-si470x or by implementing a function
as we currently have in every of thementioned programs. Somewhen the radio programs should
make use of libv4l.

For processing RDS information, there is a project ongoing at: http://rdsd.berlios.de/

There is currently no project for making TMC sentences human readable.

Audio Listing

USB Audio is provided by the ALSA snd_usb_audio module. It is recommended to also select
SND_USB_AUDIO, as this is required to get sound from the radio. For listing you have to
redirect the sound, for example using one of the following commands. Please adjust the audio
devices to your needs (/dev/dsp* and hw:x,x).

If you just want to test audio (very poor quality):

cat /dev/dsp1 > /dev/dsp

If you use sox + OSS try:

sox -2 --endian little -r 96000 -t oss /dev/dsp1 -t oss /dev/dsp

or using sox + alsa:

sox --endian little -c 2 -S -r 96000 -t alsa hw:1 -t alsa -r 96000 hw:0

If you use arts try:

arecord -D hw:1,0 -r96000 -c2 -f S16_LE | artsdsp aplay -B -

If you use mplayer try:

mplayer -radio adevice=hw=1.0:arate=96000 \
-rawaudio rate=96000 \
radio://<frequency>/capture

Module Parameters

After loading the module, you still have access to some of them in the sysfs mount under
/sys/module/radio_si470x/parameters. The contents of read-only files (0444) are not updated,
even if space, band and de are changed using private video controls. The others are runtime
changeable.

190 Chapter 1. Media subsystem admin and user guide

http://rdsd.berlios.de/

Linux Media Documentation

Errors

Increase tune_timeout, if you often get -EIO errors.

When timed out or band limit is reached, hw_freq_seek returns -EAGAIN.

If you get any errors from snd_usb_audio, please report them to the ALSA people.

Open Issues

V4L minor device allocation and parameter setting is not perfect. A solution is currently under
discussion.

There is an USB interface for downloading/uploading new firmware images. Support for it can
be implemented using the request_firmware interface.

There is a RDS interrupt mode. The driver is already using the same interface for polling RDS
information, but is currently not using the interrupt mode.

There is a LED interface, which can be used to override the LED control programmed in the
firmware. This can be made available using the LED support functions in the kernel.

Other useful information and links

http://www.silabs.com/usbradio

1.1.6.20 The Silicon Labs Si4713 FM Radio Transmitter Driver

Copyright © 2009 Nokia Corporation

Contact: Eduardo Valentin <eduardo.valentin@nokia.com>

Information about the Device

This chip is a Silicon Labs product. It is a I2C device, currently on 0x63 address. Basically, it
has transmission and signal noise level measurement features.

The Si4713 integrates transmit functions for FM broadcast stereo transmission. The chip also
allows integrated receive power scanning to identify low signal power FM channels.

The chip is programmed using commands and responses. There are also several properties
which can change the behavior of this chip.

Users must comply with local regulations on radio frequency (RF) transmission.

1.1. The media subsystem 191

http://www.silabs.com/usbradio
mailto:eduardo.valentin@nokia.com

Linux Media Documentation

Device driver description

There are two modules to handle this device. One is a I2C device driver and the other is a
platform driver.

The I2C device driver exports a v4l2-subdev interface to the kernel. All properties can also
be accessed by v4l2 extended controls interface, by using the v4l2-subdev calls (g_ext_ctrls,
s_ext_ctrls).

The platform device driver exports a v4l2 radio device interface to user land. So, it uses the I2C
device driver as a sub device in order to send the user commands to the actual device. Basically
it is a wrapper to the I2C device driver.

Applications can use v4l2 radio API to specify frequency of operation, mute state, etc. But
mostly of its properties will be present in the extended controls.

When the v4l2 mute property is set to 1 (true), the driver will turn the chip off.

Properties description

The properties can be accessed using v4l2 extended controls. Here is an output from v4l2-ctl
util:

/ # v4l2-ctl -d /dev/radio0 --all -L
Driver Info:

Driver name : radio-si4713
Card type : Silicon Labs Si4713 Modulator
Bus info :
Driver version: 0
Capabilities : 0x00080800

RDS Output
Modulator

Audio output: 0 (FM Modulator Audio Out)
Frequency: 1408000 (88.000000 MHz)
Video Standard = 0x00000000
Modulator:

Name : FM Modulator
Capabilities : 62.5 Hz stereo rds
Frequency range : 76.0 MHz - 108.0 MHz
Subchannel modulation: stereo+rds

User Controls

mute (bool) : default=1 value=0

FM Radio Modulator Controls

rds_signal_deviation (int) : min=0 max=90000 step=10 default=200 value=200␣
↪→flags=slider

rds_program_id (int) : min=0 max=65535 step=1 default=0 value=0
rds_program_type (int) : min=0 max=31 step=1 default=0 value=0

rds_ps_name (str) : min=0 max=96 step=8 value='si4713 '
rds_radio_text (str) : min=0 max=384 step=32 value=''

audio_limiter_feature_enabled (bool) : default=1 value=1
audio_limiter_release_time (int) : min=250 max=102390 step=50 default=5010 value=5010␣
↪→flags=slider

192 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

audio_limiter_deviation (int) : min=0 max=90000 step=10 default=66250␣
↪→value=66250 flags=slider
audio_compression_feature_enabl (bool) : default=1 value=1

audio_compression_gain (int) : min=0 max=20 step=1 default=15 value=15␣
↪→flags=slider
audio_compression_threshold (int) : min=-40 max=0 step=1 default=-40 value=-40␣
↪→flags=slider
audio_compression_attack_time (int) : min=0 max=5000 step=500 default=0 value=0␣
↪→flags=slider
audio_compression_release_time (int) : min=100000 max=1000000 step=100000␣
↪→default=1000000 value=1000000 flags=slider
pilot_tone_feature_enabled (bool) : default=1 value=1

pilot_tone_deviation (int) : min=0 max=90000 step=10 default=6750 value=6750␣
↪→flags=slider

pilot_tone_frequency (int) : min=0 max=19000 step=1 default=19000 value=19000␣
↪→flags=slider

pre_emphasis_settings (menu) : min=0 max=2 default=1 value=1
tune_power_level (int) : min=0 max=120 step=1 default=88 value=88 flags=slider
tune_antenna_capacitor (int) : min=0 max=191 step=1 default=0 value=110␣

↪→flags=slider

Here is a summary of them:

• Pilot is an audible tone sent by the device.

• pilot_frequency - Configures the frequency of the stereo pilot tone.

• pilot_deviation - Configures pilot tone frequency deviation level.

• pilot_enabled - Enables or disables the pilot tone feature.

• The si4713 device is capable of applying audio compression to the transmitted signal.

• acomp_enabled - Enables or disables the audio dynamic range control feature.

• acomp_gain - Sets the gain for audio dynamic range control.

• acomp_threshold - Sets the threshold level for audio dynamic range control.

• acomp_attack_time - Sets the attack time for audio dynamic range control.

• acomp_release_time - Sets the release time for audio dynamic range control.

• Limiter setups audio deviation limiter feature. Once a over deviation occurs, it is possible
to adjust the front-end gain of the audio input and always prevent over deviation.

• limiter_enabled - Enables or disables the limiter feature.

• limiter_deviation - Configures audio frequency deviation level.

• limiter_release_time - Sets the limiter release time.

• Tuning power

• power_level - Sets the output power level for signal transmission. antenna_capacitor - This
selects the value of antenna tuning capacitor manually or automatically if set to zero.

• RDS related

• rds_ps_name - Sets the RDS ps name field for transmission.

• rds_radio_text - Sets the RDS radio text for transmission.

1.1. The media subsystem 193

Linux Media Documentation

• rds_pi - Sets the RDS PI field for transmission.

• rds_pty - Sets the RDS PTY field for transmission.

• Region related

• preemphasis - sets the preemphasis to be applied for transmission.

RNL

This device also has an interface to measure received noise level. To do that, you should ioctl
the device node. Here is an code of example:

int main (int argc, char *argv[])
{

struct si4713_rnl rnl;
int fd = open("/dev/radio0", O_RDWR);
int rval;

if (argc < 2)
return -EINVAL;

if (fd < 0)
return fd;

sscanf(argv[1], "%d", &rnl.frequency);

rval = ioctl(fd, SI4713_IOC_MEASURE_RNL, &rnl);
if (rval < 0)

return rval;

printf("received noise level: %d\n", rnl.rnl);

close(fd);
}

The struct si4713_rnl and SI4713_IOC_MEASURE_RNL are defined under in-
clude/linux/platform_data/media/si4713.h.

194 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Stereo/Mono and RDS subchannels

The device can also be configured using the available sub channels for transmission. To do
that use S/G_MODULATOR ioctl and configure txsubchans properly. Refer to the V4L2 API
specification for proper use of this ioctl.

Testing

Testing is usually done with v4l2-ctl utility for managing FM tuner cards. The tool can be found
in v4l-dvb repository under v4l2-apps/util directory.

Example for setting rds ps name:

v4l2-ctl -d /dev/radio0 --set-ctrl=rds_ps_name="Dummy"

1.1.6.21 The SI476x Driver

Copyright © 2013 Andrey Smirnov <andrew.smirnov@gmail.com>

TODO for the driver

• According to the SiLabs’ datasheet it is possible to update the firmware of the radio chip in
the run-time, thus bringing it to the most recent version. Unfortunately I couldn’t find any
mentioning of the said firmware update for the old chips that I tested the driver against,
so for chips like that the driver only exposes the old functionality.

Parameters exposed over debugfs

SI476x allow user to get multiple characteristics that can be very useful for EoL testing/RF
performance estimation, parameters that have very little to do with V4L2 subsystem. Such
parameters are exposed via debugfs and can be accessed via regular file I/O operations.

The drivers exposes following files:

• /sys/kernel/debug/<device-name>/acf This file contains ACF(Automatically Controlled
Features) status information. The contents of the file is binary data of the following layout:

1.1. The media subsystem 195

mailto:andrew.smirnov@gmail.com

Linux Media Documentation

Offset Name Description
0x00 blend_int Flag, set when stereo separation has crossed below the blend

threshold
0x01 hblend_int Flag, set when HiBlend cutoff frequency is lower than

threshold
0x02 hicut_int Flag, set when HiCut cutoff frequency is lower than threshold
0x03 chbw_int Flag, set when channel filter bandwidth is less than threshold
0x04 softmute_int Flag indicating that softmute attenuation has increased above

softmute threshold
0x05 smute 0 - Audio is not soft muted 1 - Audio is soft muted
0x06 smattn Soft mute attenuation level in dB
0x07 chbw Channel filter bandwidth in kHz
0x08 hicut HiCut cutoff frequency in units of 100Hz
0x09 hiblend HiBlend cutoff frequency in units of 100 Hz
0x10 pilot 0 - Stereo pilot is not present 1 - Stereo pilot is present
0x11 stblend Stereo blend in %

• /sys/kernel/debug/<device-name>/rds_blckcnt This file contains statistics about RDS re-
ceptions. It’s binary data has the following layout:

Offset Name Description
0x00 expected Number of expected RDS blocks
0x02 received Number of received RDS blocks
0x04 uncorrectable Number of uncorrectable RDS blocks

• /sys/kernel/debug/<device-name>/agc This file contains information about parameters
pertaining to AGC(Automatic Gain Control)

The layout is:

Offset Name Description
0x00 mxhi 0 - FM Mixer PD high threshold is not tripped 1 - FM Mixer PD

high threshold is tripped
0x01 mxlo ditto for FM Mixer PD low
0x02 lnahi ditto for FM LNA PD high
0x03 lnalo ditto for FM LNA PD low
0x04 fmagc1 FMAGC1 attenuator resistance (see datasheet for more detail)
0x05 fmagc2 ditto for FMAGC2
0x06 pgagain PGA gain in dB
0x07 fmwblang FM/WB LNA Gain in dB

• /sys/kernel/debug/<device-name>/rsq This file contains information about parameters
pertaining to RSQ(Received Signal Quality)

The layout is:

196 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Offset Name Description
0x00 multhint 0 - multipath value has not crossed the Multipath high thresh-

old 1 - multipath value has crossed the Multipath high thresh-
old

0x01 multlint ditto for Multipath low threshold
0x02 snrhint 0 - received signal’s SNR has not crossed high threshold 1 -

received signal’s SNR has crossed high threshold
0x03 snrlint ditto for low threshold
0x04 rssihint ditto for RSSI high threshold
0x05 rssilint ditto for RSSI low threshold
0x06 bltf Flag indicating if seek command reached/wrapped seek band

limit
0x07 snr_ready Indicates that SNR metrics is ready
0x08 rssiready ditto for RSSI metrics
0x09 injside 0 - Low-side injection is being used 1 - High-side injection is

used
0x10 afcrl Flag indicating if AFC rails
0x11 valid Flag indicating if channel is valid
0x12 readfreq Current tuned frequency
0x14 freqoff Signed frequency offset in units of 2ppm
0x15 rssi Signed value of RSSI in dBuV
0x16 snr Signed RF SNR in dB
0x17 issi Signed Image Strength Signal indicator
0x18 lassi Signed Low side adjacent Channel Strength indicator
0x19 hassi ditto fpr High side
0x20 mult Multipath indicator
0x21 dev Frequency deviation
0x24 assi Adjacent channel SSI
0x25 usn Ultrasonic noise indicator
0x26 pilotdev Pilot deviation in units of 100 Hz
0x27 rdsdev ditto for RDS
0x28 assidev ditto for ASSI
0x29 strongdev Frequency deviation
0x30 rdspi RDS PI code

• /sys/kernel/debug/<device-name>/rsq_primary This file contains information about pa-
rameters pertaining to RSQ(Received Signal Quality) for primary tuner only. Layout is
as the one above.

1.1. The media subsystem 197

Linux Media Documentation

1.1.6.22 The Virtual Media Controller Driver (vimc)

The vimc driver emulates complex video hardware using the V4L2 API and the Media API. It
has a capture device and three subdevices: sensor, debayer and scaler.

Topology

The topology is hardcoded, although you could modify it in vimc-core and recompile the driver
to achieve your own topology. This is the default topology:

Sensor A
/dev/v4l-subdev0

0

0

Debayer A
/dev/v4l-subdev2

1

Raw Capture 0
/dev/video0

0

Scaler
/dev/v4l-subdev4

1

Sensor B
/dev/v4l-subdev1

0

0

Debayer B
/dev/v4l-subdev3

1

Raw Capture 1
/dev/video1

RGB/YUV Capture
/dev/video3

RGB/YUV Input
/dev/video2

Fig. 7: Media pipeline graph on vimc

Configuring the topology

Each subdevice will come with its default configuration (pixelformat, height, width, …). One
needs to configure the topology in order to match the configuration on each linked subdevice
to stream frames through the pipeline. If the configuration doesn’t match, the stream will fail.
The v4l-utils package is a bundle of user-space applications, that comes with media-ctl and
v4l2-ctl that can be used to configure the vimc configuration. This sequence of commands
fits for the default topology:

media-ctl -d platform:vimc -V '"Sensor A":0[fmt:SBGGR8_1X8/640x480]'
media-ctl -d platform:vimc -V '"Debayer A":0[fmt:SBGGR8_1X8/640x480]'
media-ctl -d platform:vimc -V '"Sensor B":0[fmt:SBGGR8_1X8/640x480]'
media-ctl -d platform:vimc -V '"Debayer B":0[fmt:SBGGR8_1X8/640x480]'
v4l2-ctl -z platform:vimc -d "RGB/YUV Capture" -v width=1920,height=1440

198 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

v4l2-ctl -z platform:vimc -d "Raw Capture 0" -v pixelformat=BA81
v4l2-ctl -z platform:vimc -d "Raw Capture 1" -v pixelformat=BA81

Subdevices

Subdevices define the behavior of an entity in the topology. Depending on the subdevice, the
entity can have multiple pads of type source or sink.

vimc-sensor: Generates images in several formats using video test pattern generator. Ex-
poses:

• 1 Pad source

vimc-debayer: Transforms images in bayer format into a non-bayer format. Exposes:
• 1 Pad sink

• 1 Pad source

vimc-scaler: Re-size the image to meet the source pad resolution. E.g.: if the sync pad is
configured to 360x480 and the source to 1280x720, the image will be stretched to fit the
source resolution. Works for any resolution within the vimc limitations (even shrinking the
image if necessary). Exposes:

• 1 Pad sink

• 1 Pad source

vimc-capture: Exposes node /dev/videoX to allow userspace to capture the stream. Exposes:
• 1 Pad sink

• 1 Pad source

1.1.6.23 The Virtual Video Test Driver (vivid)

This driver emulates video4linux hardware of various types: video capture, video output, vbi
capture and output, metadata capture and output, radio receivers and transmitters, touch cap-
ture and a software defined radio receiver. In addition a simple framebuffer device is available
for testing capture and output overlays.

Up to 64 vivid instances can be created, each with up to 16 inputs and 16 outputs.

Each input can be a webcam, TV capture device, S-Video capture device or an HDMI capture
device. Each output can be an S-Video output device or an HDMI output device.

These inputs and outputs act exactly as a real hardware device would behave. This allows you
to use this driver as a test input for application development, since you can test the various
features without requiring special hardware.

This document describes the features implemented by this driver:

• Support for read()/write(), MMAP, USERPTR and DMABUF streaming I/O.

• A large list of test patterns and variations thereof

• Working brightness, contrast, saturation and hue controls

1.1. The media subsystem 199

Linux Media Documentation

• Support for the alpha color component

• Full colorspace support, including limited/full RGB range

• All possible control types are present

• Support for various pixel aspect ratios and video aspect ratios

• Error injection to test what happens if errors occur

• Supports crop/compose/scale in any combination for both input and output

• Can emulate up to 4K resolutions

• All Field settings are supported for testing interlaced capturing

• Supports all standard YUV and RGB formats, including two multiplanar YUV formats

• Raw and Sliced VBI capture and output support

• Radio receiver and transmitter support, including RDS support

• Software defined radio (SDR) support

• Capture and output overlay support

• Metadata capture and output support

• Touch capture support

These features will be described in more detail below.

Configuring the driver

By default the driver will create a single instance that has a video capture device with webcam,
TV, S-Video and HDMI inputs, a video output device with S-Video and HDMI outputs, one vbi
capture device, one vbi output device, one radio receiver device, one radio transmitter device
and one SDR device.

The number of instances, devices, video inputs and outputs and their types are all configurable
using the following module options:

• n_devs:

number of driver instances to create. By default set to 1. Up to 64 instances can
be created.

• node_types:

which devices should each driver instance create. An array of hexadecimal values,
one for each instance. The default is 0x1d3d. Each value is a bitmask with the
following meaning:

– bit 0: Video Capture node
– bit 2-3: VBI Capture node: 0 = none, 1 = raw vbi, 2 = sliced vbi, 3 = both
– bit 4: Radio Receiver node
– bit 5: Software Defined Radio Receiver node
– bit 8: Video Output node

200 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

– bit 10-11: VBI Output node: 0 = none, 1 = raw vbi, 2 = sliced vbi, 3 = both
– bit 12: Radio Transmitter node
– bit 16: Framebuffer for testing overlays
– bit 17: Metadata Capture node
– bit 18: Metadata Output node
– bit 19: Touch Capture node

So to create four instances, the first two with just one video capture device, the
second two with just one video output device you would pass these module options
to vivid:

n_devs=4 node_types=0x1,0x1,0x100,0x100

• num_inputs:

the number of inputs, one for each instance. By default 4 inputs are created for
each video capture device. At most 16 inputs can be created, and there must be
at least one.

• input_types:

the input types for each instance, the default is 0xe4. This defines what the type
of each input is when the inputs are created for each driver instance. This is a
hexadecimal value with up to 16 pairs of bits, each pair gives the type and bits
0-1 map to input 0, bits 2-3 map to input 1, 30-31 map to input 15. Each pair of
bits has the following meaning:

– 00: this is a webcam input

– 01: this is a TV tuner input
– 10: this is an S-Video input
– 11: this is an HDMI input

So to create a video capture device with 8 inputs where input 0 is a TV tuner,
inputs 1-3 are S-Video inputs and inputs 4-7 are HDMI inputs you would use the
following module options:

num_inputs=8 input_types=0xffa9

• num_outputs:

the number of outputs, one for each instance. By default 2 outputs are created
for each video output device. At most 16 outputs can be created, and there must
be at least one.

• output_types:

the output types for each instance, the default is 0x02. This defines what the type
of each output is when the outputs are created for each driver instance. This is
a hexadecimal value with up to 16 bits, each bit gives the type and bit 0 maps to
output 0, bit 1 maps to output 1, bit 15 maps to output 15. The meaning of each
bit is as follows:

– 0: this is an S-Video output

1.1. The media subsystem 201

Linux Media Documentation

– 1: this is an HDMI output
So to create a video output device with 8 outputs where outputs 0-3 are S-Video
outputs and outputs 4-7 are HDMI outputs you would use the following module
options:

num_outputs=8 output_types=0xf0

• vid_cap_nr:

give the desired videoX start number for each video capture device. The default
is -1 which will just take the first free number. This allows you to map capture
video nodes to specific videoX device nodes. Example:

n_devs=4 vid_cap_nr=2,4,6,8

This will attempt to assign /dev/video2 for the video capture device of the first
vivid instance, video4 for the next up to video8 for the last instance. If it can’t
succeed, then it will just take the next free number.

• vid_out_nr:

give the desired videoX start number for each video output device. The default is
-1 which will just take the first free number.

• vbi_cap_nr:

give the desired vbiX start number for each vbi capture device. The default is -1
which will just take the first free number.

• vbi_out_nr:

give the desired vbiX start number for each vbi output device. The default is -1
which will just take the first free number.

• radio_rx_nr:

give the desired radioX start number for each radio receiver device. The default
is -1 which will just take the first free number.

• radio_tx_nr:

give the desired radioX start number for each radio transmitter device. The de-
fault is -1 which will just take the first free number.

• sdr_cap_nr:

give the desired swradioX start number for each SDR capture device. The default
is -1 which will just take the first free number.

• meta_cap_nr:

give the desired videoX start number for each metadata capture device. The de-
fault is -1 which will just take the first free number.

• meta_out_nr:

give the desired videoX start number for eachmetadata output device. The default
is -1 which will just take the first free number.

• touch_cap_nr:

202 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

give the desired v4l-touchX start number for each touch capture device. The de-
fault is -1 which will just take the first free number.

• ccs_cap_mode:

specify the allowed video capture crop/compose/scaling combination for each
driver instance. Video capture devices can have any combination of cropping,
composing and scaling capabilities and this will tell the vivid driver which of those
is should emulate. By default the user can select this through controls.

The value is either -1 (controlled by the user) or a set of three bits, each enabling
(1) or disabling (0) one of the features:

– bit 0:
Enable crop support. Cropping will take only part of the incoming pic-
ture.

– bit 1:
Enable compose support. Composing will copy the incoming picture
into a larger buffer.

– bit 2:
Enable scaling support. Scaling can scale the incoming picture. The
scaler of the vivid driver can enlarge up or down to four times the orig-
inal size. The scaler is very simple and low-quality. Simplicity and speed
were key, not quality.

Note that this value is ignored by webcam inputs: those enumerate discrete
framesizes and that is incompatible with cropping, composing or scaling.

• ccs_out_mode:

specify the allowed video output crop/compose/scaling combination for each
driver instance. Video output devices can have any combination of cropping, com-
posing and scaling capabilities and this will tell the vivid driver which of those is
should emulate. By default the user can select this through controls.

The value is either -1 (controlled by the user) or a set of three bits, each enabling
(1) or disabling (0) one of the features:

– bit 0:
Enable crop support. Cropping will take only part of the outgoing
buffer.

– bit 1:
Enable compose support. Composing will copy the incoming buffer into
a larger picture frame.

– bit 2:
Enable scaling support. Scaling can scale the incoming buffer. The
scaler of the vivid driver can enlarge up or down to four times the orig-
inal size. The scaler is very simple and low-quality. Simplicity and speed
were key, not quality.

• multiplanar:

1.1. The media subsystem 203

Linux Media Documentation

select whether each device instance supports multi-planar formats, and thus the
V4L2 multi-planar API. By default device instances are single-planar.

This module option can override that for each instance. Values are:

– 1: this is a single-planar instance.
– 2: this is a multi-planar instance.

• vivid_debug:

enable driver debugging info

• no_error_inj:

if set disable the error injecting controls. This option is needed in order to run a
tool like v4l2-compliance. Tools like that exercise all controls including a control
like ‘Disconnect’ which emulates a USB disconnect, making the device inaccessi-
ble and so all tests that v4l2-compliance is doing will fail afterwards.

Theremay be other situations as well where you want to disable the error injection
support of vivid. When this option is set, then the controls that select crop, com-
pose and scale behavior are also removed. Unless overridden by ccs_cap_mode
and/or ccs_out_mode the will default to enabling crop, compose and scaling.

• allocators:

memory allocator selection, default is 0. It specifies the way buffers will be allo-
cated.

– 0: vmalloc
– 1: dma-contig

• cache_hints:

specifies if the device should set queues’ user-space cache and memory consis-
tency hint capability (V4L2_BUF_CAP_SUPPORTS_MMAP_CACHE_HINTS). The
hints are valid only when using MMAP streaming I/O. Default is 0.

– 0: forbid hints
– 1: allow hints

Taken together, all these module options allow you to precisely customize the driver behavior
and test your application with all sorts of permutations. It is also very suitable to emulate
hardware that is not yet available, e.g. when developing software for a new upcoming device.

Video Capture

This is probably the most frequently used feature. The video capture device can be configured
by using the module options num_inputs, input_types and ccs_cap_mode (see section 1 for more
detailed information), but by default four inputs are configured: a webcam, a TV tuner, an S-
Video and an HDMI input, one input for each input type. Those are described in more detail
below.

Special attention has been given to the rate at which new frames become available. The jitter
will be around 1 jiffie (that depends on the HZ configuration of your kernel, so usually 1/100,
1/250 or 1/1000 of a second), but the long-term behavior is exactly following the framerate. So

204 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

a framerate of 59.94 Hz is really different from 60 Hz. If the framerate exceeds your kernel’s
HZ value, then you will get dropped frames, but the frame/field sequence counting will keep
track of that so the sequence count will skip whenever frames are dropped.

Webcam Input

The webcam input supports three framesizes: 320x180, 640x360 and 1280x720. It supports
frames per second settings of 10, 15, 25, 30, 50 and 60 fps. Which ones are available depends
on the chosen framesize: the larger the framesize, the lower the maximum frames per second.

The initially selected colorspace when you switch to the webcam input will be sRGB.

TV and S-Video Inputs

The only difference between the TV and S-Video input is that the TV has a tuner. Otherwise
they behave identically.

These inputs support audio inputs as well: one TV and one Line-In. They both support all
TV standards. If the standard is queried, then the Vivid controls ‘Standard Signal Mode’ and
‘Standard’ determine what the result will be.

These inputs support all combinations of the field setting. Special care has been taken to faith-
fully reproduce how fields are handled for the different TV standards. This is particularly no-
ticeable when generating a horizontally moving image so the temporal effect of using interlaced
formats becomes clearly visible. For 50 Hz standards the top field is the oldest and the bottom
field is the newest in time. For 60 Hz standards that is reversed: the bottom field is the oldest
and the top field is the newest in time.

When you start capturing in V4L2_FIELD_ALTERNATE mode the first buffer will contain the
top field for 50 Hz standards and the bottom field for 60 Hz standards. This is what capture
hardware does as well.

Finally, for PAL/SECAM standards the first half of the top line contains noise. This simulates
the Wide Screen Signal that is commonly placed there.

The initially selected colorspace when you switch to the TV or S-Video input will be SMPTE-
170M.

The pixel aspect ratio will depend on the TV standard. The video aspect ratio can be selected
through the ‘Standard Aspect Ratio’ Vivid control. Choices are ‘4x3’, ‘16x9’ which will give let-
terboxed widescreen video and ‘16x9 Anamorphic’ which will give full screen squashed anamor-
phic widescreen video that will need to be scaled accordingly.

The TV ‘tuner’ supports a frequency range of 44-958 MHz. Channels are available every 6 MHz,
starting from 49.25 MHz. For each channel the generated image will be in color for the +/- 0.25
MHz around it, and in grayscale for +/- 1 MHz around the channel. Beyond that it is just noise.
The VIDIOC_G_TUNER ioctl will return 100% signal strength for +/- 0.25 MHz and 50% for +/-
1 MHz. It will also return correct afc values to show whether the frequency is too low or too
high.

The audio subchannels that are returned are MONO for the +/- 1 MHz range around a valid
channel frequency. When the frequency is within +/- 0.25 MHz of the channel it will return
either MONO, STEREO, either MONO | SAP (for NTSC) or LANG1 | LANG2 (for others), or
STEREO | SAP.

1.1. The media subsystem 205

Linux Media Documentation

Which one is returned depends on the chosen channel, each next valid channel will cycle
through the possible audio subchannel combinations. This allows you to test the various com-
binations by just switching channels..

Finally, for these inputs the v4l2_timecode struct is filled in in the dequeued v4l2_buffer struct.

HDMI Input

The HDMI inputs supports all CEA-861 and DMT timings, both progressive and interlaced,
for pixelclock frequencies between 25 and 600 MHz. The field mode for interlaced formats is
always V4L2_FIELD_ALTERNATE. For HDMI the field order is always top field first, and when
you start capturing an interlaced format you will receive the top field first.

The initially selected colorspace when you switch to the HDMI input or select an HDMI timing
is based on the format resolution: for resolutions less than or equal to 720x576 the colorspace
is set to SMPTE-170M, for others it is set to REC-709 (CEA-861 timings) or sRGB (VESA DMT
timings).

The pixel aspect ratio will depend on the HDMI timing: for 720x480 is it set as for the NTSC TV
standard, for 720x576 it is set as for the PAL TV standard, and for all others a 1:1 pixel aspect
ratio is returned.

The video aspect ratio can be selected through the ‘DV Timings Aspect Ratio’ Vivid control.
Choices are ‘Source Width x Height’ (just use the same ratio as the chosen format), ‘4x3’ or
‘16x9’, either of which can result in pillarboxed or letterboxed video.

For HDMI inputs it is possible to set the EDID. By default a simple EDID is provided. You can
only set the EDID for HDMI inputs. Internally, however, the EDID is shared between all HDMI
inputs.

No interpretation is done of the EDID data with the exception of the physical address. See the
CEC section for more details.

There is a maximum of 15 HDMI inputs (if there are more, then they will be reduced to 15)
since that’s the limitation of the EDID physical address.

Video Output

The video output device can be configured by using the module options num_outputs, out-
put_types and ccs_out_mode (see section 1 for more detailed information), but by default two
outputs are configured: an S-Video and an HDMI input, one output for each output type. Those
are described in more detail below.

Like with video capture the framerate is also exact in the long term.

206 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

S-Video Output

This output supports audio outputs as well: “Line-Out 1” and “Line-Out 2”. The S-Video output
supports all TV standards.

This output supports all combinations of the field setting.

The initially selected colorspace when you switch to the TV or S-Video input will be SMPTE-
170M.

HDMI Output

The HDMI output supports all CEA-861 and DMT timings, both progressive and interlaced,
for pixelclock frequencies between 25 and 600 MHz. The field mode for interlaced formats is
always V4L2_FIELD_ALTERNATE.

The initially selected colorspace when you switch to the HDMI output or select an HDMI timing
is based on the format resolution: for resolutions less than or equal to 720x576 the colorspace
is set to SMPTE-170M, for others it is set to REC-709 (CEA-861 timings) or sRGB (VESA DMT
timings).

The pixel aspect ratio will depend on the HDMI timing: for 720x480 is it set as for the NTSC TV
standard, for 720x576 it is set as for the PAL TV standard, and for all others a 1:1 pixel aspect
ratio is returned.

An HDMI output has a valid EDID which can be obtained through VIDIOC_G_EDID.

There is a maximum of 15 HDMI outputs (if there are more, then they will be reduced to 15)
since that’s the limitation of the EDID physical address. See also the CEC section for more
details.

VBI Capture

There are three types of VBI capture devices: those that only support raw (undecoded) VBI,
those that only support sliced (decoded) VBI and those that support both. This is determined
by the node_types module option. In all cases the driver will generate valid VBI data: for 60
Hz standards it will generate Closed Caption and XDS data. The closed caption stream will
alternate between “Hello world!” and “Closed captions test” every second. The XDS stream
will give the current time once a minute. For 50 Hz standards it will generate the Wide Screen
Signal which is based on the actual Video Aspect Ratio control setting and teletext pages 100-
159, one page per frame.

The VBI device will only work for the S-Video and TV inputs, it will give back an error if the
current input is a webcam or HDMI.

1.1. The media subsystem 207

Linux Media Documentation

VBI Output

There are three types of VBI output devices: those that only support raw (undecoded) VBI,
those that only support sliced (decoded) VBI and those that support both. This is determined
by the node_types module option.

The sliced VBI output supports the Wide Screen Signal and the teletext signal for 50 Hz stan-
dards and Closed Captioning + XDS for 60 Hz standards.

The VBI device will only work for the S-Video output, it will give back an error if the current
output is HDMI.

Radio Receiver

The radio receiver emulates an FM/AM/SW receiver. The FM band also supports RDS. The
frequency ranges are:

• FM: 64 MHz - 108 MHz

• AM: 520 kHz - 1710 kHz

• SW: 2300 kHz - 26.1 MHz

Valid channels are emulated every 1 MHz for FM and every 100 kHz for AM and SW. The signal
strength decreases the further the frequency is from the valid frequency until it becomes 0%
at +/- 50 kHz (FM) or 5 kHz (AM/SW) from the ideal frequency. The initial frequency when the
driver is loaded is set to 95 MHz.

The FM receiver supports RDS as well, both using ‘Block I/O’ and ‘Controls’ modes. In the
‘Controls’ mode the RDS information is stored in read-only controls. These controls are updated
every time the frequency is changed, or when the tuner status is requested. The Block I/O
method uses the read() interface to pass the RDS blocks on to the application for decoding.

The RDS signal is ‘detected’ for +/- 12.5 kHz around the channel frequency, and the further the
frequency is away from the valid frequency the more RDS errors are randomly introduced into
the block I/O stream, up to 50% of all blocks if you are +/- 12.5 kHz from the channel frequency.
All four errors can occur in equal proportions: blocks marked ‘CORRECTED’, blocks marked
‘ERROR’, blocks marked ‘INVALID’ and dropped blocks.

The generated RDS stream contains all the standard fields contained in a 0B group, and also
radio text and the current time.

The receiver supports HW frequency seek, either in Bounded mode, Wrap Around mode or both,
which is configurable with the “Radio HW Seek Mode” control.

Radio Transmitter

The radio transmitter emulates an FM/AM/SW transmitter. The FM band also supports RDS.
The frequency ranges are:

• FM: 64 MHz - 108 MHz

• AM: 520 kHz - 1710 kHz

• SW: 2300 kHz - 26.1 MHz

208 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

The initial frequency when the driver is loaded is 95.5 MHz.

The FM transmitter supports RDS as well, both using ‘Block I/O’ and ‘Controls’ modes. In the
‘Controls’ mode the transmitted RDS information is configured using controls, and in ‘Block
I/O’ mode the blocks are passed to the driver using write().

Software Defined Radio Receiver

The SDR receiver has three frequency bands for the ADC tuner:

• 300 kHz

• 900 kHz - 2800 kHz

• 3200 kHz

The RF tuner supports 50 MHz - 2000 MHz.

The generated data contains the In-phase and Quadrature components of a 1 kHz tone that has
an amplitude of sqrt(2).

Metadata Capture

The Metadata capture generates UVC format metadata. The PTS and SCR are transmitted
based on the values set in vivid contols.

The Metadata device will only work for the Webcam input, it will give back an error for all other
inputs.

Metadata Output

The Metadata output can be used to set brightness, contrast, saturation and hue.

The Metadata device will only work for the Webcam output, it will give back an error for all
other outputs.

Touch Capture

The Touch capture generates touch patterns simulating single tap, double tap, triple tap, move
from left to right, zoom in, zoom out, palm press (simulating a large area being pressed on a
touchpad), and simulating 16 simultaneous touch points.

1.1. The media subsystem 209

Linux Media Documentation

Controls

Different devices support different controls. The sections below will describe each control and
which devices support them.

User Controls - Test Controls

The Button, Boolean, Integer 32 Bits, Integer 64 Bits, Menu, String, Bitmask and Integer Menu
are controls that represent all possible control types. The Menu control and the Integer Menu
control both have ‘holes’ in their menu list, meaning that one or more menu items return EIN-
VAL when VIDIOC_QUERYMENU is called. Both menu controls also have a non-zero minimum
control value. These features allow you to check if your application can handle such things
correctly. These controls are supported for every device type.

User Controls - Video Capture

The following controls are specific to video capture.

The Brightness, Contrast, Saturation and Hue controls actually work and are standard. There is
one special feature with the Brightness control: each video input has its own brightness value,
so changing input will restore the brightness for that input. In addition, each video input uses
a different brightness range (minimum and maximum control values). Switching inputs will
cause a control event to be sent with the V4L2_EVENT_CTRL_CH_RANGE flag set. This allows
you to test controls that can change their range.

The ‘Gain, Automatic’ and Gain controls can be used to test volatile controls: if ‘Gain, Automatic’
is set, then the Gain control is volatile and changes constantly. If ‘Gain, Automatic’ is cleared,
then the Gain control is a normal control.

The ‘Horizontal Flip’ and ‘Vertical Flip’ controls can be used to flip the image. These combine
with the ‘Sensor Flipped Horizontally/Vertically’ Vivid controls.

The ‘Alpha Component’ control can be used to set the alpha component for formats containing
an alpha channel.

User Controls - Audio

The following controls are specific to video capture and output and radio receivers and trans-
mitters.

The ‘Volume’ and ‘Mute’ audio controls are typical for such devices to control the volume and
mute the audio. They don’t actually do anything in the vivid driver.

210 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Vivid Controls

These vivid custom controls control the image generation, error injection, etc.

Test Pattern Controls

The Test Pattern Controls are all specific to video capture.

• Test Pattern:

selects which test pattern to use. Use the CSC Colorbar for testing colorspace
conversions: the colors used in that test pattern map to valid colors in all col-
orspaces. The colorspace conversion is disabled for the other test patterns.

• OSD Text Mode:

selects whether the text superimposed on the test pattern should be shown, and
if so, whether only counters should be displayed or the full text.

• Horizontal Movement:

selects whether the test pattern should move to the left or right and at what speed.

• Vertical Movement:

does the same for the vertical direction.

• Show Border:

show a two-pixel wide border at the edge of the actual image, excluding letter or
pillarboxing.

• Show Square:

show a square in the middle of the image. If the image is displayed with the
correct pixel and image aspect ratio corrections, then the width and height of the
square on the monitor should be the same.

• Insert SAV Code in Image:

adds a SAV (Start of Active Video) code to the image. This can be used to check
if such codes in the image are inadvertently interpreted instead of being ignored.

• Insert EAV Code in Image:

does the same for the EAV (End of Active Video) code.

Capture Feature Selection Controls

These controls are all specific to video capture.

• Sensor Flipped Horizontally:

the image is flipped horizontally and the V4L2_IN_ST_HFLIP input status flag is
set. This emulates the case where a sensor is for example mounted upside down.

• Sensor Flipped Vertically:

1.1. The media subsystem 211

Linux Media Documentation

the image is flipped vertically and the V4L2_IN_ST_VFLIP input status flag is set.
This emulates the case where a sensor is for example mounted upside down.

• Standard Aspect Ratio:

selects if the image aspect ratio as used for the TV or S-Video input should be 4x3,
16x9 or anamorphic widescreen. This may introduce letterboxing.

• DV Timings Aspect Ratio:

selects if the image aspect ratio as used for the HDMI input should be the same
as the source width and height ratio, or if it should be 4x3 or 16x9. This may
introduce letter or pillarboxing.

• Timestamp Source:

selects when the timestamp for each buffer is taken.

• Colorspace:

selects which colorspace should be used when generating the image. This only
applies if the CSC Colorbar test pattern is selected, otherwise the test pattern
will go through unconverted. This behavior is also what you want, since a 75%
Colorbar should really have 75% signal intensity and should not be affected by
colorspace conversions.

Changing the colorspace will result in the V4L2_EVENT_SOURCE_CHANGE to be
sent since it emulates a detected colorspace change.

• Transfer Function:

selects which colorspace transfer function should be used when generating an
image. This only applies if the CSC Colorbar test pattern is selected, otherwise
the test pattern will go through unconverted. This behavior is also what you want,
since a 75% Colorbar should really have 75% signal intensity and should not be
affected by colorspace conversions.

Changing the transfer function will result in the
V4L2_EVENT_SOURCE_CHANGE to be sent since it emulates a detected
colorspace change.

• Y’CbCr Encoding:

selects which Y’CbCr encoding should be used when generating a Y’CbCr image.
This only applies if the format is set to a Y’CbCr format as opposed to an RGB
format.

Changing the Y’CbCr encoding will result in the
V4L2_EVENT_SOURCE_CHANGE to be sent since it emulates a detected
colorspace change.

• Quantization:

selects which quantization should be used for the RGB or Y’CbCr encoding when
generating the test pattern.

Changing the quantization will result in the V4L2_EVENT_SOURCE_CHANGE to
be sent since it emulates a detected colorspace change.

• Limited RGB Range (16-235):

212 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

selects if the RGB range of the HDMI source should be limited or full range. This
combines with the Digital Video ‘Rx RGB Quantization Range’ control and can be
used to test what happens if a source provides you with the wrong quantization
range information. See the description of that control for more details.

• Apply Alpha To Red Only:

apply the alpha channel as set by the ‘Alpha Component’ user control to the red
color of the test pattern only.

• Enable Capture Cropping:

enables crop support. This control is only present if the ccs_cap_mode module
option is set to the default value of -1 and if the no_error_inj module option is set
to 0 (the default).

• Enable Capture Composing:

enables composing support. This control is only present if the ccs_cap_mode mod-
ule option is set to the default value of -1 and if the no_error_inj module option is
set to 0 (the default).

• Enable Capture Scaler:

enables support for a scaler (maximum 4 times upscaling and downscaling). This
control is only present if the ccs_cap_mode module option is set to the default
value of -1 and if the no_error_inj module option is set to 0 (the default).

• Maximum EDID Blocks:

determines how many EDID blocks the driver supports. Note that the vivid driver
does not actually interpret new EDID data, it just stores it. It allows for up to 256
EDID blocks which is the maximum supported by the standard.

• Fill Percentage of Frame:

can be used to draw only the top X percent of the image. Since each frame has to
be drawn by the driver, this demands a lot of the CPU. For large resolutions this
becomes problematic. By drawing only part of the image this CPU load can be
reduced.

Output Feature Selection Controls

These controls are all specific to video output.

• Enable Output Cropping:

enables crop support. This control is only present if the ccs_out_mode module
option is set to the default value of -1 and if the no_error_inj module option is set
to 0 (the default).

• Enable Output Composing:

enables composing support. This control is only present if the ccs_out_mode mod-
ule option is set to the default value of -1 and if the no_error_inj module option is
set to 0 (the default).

• Enable Output Scaler:

1.1. The media subsystem 213

Linux Media Documentation

enables support for a scaler (maximum 4 times upscaling and downscaling). This
control is only present if the ccs_out_mode module option is set to the default
value of -1 and if the no_error_inj module option is set to 0 (the default).

Error Injection Controls

The following two controls are only valid for video and vbi capture.

• Standard Signal Mode:

selects the behavior of VIDIOC_QUERYSTD: what should it return?

Changing this control will result in the V4L2_EVENT_SOURCE_CHANGE to be
sent since it emulates a changed input condition (e.g. a cable was plugged in or
out).

• Standard:

selects the standard that VIDIOC_QUERYSTD should return if the previous control
is set to “Selected Standard”.

Changing this control will result in the V4L2_EVENT_SOURCE_CHANGE to be
sent since it emulates a changed input standard.

The following two controls are only valid for video capture.

• DV Timings Signal Mode:

selects the behavior of VIDIOC_QUERY_DV_TIMINGS: what should it return?

Changing this control will result in the V4L2_EVENT_SOURCE_CHANGE to be
sent since it emulates a changed input condition (e.g. a cable was plugged in or
out).

• DV Timings:

selects the timings the VIDIOC_QUERY_DV_TIMINGS should return if the previ-
ous control is set to “Selected DV Timings”.

Changing this control will result in the V4L2_EVENT_SOURCE_CHANGE to be
sent since it emulates changed input timings.

The following controls are only present if the no_error_inj module option is set to 0 (the default).
These controls are valid for video and vbi capture and output streams and for the SDR capture
device except for the Disconnect control which is valid for all devices.

• Wrap Sequence Number:

test what happens when you wrap the sequence number in struct v4l2_buffer
around.

• Wrap Timestamp:

test what happens when you wrap the timestamp in struct v4l2_buffer around.

• Percentage of Dropped Buffers:

sets the percentage of buffers that are never returned by the driver (i.e., they are
dropped).

• Disconnect:

214 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

emulates a USB disconnect. The device will act as if it has been disconnected.
Only after all open filehandles to the device node have been closed will the device
become ‘connected’ again.

• Inject V4L2_BUF_FLAG_ERROR:

when pressed, the next frame returned by the driver will have the error flag set
(i.e. the frame is marked corrupt).

• Inject VIDIOC_REQBUFS Error:

when pressed, the next REQBUFS or CREATE_BUFS ioctl call will fail with an
error. To be precise: the videobuf2 queue_setup() op will return -EINVAL.

• Inject VIDIOC_QBUF Error:

when pressed, the next VIDIOC_QBUF or VIDIOC_PREPARE_BUFFER ioctl call
will fail with an error. To be precise: the videobuf2 buf_prepare() op will return
-EINVAL.

• Inject VIDIOC_STREAMON Error:

when pressed, the next VIDIOC_STREAMON ioctl call will fail with an error. To
be precise: the videobuf2 start_streaming() op will return -EINVAL.

• Inject Fatal Streaming Error:

when pressed, the streaming core will be marked as having suffered a fatal er-
ror, the only way to recover from that is to stop streaming. To be precise: the
videobuf2 vb2_queue_error() function is called.

VBI Raw Capture Controls

• Interlaced VBI Format:

if set, then the raw VBI data will be interlaced instead of providing it grouped by
field.

Digital Video Controls

• Rx RGB Quantization Range:

sets the RGB quantization detection of the HDMI input. This combines with the
Vivid ‘Limited RGB Range (16-235)’ control and can be used to test what happens
if a source provides you with the wrong quantization range information. This can
be tested by selecting an HDMI input, setting this control to Full or Limited range
and selecting the opposite in the ‘Limited RGB Range (16-235)’ control. The effect
is easy to see if the ‘Gray Ramp’ test pattern is selected.

• Tx RGB Quantization Range:

sets the RGB quantization detection of the HDMI output. It is currently not used
for anything in vivid, but most HDMI transmitters would typically have this con-
trol.

• Transmit Mode:

1.1. The media subsystem 215

Linux Media Documentation

sets the transmit mode of the HDMI output to HDMI or DVI-D. This affects the
reported colorspace since DVI_D outputs will always use sRGB.

• Display Present:

sets the presence of a “display” on the HDMI output. This affects the
tx_edid_present, tx_hotplug and tx_rxsense controls.

FM Radio Receiver Controls

• RDS Reception:

set if the RDS receiver should be enabled.

• RDS Program Type:

• RDS PS Name:

• RDS Radio Text:

• RDS Traffic Announcement:

• RDS Traffic Program:

• RDS Music:

these are all read-only controls. If RDS Rx I/O Mode is set to “Block I/O”, then
they are inactive as well. If RDS Rx I/O Mode is set to “Controls”, then these
controls report the received RDS data.

Note: The vivid implementation of this is pretty basic: they are only updated when you set a
new frequency or when you get the tuner status (VIDIOC_G_TUNER).

• Radio HW Seek Mode:

can be one of “Bounded”, “Wrap Around” or “Both”. This determines if VID-
IOC_S_HW_FREQ_SEEK will be bounded by the frequency range or wrap-around
or if it is selectable by the user.

• Radio Programmable HW Seek:

if set, then the user can provide the lower and upper bound of the HW Seek.
Otherwise the frequency range boundaries will be used.

• Generate RBDS Instead of RDS:

if set, then generate RBDS (the US variant of RDS) data instead of RDS (European-
style RDS). This affects only the PICODE and PTY codes.

• RDS Rx I/O Mode:

this can be “Block I/O” where the RDS blocks have to be read() by the application,
or “Controls” where the RDS data is provided by the RDS controls mentioned
above.

216 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

FM Radio Modulator Controls

• RDS Program ID:

• RDS Program Type:

• RDS PS Name:

• RDS Radio Text:

• RDS Stereo:

• RDS Artificial Head:

• RDS Compressed:

• RDS Dynamic PTY:

• RDS Traffic Announcement:

• RDS Traffic Program:

• RDS Music:

these are all controls that set the RDS data that is transmitted by the FM modu-
lator.

• RDS Tx I/O Mode:

this can be “Block I/O” where the application has to use write() to pass the RDS
blocks to the driver, or “Controls” where the RDS data is Provided by the RDS
controls mentioned above.

Metadata Capture Controls

• Generate PTS

if set, then the generated metadata stream contains Presentation timestamp.

• Generate SCR

if set, then the generated metadata stream contains Source Clock information.

Video, VBI and RDS Looping

The vivid driver supports looping of video output to video input, VBI output to VBI input and
RDS output to RDS input. For video/VBI looping this emulates as if a cable was hooked up
between the output and input connector. So video and VBI looping is only supported between
S-Video and HDMI inputs and outputs. VBI is only valid for S-Video as it makes no sense for
HDMI.

Since radio is wireless this looping always happens if the radio receiver frequency is close to
the radio transmitter frequency. In that case the radio transmitter will ‘override’ the emulated
radio stations.

Looping is currently supported only between devices created by the same vivid driver instance.

1.1. The media subsystem 217

Linux Media Documentation

Video and Sliced VBI looping

The way to enable video/VBI looping is currently fairly crude. A ‘Loop Video’ control is available
in the “Vivid” control class of the video capture and VBI capture devices. When checked the
video looping will be enabled. Once enabled any video S-Video or HDMI input will show a static
test pattern until the video output has started. At that time the video output will be looped to
the video input provided that:

• the input type matches the output type. So the HDMI input cannot receive video from the
S-Video output.

• the video resolution of the video input must match that of the video output. So it is not
possible to loop a 50 Hz (720x576) S-Video output to a 60 Hz (720x480) S-Video input, or
a 720p60 HDMI output to a 1080p30 input.

• the pixel formats must be identical on both sides. Otherwise the driver would have to do
pixel format conversion as well, and that’s taking things too far.

• the field settings must be identical on both sides. Same reason as above: requiring the
driver to convert from one field format to another complicated matters too much. This
also prohibits capturing with ‘Field Top’ or ‘Field Bottom’ when the output video is set to
‘Field Alternate’. This combination, while legal, became too complicated to support. Both
sides have to be ‘Field Alternate’ for this to work. Also note that for this specific case the
sequence and field counting in struct v4l2_buffer on the capture side may not be 100%
accurate.

• field settings V4L2_FIELD_SEQ_TB/BT are not supported. While it is possible to implement
this, it would mean a lot of work to get this right. Since these field values are rarely used
the decision was made not to implement this for now.

• on the input side the “Standard Signal Mode” for the S-Video input or the “DV Timings
Signal Mode” for the HDMI input should be configured so that a valid signal is passed to
the video input.

The framerates do not have to match, although this might change in the future.

By default you will see the OSD text superimposed on top of the looped video. This can be
turned off by changing the “OSD Text Mode” control of the video capture device.

For VBI looping to work all of the above must be valid and in addition the vbi output must be
configured for sliced VBI. The VBI capture side can be configured for either raw or sliced VBI.
Note that at the moment only CC/XDS (60 Hz formats) and WSS (50 Hz formats) VBI data is
looped. Teletext VBI data is not looped.

Radio & RDS Looping

As mentioned in section 6 the radio receiver emulates stations are regular frequency intervals.
Depending on the frequency of the radio receiver a signal strength value is calculated (this is
returned by VIDIOC_G_TUNER). However, it will also look at the frequency set by the radio
transmitter and if that results in a higher signal strength than the settings of the radio trans-
mitter will be used as if it was a valid station. This also includes the RDS data (if any) that
the transmitter ‘transmits’. This is received faithfully on the receiver side. Note that when
the driver is loaded the frequencies of the radio receiver and transmitter are not identical, so
initially no looping takes place.

218 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Cropping, Composing, Scaling

This driver supports cropping, composing and scaling in any combination. Normally which
features are supported can be selected through the Vivid controls, but it is also possible to
hardcode it when the module is loaded through the ccs_cap_mode and ccs_out_mode module
options. See section 1 on the details of these module options.

This allows you to test your application for all these variations.

Note that the webcam input never supports cropping, composing or scaling. That only applies
to the TV/S-Video/HDMI inputs and outputs. The reason is that webcams, including this virtual
implementation, normally use VIDIOC_ENUM_FRAMESIZES to list a set of discrete framesizes
that it supports. And that does not combine with cropping, composing or scaling. This is pri-
marily a limitation of the V4L2 API which is carefully reproduced here.

The minimum and maximum resolutions that the scaler can achieve are 16x16 and (4096 * 4) x
(2160 x 4), but it can only scale up or down by a factor of 4 or less. So for a source resolution
of 1280x720 the minimum the scaler can do is 320x180 and the maximum is 5120x2880. You
can play around with this using the qv4l2 test tool and you will see these dependencies.

This driver also supports larger ‘bytesperline’ settings, something that VIDIOC_S_FMT allows
but that few drivers implement.

The scaler is a simple scaler that uses the Coarse Bresenham algorithm. It’s designed for speed
and simplicity, not quality.

If the combination of crop, compose and scaling allows it, then it is possible to change crop and
compose rectangles on the fly.

Formats

The driver supports all the regular packed and planar 4:4:4, 4:2:2 and 4:2:0 YUYV formats, 8,
16, 24 and 32 RGB packed formats and various multiplanar formats.

The alpha component can be set through the ‘Alpha Component’ User control for those formats
that support it. If the ‘Apply Alpha To Red Only’ control is set, then the alpha component is only
used for the color red and set to 0 otherwise.

The driver has to be configured to support the multiplanar formats. By default the driver in-
stances are single-planar. This can be changed by setting the multiplanar module option, see
section 1 for more details on that option.

If the driver instance is using the multiplanar formats/API, then the first single planar format
(YUYV) and the multiplanar NV16M and NV61M formats the will have a plane that has a non-
zero data_offset of 128 bytes. It is rare for data_offset to be non-zero, so this is a useful feature
for testing applications.

Video output will also honor any data_offset that the application set.

1.1. The media subsystem 219

Linux Media Documentation

Capture Overlay

Note: capture overlay support is implemented primarily to test the existing V4L2 capture over-
lay API. In practice few if any GPUs support such overlays anymore, and neither are they gener-
ally needed anymore since modern hardware is so much more capable. By setting flag 0x10000
in the node_types module option the vivid driver will create a simple framebuffer device that can
be used for testing this API. Whether this API should be used for new drivers is questionable.

This driver has support for a destructive capture overlay with bitmap clipping and list clipping
(up to 16 rectangles) capabilities. Overlays are not supported for multiplanar formats. It also
honors the struct v4l2_window field setting: if it is set to FIELD_TOP or FIELD_BOTTOM and
the capture setting is FIELD_ALTERNATE, then only the top or bottom fields will be copied to
the overlay.

The overlay only works if you are also capturing at that same time. This is a vivid limitation
since it copies from a buffer to the overlay instead of filling the overlay directly. And if you are
not capturing, then no buffers are available to fill.

In addition, the pixelformat of the capture format and that of the framebuffer must be the same
for the overlay to work. Otherwise VIDIOC_OVERLAY will return an error.

In order to really see what it going on you will need to create two vivid instances: the first with
a framebuffer enabled. You configure the capture overlay of the second instance to use the
framebuffer of the first, then you start capturing in the second instance. For the first instance
you setup the output overlay for the video output, turn on video looping and capture to see the
blended framebuffer overlay that’s being written to by the second instance. This setup would
require the following commands:

$ sudo modprobe vivid n_devs=2 node_types=0x10101,0x1
$ v4l2-ctl -d1 --find-fb
/dev/fb1 is the framebuffer associated with base address 0x12800000
$ sudo v4l2-ctl -d2 --set-fbuf fb=1
$ v4l2-ctl -d1 --set-fbuf fb=1
$ v4l2-ctl -d0 --set-fmt-video=pixelformat='AR15'
$ v4l2-ctl -d1 --set-fmt-video-out=pixelformat='AR15'
$ v4l2-ctl -d2 --set-fmt-video=pixelformat='AR15'
$ v4l2-ctl -d0 -i2
$ v4l2-ctl -d2 -i2
$ v4l2-ctl -d2 -c horizontal_movement=4
$ v4l2-ctl -d1 --overlay=1
$ v4l2-ctl -d1 -c loop_video=1
$ v4l2-ctl -d2 --stream-mmap --overlay=1

And from another console:

$ v4l2-ctl -d1 --stream-out-mmap

And yet another console:

$ qv4l2

and start streaming.

As you can see, this is not for the faint of heart…

220 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

Output Overlay

Note: output overlays are primarily implemented in order to test the existing V4L2 output
overlay API. Whether this API should be used for new drivers is questionable.

This driver has support for an output overlay and is capable of:

• bitmap clipping,

• list clipping (up to 16 rectangles)

• chromakey

• source chromakey

• global alpha

• local alpha

• local inverse alpha

Output overlays are not supported for multiplanar formats. In addition, the pixelformat of the
capture format and that of the framebuffer must be the same for the overlay to work. Otherwise
VIDIOC_OVERLAY will return an error.

Output overlays only work if the driver has been configured to create a framebuffer by setting
flag 0x10000 in the node_types module option. The created framebuffer has a size of 720x576
and supports ARGB 1:5:5:5 and RGB 5:6:5.

In order to see the effects of the various clipping, chromakeying or alpha processing capabilities
you need to turn on video looping and see the results on the capture side. The use of the clipping,
chromakeying or alpha processing capabilities will slow down the video loop considerably as a
lot of checks have to be done per pixel.

CEC (Consumer Electronics Control)

If there are HDMI inputs then a CEC adapter will be created that has the same number of input
ports. This is the equivalent of e.g. a TV that has that number of inputs. Each HDMI output
will also create a CEC adapter that is hooked up to the corresponding input port, or (if there
are more outputs than inputs) is not hooked up at all. In other words, this is the equivalent of
hooking up each output device to an input port of the TV. Any remaining output devices remain
unconnected.

The EDID that each output reads reports a unique CEC physical address that is based on the
physical address of the EDID of the input. So if the EDID of the receiver has physical address
A.B.0.0, then each output will see an EDID containing physical address A.B.C.0 where C is 1 to
the number of inputs. If there are more outputs than inputs then the remaining outputs have a
CEC adapter that is disabled and reports an invalid physical address.

1.1. The media subsystem 221

Linux Media Documentation

Some Future Improvements

Just as a reminder and in no particular order:

• Add a virtual alsa driver to test audio

• Add virtual sub-devices and media controller support

• Some support for testing compressed video

• Add support to loop raw VBI output to raw VBI input

• Add support to loop teletext sliced VBI output to VBI input

• Fix sequence/field numbering when looping of video with alternate fields

• Add support for V4L2_CID_BG_COLOR for video outputs

• Add ARGB888 overlay support: better testing of the alpha channel

• Improve pixel aspect support in the tpg code by passing a real v4l2_fract

• Use per-queue locks and/or per-device locks to improve throughput

• Add support to loop from a specific output to a specific input across vivid instances

• The SDR radio should use the same ‘frequencies’ for stations as the normal radio receiver,
and give back noise if the frequency doesn’t match up with a station frequency

• Make a thread for the RDS generation, that would help in particular for the “Controls”
RDS Rx I/O Mode as the read-only RDS controls could be updated in real-time.

• Changing the EDID should cause hotplug detect emulation to happen.

1.1.7 Digital TV driver-specific documentation

1.1.7.1 Avermedia DVB-T on BT878 Release Notes

February 14th 2006

Note: Several other Avermedia devices are supported. For a more broader and updated
content about that, please check:

https://linuxtv.org/wiki/index.php/AVerMedia

The Avermedia DVB-T

The Avermedia DVB-T is a budget PCI DVB card. It has 3 inputs:

• RF Tuner Input

• Composite Video Input (RCA Jack)

• SVIDEO Input (Mini-DIN)

222 Chapter 1. Media subsystem admin and user guide

https://linuxtv.org/wiki/index.php/AVerMedia

Linux Media Documentation

The RF Tuner Input is the input to the tuner module of the card. The Tuner is otherwise known
as the “Frontend” . The Frontend of the Avermedia DVB-T is a Microtune 7202D. A timely post
to the linux-dvb mailing list ascertained that the Microtune 7202D is supported by the sp887x
driver which is found in the dvb-hw CVS module.

The DVB-T card is based around the BT878 chip which is a very common multimedia bridge
and often found on Analogue TV cards. There is no on-board MPEG2 decoder, which means
that all MPEG2 decoding must be done in software, or if you have one, on an MPEG2 hardware
decoding card or chipset.

Getting the card going

At this stage, it has not been able to ascertain the functionality of the remaining device nodes
in respect of the Avermedia DVBT. However, full functionality in respect of tuning, receiving
and supplying the MPEG2 data stream is possible with the currently available versions of the
driver. It may be possible that additional functionality is available from the card (i.e. viewing
the additional analogue inputs that the card presents), but this has not been tested yet. If I get
around to this, I’ll update the document with whatever I find.

To power up the card, load the following modules in the following order:

• modprobe bttv (normally loaded automatically)

• modprobe dvb-bt8xx (or place dvb-bt8xx in /etc/modules)

Insertion of these modules into the running kernel will activate the appropriate DVB device
nodes. It is then possible to start accessing the card with utilities such as scan, tzap, dvbstream
etc.

The frontend module sp887x.o, requires an external firmware. Please use the command
“get_dvb_firmware sp887x” to download it. Then copy it to /usr/lib/hotplug/firmware or
/lib/firmware/ (depending on configuration of firmware hotplug).

Known Limitations

At present I can say with confidence that the frontend tunes via /dev/dvb/adapter{x}/frontend0
and supplies anMPEG2 stream via /dev/dvb/adapter{x}/dvr0. I have not tested the functionality
of any other part of the card yet. I will do so over time and update this document.

There are some limitations in the i2c layer due to a returned error message inconsistency.
Although this generates errors in dmesg and the system logs, it does not appear to affect the
ability of the frontend to function correctly.

1.1. The media subsystem 223

Linux Media Documentation

Further Update

dvbstream and VideoLAN Client on windows works a treat with DVB, in fact this is currently
serving as my main way of viewing DVB-T at the moment. Additionally, VLC is happily decoding
HDTV signals, although the PC is dropping the odd frame here and there - I assume due to
processing capability - as all the decoding is being done under windows in software.

Many thanks to Nigel Pearson for the updates to this document since the recent revision of the
driver.

1.1.7.2 How to get the bt8xx cards working

Authors: Richard Walker, Jamie Honan, Michael Hunold, Manu Abraham, Uwe Bugla, Michael
Krufky

General information

This class of cards has a bt878a as the PCI interface, and require the bttv driver for accessing
the i2c bus and the gpio pins of the bt8xx chipset.

Please see Documentation/admin-guide/media/bttv-cardlist.rst for a complete list of Cards
based on the Conexant Bt8xx PCI bridge supported by the Linux Kernel.

In order to be able to compile the kernel, some config options should be enabled:

./scripts/config -e PCI

./scripts/config -e INPUT

./scripts/config -m I2C

./scripts/config -m MEDIA_SUPPORT

./scripts/config -e MEDIA_PCI_SUPPORT

./scripts/config -e MEDIA_ANALOG_TV_SUPPORT

./scripts/config -e MEDIA_DIGITAL_TV_SUPPORT

./scripts/config -e MEDIA_RADIO_SUPPORT

./scripts/config -e RC_CORE

./scripts/config -m VIDEO_BT848

./scripts/config -m DVB_BT8XX

If you want to automatically support all possible variants of the Bt8xx cards, you should also
do:

./scripts/config -e MEDIA_SUBDRV_AUTOSELECT

Note: Please use the following options with care as deselection of drivers which are in fact
necessary may result in DVB devices that cannot be tuned due to lack of driver support.

If your goal is to just support an specific board, you may, instead, disable ME-
DIA_SUBDRV_AUTOSELECT and manually select the frontend drivers required by your board.
With that, you can save some RAM.

You can do that by calling make xconfig/qconfig/menuconfig and look at the options on those
menu options (only enabled if Autoselect ancillary drivers is disabled:

224 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

1) Device drivers => Multimedia support => Customize TV tuners

2) Device drivers => Multimedia support => Customize DVB frontends

Then, on each of the above menu, please select your card-specific frontend and tuner modules.

Loading Modules

Regular case: If the bttv driver detects a bt8xx-based DVB card, all frontend and backend
modules will be loaded automatically.

Exceptions are:

• Old TV cards without EEPROMs, sharing a common PCI subsystem ID;

• Old TwinHan DST cards or clones with or without CA slot and not containing an Eeprom.

In the following cases overriding the PCI type detection for bttv and for dvb-bt8xx drivers by
passing modprobe parameters may be necessary.

Running TwinHan and Clones

As shown at Documentation/admin-guide/media/bttv-cardlist.rst, TwinHan and clones use
card=113modprobe parameter. So, in order to properly detect it for devices without EEPROM,
you should use:

$ modprobe bttv card=113
$ modprobe dst

Useful parameters for verbosity level and debugging the dst module:

verbose=0: messages are disabled
1: only error messages are displayed
2: notifications are displayed
3: other useful messages are displayed
4: debug setting

dst_addons=0: card is a free to air (FTA) card only
0x20: card has a conditional access slot for scrambled channels

dst_algo=0: (default) Software tuning algorithm
1: Hardware tuning algorithm

The autodetected values are determined by the cards’ “response string”.

In your logs see f. ex.: dst_get_device_id: Recognize [DSTMCI].

For bug reports please send in a complete log with verbose=4 activated. Please also see
Documentation/admin-guide/media/ci.rst.

1.1. The media subsystem 225

Linux Media Documentation

Running multiple cards

See Documentation/admin-guide/media/bttv-cardlist.rst for a complete list of Card ID. Some
examples:

Brand name ID
Pinnacle PCTV Sat 94
Nebula Electronics Digi TV 104
pcHDTV HD-2000 TV 112
Twinhan DST and clones 113
Avermedia AverTV DVB-T 77: 123
Avermedia AverTV DVB-T 761 124
DViCO FusionHDTV DVB-T Lite 128
DViCO FusionHDTV 5 Lite 135

Note: When you have multiple cards, the order of the card ID should match the order where
they’re detected by the system. Please notice that removing/inserting other PCI cards may
change the detection order.

Example:

$ modprobe bttv card=113 card=135

In case of further problems please subscribe and send questions to the mailing list: linux-
media@vger.kernel.org.

Probing the cards with broken PCI subsystem ID

There are some TwinHan cards whose EEPROM has become corrupted for some reason. The
cards do not have a correct PCI subsystem ID. Still, it is possible to force probing the cards
with:

$ echo 109e 0878 $subvendor $subdevice > \
/sys/bus/pci/drivers/bt878/new_id

The two numbers there are:

109e: PCI_VENDOR_ID_BROOKTREE
0878: PCI_DEVICE_ID_BROOKTREE_878

226 Chapter 1. Media subsystem admin and user guide

mailto:linux-media@vger.kernel.org
mailto:linux-media@vger.kernel.org

Linux Media Documentation

1.1.7.3 Firmware files for lmedm04 cards

To extract firmware for the DM04/QQBOX you need to copy the following file(s) to this directory.

For DM04+/QQBOX LME2510C (Sharp 7395 Tuner)

The Sharp 7395 driver can be found in windows/system32/drivers

US2A0D.sys (dated 17 Mar 2009)

and run:

scripts/get_dvb_firmware lme2510c_s7395

will produce dvb-usb-lme2510c-s7395.fw

An alternative but older firmware can be found on the driver disk DVB-S_EN_3.5A in
BDADriver/driver

LMEBDA_DVBS7395C.sys (dated 18 Jan 2008)

and run:

./get_dvb_firmware lme2510c_s7395_old

will produce dvb-usb-lme2510c-s7395.fw

The LG firmware can be found on the driver disk DM04+_5.1A[LG] in BDADriver/driver

For DM04 LME2510 (LG Tuner)

LMEBDA_DVBS.sys (dated 13 Nov 2007)

and run:

./get_dvb_firmware lme2510_lg

will produce dvb-usb-lme2510-lg.fw

Other LG firmware can be extracted manually from US280D.sys only found in win-
dows/system32/drivers

dd if=US280D.sys ibs=1 skip=42360 count=3924 of=dvb-usb-lme2510-lg.fw

For DM04 LME2510C (LG Tuner)

dd if=US280D.sys ibs=1 skip=35200 count=3850 of=dvb-usb-lme2510c-lg.fw

The Sharp 0194 tuner driver can be found in windows/system32/drivers

US290D.sys (dated 09 Apr 2009)

1.1. The media subsystem 227

Linux Media Documentation

For LME2510

dd if=US290D.sys ibs=1 skip=36856 count=3976 of=dvb-usb-lme2510-s0194.fw

For LME2510C

dd if=US290D.sys ibs=1 skip=33152 count=3697 of=dvb-usb-lme2510c-s0194.fw

The m88rs2000 tuner driver can be found in windows/system32/drivers

US2B0D.sys (dated 29 Jun 2010)

dd if=US2B0D.sys ibs=1 skip=34432 count=3871 of=dvb-usb-lme2510c-rs2000.fw

We need to modify id of rs2000 firmware or it will warm boot id 3344:1120.

echo -ne \\xF0\\x22 | dd conv=notrunc bs=1 count=2 seek=266 of=dvb-usb-lme2510c-rs2000.
↪→fw

Copy the firmware file(s) to /lib/firmware

1.1.7.4 Opera firmware

Author: Marco Gittler <g.marco@freenet.de>

To extract the firmware for the Opera DVB-S1 USB-Box you need to copy the files:

2830SCap2.sys 2830SLoad2.sys

from the windriver disk into this directory.

Then run:

scripts/get_dvb_firmware opera1

and after that you have 2 files:

dvb-usb-opera-01.fw dvb-usb-opera1-fpga-01.fw

in here.

Copy them into /lib/firmware/ .

After that the driver can load the firmware (if you have enabled firmware loading in kernel
config and have hotplug running).

228 Chapter 1. Media subsystem admin and user guide

mailto:g.marco@freenet.de

Linux Media Documentation

1.1.7.5 How to set up the Technisat/B2C2 Flexcop devices

Note: This documentation is outdated.

Author: Uwe Bugla <uwe.bugla@gmx.de> August 2009

Find out what device you have

Important Notice: The driver does NOT support Technisat USB 2 devices!

First start your linux box with a shipped kernel:

lspci -vvv for a PCI device (lsusb -vvv for an USB device) will show you for example:
02:0b.0 Network controller: Techsan Electronics Co Ltd B2C2 FlexCopII DVB chip /
Technisat SkyStar2 DVB card (rev 02)

dmesg | grep frontend may show you for example:
DVB: registering frontend 0 (Conexant CX24123/CX24109)...

Kernel compilation:

If the Flexcop / Technisat is the only DVB / TV / Radio device in your box get rid of unnecessary
modules and check this one:

Multimedia support => Customise analog and hybrid tuner modules to build

In this directory uncheck every driver which is activated there (except Simple tuner support
for ATSC 3rd generation only -> see case 9 please).

Then please activate:

• Main module part:

Multimedia support => DVB/ATSC adapters => Technisat/B2C2 FlexcopII(b) and
FlexCopIII adapters

1) => Technisat/B2C2 Air/Sky/Cable2PC PCI (PCI card) or

2) => Technisat/B2C2 Air/Sky/Cable2PC USB (USB 1.1 adapter) and for troubleshoot-
ing purposes:

3) => Enable debug for the B2C2 FlexCop drivers

• Frontend / Tuner / Demodulator module part:

Multimedia support => DVB/ATSC adapters => Customise the frontend modules
to build Customise DVB frontends =>

– SkyStar DVB-S Revision 2.3:
1) => Zarlink VP310/MT312/ZL10313 based

2) => Generic I2C PLL based tuners

– SkyStar DVB-S Revision 2.6:

1.1. The media subsystem 229

mailto:uwe.bugla@gmx.de

Linux Media Documentation

1) => ST STV0299 based

2) => Generic I2C PLL based tuners

– SkyStar DVB-S Revision 2.7:
1) => Samsung S5H1420 based

2) => Integrant ITD1000 Zero IF tuner for DVB-S/DSS

3) => ISL6421 SEC controller

– SkyStar DVB-S Revision 2.8:
1) => Conexant CX24123 based

2) => Conexant CX24113/CX24128 tuner for DVB-S/DSS

3) => ISL6421 SEC controller

– AirStar DVB-T card:
1) => Zarlink MT352 based

2) => Generic I2C PLL based tuners

– CableStar DVB-C card:
1) => ST STV0297 based

2) => Generic I2C PLL based tuners

– AirStar ATSC card 1st generation:
1) => Broadcom BCM3510

– AirStar ATSC card 2nd generation:
1) => NxtWave Communications NXT2002/NXT2004 based

2) => Generic I2C PLL based tuners

– AirStar ATSC card 3rd generation:
1) => LG Electronics LGDT3302/LGDT3303 based

2) Multimedia support => Customise analog and hybrid tuner modules to
build => Simple tuner support

1.1.7.6 TechnoTrend/Hauppauge DEC USB Driver

Driver Status

Supported:

• DEC2000-t

• DEC2450-t

• DEC3000-s

• Video Streaming

• Audio Streaming

230 Chapter 1. Media subsystem admin and user guide

Linux Media Documentation

• Section Filters

• Channel Zapping

• Hotplug firmware loader

To Do:

• Tuner status information

• DVB network interface

• Streaming video PC->DEC

• Conax support for 2450-t

Getting the Firmware

To download the firmware, use the following commands:

scripts/get_dvb_firmware dec2000t
scripts/get_dvb_firmware dec2540t
scripts/get_dvb_firmware dec3000s

Hotplug Firmware Loading

Since 2.6 kernels, the firmware is loaded at the point that the driver module is loaded.

Copy the three files downloaded above into the /usr/lib/hotplug/firmware or /lib/firmware direc-
tory (depending on configuration of firmware hotplug).

1.1.7.7 Zoran 364xx based USB webcam module

site: http://royale.zerezo.com/zr364xx/

mail: royale@zerezo.com

Introduction

This brings support under Linux for the Aiptek PocketDV 3300 and similar devices in webcam
mode. If you just want to get on your PC the pictures and movies on the camera, you should
use the usb-storage module instead.

The driver works with several other cameras in webcam mode (see the list below).

Possible chipsets are : ZR36430 (ZR36430BGC) and maybe ZR36431, ZR36440, ZR36442…

You can try the experience changing the vendor/product ID values (look at the source code).

You can get these values by looking at /var/log/messages when you plug your camera, or by
typing : cat /sys/kernel/debug/usb/devices.

1.1. The media subsystem 231

http://royale.zerezo.com/zr364xx/
mailto:royale@zerezo.com

Linux Media Documentation

Install

In order to use this driver, you must compile it with your kernel, with the following config
options:

./scripts/config -e USB

./scripts/config -m MEDIA_SUPPORT

./scripts/config -e MEDIA_USB_SUPPORT

./scripts/config -e MEDIA_CAMERA_SUPPORT

./scripts/config -m USB_ZR364XX

Usage

modprobe zr364xx debug=X mode=Y

• debug : set to 1 to enable verbose debug messages

• mode : 0 = 320x240, 1 = 160x120, 2 = 640x480

You can then use the camera with V4L2 compatible applications, for example Ekiga.

To capture a single image, try this: dd if=/dev/video0 of=test.jpg bs=1M count=1

links

http://mxhaard.free.fr/ (support for many others cams including some Aiptek PocketDV) http:
//www.harmwal.nl/pccam880/ (this project also supports cameras based on this chipset)

Supported devices

Vendor Product Distributor Model
0x08ca 0x0109 Aiptek PocketDV 3300
0x08ca 0x0109 Maxell Maxcam PRO DV3
0x041e 0x4024 Creative PC-CAM 880
0x0d64 0x0108 Aiptek Fidelity 3200
0x0d64 0x0108 Praktica DCZ 1.3 S
0x0d64 0x0108 Genius Digital Camera (?)
0x0d64 0x0108 DXG Technology Fashion Cam
0x0546 0x3187 Polaroid iON 230
0x0d64 0x3108 Praktica Exakta DC 2200
0x0d64 0x3108 Genius G-Shot D211
0x0595 0x4343 Concord Eye-Q Duo 1300
0x0595 0x4343 Concord Eye-Q Duo 2000
0x0595 0x4343 Fujifilm EX-10
0x0595 0x4343 Ricoh RDC-6000
0x0595 0x4343 Digitrex DSC 1300
0x0595 0x4343 Firstline FDC 2000
0x0bb0 0x500d Concord EyeQ Go Wireless

Continued on next page

232 Chapter 1. Media subsystem admin and user guide

http://mxhaard.free.fr/
http://www.harmwal.nl/pccam880/
http://www.harmwal.nl/pccam880/

Linux Media Documentation

Table 20 – continued from previous page
Vendor Product Distributor Model
0x0feb 0x2004 CRS Electronic 3.3 Digital Camera
0x0feb 0x2004 Packard Bell DSC-300
0x055f 0xb500 Mustek MDC 3000
0x08ca 0x2062 Aiptek PocketDV 5700
0x052b 0x1a18 Chiphead Megapix V12
0x04c8 0x0729 Konica Revio 2
0x04f2 0xa208 Creative PC-CAM 850
0x0784 0x0040 Traveler Slimline X5
0x06d6 0x0034 Trust Powerc@m 750
0x0a17 0x0062 Pentax Optio 50L
0x06d6 0x003b Trust Powerc@m 970Z
0x0a17 0x004e Pentax Optio 50
0x041e 0x405d Creative DiVi CAM 516
0x08ca 0x2102 Aiptek DV T300
0x06d6 0x003d Trust Powerc@m 910Z

1.1.8 CEC driver-specific documentation

1.1.8.1 Pulse-Eight CEC Adapter driver

The pulse8-cec driver implements the following module option:

persistent_config

By default this is off, but when set to 1 the driver will store the current settings to the device’s
internal eeprom and restore it the next time the device is connected to the USB port.

Copyright © 1999-2020 : LinuxTV Developers

This documentation is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

For more details see the file COPYING in the source distribution of Linux.

1.1. The media subsystem 233

Linux Media Documentation

234 Chapter 1. Media subsystem admin and user guide

CHAPTER

TWO

MEDIA SUBSYSTEM KERNEL INTERNAL API

This section contains usage information about media subsystem and its supported drivers.

Please see:

Documentation/admin-guide/media/index.rst

• for usage information about media subsystem and supported drivers;

Documentation/userspace-api/media/index.rst

• for the userspace APIs used on media devices.

2.1 Media Subsystem Profile

2.1.1 Overview

The media subsystem covers support for a variety of devices: stream capture, analog and digital
TV streams, cameras, remote controllers, HDMI CEC and media pipeline control.

It covers, mainly, the contents of those directories:

• drivers/media

• drivers/staging/media

• Documentation/admin-guide/media

• Documentation/driver-api/media

• Documentation/userspace-api/media

• Documentation/devicetree/bindings/media/1

• include/media

Both media userspace and Kernel APIs are documented and the documentation must be kept
in sync with the API changes. It means that all patches that add new features to the subsystem
must also bring changes to the corresponding API files.

Due to the size and wide scope of the media subsystem, media’s maintainership model is to
have sub-maintainers that have a broad knowledge of a specific aspect of the subsystem. It is

1 Device tree bindings are maintained by the OPEN FIRMWARE AND FLATTENED DEVICE TREE BINDINGS
maintainers (see the MAINTAINERS file). So, changes there must be reviewed by them before being merged via
the media subsystem’s development tree.

235

Linux Media Documentation

the sub-maintainers’ task to review the patches, providing feedback to users if the patches are
following the subsystem rules and are properly using the media kernel and userspace APIs.

Patches for the media subsystem must be sent to the media mailing list at linux-
media@vger.kernel.org as plain text only e-mail. Emails with HTML will be automatically re-
jected by the mail server. It could be wise to also copy the sub-maintainer(s).

Media’s workflow is heavily based on Patchwork, meaning that, once a patch is submitted, the
e-mail will first be accepted by the mailing list server, and, after a while, it should appear at:

• https://patchwork.linuxtv.org/project/linux-media/list/

If it doesn’t automatically appear there after a few minutes, then probably something went
wrong on your submission. Please check if the email is in plain text2 only and if your emailer is
not mangling whitespaces before complaining or submitting them again.

You can check if the mailing list server accepted your patch, by looking at:

• https://lore.kernel.org/linux-media/

2.1.1.1 Media maintainers

At the media subsystem, we have a group of senior developers that are responsible for doing
the code reviews at the drivers (also known as sub-maintainers), and another senior developer
responsible for the subsystem as a whole. For core changes, whenever possible, multiple media
maintainers do the review.

The media maintainers that work on specific areas of the subsystem are:

• Remote Controllers (infrared): Sean Young <sean@mess.org>
• HDMI CEC: Hans Verkuil <hverkuil@xs4all.nl>
• Media controller drivers: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
• ISP, v4l2-async, v4l2-fwnode, v4l2-flash-led-class and Sensor drivers: Sakari Ailus

<sakari.ailus@linux.intel.com>

• V4L2 drivers and core V4L2 frameworks: Hans Verkuil <hverkuil@xs4all.nl>
The subsystem maintainer is: Mauro Carvalho Chehab <mchehab@kernel.org>
Media maintainers may delegate a patch to other media maintainers as needed. On such case,
checkpatch’s delegate field indicates who’s currently responsible for reviewing a patch.

2.1.2 Submit Checklist Addendum

Patches that change the Open Firmware/Device Tree bindings must be reviewed by the Device
Tree maintainers. So, DT maintainers should be Cc:ed when those are submitted via device-
tree@vger.kernel.org mailing list.

There is a set of compliance tools at https://git.linuxtv.org/v4l-utils.git/ that should be used in
order to check if the drivers are properly implementing the media APIs:

2 If your email contains HTML, the mailing list server will simply drop it, without any further notice.

236 Chapter 2. Media subsystem kernel internal API

mailto:linux-media@vger.kernel.org
mailto:linux-media@vger.kernel.org
https://patchwork.linuxtv.org/project/linux-media/list/
https://lore.kernel.org/linux-media/
mailto:sean@mess.org
mailto:hverkuil@xs4all.nl
mailto:laurent.pinchart@ideasonboard.com
mailto:sakari.ailus@linux.intel.com
mailto:hverkuil@xs4all.nl
mailto:mchehab@kernel.org
https://git.linuxtv.org/v4l-utils.git/

Linux Media Documentation

Type Tool
V4L2 drivers3 v4l2-compliance
V4L2 virtual drivers contrib/test/test-media
CEC drivers cec-compliance

Other compilance tools are under development to check other parts of the subsystem.

Those tests need to pass before the patches go upstream.

Also, please notice that we build the Kernel with:

make CF=-D__CHECK_ENDIAN__ CONFIG_DEBUG_SECTION_MISMATCH=y C=1 W=1 CHECK=check_script

Where the check script is:

#!/bin/bash
/devel/smatch/smatch -p=kernel $@ >&2
/devel/sparse/sparse $@ >&2

Be sure to not introduce new warnings on your patches without a very good reason.

2.1.2.1 Style Cleanup Patches

Style cleanups are welcome when they come together with other changes at the files where the
style changes will affect.

We may accept pure standalone style cleanups, but they should ideally be one patch for the
whole subsystem (if the cleanup is low volume), or at least be grouped per directory. So, for
example, if you’re doing a big cleanup change set at drivers under drivers/media, please send
a single patch for all drivers under drivers/media/pci, another one for drivers/media/usb and so
on.

2.1.2.2 Coding Style Addendum

Media development uses checkpatch.pl on strict mode to verify the code style, e.g.:

$./scripts/checkpatch.pl --strict --max-line-length=80

In principle, patches should follow the coding style rules, but exceptions are allowed if there
are good reasons. On such case, maintainers and reviewers may question about the rationale
for not addressing the checkpatch.pl.

Please notice that the goal here is to improve code readability. On a few cases, checkpatch.pl
may actually point to something that would look worse. So, you should use good sense.

Note that addressing one checkpatch.pl issue (of any kind) alone may lead to having longer
lines than 80 characters per line. While this is not strictly prohibited, efforts should be made
towards staying within 80 characters per line. This could include using re-factoring code that
leads to less indentation, shorter variable or function names and last but not least, simply wrap-
ping the lines.

In particular, we accept lines with more than 80 columns:
3 The v4l2-compliance also covers the media controller usage inside V4L2 drivers.

2.1. Media Subsystem Profile 237

Linux Media Documentation

• on strings, as they shouldn’t be broken due to line length limits;

• when a function or variable name need to have a big identifier name, which keeps hard to
honor the 80 columns limit;

• on arithmetic expressions, when breaking lines makes them harder to read;

• when they avoid a line to end with an open parenthesis or an open bracket.

2.1.3 Key Cycle Dates

New submissions can be sent at any time, but if they intend to hit the next merge window they
should be sent before -rc5, and ideally stabilized in the linux-media branch by -rc6.

2.1.4 Review Cadence

Provided that your patch is at https://patchwork.linuxtv.org, it should be sooner or later han-
dled, so you don’t need to re-submit a patch.

Except for bug fixes, we don’t usually add new patches to the development tree between -rc6
and the next -rc1.

Please notice that the media subsystem is a high traffic one, so it could take a while for us to be
able to review your patches. Feel free to ping if you don’t get a feedback in a couple of weeks or
to ask other developers to publicly add Reviewed-by and, more importantly, Tested-by: tags.

Please note that we expect a detailed description for Tested-by:, identifying what boards were
used at the test and what it was tested.

2.2 Video4Linux devices

2.2.1 Introduction

The V4L2 drivers tend to be very complex due to the complexity of the hardware: most devices
have multiple ICs, export multiple device nodes in /dev, and create also non-V4L2 devices such
as DVB, ALSA, FB, I2C and input (IR) devices.

Especially the fact that V4L2 drivers have to setup supporting ICs to do audio/video mux-
ing/encoding/decoding makes it more complex than most. Usually these ICs are connected
to the main bridge driver through one or more I2C buses, but other buses can also be used.
Such devices are called ‘sub-devices’.

For a long time the framework was limited to the video_device struct for creating V4L device
nodes and video_buf for handling the video buffers (note that this document does not discuss
the video_buf framework).

This meant that all drivers had to do the setup of device instances and connecting to sub-
devices themselves. Some of this is quite complicated to do right and many drivers never did
do it correctly.

There is also a lot of common code that could never be refactored due to the lack of a framework.

238 Chapter 2. Media subsystem kernel internal API

https://patchwork.linuxtv.org

Linux Media Documentation

So this framework sets up the basic building blocks that all drivers need and this same frame-
work should make it much easier to refactor common code into utility functions shared by all
drivers.

A good example to look at as a reference is the v4l2-pci-skeleton.c source that is available in
samples/v4l/. It is a skeleton driver for a PCI capture card, and demonstrates how to use the
V4L2 driver framework. It can be used as a template for real PCI video capture driver.

2.2.2 Structure of a V4L driver

All drivers have the following structure:

1) A struct for each device instance containing the device state.

2) A way of initializing and commanding sub-devices (if any).

3) Creating V4L2 device nodes (/dev/videoX, /dev/vbiX and /dev/radioX) and keeping track of
device-node specific data.

4) Filehandle-specific structs containing per-filehandle data;

5) video buffer handling.

This is a rough schematic of how it all relates:

device instances
|
+-sub-device instances
|
\-V4L2 device nodes

|
\-filehandle instances

2.2.3 Structure of the V4L2 framework

The framework closely resembles the driver structure: it has a v4l2_device struct for the device
instance data, a v4l2_subdev struct to refer to sub-device instances, the video_device struct
stores V4L2 device node data and the v4l2_fh struct keeps track of filehandle instances.

The V4L2 framework also optionally integrates with the media framework. If a driver sets the
struct v4l2_device mdev field, sub-devices and video nodes will automatically appear in the
media framework as entities.

2.2.4 Video device’ s internal representation

The actual device nodes in the /dev directory are created using the video_device struct
(v4l2-dev.h). This struct can either be allocated dynamically or embedded in a larger struct.

To allocate it dynamically use video_device_alloc():

struct video_device *vdev = video_device_alloc();

if (vdev == NULL)
return -ENOMEM;

2.2. Video4Linux devices 239

Linux Media Documentation

vdev->release = video_device_release;

If you embed it in a larger struct, then youmust set the release() callback to your own function:

struct video_device *vdev = &my_vdev->vdev;

vdev->release = my_vdev_release;

The release() callback must be set and it is called when the last user of the video device exits.

The default video_device_release() callback currently just calls kfree to free the allocated
memory.

There is also a video_device_release_empty() function that does nothing (is empty) and
should be used if the struct is embedded and there is nothing to do when it is released.

You should also set these fields of video_device:

• video_device->v4l2_dev: must be set to the v4l2_device parent device.

• video_device->name: set to something descriptive and unique.

• video_device->vfl_dir: set this to VFL_DIR_RX for capture devices (VFL_DIR_RX has value
0, so this is normally already the default), set to VFL_DIR_TX for output devices and
VFL_DIR_M2M for mem2mem (codec) devices.

• video_device->fops: set to the v4l2_file_operations struct.

• video_device->ioctl_ops: if you use the v4l2_ioctl_ops to simplify ioctl maintenance
(highly recommended to use this and it might become compulsory in the future!), then
set this to your v4l2_ioctl_ops struct. The video_device->vfl_type and video_device-
>vfl_dir fields are used to disable ops that do not match the type/dir combination. E.g. VBI
ops are disabled for non-VBI nodes, and output ops are disabled for a capture device. This
makes it possible to provide just one v4l2_ioctl_ops struct for both vbi and video nodes.

• video_device->lock: leave to NULL if you want to do all the locking in the driver. Otherwise
you give it a pointer to a struct mutex_lock and before the video_device->unlocked_ioctl
file operation is called this lock will be taken by the core and released afterwards. See the
next section for more details.

• video_device->queue: a pointer to the struct vb2_queue associated with this device
node. If queue is not NULL, and queue->lock is not NULL, then queue->lock is used for
the queuing ioctls (VIDIOC_REQBUFS, CREATE_BUFS, QBUF, DQBUF, QUERYBUF, PREPARE_BUF,
STREAMON and STREAMOFF) instead of the lock above. That way the vb2 queuing framework
does not have to wait for other ioctls. This queue pointer is also used by the vb2 helper
functions to check for queuing ownership (i.e. is the filehandle calling it allowed to do the
operation).

• video_device->prio: keeps track of the priorities. Used to implement VIDIOC_G_PRIORITY
and VIDIOC_S_PRIORITY. If left to NULL, then it will use the struct v4l2_prio_state in
v4l2_device. If you want to have a separate priority state per (group of) device node(s),
then you can point it to your own struct v4l2_prio_state.

• video_device->dev_parent: you only set this if v4l2_device was registered with NULL as
the parent device struct. This only happens in cases where one hardware device has
multiple PCI devices that all share the same v4l2_device core.

240 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

The cx88 driver is an example of this: one core v4l2_device struct, but it is used by both
a raw video PCI device (cx8800) and a MPEG PCI device (cx8802). Since the v4l2_device
cannot be associated with two PCI devices at the same time it is setup without a parent
device. But when the struct video_device is initialized you do know which parent PCI
device to use and so you set dev_device to the correct PCI device.

If you use v4l2_ioctl_ops, then you should set video_device->unlocked_ioctl to
video_ioctl2() in your v4l2_file_operations struct.

In some cases you want to tell the core that a function you had specified in your
v4l2_ioctl_ops should be ignored. You can mark such ioctls by calling this function before
video_register_device() is called:

v4l2_disable_ioctl (vdev, cmd).

This tends to be needed if based on external factors (e.g. which card is being used) you want
to turns off certain features in v4l2_ioctl_ops without having to make a new struct.

The v4l2_file_operations struct is a subset of file_operations. The main difference is that
the inode argument is omitted since it is never used.

If integration with the media framework is needed, you must initialize the media_entity struct
embedded in the video_device struct (entity field) by calling media_entity_pads_init():

struct media_pad *pad = &my_vdev->pad;
int err;

err = media_entity_pads_init(&vdev->entity, 1, pad);

The pads array must have been previously initialized. There is no need to manually set the
struct media_entity type and name fields.

A reference to the entity will be automatically acquired/released when the video device is
opened/closed.

2.2.4.1 ioctls and locking

The V4L core provides optional locking services. The main service is the lock field in struct
video_device, which is a pointer to a mutex. If you set this pointer, then that will be used by
unlocked_ioctl to serialize all ioctls.

If you are using the videobuf2 framework, then there is a second lock that you can set:
video_device->queue->lock. If set, then this lock will be used instead of video_device->lock
to serialize all queuing ioctls (see the previous section for the full list of those ioctls).

The advantage of using a different lock for the queuing ioctls is that for some drivers (particu-
larly USB drivers) certain commands such as setting controls can take a long time, so you want
to use a separate lock for the buffer queuing ioctls. That way your VIDIOC_DQBUF doesn’t stall
because the driver is busy changing the e.g. exposure of the webcam.

Of course, you can always do all the locking yourself by leaving both lock pointers at NULL.

If you use the old videobuf framework then you must pass the video_device->lock to the
videobuf queue initialize function: if videobuf has to wait for a frame to arrive, then it will
temporarily unlock the lock and relock it afterwards. If your driver also waits in the code,
then you should do the same to allow other processes to access the device node while the first
process is waiting for something.

2.2. Video4Linux devices 241

Linux Media Documentation

In the case of videobuf2 you will need to implement the wait_prepare() and wait_finish()
callbacks to unlock/lock if applicable. If you use the queue->lock pointer, then you can use the
helper functions vb2_ops_wait_prepare() and vb2_ops_wait_finish().

The implementation of a hotplug disconnect should also take the lock from video_device before
calling v4l2_device_disconnect. If you are also using video_device->queue->lock, then you
have to first lock video_device->queue->lock followed by video_device->lock. That way you
can be sure no ioctl is running when you call v4l2_device_disconnect().

2.2.4.2 Video device registration

Next you register the video device with video_register_device(). This will create the char-
acter device for you.

err = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
if (err) {

video_device_release(vdev); /* or kfree(my_vdev); */
return err;

}

If the v4l2_device parent device has a not NULL mdev field, the video device entity will be
automatically registered with the media device.

Which device is registered depends on the type argument. The following types exist:

vfl_devnode_type Device name Usage
VFL_TYPE_VIDEO /dev/videoX for video input/output devices
VFL_TYPE_VBI /dev/vbiX for vertical blank data (i.e. closed captions, tele-

text)
VFL_TYPE_RADIO /dev/radioX for radio tuners
VFL_TYPE_SUBDEV /dev/v4l-subdevX for V4L2 subdevices
VFL_TYPE_SDR /dev/swradioX for Software Defined Radio (SDR) tuners
VFL_TYPE_TOUCH /dev/v4l-touchX for touch sensors

The last argument gives you a certain amount of control over the device node number used (i.e.
the X in videoX). Normally you will pass -1 to let the v4l2 framework pick the first free number.
But sometimes users want to select a specific node number. It is common that drivers allow the
user to select a specific device node number through a driver module option. That number is
then passed to this function and video_register_device will attempt to select that device node
number. If that number was already in use, then the next free device node number will be
selected and it will send a warning to the kernel log.

Another use-case is if a driver creates many devices. In that case it can be useful to place
different video devices in separate ranges. For example, video capture devices start at 0, video
output devices start at 16. So you can use the last argument to specify a minimum device node
number and the v4l2 framework will try to pick the first free number that is equal or higher to
what you passed. If that fails, then it will just pick the first free number.

Since in this case you do not care about a warning about not being able to select the specified
device node number, you can call the function video_register_device_no_warn() instead.

Whenever a device node is created some attributes are also created for you. If you look in
/sys/class/video4linux you see the devices. Go into e.g. video0 and you will see ‘name’,

242 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

‘dev_debug’ and ‘index’ attributes. The ‘name’ attribute is the ‘name’ field of the video_device
struct. The ‘dev_debug’ attribute can be used to enable core debugging. See the next section
for more detailed information on this.

The ‘index’ attribute is the index of the device node: for each call to video_register_device()
the index is just increased by 1. The first video device node you register always starts with index
0.

Users can setup udev rules that utilize the index attribute to make fancy device names (e.g.
‘mpegX’ for MPEG video capture device nodes).

After the device was successfully registered, then you can use these fields:

• video_device->vfl_type: the device type passed to video_register_device().

• video_device->minor: the assigned device minor number.

• video_device->num: the device node number (i.e. the X in videoX).

• video_device->index: the device index number.

If the registration failed, then you need to call video_device_release() to free the allocated
video_device struct, or free your own struct if the video_device was embedded in it. The
vdev->release() callback will never be called if the registration failed, nor should you ever
attempt to unregister the device if the registration failed.

2.2.4.3 video device debugging

The ‘dev_debug’ attribute that is created for each video, vbi, radio or swradio device in /sys/
class/video4linux/<devX>/ allows you to enable logging of file operations.

It is a bitmask and the following bits can be set:

Mask Description
0x01 Log the ioctl name and error code. VIDIOC_(D)QBUF ioctls are only logged if bit

0x08 is also set.
0x02 Log the ioctl name arguments and error code. VIDIOC_(D)QBUF ioctls are only

logged if bit 0x08 is also set.
0x04 Log the file operations open, release, read, write, mmap and get_unmapped_area.

The read and write operations are only logged if bit 0x08 is also set.
0x08 Log the read and write file operations and the VIDIOC_QBUF and VIDIOC_DQBUF

ioctls.
0x10 Log the poll file operation.
0x20 Log error and messages in the control operations.

2.2. Video4Linux devices 243

Linux Media Documentation

2.2.4.4 Video device cleanup

When the video device nodes have to be removed, either during the unload of the driver or
because the USB device was disconnected, then you should unregister them with:

video_unregister_device() (vdev);

This will remove the device nodes from sysfs (causing udev to remove them from /dev).

After video_unregister_device() returns no new opens can be done. However, in the case
of USB devices some application might still have one of these device nodes open. So after the
unregister all file operations (except release, of course) will return an error as well.

When the last user of the video device node exits, then the vdev->release() callback is called
and you can do the final cleanup there.

Don’t forget to cleanup the media entity associated with the video device if it has been initial-
ized:

media_entity_cleanup (&vdev->entity);

This can be done from the release callback.

2.2.4.5 helper functions

There are a few useful helper functions:

• file and video_device private data

You can set/get driver private data in the video_device struct using:

video_get_drvdata (vdev);

video_set_drvdata (vdev);

Note that you can safely call video_set_drvdata() before calling video_register_device().

And this function:

video_devdata (struct file *file);

returns the video_device belonging to the file struct.

The video_devdata() function combines video_get_drvdata() with video_devdata():

video_drvdata (struct file *file);

You can go from a video_device struct to the v4l2_device struct using:

struct v4l2_device *v4l2_dev = vdev->v4l2_dev;

• Device node name

The video_device node kernel name can be retrieved using:

video_device_node_name (vdev);

The name is used as a hint by userspace tools such as udev. The function should be used where
possible instead of accessing the video_device::num and video_device::minor fields.

244 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

2.2.4.6 video_device functions and data structures

enum vfl_devnode_type
type of V4L2 device node

Constants
VFL_TYPE_VIDEO for video input/output devices

VFL_TYPE_VBI for vertical blank data (i.e. closed captions, teletext)

VFL_TYPE_RADIO for radio tuners

VFL_TYPE_SUBDEV for V4L2 subdevices

VFL_TYPE_SDR for Software Defined Radio tuners

VFL_TYPE_TOUCH for touch sensors

VFL_TYPE_MAX number of VFL types, must always be last in the enum

enum vfl_devnode_direction
Identifies if a struct video_device corresponds to a receiver, a transmitter or a mem-to-
mem device.

Constants
VFL_DIR_RX device is a receiver.

VFL_DIR_TX device is a transmitter.

VFL_DIR_M2M device is a memory to memory device.

Note
Ignored if enum vfl_devnode_type is VFL_TYPE_SUBDEV.

enum v4l2_video_device_flags
Flags used by struct video_device

Constants
V4L2_FL_REGISTERED

indicates that a struct video_device is registered. Drivers can clear this flag if they
want to block all future device access. It is cleared by video_unregister_device.

V4L2_FL_USES_V4L2_FH

indicates that file->private_data points to struct v4l2_fh. This flag is set by the
core when v4l2_fh_init() is called. All new drivers should use it.

V4L2_FL_QUIRK_INVERTED_CROP

some old M2M drivers use g/s_crop/cropcap incorrectly: crop and compose are
swapped. If this flag is set, then the selection targets are swapped in the
g/s_crop/cropcap functions in v4l2-ioctl.c. This allows those drivers to correctly im-
plement the selection API, but the old crop API will still work as expected in order to
preserve backwards compatibility. Never set this flag for new drivers.

V4L2_FL_SUBDEV_RO_DEVNODE

2.2. Video4Linux devices 245

Linux Media Documentation

indicates that the video device node is registered in read-only mode.
The flag only applies to device nodes registered for sub-devices, it is
set by the core when the sub-devices device nodes are registered with
v4l2_device_register_ro_subdev_nodes() and used by the sub-device ioctl
handler to restrict access to some ioctl calls.

struct v4l2_prio_state
stores the priority states

Definition

struct v4l2_prio_state {
atomic_t prios[4];

};

Members
prios array with elements to store the array priorities

Description

Note: The size of prios array matches the number of priority types defined by enum
v4l2_priority.

void v4l2_prio_init(struct v4l2_prio_state *global)
initializes a struct v4l2_prio_state

Parameters
struct v4l2_prio_state *global pointer to struct v4l2_prio_state

int v4l2_prio_change(struct v4l2_prio_state *global, enum v4l2_priority *local, enum
v4l2_priority new)

changes the v4l2 file handler priority

Parameters
struct v4l2_prio_state *global pointer to the struct v4l2_prio_state of the device

node.

enum v4l2_priority *local pointer to the desired priority, as defined by enum
v4l2_priority

enum v4l2_priority new Priority type requested, as defined by enum v4l2_priority.

Description

Note: This function should be used only by the V4L2 core.

void v4l2_prio_open(struct v4l2_prio_state *global, enum v4l2_priority *local)
Implements the priority logic for a file handler open

Parameters
struct v4l2_prio_state *global pointer to the struct v4l2_prio_state of the device

node.

246 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

enum v4l2_priority *local pointer to the desired priority, as defined by enum
v4l2_priority

Description

Note: This function should be used only by the V4L2 core.

void v4l2_prio_close(struct v4l2_prio_state *global, enum v4l2_priority local)
Implements the priority logic for a file handler close

Parameters
struct v4l2_prio_state *global pointer to the struct v4l2_prio_state of the device

node.

enum v4l2_priority local priority to be released, as defined by enum v4l2_priority

Description

Note: This function should be used only by the V4L2 core.

enum v4l2_priority v4l2_prio_max(struct v4l2_prio_state *global)
Return the maximum priority, as stored at the global array.

Parameters
struct v4l2_prio_state *global pointer to the struct v4l2_prio_state of the device

node.

Description

Note: This function should be used only by the V4L2 core.

int v4l2_prio_check(struct v4l2_prio_state *global, enum v4l2_priority local)
Implements the priority logic for a file handler close

Parameters
struct v4l2_prio_state *global pointer to the struct v4l2_prio_state of the device

node.

enum v4l2_priority local desired priority, as defined by enum v4l2_priority local

Description

Note: This function should be used only by the V4L2 core.

struct v4l2_file_operations
fs operations used by a V4L2 device

Definition

2.2. Video4Linux devices 247

Linux Media Documentation

struct v4l2_file_operations {
struct module *owner;
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
__poll_t (*poll) (struct file *, struct poll_table_struct *);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);

#ifdef CONFIG_COMPAT;
long (*compat_ioctl32) (struct file *, unsigned int, unsigned long);

#endif;
unsigned long (*get_unmapped_area) (struct file *, unsigned long, unsigned long,␣

↪→unsigned long, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct file *);
int (*release) (struct file *);

};

Members
owner pointer to struct module

read operations needed to implement the read() syscall

write operations needed to implement the write() syscall

poll operations needed to implement the poll() syscall

unlocked_ioctl operations needed to implement the ioctl() syscall

compat_ioctl32 operations needed to implement the ioctl() syscall for the special case where
the Kernel uses 64 bits instructions, but the userspace uses 32 bits.

get_unmapped_area called by the mmap() syscall, used when %!CONFIG_MMU

mmap operations needed to implement the mmap() syscall

open operations needed to implement the open() syscall

release operations needed to implement the release() syscall

Description

Note: Those operations are used to implemente the fs struct file_operations at the V4L2
drivers. The V4L2 core overrides the fs ops with some extra logic needed by the subsystem.

struct video_device
Structure used to create and manage the V4L2 device nodes.

Definition

struct video_device {
#if defined(CONFIG_MEDIA_CONTROLLER);

struct media_entity entity;
struct media_intf_devnode *intf_devnode;
struct media_pipeline pipe;

#endif;
const struct v4l2_file_operations *fops;
u32 device_caps;
struct device dev;
struct cdev *cdev;

248 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct v4l2_device *v4l2_dev;
struct device *dev_parent;
struct v4l2_ctrl_handler *ctrl_handler;
struct vb2_queue *queue;
struct v4l2_prio_state *prio;
char name[32];
enum vfl_devnode_type vfl_type;
enum vfl_devnode_direction vfl_dir;
int minor;
u16 num;
unsigned long flags;
int index;
spinlock_t fh_lock;
struct list_head fh_list;
int dev_debug;
v4l2_std_id tvnorms;
void (*release)(struct video_device *vdev);
const struct v4l2_ioctl_ops *ioctl_ops;
unsigned long valid_ioctls[BITS_TO_LONGS(BASE_VIDIOC_PRIVATE)];
struct mutex *lock;

};

Members
entity struct media_entity

intf_devnode pointer to struct media_intf_devnode

pipe struct media_pipeline

fops pointer to struct v4l2_file_operations for the video device

device_caps device capabilities as used in v4l2_capabilities

dev struct device for the video device

cdev character device

v4l2_dev pointer to struct v4l2_device parent

dev_parent pointer to struct device parent

ctrl_handler Control handler associated with this device node. May be NULL.

queue struct vb2_queue associated with this device node. May be NULL.

prio pointer to struct v4l2_prio_state with device’s Priority state. If NULL, then v4l2_dev-
>prio will be used.

name video device name

vfl_type V4L device type, as defined by enum vfl_devnode_type

vfl_dir V4L receiver, transmitter or m2m

minor device node ‘minor’. It is set to -1 if the registration failed

num number of the video device node

flags video device flags. Use bitops to set/clear/test flags. Contains a set of enum
v4l2_video_device_flags.

index attribute to differentiate multiple indices on one physical device

2.2. Video4Linux devices 249

Linux Media Documentation

fh_lock Lock for all v4l2_fhs

fh_list List of struct v4l2_fh

dev_debug Internal device debug flags, not for use by drivers

tvnorms Supported tv norms

release video device release() callback

ioctl_ops pointer to struct v4l2_ioctl_ops with ioctl callbacks

valid_ioctls bitmap with the valid ioctls for this device

lock pointer to struct mutex serialization lock

Description

Note: Only set dev_parent if that can’t be deduced from v4l2_dev.

media_entity_to_video_device(__entity)
Returns a struct video_device from the struct media_entity embedded on it.

Parameters
__entity pointer to struct media_entity

to_video_device(cd)
Returns a struct video_device from the struct device embedded on it.

Parameters
cd pointer to struct device

int __video_register_device(struct video_device *vdev, enum vfl_devnode_type type,
int nr, int warn_if_nr_in_use, struct module *owner)

register video4linux devices

Parameters
struct video_device *vdev struct video_device to register

enum vfl_devnode_type type type of device to register, as defined by enum
vfl_devnode_type

int nr which device node number is desired: (0 == /dev/video0, 1 == /dev/video1, …, -1 ==
first free)

int warn_if_nr_in_use warn if the desired device node number was already in use and an-
other number was chosen instead.

struct module *owner module that owns the video device node

Description
The registration code assigns minor numbers and device node numbers based on the requested
type and registers the new device node with the kernel.

This function assumes that struct video_device was zeroed when it was allocated and does
not contain any stale date.

250 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

An error is returned if no free minor or device node number could be found, or if the registration
of the device node failed.

Returns 0 on success.

Note: This function is meant to be used only inside the V4L2 core. Drivers should use
video_register_device() or video_register_device_no_warn().

int video_register_device(struct video_device *vdev, enum vfl_devnode_type type,
int nr)

register video4linux devices

Parameters
struct video_device *vdev struct video_device to register

enum vfl_devnode_type type type of device to register, as defined by enum
vfl_devnode_type

int nr which device node number is desired: (0 == /dev/video0, 1 == /dev/video1, …, -1 ==
first free)

Description
Internally, it calls __video_register_device(). Please see its documentation for more details.

Note: if video_register_device fails, the release() callback of struct video_device structure
is not called, so the caller is responsible for freeing any data. Usually that means that you
video_device_release() should be called on failure.

int video_register_device_no_warn(struct video_device *vdev, enum
vfl_devnode_type type, int nr)

register video4linux devices

Parameters
struct video_device *vdev struct video_device to register

enum vfl_devnode_type type type of device to register, as defined by enum
vfl_devnode_type

int nr which device node number is desired: (0 == /dev/video0, 1 == /dev/video1, …, -1 ==
first free)

Description
This function is identical to video_register_device() except that no warning is issued if the
desired device node number was already in use.

Internally, it calls __video_register_device(). Please see its documentation for more details.

Note: if video_register_device fails, the release() callback of struct video_device structure
is not called, so the caller is responsible for freeing any data. Usually that means that you
video_device_release() should be called on failure.

2.2. Video4Linux devices 251

Linux Media Documentation

void video_unregister_device(struct video_device *vdev)
Unregister video devices.

Parameters
struct video_device *vdev struct video_device to register

Description
Does nothing if vdev == NULL or if video_is_registered() returns false.

struct video_device * video_device_alloc(void)
helper function to alloc struct video_device

Parameters
void no arguments

Description
Returns NULL if -ENOMEM or a struct video_device on success.

void video_device_release(struct video_device *vdev)
helper function to release struct video_device

Parameters
struct video_device *vdev pointer to struct video_device

Description
Can also be used for video_device->release().

void video_device_release_empty(struct video_device *vdev)
helper function to implement the video_device->release() callback.

Parameters
struct video_device *vdev pointer to struct video_device

Description
This release function does nothing.

It should be used when the video_device is a static global struct.

Note: Having a static video_device is a dubious construction at best.

void v4l2_disable_ioctl(struct video_device *vdev, unsigned int cmd)
mark that a given command isn’t implemented. shouldn’t use core locking

Parameters
struct video_device *vdev pointer to struct video_device

unsigned int cmd ioctl command

Description
This function allows drivers to provide just one v4l2_ioctl_ops struct, but disable ioctls based
on the specific card that is actually found.

252 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Note: This must be called before video_register_device. See also the comments for deter-
mine_valid_ioctls().

void * video_get_drvdata(struct video_device *vdev)
gets private data from struct video_device.

Parameters
struct video_device *vdev pointer to struct video_device

Description
returns a pointer to the private data

void video_set_drvdata(struct video_device *vdev, void *data)
sets private data from struct video_device.

Parameters
struct video_device *vdev pointer to struct video_device

void *data private data pointer

struct video_device * video_devdata(struct file *file)
gets struct video_device from struct file.

Parameters
struct file *file pointer to struct file

void * video_drvdata(struct file *file)
gets private data from struct video_device using the struct file.

Parameters
struct file *file pointer to struct file

Description
This is function combines both video_get_drvdata() and video_devdata() as this is used very
often.

const char * video_device_node_name(struct video_device *vdev)
returns the video device name

Parameters
struct video_device *vdev pointer to struct video_device

Description
Returns the device name string

int video_is_registered(struct video_device *vdev)
returns true if the struct video_device is registered.

Parameters
struct video_device *vdev pointer to struct video_device

Description

2.2. Video4Linux devices 253

Linux Media Documentation

2.2.5 V4L2 device instance

Each device instance is represented by a struct v4l2_device. Very simple devices can just
allocate this struct, but most of the time you would embed this struct inside a larger struct.

You must register the device instance by calling:

v4l2_device_register (dev, v4l2_dev).

Registration will initialize the v4l2_device struct. If the dev->driver_data field is NULL, it will
be linked to v4l2_dev argument.

Drivers that want integration with the media device framework need to set dev->driver_data
manually to point to the driver-specific device structure that embed the struct v4l2_device
instance. This is achieved by a dev_set_drvdata() call before registering the V4L2 device in-
stance. They must also set the struct v4l2_devicemdev field to point to a properly initialized
and registered media_device instance.

If v4l2_dev->name is empty then it will be set to a value derived from dev (driver name fol-
lowed by the bus_id, to be precise). If you set it up before calling v4l2_device_register()
then it will be untouched. If dev is NULL, then you must setup v4l2_dev->name before calling
v4l2_device_register().

You can use v4l2_device_set_name() to set the name based on a driver name and a driver-
global atomic_t instance. This will generate names like ivtv0, ivtv1, etc. If the name ends
with a digit, then it will insert a dash: cx18-0, cx18-1, etc. This function returns the instance
number.

The first dev argument is normally the struct device pointer of a pci_dev, usb_interface or
platform_device. It is rare for dev to be NULL, but it happens with ISA devices or when one
device creates multiple PCI devices, thus making it impossible to associate v4l2_dev with a
particular parent.

You can also supply a notify() callback that can be called by sub-devices to notify you of
events. Whether you need to set this depends on the sub-device. Any notifications a sub-device
supports must be defined in a header in include/media/subdevice.h.

V4L2 devices are unregistered by calling:

v4l2_device_unregister() (v4l2_dev).

If the dev->driver_data field points to v4l2_dev, it will be reset to NULL. Unregistering will also
automatically unregister all subdevs from the device.

If you have a hotpluggable device (e.g. a USB device), then when a disconnect happens the
parent device becomes invalid. Since v4l2_device has a pointer to that parent device it has to
be cleared as well to mark that the parent is gone. To do this call:

v4l2_device_disconnect() (v4l2_dev).

This does not unregister the subdevs, so you still need to call the v4l2_device_unregister()
function for that. If your driver is not hotpluggable, then there is no need to call
v4l2_device_disconnect().

Sometimes you need to iterate over all devices registered by a specific driver. This is usually the
case if multiple device drivers use the same hardware. E.g. the ivtvfb driver is a framebuffer
driver that uses the ivtv hardware. The same is true for alsa drivers for example.

You can iterate over all registered devices as follows:

254 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

static int callback(struct device *dev, void *p)
{

struct v4l2_device *v4l2_dev = dev_get_drvdata(dev);

/* test if this device was inited */
if (v4l2_dev == NULL)

return 0;
...
return 0;

}

int iterate(void *p)
{

struct device_driver *drv;
int err;

/* Find driver 'ivtv' on the PCI bus.
pci_bus_type is a global. For USB buses use usb_bus_type. */
drv = driver_find("ivtv", &pci_bus_type);
/* iterate over all ivtv device instances */
err = driver_for_each_device(drv, NULL, p, callback);
put_driver(drv);
return err;

}

Sometimes you need to keep a running counter of the device instance. This is commonly used
to map a device instance to an index of a module option array.

The recommended approach is as follows:

static atomic_t drv_instance = ATOMIC_INIT(0);

static int drv_probe(struct pci_dev *pdev, const struct pci_device_id *pci_id)
{

...
state->instance = atomic_inc_return(&drv_instance) - 1;

}

If you have multiple device nodes then it can be difficult to know when it is safe to unregister
v4l2_device for hotpluggable devices. For this purpose v4l2_device has refcounting support.
The refcount is increased whenever video_register_device() is called and it is decreased
whenever that device node is released. When the refcount reaches zero, then the v4l2_device
release() callback is called. You can do your final cleanup there.

If other device nodes (e.g. ALSA) are created, then you can increase and decrease the refcount
manually as well by calling:

v4l2_device_get() (v4l2_dev).

or:

v4l2_device_put() (v4l2_dev).

Since the initial refcount is 1 you also need to call v4l2_device_put() in the disconnect()
callback (for USB devices) or in the remove() callback (for e.g. PCI devices), otherwise the
refcount will never reach 0.

2.2. Video4Linux devices 255

Linux Media Documentation

2.2.5.1 v4l2_device functions and data structures

struct v4l2_device
main struct to for V4L2 device drivers

Definition

struct v4l2_device {
struct device *dev;
struct media_device *mdev;
struct list_head subdevs;
spinlock_t lock;
char name[V4L2_DEVICE_NAME_SIZE];
void (*notify)(struct v4l2_subdev *sd, unsigned int notification, void *arg);
struct v4l2_ctrl_handler *ctrl_handler;
struct v4l2_prio_state prio;
struct kref ref;
void (*release)(struct v4l2_device *v4l2_dev);

};

Members
dev pointer to struct device.

mdev pointer to struct media_device, may be NULL.

subdevs used to keep track of the registered subdevs

lock lock this struct; can be used by the driver as well if this struct is embedded into a larger
struct.

name unique device name, by default the driver name + bus ID

notify notify operation called by some sub-devices.

ctrl_handler The control handler. May be NULL.

prio Device’s priority state

ref Keep track of the references to this struct.

release Release function that is called when the ref count goes to 0.

Description
Each instance of a V4L2 device should create the v4l2_device struct, either stand-alone or
embedded in a larger struct.

It allows easy access to sub-devices (see v4l2-subdev.h) and provides basic V4L2 device-level
support.

Note:
1) dev->driver_data points to this struct.
2) dev might be NULL if there is no parent device

void v4l2_device_get(struct v4l2_device *v4l2_dev)
gets a V4L2 device reference

256 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Parameters
struct v4l2_device *v4l2_dev pointer to struct v4l2_device

Description
This is an ancillary routine meant to increment the usage for the struct v4l2_device pointed
by v4l2_dev.
int v4l2_device_put(struct v4l2_device *v4l2_dev)

puts a V4L2 device reference

Parameters
struct v4l2_device *v4l2_dev pointer to struct v4l2_device

Description
This is an ancillary routine meant to decrement the usage for the struct v4l2_device pointed
by v4l2_dev.
int v4l2_device_register(struct device *dev, struct v4l2_device *v4l2_dev)

Initialize v4l2_dev and make dev->driver_data point to v4l2_dev.
Parameters
struct device *dev pointer to struct device

struct v4l2_device *v4l2_dev pointer to struct v4l2_device

Description

Note: dev may be NULL in rare cases (ISA devices). In such case the caller must fill in the
v4l2_dev->name field before calling this function.

int v4l2_device_set_name(struct v4l2_device *v4l2_dev, const char *basename,
atomic_t *instance)

Optional function to initialize the name field of struct v4l2_device

Parameters
struct v4l2_device *v4l2_dev pointer to struct v4l2_device

const char *basename base name for the device name

atomic_t *instance pointer to a static atomic_t var with the instance usage for the device
driver.

Description
v4l2_device_set_name() initializes the name field of struct v4l2_device using the driver name
and a driver-global atomic_t instance.

This function will increment the instance counter and returns the instance value used in the
name.

The first time this is called the name field will be set to foo0 and this function returns 0. If the
name ends with a digit (e.g. cx18), then the name will be set to cx18-0 since cx180 would look
really odd.

Example

2.2. Video4Linux devices 257

Linux Media Documentation

static atomic_t drv_instance = ATOMIC_INIT(0);

…

instance = v4l2_device_set_name(&v4l2_dev, “foo”, &drv_instance);

void v4l2_device_disconnect(struct v4l2_device *v4l2_dev)
Change V4L2 device state to disconnected.

Parameters
struct v4l2_device *v4l2_dev pointer to struct v4l2_device

Description
Should be called when the USB parent disconnects. Since the parent disappears, this ensures
that v4l2_dev doesn’t have an invalid parent pointer.

Note: This function sets v4l2_dev->dev to NULL.

void v4l2_device_unregister(struct v4l2_device *v4l2_dev)
Unregister all sub-devices and any other resources related to v4l2_dev.

Parameters
struct v4l2_device *v4l2_dev pointer to struct v4l2_device

int v4l2_device_register_subdev(struct v4l2_device *v4l2_dev, struct
v4l2_subdev *sd)

Registers a subdev with a v4l2 device.

Parameters
struct v4l2_device *v4l2_dev pointer to struct v4l2_device

struct v4l2_subdev *sd pointer to struct v4l2_subdev

Description
While registered, the subdev module is marked as in-use.

An error is returned if the module is no longer loaded on any attempts to register it.

void v4l2_device_unregister_subdev(struct v4l2_subdev *sd)
Unregisters a subdev with a v4l2 device.

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

Description

Note: Can also be called if the subdev wasn’t registered. In such case, it will do nothing.

int __v4l2_device_register_subdev_nodes(struct v4l2_device *v4l2_dev,
bool read_only)

Registers device nodes for all subdevs of the v4l2 device that are marked with the
V4L2_SUBDEV_FL_HAS_DEVNODE flag.

Parameters

258 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct v4l2_device *v4l2_dev pointer to struct v4l2_device

bool read_only subdevices read-only flag. True to register the subdevices device nodes in
read-only mode, false to allow full access to the subdevice userspace API.

int v4l2_device_register_subdev_nodes(struct v4l2_device *v4l2_dev)
Registers subdevices device nodes with unrestricted access to the subdevice userspace
operations

Parameters
struct v4l2_device *v4l2_dev pointer to struct v4l2_device

Description
Internally calls __v4l2_device_register_subdev_nodes(). See its documentation for more
details.

int v4l2_device_register_ro_subdev_nodes(struct v4l2_device *v4l2_dev)
Registers subdevices device nodes in read-only mode

Parameters
struct v4l2_device *v4l2_dev pointer to struct v4l2_device

Description
Internally calls __v4l2_device_register_subdev_nodes(). See its documentation for more
details.

void v4l2_subdev_notify(struct v4l2_subdev *sd, unsigned int notification, void *arg)
Sends a notification to v4l2_device.

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

unsigned int notification type of notification. Please notice that the notification type is
driver-specific.

void *arg arguments for the notification. Those are specific to each notification type.

bool v4l2_device_supports_requests(struct v4l2_device *v4l2_dev)
Test if requests are supported.

Parameters
struct v4l2_device *v4l2_dev pointer to struct v4l2_device

v4l2_device_for_each_subdev(sd, v4l2_dev)
Helper macro that interates over all sub-devices of a given v4l2_device.

Parameters
sd pointer that will be filled by the macro with all struct v4l2_subdev pointer used as an

iterator by the loop.

v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

Description
This macro iterates over all sub-devices owned by the v4l2_dev device. It acts as a for loop
iterator and executes the next statement with the sd variable pointing to each sub-device in
turn.

2.2. Video4Linux devices 259

Linux Media Documentation

__v4l2_device_call_subdevs_p(v4l2_dev, sd, cond, o, f, args…)
Calls the specified operation for all subdevs matching the condition.

Parameters
v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

sd pointer that will be filled by the macro with all struct v4l2_subdev pointer used as an
iterator by the loop.

cond condition to be match

o name of the element at struct v4l2_subdev_ops that contains f. Each element there groups
a set of operations functions.

f operation function that will be called if cond matches. The operation functions are defined
in groups, according to each element at struct v4l2_subdev_ops.

args... arguments for f.
Description
Ignore any errors.

Note
subdevs cannot be added or deleted while walking the subdevs list.

__v4l2_device_call_subdevs(v4l2_dev, cond, o, f, args…)
Calls the specified operation for all subdevs matching the condition.

Parameters
v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

cond condition to be match

o name of the element at struct v4l2_subdev_ops that contains f. Each element there groups
a set of operations functions.

f operation function that will be called if cond matches. The operation functions are defined
in groups, according to each element at struct v4l2_subdev_ops.

args... arguments for f.
Description
Ignore any errors.

Note
subdevs cannot be added or deleted while walking the subdevs list.

__v4l2_device_call_subdevs_until_err_p(v4l2_dev, sd, cond, o, f, args…)
Calls the specified operation for all subdevs matching the condition.

Parameters
v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

sd pointer that will be filled by the macro with all struct v4l2_subdev sub-devices associated
with v4l2_dev.

cond condition to be match

260 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

o name of the element at struct v4l2_subdev_ops that contains f. Each element there groups
a set of operations functions.

f operation function that will be called if cond matches. The operation functions are defined
in groups, according to each element at struct v4l2_subdev_ops.

args... arguments for f.
Return
Description
If the operation returns an error other than 0 or -ENOIOCTLCMD for any subdevice, then abort
and return with that error code, zero otherwise.

Note
subdevs cannot be added or deleted while walking the subdevs list.

__v4l2_device_call_subdevs_until_err(v4l2_dev, cond, o, f, args…)
Calls the specified operation for all subdevs matching the condition.

Parameters
v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

cond condition to be match

o name of the element at struct v4l2_subdev_ops that contains f. Each element there groups
a set of operations functions.

f operation function that will be called if cond matches. The operation functions are defined
in groups, according to each element at struct v4l2_subdev_ops.

args... arguments for f.
Return
Description
If the operation returns an error other than 0 or -ENOIOCTLCMD for any subdevice, then abort
and return with that error code, zero otherwise.

Note
subdevs cannot be added or deleted while walking the subdevs list.

v4l2_device_call_all(v4l2_dev, grpid, o, f, args…)
Calls the specified operation for all subdevs matching the v4l2_subdev.grp_id, as as-
signed by the bridge driver.

Parameters
v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

grpid struct v4l2_subdev->grp_id group ID to match. Use 0 to match them all.

o name of the element at struct v4l2_subdev_ops that contains f. Each element there groups
a set of operations functions.

f operation function that will be called if cond matches. The operation functions are defined
in groups, according to each element at struct v4l2_subdev_ops.

args... arguments for f.

2.2. Video4Linux devices 261

Linux Media Documentation

Description
Ignore any errors.

Note
subdevs cannot be added or deleted while walking the subdevs list.

v4l2_device_call_until_err(v4l2_dev, grpid, o, f, args…)
Calls the specified operation for all subdevs matching the v4l2_subdev.grp_id, as as-
signed by the bridge driver, until an error occurs.

Parameters
v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

grpid struct v4l2_subdev->grp_id group ID to match. Use 0 to match them all.

o name of the element at struct v4l2_subdev_ops that contains f. Each element there groups
a set of operations functions.

f operation function that will be called if cond matches. The operation functions are defined
in groups, according to each element at struct v4l2_subdev_ops.

args... arguments for f.
Return
Description
If the operation returns an error other than 0 or -ENOIOCTLCMD for any subdevice, then abort
and return with that error code, zero otherwise.

Note
subdevs cannot be added or deleted while walking the subdevs list.

v4l2_device_mask_call_all(v4l2_dev, grpmsk, o, f, args…)
Calls the specified operation for all subdevices where a group ID matches a specified bit-
mask.

Parameters
v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

grpmsk bitmask to be checked against struct v4l2_subdev->grp_id group ID to be matched.
Use 0 to match them all.

o name of the element at struct v4l2_subdev_ops that contains f. Each element there groups
a set of operations functions.

f operation function that will be called if cond matches. The operation functions are defined
in groups, according to each element at struct v4l2_subdev_ops.

args... arguments for f.
Description
Ignore any errors.

Note
subdevs cannot be added or deleted while walking the subdevs list.

262 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

v4l2_device_mask_call_until_err(v4l2_dev, grpmsk, o, f, args…)
Calls the specified operation for all subdevices where a group ID matches a specified bit-
mask.

Parameters
v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

grpmsk bitmask to be checked against struct v4l2_subdev->grp_id group ID to be matched.
Use 0 to match them all.

o name of the element at struct v4l2_subdev_ops that contains f. Each element there groups
a set of operations functions.

f operation function that will be called if cond matches. The operation functions are defined
in groups, according to each element at struct v4l2_subdev_ops.

args... arguments for f.
Return
Description
If the operation returns an error other than 0 or -ENOIOCTLCMD for any subdevice, then abort
and return with that error code, zero otherwise.

Note
subdevs cannot be added or deleted while walking the subdevs list.

v4l2_device_has_op(v4l2_dev, grpid, o, f)
checks if any subdev with matching grpid has a given ops.

Parameters
v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

grpid struct v4l2_subdev->grp_id group ID to match. Use 0 to match them all.

o name of the element at struct v4l2_subdev_ops that contains f. Each element there groups
a set of operations functions.

f operation function that will be called if cond matches. The operation functions are defined
in groups, according to each element at struct v4l2_subdev_ops.

v4l2_device_mask_has_op(v4l2_dev, grpmsk, o, f)
checks if any subdev with matching group mask has a given ops.

Parameters
v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

grpmsk bitmask to be checked against struct v4l2_subdev->grp_id group ID to be matched.
Use 0 to match them all.

o name of the element at struct v4l2_subdev_ops that contains f. Each element there groups
a set of operations functions.

f operation function that will be called if cond matches. The operation functions are defined
in groups, according to each element at struct v4l2_subdev_ops.

2.2. Video4Linux devices 263

Linux Media Documentation

2.2.6 V4L2 File handlers

struct v4l2_fh provides a way to easily keep file handle specific data that is used by the V4L2
framework.

Attention: New drivers must use struct v4l2_fh since it is also used to implement priority
handling (ioctl VIDIOC_G_PRIORITY, VIDIOC_S_PRIORITY).

The users of v4l2_fh (in the V4L2 framework, not the driver) know whether a driver uses
v4l2_fh as its file->private_data pointer by testing the V4L2_FL_USES_V4L2_FH bit in
video_device->flags. This bit is set whenever v4l2_fh_init() is called.

struct v4l2_fh is allocated as a part of the driver’s own file handle structure and
file->private_data is set to it in the driver’s open() function by the driver.

In many cases the struct v4l2_fh will be embedded in a larger structure. In that case you
should call:

1) v4l2_fh_init() and v4l2_fh_add() in open()

2) v4l2_fh_del() and v4l2_fh_exit() in release()

Drivers can extract their own file handle structure by using the container_of macro.

Example:

struct my_fh {
int blah;
struct v4l2_fh fh;

};

...

int my_open(struct file *file)
{

struct my_fh *my_fh;
struct video_device *vfd;
int ret;

...

my_fh = kzalloc(sizeof(*my_fh), GFP_KERNEL);

...

v4l2_fh_init(&my_fh->fh, vfd);

...

file->private_data = &my_fh->fh;
v4l2_fh_add(&my_fh->fh);
return 0;

}

int my_release(struct file *file)
{

264 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct v4l2_fh *fh = file->private_data;
struct my_fh *my_fh = container_of(fh, struct my_fh, fh);

...
v4l2_fh_del(&my_fh->fh);
v4l2_fh_exit(&my_fh->fh);
kfree(my_fh);
return 0;

}

Below is a short description of the v4l2_fh functions used:

v4l2_fh_init (fh, vdev)

• Initialise the file handle. ThisMUST be performed in the driver’s v4l2_file_operations-
>open() handler.

v4l2_fh_add (fh)

• Add a v4l2_fh to video_device file handle list. Must be called once the file handle is
completely initialized.

v4l2_fh_del (fh)

• Unassociate the file handle from video_device. The file handle exit function may now be
called.

v4l2_fh_exit (fh)

• Uninitialise the file handle. After uninitialisation the v4l2_fh memory can be freed.

If struct v4l2_fh is not embedded, then you can use these helper functions:

v4l2_fh_open (struct file *filp)

• This allocates a struct v4l2_fh, initializes it and adds it to the struct video_device
associated with the file struct.

v4l2_fh_release (struct file *filp)

• This deletes it from the struct video_device associated with the file struct, uninitialised
the v4l2_fh and frees it.

These two functions can be plugged into the v4l2_file_operation’s open() and release() ops.

Several drivers need to do something when the first file handle is opened and when the last file
handle closes. Two helper functions were added to check whether the v4l2_fh struct is the
only open filehandle of the associated device node:

v4l2_fh_is_singular (fh)

• Returns 1 if the file handle is the only open file handle, else 0.

v4l2_fh_is_singular_file (struct file *filp)

• Same, but it calls v4l2_fh_is_singular with filp->private_data.

2.2. Video4Linux devices 265

Linux Media Documentation

2.2.6.1 V4L2 fh functions and data structures

struct v4l2_fh
Describes a V4L2 file handler

Definition

struct v4l2_fh {
struct list_head list;
struct video_device *vdev;
struct v4l2_ctrl_handler *ctrl_handler;
enum v4l2_priority prio;
wait_queue_head_t wait;
struct mutex subscribe_lock;
struct list_head subscribed;
struct list_head available;
unsigned int navailable;
u32 sequence;
struct v4l2_m2m_ctx *m2m_ctx;

};

Members
list list of file handlers

vdev pointer to struct video_device

ctrl_handler pointer to struct v4l2_ctrl_handler

prio priority of the file handler, as defined by enum v4l2_priority

wait event’ s wait queue

subscribe_lock serialise changes to the subscribed list; guarantee that the add and del event
callbacks are orderly called

subscribed list of subscribed events

available list of events waiting to be dequeued

navailable number of available events at available list
sequence event sequence number

m2m_ctx pointer to struct v4l2_m2m_ctx

void v4l2_fh_init(struct v4l2_fh *fh, struct video_device *vdev)
Initialise the file handle.

Parameters
struct v4l2_fh *fh pointer to struct v4l2_fh

struct video_device *vdev pointer to struct video_device

Description
Parts of the V4L2 framework using the file handles should be initialised in this function. Must
be called from driver’s v4l2_file_operations->open() handler if the driver uses struct v4l2_fh.

266 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

void v4l2_fh_add(struct v4l2_fh *fh)
Add the fh to the list of file handles on a video_device.

Parameters
struct v4l2_fh *fh pointer to struct v4l2_fh

Description

Note: The fh file handle must be initialised first.

int v4l2_fh_open(struct file *filp)
Ancillary routine that can be used as the open() op of v4l2_file_operations.

Parameters
struct file *filp pointer to struct file

Description
It allocates a v4l2_fh and inits and adds it to the struct video_device associated with the file
pointer.

void v4l2_fh_del(struct v4l2_fh *fh)
Remove file handle from the list of file handles.

Parameters
struct v4l2_fh *fh pointer to struct v4l2_fh

Description
On error filp->private_data will be NULL, otherwise it will point to the struct v4l2_fh.

Note: Must be called in v4l2_file_operations->release() handler if the driver uses struct
v4l2_fh.

void v4l2_fh_exit(struct v4l2_fh *fh)
Release resources related to a file handle.

Parameters
struct v4l2_fh *fh pointer to struct v4l2_fh

Description
Parts of the V4L2 framework using the v4l2_fh must release their resources here, too.

Note: Must be called in v4l2_file_operations->release() handler if the driver uses struct
v4l2_fh.

int v4l2_fh_release(struct file *filp)
Ancillary routine that can be used as the release() op of v4l2_file_operations.

Parameters
struct file *filp pointer to struct file

2.2. Video4Linux devices 267

Linux Media Documentation

Description
It deletes and exits the v4l2_fh associated with the file pointer and frees it. It will do nothing if
filp->private_data (the pointer to the v4l2_fh struct) is NULL.

This function always returns 0.

int v4l2_fh_is_singular(struct v4l2_fh *fh)
Returns 1 if this filehandle is the only filehandle opened for the associated video_device.

Parameters
struct v4l2_fh *fh pointer to struct v4l2_fh

Description
If fh is NULL, then it returns 0.
int v4l2_fh_is_singular_file(struct file *filp)

Returns 1 if this filehandle is the only filehandle opened for the associated video_device.

Parameters
struct file *filp pointer to struct file

Description
This is a helper function variant of v4l2_fh_is_singular() with uses struct file as argument.

If filp->private_data is NULL, then it will return 0.

2.2.7 V4L2 sub-devices

Many drivers need to communicate with sub-devices. These devices can do all sort of tasks, but
most commonly they handle audio and/or video muxing, encoding or decoding. For webcams
common sub-devices are sensors and camera controllers.

Usually these are I2C devices, but not necessarily. In order to provide the driver with a consis-
tent interface to these sub-devices the v4l2_subdev struct (v4l2-subdev.h) was created.

Each sub-device driver must have a v4l2_subdev struct. This struct can be stand-alone for
simple sub-devices or it might be embedded in a larger struct if more state information needs
to be stored. Usually there is a low-level device struct (e.g. i2c_client) that contains the
device data as setup by the kernel. It is recommended to store that pointer in the private data
of v4l2_subdev using v4l2_set_subdevdata(). That makes it easy to go from a v4l2_subdev
to the actual low-level bus-specific device data.

You also need a way to go from the low-level struct to v4l2_subdev. For the common i2c_client
struct the i2c_set_clientdata() call is used to store a v4l2_subdev pointer, for other buses you
may have to use other methods.

Bridges might also need to store per-subdev private data, such as a pointer to bridge-specific
per-subdev private data. The v4l2_subdev structure provides host private data for that purpose
that can be accessed with v4l2_get_subdev_hostdata() and v4l2_set_subdev_hostdata().

From the bridge driver perspective, you load the sub-device module and somehow obtain the
v4l2_subdev pointer. For i2c devices this is easy: you call i2c_get_clientdata(). For other
buses something similar needs to be done. Helper functions exist for sub-devices on an I2C bus
that do most of this tricky work for you.

268 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Each v4l2_subdev contains function pointers that sub-device drivers can implement (or leave
NULL if it is not applicable). Since sub-devices can do so many different things and you do not
want to end up with a huge ops struct of which only a handful of ops are commonly implemented,
the function pointers are sorted according to category and each category has its own ops struct.

The top-level ops struct contains pointers to the category ops structs, which may be NULL if
the subdev driver does not support anything from that category.

It looks like this:

struct v4l2_subdev_core_ops {
int (*log_status)(struct v4l2_subdev *sd);
int (*init)(struct v4l2_subdev *sd, u32 val);
...

};

struct v4l2_subdev_tuner_ops {
...

};

struct v4l2_subdev_audio_ops {
...

};

struct v4l2_subdev_video_ops {
...

};

struct v4l2_subdev_pad_ops {
...

};

struct v4l2_subdev_ops {
const struct v4l2_subdev_core_ops *core;
const struct v4l2_subdev_tuner_ops *tuner;
const struct v4l2_subdev_audio_ops *audio;
const struct v4l2_subdev_video_ops *video;
const struct v4l2_subdev_pad_ops *video;

};

The core ops are common to all subdevs, the other categories are implemented depending on
the sub-device. E.g. a video device is unlikely to support the audio ops and vice versa.

This setup limits the number of function pointers while still making it easy to add new ops and
categories.

A sub-device driver initializes the v4l2_subdev struct using:

v4l2_subdev_init (sd, &ops).

Afterwards you need to initialize sd->name with a unique name and set the module owner. This
is done for you if you use the i2c helper functions.

If integration with the media framework is needed, you must initialize the media_entity struct
embedded in the v4l2_subdev struct (entity field) by calling media_entity_pads_init(), if the
entity has pads:

struct media_pad *pads = &my_sd->pads;
int err;

2.2. Video4Linux devices 269

Linux Media Documentation

err = media_entity_pads_init(&sd->entity, npads, pads);

The pads array must have been previously initialized. There is no need to manually set the
struct media_entity function and name fields, but the revision field must be initialized if
needed.

A reference to the entity will be automatically acquired/released when the subdev device node
(if any) is opened/closed.

Don’t forget to cleanup the media entity before the sub-device is destroyed:

media_entity_cleanup(&sd->entity);

If a sub-device driver implements sink pads, the subdev driver may set the link_validate field in
v4l2_subdev_pad_ops to provide its own link validation function. For every link in the pipeline,
the link_validate pad operation of the sink end of the link is called. In both cases the driver is
still responsible for validating the correctness of the format configuration between sub-devices
and video nodes.

If link_validate op is not set, the default function v4l2_subdev_link_validate_default() is
used instead. This function ensures that width, height and the media bus pixel code are equal
on both source and sink of the link. Subdev drivers are also free to use this function to perform
the checks mentioned above in addition to their own checks.

2.2.7.1 Subdev registration

There are currently two ways to register subdevices with the V4L2 core. The first (traditional)
possibility is to have subdevices registered by bridge drivers. This can be done when the bridge
driver has the complete information about subdevices connected to it and knows exactly when
to register them. This is typically the case for internal subdevices, like video data processing
units within SoCs or complex PCI(e) boards, camera sensors in USB cameras or connected to
SoCs, which pass information about them to bridge drivers, usually in their platform data.

There are however also situations where subdevices have to be registered asynchronously to
bridge devices. An example of such a configuration is a Device Tree based system where infor-
mation about subdevices is made available to the system independently from the bridge devices,
e.g. when subdevices are defined in DT as I2C device nodes. The API used in this second case
is described further below.

Using one or the other registration method only affects the probing process, the run-time
bridge-subdevice interaction is in both cases the same.

In the synchronous case a device (bridge) driver needs to register the v4l2_subdev with the
v4l2_device:

v4l2_device_register_subdev (v4l2_dev, sd).

This can fail if the subdev module disappeared before it could be registered. After this function
was called successfully the subdev->dev field points to the v4l2_device.

If the v4l2_device parent device has a non-NULL mdev field, the sub-device entity will be auto-
matically registered with the media device.

You can unregister a sub-device using:

270 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

v4l2_device_unregister_subdev (sd).

Afterwards the subdev module can be unloaded and sd->dev == NULL.

In the asynchronous case subdevice probing can be invoked independently of the bridge driver
availability. The subdevice driver then has to verify whether all the requirements for a success-
ful probing are satisfied. This can include a check for a master clock availability. If any of
the conditions aren’t satisfied the driver might decide to return -EPROBE_DEFER to request
further reprobing attempts. Once all conditions are met the subdevice shall be registered
using the v4l2_async_register_subdev() function. Unregistration is performed using the
v4l2_async_unregister_subdev() call. Subdevices registered this way are stored in a global
list of subdevices, ready to be picked up by bridge drivers.

Bridge drivers in turn have to register a notifier object. This is performed using
the v4l2_async_nf_register() call. To unregister the notifier the driver has to call
v4l2_async_nf_unregister(). The former of the two functions takes two arguments: a pointer
to struct v4l2_device and a pointer to struct v4l2_async_notifier.

Before registering the notifier, bridge drivers must do two things: first, the notifier must be
initialized using the v4l2_async_nf_init(). Second, bridge drivers can then begin to form a
list of subdevice descriptors that the bridge device needs for its operation. Several functions
are available to add subdevice descriptors to a notifier, depending on the type of device and the
needs of the driver.

v4l2_async_nf_add_fwnode_remote() and v4l2_async_nf_add_i2c() are for bridge and ISP
drivers for registering their async sub-devices with the notifier.

v4l2_async_register_subdev_sensor() is a helper function for sensor drivers registering
their own async sub-device, but it also registers a notifier and further registers async sub-
devices for lens and flash devices found in firmware. The notifier for the sub-device is unregis-
tered with the async sub-device.

These functions allocate an async sub-device descriptor which is of type struct
v4l2_async_subdev embedded in a driver-specific struct. The &struct v4l2_async_subdev
shall be the first member of this struct:

struct my_async_subdev {
struct v4l2_async_subdev asd;
...

};

struct my_async_subdev *my_asd;
struct fwnode_handle *ep;

...

my_asd = v4l2_async_nf_add_fwnode_remote(¬ifier, ep,
struct my_async_subdev);

fwnode_handle_put(ep);

if (IS_ERR(asd))
return PTR_ERR(asd);

The V4L2 core will then use these descriptors to match asynchronously registered subdevices
to them. If a match is detected the .bound() notifier callback is called. After all subdevices
have been located the .complete() callback is called. When a subdevice is removed from the
system the .unbind() method is called. All three callbacks are optional.

2.2. Video4Linux devices 271

Linux Media Documentation

2.2.7.2 Calling subdev operations

The advantage of using v4l2_subdev is that it is a generic struct and does not contain any
knowledge about the underlying hardware. So a driver might contain several subdevs that
use an I2C bus, but also a subdev that is controlled through GPIO pins. This distinction is
only relevant when setting up the device, but once the subdev is registered it is completely
transparent.

Once the subdev has been registered you can call an ops function either directly:

err = sd->ops->core->g_std(sd, &norm);

but it is better and easier to use this macro:

err = v4l2_subdev_call(sd, core, g_std, &norm);

Themacro will do the right NULL pointer checks and returns -ENODEV if sd is NULL, -ENOIOCTLCMD
if either sd->core or sd->core->g_std is NULL, or the actual result of the sd->ops->core->g_std
ops.

It is also possible to call all or a subset of the sub-devices:

v4l2_device_call_all(v4l2_dev, 0, core, g_std, &norm);

Any subdev that does not support this ops is skipped and error results are ignored. If you want
to check for errors use this:

err = v4l2_device_call_until_err(v4l2_dev, 0, core, g_std, &norm);

Any error except -ENOIOCTLCMD will exit the loop with that error. If no errors (except
-ENOIOCTLCMD) occurred, then 0 is returned.

The second argument to both calls is a group ID. If 0, then all subdevs are called. If non-zero,
then only those whose group ID match that value will be called. Before a bridge driver registers
a subdev it can set sd->grp_id to whatever value it wants (it’s 0 by default). This value is owned
by the bridge driver and the sub-device driver will never modify or use it.

The group ID gives the bridge driver more control how callbacks are called. For example, there
may be multiple audio chips on a board, each capable of changing the volume. But usually only
one will actually be used when the user want to change the volume. You can set the group ID for
that subdev to e.g. AUDIO_CONTROLLER and specify that as the group ID value when calling
v4l2_device_call_all(). That ensures that it will only go to the subdev that needs it.

If the sub-device needs to notify its v4l2_device parent of an event, then it can call
v4l2_subdev_notify(sd, notification, arg). This macro checks whether there is a
notify() callback defined and returns -ENODEV if not. Otherwise the result of the notify()
call is returned.

272 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

2.2.8 V4L2 sub-device userspace API

Bridge drivers traditionally expose one or multiple video nodes to userspace, and control sub-
devices through the v4l2_subdev_ops operations in response to video node operations. This
hides the complexity of the underlying hardware from applications. For complex devices, finer-
grained control of the device than what the video nodes offer may be required. In those cases,
bridge drivers that implement the media controller API may opt for making the subdevice op-
erations directly accessible from userpace.

Device nodes named v4l-subdevX can be created in /dev to access sub-devices di-
rectly. If a sub-device supports direct userspace configuration it must set the
V4L2_SUBDEV_FL_HAS_DEVNODE flag before being registered.

After registering sub-devices, the v4l2_device driver can create device nodes for
all registered sub-devices marked with V4L2_SUBDEV_FL_HAS_DEVNODE by calling
v4l2_device_register_subdev_nodes(). Those device nodes will be automatically removed
when sub-devices are unregistered.

The device node handles a subset of the V4L2 API.

VIDIOC_QUERYCTRL, VIDIOC_QUERYMENU, VIDIOC_G_CTRL, VIDIOC_S_CTRL,
VIDIOC_G_EXT_CTRLS, VIDIOC_S_EXT_CTRLS and VIDIOC_TRY_EXT_CTRLS:

The controls ioctls are identical to the ones defined in V4L2. They behave identically,
with the only exception that they deal only with controls implemented in the sub-
device. Depending on the driver, those controls can be also be accessed through one
(or several) V4L2 device nodes.

VIDIOC_DQEVENT, VIDIOC_SUBSCRIBE_EVENT and VIDIOC_UNSUBSCRIBE_EVENT

The events ioctls are identical to the ones defined in V4L2. They behave identically,
with the only exception that they deal only with events generated by the sub-device.
Depending on the driver, those events can also be reported by one (or several) V4L2
device nodes.

Sub-device drivers that want to use events need to set the
V4L2_SUBDEV_FL_HAS_EVENTS v4l2_subdev.flags before registering the sub-device.
After registration events can be queued as usual on the v4l2_subdev.devnode device
node.

To properly support events, the poll() file operation is also implemented.

Private ioctls

All ioctls not in the above list are passed directly to the sub-device driver through the
core::ioctl operation.

2.2. Video4Linux devices 273

Linux Media Documentation

2.2.9 Read-only sub-device userspace API

Bridge drivers that control their connected subdevices through direct calls to the kernel API
realized by v4l2_subdev_ops structure do not usually want userspace to be able to change the
same parameters through the subdevice device node and thus do not usually register any.

It is sometimes useful to report to userspace the current subdevice configuration through a
read-only API, that does not permit applications to change to the device parameters but allows
interfacing to the subdevice device node to inspect them.

For instance, to implement cameras based on computational photography, userspace needs to
know the detailed camera sensor configuration (in terms of skipping, binning, cropping and
scaling) for each supported output resolution. To support such use cases, bridge drivers may
expose the subdevice operations to userspace through a read-only API.

To create a read-only device node for all the subdevices registered with
the V4L2_SUBDEV_FL_HAS_DEVNODE set, the v4l2_device driver should call
v4l2_device_register_ro_subdev_nodes().

Access to the following ioctls for userspace applications is restricted on sub-device device nodes
registered with v4l2_device_register_ro_subdev_nodes().

VIDIOC_SUBDEV_S_FMT, VIDIOC_SUBDEV_S_CROP, VIDIOC_SUBDEV_S_SELECTION:

These ioctls are only allowed on a read-only subdevice device node for the
V4L2_SUBDEV_FORMAT_TRY formats and selection rectangles.

VIDIOC_SUBDEV_S_FRAME_INTERVAL, VIDIOC_SUBDEV_S_DV_TIMINGS, VIDIOC_SUBDEV_S_STD:

These ioctls are not allowed on a read-only subdevice node.

In case the ioctl is not allowed, or the format to modify is set to V4L2_SUBDEV_FORMAT_ACTIVE,
the core returns a negative error code and the errno variable is set to -EPERM.

2.2.10 I2C sub-device drivers

Since these drivers are so common, special helper functions are available to ease the use of
these drivers (v4l2-common.h).

The recommended method of adding v4l2_subdev support to an I2C driver is to embed the
v4l2_subdev struct into the state struct that is created for each I2C device instance. Very
simple devices have no state struct and in that case you can just create a v4l2_subdev directly.

A typical state struct would look like this (where ‘chipname’ is replaced by the name of the
chip):

struct chipname_state {
struct v4l2_subdev sd;
... /* additional state fields */

};

Initialize the v4l2_subdev struct as follows:

v4l2_i2c_subdev_init(&state->sd, client, subdev_ops);

This function will fill in all the fields of v4l2_subdev ensure that the v4l2_subdev and i2c_client
both point to one another.

274 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

You should also add a helper inline function to go from a v4l2_subdev pointer to a chip-
name_state struct:

static inline struct chipname_state *to_state(struct v4l2_subdev *sd)
{

return container_of(sd, struct chipname_state, sd);
}

Use this to go from the v4l2_subdev struct to the i2c_client struct:

struct i2c_client *client = v4l2_get_subdevdata(sd);

And this to go from an i2c_client to a v4l2_subdev struct:

struct v4l2_subdev *sd = i2c_get_clientdata(client);

Make sure to call v4l2_device_unregister_subdev()(sd) when the remove() callback is
called. This will unregister the sub-device from the bridge driver. It is safe to call this even if
the sub-device was never registered.

You need to do this because when the bridge driver destroys the i2c adapter the remove()
callbacks are called of the i2c devices on that adapter. After that the correspond-
ing v4l2_subdev structures are invalid, so they have to be unregistered first. Calling
v4l2_device_unregister_subdev()(sd) from the remove() callback ensures that this is always
done correctly.

The bridge driver also has some helper functions it can use:

struct v4l2_subdev *sd = v4l2_i2c_new_subdev(v4l2_dev, adapter,
"module_foo", "chipid", 0x36, NULL);

This loads the given module (can be NULL if no module needs to be loaded) and calls
i2c_new_client_device()with the given i2c_adapter and chip/address arguments. If all goes
well, then it registers the subdev with the v4l2_device.

You can also use the last argument of v4l2_i2c_new_subdev() to pass an array of possible I2C
addresses that it should probe. These probe addresses are only used if the previous argument
is 0. A non-zero argument means that you know the exact i2c address so in that case no probing
will take place.

Both functions return NULL if something went wrong.

Note that the chipid you pass to v4l2_i2c_new_subdev() is usually the same as the module
name. It allows you to specify a chip variant, e.g. “saa7114” or “saa7115”. In general though
the i2c driver autodetects this. The use of chipid is something that needs to be looked at more
closely at a later date. It differs between i2c drivers and as such can be confusing. To see which
chip variants are supported you can look in the i2c driver code for the i2c_device_id table. This
lists all the possibilities.

There are one more helper function:

v4l2_i2c_new_subdev_board() uses an i2c_board_info struct which is passed to the i2c
driver and replaces the irq, platform_data and addr arguments.

If the subdev supports the s_config core ops, then that op is called with the irq and platform_data
arguments after the subdev was setup.

2.2. Video4Linux devices 275

Linux Media Documentation

The v4l2_i2c_new_subdev() function will call v4l2_i2c_new_subdev_board(), internally fill-
ing a i2c_board_info structure using the client_type and the addr to fill it.

2.2.11 V4L2 sub-device functions and data structures

struct v4l2_decode_vbi_line
used to decode_vbi_line

Definition

struct v4l2_decode_vbi_line {
u32 is_second_field;
u8 *p;
u32 line;
u32 type;

};

Members
is_second_field Set to 0 for the first (odd) field; set to 1 for the second (even) field.

p Pointer to the sliced VBI data from the decoder. On exit, points to the start of the payload.

line Line number of the sliced VBI data (1-23)

type VBI service type (V4L2_SLICED_*). 0 if no service found

enum v4l2_subdev_io_pin_bits
Subdevice external IO pin configuration bits

Constants
V4L2_SUBDEV_IO_PIN_DISABLE disables a pin config. ENABLE assumed.

V4L2_SUBDEV_IO_PIN_OUTPUT set it if pin is an output.

V4L2_SUBDEV_IO_PIN_INPUT set it if pin is an input.

V4L2_SUBDEV_IO_PIN_SET_VALUE to set the output value via struct
v4l2_subdev_io_pin_config->value.

V4L2_SUBDEV_IO_PIN_ACTIVE_LOW pin active is bit 0. Otherwise, ACTIVE HIGH is assumed.

struct v4l2_subdev_io_pin_config
Subdevice external IO pin configuration

Definition

struct v4l2_subdev_io_pin_config {
u32 flags;
u8 pin;
u8 function;
u8 value;
u8 strength;

};

Members
flags bitmask with flags for this pin’s config, whose bits are defined by enum

v4l2_subdev_io_pin_bits.

276 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

pin Chip external IO pin to configure

function Internal signal pad/function to route to IO pin

value Initial value for pin - e.g. GPIO output value

strength Pin drive strength

struct v4l2_subdev_core_ops
Define core ops callbacks for subdevs

Definition

struct v4l2_subdev_core_ops {
int (*log_status)(struct v4l2_subdev *sd);
int (*s_io_pin_config)(struct v4l2_subdev *sd, size_t n, struct v4l2_subdev_io_pin_

↪→config *pincfg);
int (*init)(struct v4l2_subdev *sd, u32 val);
int (*load_fw)(struct v4l2_subdev *sd);
int (*reset)(struct v4l2_subdev *sd, u32 val);
int (*s_gpio)(struct v4l2_subdev *sd, u32 val);
long (*command)(struct v4l2_subdev *sd, unsigned int cmd, void *arg);
long (*ioctl)(struct v4l2_subdev *sd, unsigned int cmd, void *arg);

#ifdef CONFIG_COMPAT;
long (*compat_ioctl32)(struct v4l2_subdev *sd, unsigned int cmd, unsigned long arg);

#endif;
#ifdef CONFIG_VIDEO_ADV_DEBUG;

int (*g_register)(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg);
int (*s_register)(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg);

#endif;
int (*s_power)(struct v4l2_subdev *sd, int on);
int (*interrupt_service_routine)(struct v4l2_subdev *sd, u32 status, bool *handled);
int (*subscribe_event)(struct v4l2_subdev *sd, struct v4l2_fh *fh, struct v4l2_event_

↪→subscription *sub);
int (*unsubscribe_event)(struct v4l2_subdev *sd, struct v4l2_fh *fh, struct v4l2_

↪→event_subscription *sub);
};

Members
log_status callback for VIDIOC_LOG_STATUS() ioctl handler code.

s_io_pin_config configure one or more chip I/O pins for chips that multiplex different internal
signal pads out to IO pins. This function takes a pointer to an array of ‘n’ pin configuration
entries, one for each pin being configured. This function could be called at times other
than just subdevice initialization.

init initialize the sensor registers to some sort of reasonable default values. Do not use for
new drivers and should be removed in existing drivers.

load_fw load firmware.

reset generic reset command. The argument selects which subsystems to reset. Passing 0 will
always reset the whole chip. Do not use for new drivers without discussing this first on
the linux-media mailinglist. There should be no reason normally to reset a device.

s_gpio set GPIO pins. Very simple right now, might need to be extended with a direction
argument if needed.

2.2. Video4Linux devices 277

Linux Media Documentation

command called by in-kernel drivers in order to call functions internal to subdev drivers driver
that have a separate callback.

ioctl called at the end of ioctl() syscall handler at the V4L2 core. used to provide support for
private ioctls used on the driver.

compat_ioctl32 called when a 32 bits application uses a 64 bits Kernel, in order to fix data
passed from/to userspace.

g_register callback for VIDIOC_DBG_G_REGISTER() ioctl handler code.

s_register callback for VIDIOC_DBG_S_REGISTER() ioctl handler code.

s_power puts subdevice in power saving mode (on == 0) or normal operation mode (on == 1).

interrupt_service_routine Called by the bridge chip’s interrupt service handler, when an
interrupt status has be raised due to this subdev, so that this subdev can handle the details.
It may schedule work to be performed later. It must not sleep. Called from an IRQ
context.

subscribe_event used by the drivers to request the control framework that for it to be warned
when the value of a control changes.

unsubscribe_event remove event subscription from the control framework.

struct v4l2_subdev_tuner_ops
Callbacks used when v4l device was opened in radio mode.

Definition

struct v4l2_subdev_tuner_ops {
int (*standby)(struct v4l2_subdev *sd);
int (*s_radio)(struct v4l2_subdev *sd);
int (*s_frequency)(struct v4l2_subdev *sd, const struct v4l2_frequency *freq);
int (*g_frequency)(struct v4l2_subdev *sd, struct v4l2_frequency *freq);
int (*enum_freq_bands)(struct v4l2_subdev *sd, struct v4l2_frequency_band *band);
int (*g_tuner)(struct v4l2_subdev *sd, struct v4l2_tuner *vt);
int (*s_tuner)(struct v4l2_subdev *sd, const struct v4l2_tuner *vt);
int (*g_modulator)(struct v4l2_subdev *sd, struct v4l2_modulator *vm);
int (*s_modulator)(struct v4l2_subdev *sd, const struct v4l2_modulator *vm);
int (*s_type_addr)(struct v4l2_subdev *sd, struct tuner_setup *type);
int (*s_config)(struct v4l2_subdev *sd, const struct v4l2_priv_tun_config *config);

};

Members
standby puts the tuner in standby mode. It will be woken up automatically the next time it is

used.

s_radio callback that switches the tuner to radio mode. drivers should explicitly call it when
a tuner ops should operate on radio mode, before being able to handle it. Used on devices
that have both AM/FM radio receiver and TV.

s_frequency callback for VIDIOC_S_FREQUENCY() ioctl handler code.

g_frequency callback for VIDIOC_G_FREQUENCY() ioctl handler code. freq->type must be
filled in. Normally done by video_ioctl2() or the bridge driver.

enum_freq_bands callback for VIDIOC_ENUM_FREQ_BANDS() ioctl handler code.

g_tuner callback for VIDIOC_G_TUNER() ioctl handler code.

278 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

s_tuner callback for VIDIOC_S_TUNER() ioctl handler code. vt->type must be filled in. Nor-
mally done by video_ioctl2 or the bridge driver.

g_modulator callback for VIDIOC_G_MODULATOR() ioctl handler code.

s_modulator callback for VIDIOC_S_MODULATOR() ioctl handler code.

s_type_addr sets tuner type and its I2C addr.

s_config sets tda9887 specific stuff, like port1, port2 and qss

Description

Note: On devices that have both AM/FM and TV, it is up to the driver to explicitly call
s_radio when the tuner should be switched to radio mode, before handling other struct
v4l2_subdev_tuner_ops that would require it. An example of such usage is:

static void s_frequency(void *priv, const struct v4l2_frequency *f)
{

...
if (f.type == V4L2_TUNER_RADIO)

v4l2_device_call_all(v4l2_dev, 0, tuner, s_radio);
...
v4l2_device_call_all(v4l2_dev, 0, tuner, s_frequency);

}

struct v4l2_subdev_audio_ops
Callbacks used for audio-related settings

Definition

struct v4l2_subdev_audio_ops {
int (*s_clock_freq)(struct v4l2_subdev *sd, u32 freq);
int (*s_i2s_clock_freq)(struct v4l2_subdev *sd, u32 freq);
int (*s_routing)(struct v4l2_subdev *sd, u32 input, u32 output, u32 config);
int (*s_stream)(struct v4l2_subdev *sd, int enable);

};

Members
s_clock_freq set the frequency (in Hz) of the audio clock output. Used to slave an audio

processor to the video decoder, ensuring that audio and video remain synchronized. Usual
values for the frequency are 48000, 44100 or 32000 Hz. If the frequency is not supported,
then -EINVAL is returned.

s_i2s_clock_freq sets I2S speed in bps. This is used to provide a standard way to select I2S
clock used by driving digital audio streams at some board designs. Usual values for the
frequency are 1024000 and 2048000. If the frequency is not supported, then -EINVAL is
returned.

s_routing used to define the input and/or output pins of an audio chip, and any additional
configuration data. Never attempt to use user-level input IDs (e.g. Composite, S-Video,
Tuner) at this level. An i2c device shouldn’t know about whether an input pin is connected
to a Composite connector, become on another board or platform it might be connected to
something else entirely. The calling driver is responsible for mapping a user-level input to
the right pins on the i2c device.

2.2. Video4Linux devices 279

Linux Media Documentation

s_stream used to notify the audio code that stream will start or has stopped.

enum v4l2_mbus_frame_desc_flags
media bus frame description flags

Constants
V4L2_MBUS_FRAME_DESC_FL_LEN_MAX

Indicates that struct v4l2_mbus_frame_desc_entry->length field specifies maxi-
mum data length.

V4L2_MBUS_FRAME_DESC_FL_BLOB

Indicates that the format does not have line offsets, i.e. the receiver should use 1D
DMA.

struct v4l2_mbus_frame_desc_entry
media bus frame description structure

Definition

struct v4l2_mbus_frame_desc_entry {
enum v4l2_mbus_frame_desc_flags flags;
u32 pixelcode;
u32 length;

};

Members
flags bitmask flags, as defined by enum v4l2_mbus_frame_desc_flags.

pixelcode media bus pixel code, valid if flags FRAME_DESC_FL_BLOB is not set.
length number of octets per frame, valid if flags V4L2_MBUS_FRAME_DESC_FL_LEN_MAX is set.
struct v4l2_mbus_frame_desc

media bus data frame description

Definition

struct v4l2_mbus_frame_desc {
struct v4l2_mbus_frame_desc_entry entry[V4L2_FRAME_DESC_ENTRY_MAX];
unsigned short num_entries;

};

Members
entry frame descriptors array

num_entries number of entries in entry array
enum v4l2_subdev_pre_streamon_flags

Flags for pre_streamon subdev core op

Constants
V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP Set the transmitter to either LP-11 or LP-111mode

before call to s_stream().

struct v4l2_subdev_video_ops
Callbacks used when v4l device was opened in video mode.

280 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Definition

struct v4l2_subdev_video_ops {
int (*s_routing)(struct v4l2_subdev *sd, u32 input, u32 output, u32 config);
int (*s_crystal_freq)(struct v4l2_subdev *sd, u32 freq, u32 flags);
int (*g_std)(struct v4l2_subdev *sd, v4l2_std_id *norm);
int (*s_std)(struct v4l2_subdev *sd, v4l2_std_id norm);
int (*s_std_output)(struct v4l2_subdev *sd, v4l2_std_id std);
int (*g_std_output)(struct v4l2_subdev *sd, v4l2_std_id *std);
int (*querystd)(struct v4l2_subdev *sd, v4l2_std_id *std);
int (*g_tvnorms)(struct v4l2_subdev *sd, v4l2_std_id *std);
int (*g_tvnorms_output)(struct v4l2_subdev *sd, v4l2_std_id *std);
int (*g_input_status)(struct v4l2_subdev *sd, u32 *status);
int (*s_stream)(struct v4l2_subdev *sd, int enable);
int (*g_pixelaspect)(struct v4l2_subdev *sd, struct v4l2_fract *aspect);
int (*g_frame_interval)(struct v4l2_subdev *sd, struct v4l2_subdev_frame_interval␣

↪→*interval);
int (*s_frame_interval)(struct v4l2_subdev *sd, struct v4l2_subdev_frame_interval␣

↪→*interval);
int (*s_dv_timings)(struct v4l2_subdev *sd, struct v4l2_dv_timings *timings);
int (*g_dv_timings)(struct v4l2_subdev *sd, struct v4l2_dv_timings *timings);
int (*query_dv_timings)(struct v4l2_subdev *sd, struct v4l2_dv_timings *timings);
int (*s_rx_buffer)(struct v4l2_subdev *sd, void *buf, unsigned int *size);
int (*pre_streamon)(struct v4l2_subdev *sd, u32 flags);
int (*post_streamoff)(struct v4l2_subdev *sd);

};

Members
s_routing see s_routing in audio_ops, except this version is for video devices.

s_crystal_freq sets the frequency of the crystal used to generate the clocks in Hz. An extra
flags field allows device specific configuration regarding clock frequency dividers, etc. If
not used, then set flags to 0. If the frequency is not supported, then -EINVAL is returned.

g_std callback for VIDIOC_G_STD() ioctl handler code.

s_std callback for VIDIOC_S_STD() ioctl handler code.

s_std_output set v4l2_std_id for video OUTPUT devices. This is ignored by video input devices.

g_std_output get current standard for video OUTPUT devices. This is ignored by video input
devices.

querystd callback for VIDIOC_QUERYSTD() ioctl handler code.

g_tvnorms get v4l2_std_id with all standards supported by the video CAPTURE device. This
is ignored by video output devices.

g_tvnorms_output get v4l2_std_id with all standards supported by the video OUTPUT device.
This is ignored by video capture devices.

g_input_status get input status. Same as the status field in the struct v4l2_input

s_stream used to notify the driver that a video stream will start or has stopped.

g_pixelaspect callback to return the pixelaspect ratio.

g_frame_interval callback for VIDIOC_SUBDEV_G_FRAME_INTERVAL() ioctl handler code.

s_frame_interval callback for VIDIOC_SUBDEV_S_FRAME_INTERVAL() ioctl handler code.

2.2. Video4Linux devices 281

Linux Media Documentation

s_dv_timings Set custom dv timings in the sub device. This is used when sub device is capable
of setting detailed timing information in the hardware to generate/detect the video signal.

g_dv_timings Get custom dv timings in the sub device.

query_dv_timings callback for VIDIOC_QUERY_DV_TIMINGS() ioctl handler code.

s_rx_buffer set a host allocated memory buffer for the subdev. The subdev can adjust size to
a lower value and must not write more data to the buffer starting at data than the original
value of size.

pre_streamon May be called before streaming is actually started, to help initialising the bus.
Current usage is to set a CSI-2 transmitter to LP-11 or LP-111 mode before streaming. See
enum v4l2_subdev_pre_streamon_flags.

pre_streamon shall return error if it cannot perform the operation as indicated by the flags
argument. In particular, -EACCES indicates lack of support for the operation. The caller
shall call post_streamoff for each successful call of pre_streamon.

post_streamoff Called after streaming is stopped, but if and only if pre_streamon was called
earlier.

struct v4l2_subdev_vbi_ops
Callbacks used when v4l device was opened in video mode via the vbi device node.

Definition

struct v4l2_subdev_vbi_ops {
int (*decode_vbi_line)(struct v4l2_subdev *sd, struct v4l2_decode_vbi_line *vbi_

↪→line);
int (*s_vbi_data)(struct v4l2_subdev *sd, const struct v4l2_sliced_vbi_data *vbi_

↪→data);
int (*g_vbi_data)(struct v4l2_subdev *sd, struct v4l2_sliced_vbi_data *vbi_data);
int (*g_sliced_vbi_cap)(struct v4l2_subdev *sd, struct v4l2_sliced_vbi_cap *cap);
int (*s_raw_fmt)(struct v4l2_subdev *sd, struct v4l2_vbi_format *fmt);
int (*g_sliced_fmt)(struct v4l2_subdev *sd, struct v4l2_sliced_vbi_format *fmt);
int (*s_sliced_fmt)(struct v4l2_subdev *sd, struct v4l2_sliced_vbi_format *fmt);

};

Members
decode_vbi_line video decoders that support sliced VBI need to implement this ioctl. Field p

of the struct v4l2_decode_vbi_line is set to the start of the VBI data that was generated
by the decoder. The driver then parses the sliced VBI data and sets the other fields in the
struct accordingly. The pointer p is updated to point to the start of the payload which can
be copied verbatim into the data field of the struct v4l2_sliced_vbi_data. If no valid
VBI data was found, then the type field is set to 0 on return.

s_vbi_data used to generate VBI signals on a video signal. struct v4l2_sliced_vbi_data is
filled with the data packets that should be output. Note that if you set the line field to 0,
then that VBI signal is disabled. If no valid VBI data was found, then the type field is set
to 0 on return.

g_vbi_data used to obtain the sliced VBI packet from a readback register. Not all video de-
coders support this. If no data is available because the readback register contains invalid
or erroneous data -EIO is returned. Note that youmust fill in the ‘id’ member and the ‘field’
member (to determine whether CC data from the first or second field should be obtained).

g_sliced_vbi_cap callback for VIDIOC_G_SLICED_VBI_CAP() ioctl handler code.

282 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

s_raw_fmt setup the video encoder/decoder for raw VBI.

g_sliced_fmt retrieve the current sliced VBI settings.

s_sliced_fmt setup the sliced VBI settings.

struct v4l2_subdev_sensor_ops
v4l2-subdev sensor operations

Definition

struct v4l2_subdev_sensor_ops {
int (*g_skip_top_lines)(struct v4l2_subdev *sd, u32 *lines);
int (*g_skip_frames)(struct v4l2_subdev *sd, u32 *frames);

};

Members
g_skip_top_lines number of lines at the top of the image to be skipped. This is needed for

some sensors, which always corrupt several top lines of the output image, or which send
their metadata in them.

g_skip_frames number of frames to skip at stream start. This is needed for buggy sensors that
generate faulty frames when they are turned on.

enum v4l2_subdev_ir_mode
describes the type of IR supported

Constants
V4L2_SUBDEV_IR_MODE_PULSE_WIDTH IR uses struct ir_raw_event records

struct v4l2_subdev_ir_parameters
Parameters for IR TX or TX

Definition

struct v4l2_subdev_ir_parameters {
unsigned int bytes_per_data_element;
enum v4l2_subdev_ir_mode mode;
bool enable;
bool interrupt_enable;
bool shutdown;
bool modulation;
u32 max_pulse_width;
unsigned int carrier_freq;
unsigned int duty_cycle;
bool invert_level;
bool invert_carrier_sense;
u32 noise_filter_min_width;
unsigned int carrier_range_lower;
unsigned int carrier_range_upper;
u32 resolution;

};

Members
bytes_per_data_element bytes per data element of data in read or write call.

mode IR mode as defined by enum v4l2_subdev_ir_mode.

2.2. Video4Linux devices 283

Linux Media Documentation

enable device is active if true

interrupt_enable IR interrupts are enabled if true

shutdown if true: set hardware to low/no power, false: normal mode

modulation if true, it uses carrier, if false: baseband

max_pulse_width maximum pulse width in ns, valid only for baseband signal

carrier_freq carrier frequency in Hz, valid only for modulated signal

duty_cycle duty cycle percentage, valid only for modulated signal

invert_level invert signal level

invert_carrier_sense Send 0/space as a carrier burst. used only in TX.

noise_filter_min_width min time of a valid pulse, in ns. Used only for RX.

carrier_range_lower Lower carrier range, in Hz, valid only for modulated signal. Used only
for RX.

carrier_range_upper Upper carrier range, in Hz, valid only for modulated signal. Used only
for RX.

resolution The receive resolution, in ns . Used only for RX.

struct v4l2_subdev_ir_ops
operations for IR subdevices

Definition

struct v4l2_subdev_ir_ops {
int (*rx_read)(struct v4l2_subdev *sd, u8 *buf, size_t count, ssize_t *num);
int (*rx_g_parameters)(struct v4l2_subdev *sd, struct v4l2_subdev_ir_parameters␣

↪→*params);
int (*rx_s_parameters)(struct v4l2_subdev *sd, struct v4l2_subdev_ir_parameters␣

↪→*params);
int (*tx_write)(struct v4l2_subdev *sd, u8 *buf, size_t count, ssize_t *num);
int (*tx_g_parameters)(struct v4l2_subdev *sd, struct v4l2_subdev_ir_parameters␣

↪→*params);
int (*tx_s_parameters)(struct v4l2_subdev *sd, struct v4l2_subdev_ir_parameters␣

↪→*params);
};

Members
rx_read Reads received codes or pulse width data. The semantics are similar to a non-blocking

read() call.

rx_g_parameters Get the current operating parameters and state of the IR receiver.

rx_s_parameters Set the current operating parameters and state of the IR receiver. It is rec-
ommended to call [rt]x_g_parameters first to fill out the current state, and only change
the fields that need to be changed. Upon return, the actual device operating parameters
and state will be returned. Note that hardware limitations may prevent the actual settings
from matching the requested settings - e.g. an actual carrier setting of 35,904 Hz when
36,000 Hz was requested. An exception is when the shutdown parameter is true. The
last used operational parameters will be returned, but the actual state of the hardware be
different to minimize power consumption and processing when shutdown is true.

284 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

tx_write Writes codes or pulse width data for transmission. The semantics are similar to a
non-blocking write() call.

tx_g_parameters Get the current operating parameters and state of the IR transmitter.

tx_s_parameters Set the current operating parameters and state of the IR transmitter. It is
recommended to call [rt]x_g_parameters first to fill out the current state, and only change
the fields that need to be changed. Upon return, the actual device operating parameters
and state will be returned. Note that hardware limitations may prevent the actual settings
from matching the requested settings - e.g. an actual carrier setting of 35,904 Hz when
36,000 Hz was requested. An exception is when the shutdown parameter is true. The
last used operational parameters will be returned, but the actual state of the hardware be
different to minimize power consumption and processing when shutdown is true.

struct v4l2_subdev_pad_config
Used for storing subdev pad information.

Definition

struct v4l2_subdev_pad_config {
struct v4l2_mbus_framefmt try_fmt;
struct v4l2_rect try_crop;
struct v4l2_rect try_compose;

};

Members
try_fmt struct v4l2_mbus_framefmt

try_crop struct v4l2_rect to be used for crop

try_compose struct v4l2_rect to be used for compose

Description
This structure only needs to be passed to the pad op if the ‘which’ field of the main argument
is set to V4L2_SUBDEV_FORMAT_TRY. For V4L2_SUBDEV_FORMAT_ACTIVE it is safe to pass NULL.

struct v4l2_subdev_state
Used for storing subdev state information.

Definition

struct v4l2_subdev_state {
struct v4l2_subdev_pad_config *pads;

};

Members
pads struct v4l2_subdev_pad_config array

Description
This structure only needs to be passed to the pad op if the ‘which’ field of the main argument
is set to V4L2_SUBDEV_FORMAT_TRY. For V4L2_SUBDEV_FORMAT_ACTIVE it is safe to pass NULL.

struct v4l2_subdev_pad_ops
v4l2-subdev pad level operations

Definition

2.2. Video4Linux devices 285

Linux Media Documentation

struct v4l2_subdev_pad_ops {
int (*init_cfg)(struct v4l2_subdev *sd, struct v4l2_subdev_state *state);
int (*enum_mbus_code)(struct v4l2_subdev *sd,struct v4l2_subdev_state *state, struct␣

↪→v4l2_subdev_mbus_code_enum *code);
int (*enum_frame_size)(struct v4l2_subdev *sd,struct v4l2_subdev_state *state,␣

↪→struct v4l2_subdev_frame_size_enum *fse);
int (*enum_frame_interval)(struct v4l2_subdev *sd,struct v4l2_subdev_state *state,␣

↪→struct v4l2_subdev_frame_interval_enum *fie);
int (*get_fmt)(struct v4l2_subdev *sd,struct v4l2_subdev_state *state, struct v4l2_

↪→subdev_format *format);
int (*set_fmt)(struct v4l2_subdev *sd,struct v4l2_subdev_state *state, struct v4l2_

↪→subdev_format *format);
int (*get_selection)(struct v4l2_subdev *sd,struct v4l2_subdev_state *state, struct␣

↪→v4l2_subdev_selection *sel);
int (*set_selection)(struct v4l2_subdev *sd,struct v4l2_subdev_state *state, struct␣

↪→v4l2_subdev_selection *sel);
int (*get_edid)(struct v4l2_subdev *sd, struct v4l2_edid *edid);
int (*set_edid)(struct v4l2_subdev *sd, struct v4l2_edid *edid);
int (*dv_timings_cap)(struct v4l2_subdev *sd, struct v4l2_dv_timings_cap *cap);
int (*enum_dv_timings)(struct v4l2_subdev *sd, struct v4l2_enum_dv_timings *timings);

#ifdef CONFIG_MEDIA_CONTROLLER;
int (*link_validate)(struct v4l2_subdev *sd, struct media_link *link,struct v4l2_

↪→subdev_format *source_fmt, struct v4l2_subdev_format *sink_fmt);
#endif ;

int (*get_frame_desc)(struct v4l2_subdev *sd, unsigned int pad, struct v4l2_mbus_
↪→frame_desc *fd);
int (*set_frame_desc)(struct v4l2_subdev *sd, unsigned int pad, struct v4l2_mbus_

↪→frame_desc *fd);
int (*get_mbus_config)(struct v4l2_subdev *sd, unsigned int pad, struct v4l2_mbus_

↪→config *config);
int (*set_mbus_config)(struct v4l2_subdev *sd, unsigned int pad, struct v4l2_mbus_

↪→config *config);
};

Members
init_cfg initialize the pad config to default values

enum_mbus_code callback for VIDIOC_SUBDEV_ENUM_MBUS_CODE() ioctl handler code.

enum_frame_size callback for VIDIOC_SUBDEV_ENUM_FRAME_SIZE() ioctl handler code.

enum_frame_interval callback for VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL() ioctl han-
dler code.

get_fmt callback for VIDIOC_SUBDEV_G_FMT() ioctl handler code.

set_fmt callback for VIDIOC_SUBDEV_S_FMT() ioctl handler code.

get_selection callback for VIDIOC_SUBDEV_G_SELECTION() ioctl handler code.

set_selection callback for VIDIOC_SUBDEV_S_SELECTION() ioctl handler code.

get_edid callback for VIDIOC_SUBDEV_G_EDID() ioctl handler code.

set_edid callback for VIDIOC_SUBDEV_S_EDID() ioctl handler code.

dv_timings_cap callback for VIDIOC_SUBDEV_DV_TIMINGS_CAP() ioctl handler code.

enum_dv_timings callback for VIDIOC_SUBDEV_ENUM_DV_TIMINGS() ioctl handler code.

286 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

link_validate used by the media controller code to check if the links that belongs to a pipeline
can be used for stream.

get_frame_desc get the current low level media bus frame parameters.

set_frame_desc set the low level media bus frame parameters, fd array may be adjusted by
the subdev driver to device capabilities.

get_mbus_config get the media bus configuration of a remote sub-device. The media bus con-
figuration is usually retrieved from the firmware interface at sub-device probe time, imme-
diately applied to the hardware and eventually adjusted by the driver. Remote sub-devices
(usually video receivers) shall use this operation to query the transmitting end bus con-
figuration in order to adjust their own one accordingly. Callers should make sure they
get the most up-to-date as possible configuration from the remote end, likely calling this
operation as close as possible to stream on time. The operation shall fail if the pad index
it has been called on is not valid or in case of unrecoverable failures.

set_mbus_config set the media bus configuration of a remote sub-device. This operations
is intended to allow, in combination with the get_mbus_config operation, the negotiation
of media bus configuration parameters between media sub-devices. The operation shall
not fail if the requested configuration is not supported, but the driver shall update the
content of the config argument to reflect what has been actually applied to the hardware.
The operation shall fail if the pad index it has been called on is not valid or in case of
unrecoverable failures.

struct v4l2_subdev_ops
Subdev operations

Definition

struct v4l2_subdev_ops {
const struct v4l2_subdev_core_ops *core;
const struct v4l2_subdev_tuner_ops *tuner;
const struct v4l2_subdev_audio_ops *audio;
const struct v4l2_subdev_video_ops *video;
const struct v4l2_subdev_vbi_ops *vbi;
const struct v4l2_subdev_ir_ops *ir;
const struct v4l2_subdev_sensor_ops *sensor;
const struct v4l2_subdev_pad_ops *pad;

};

Members
core pointer to struct v4l2_subdev_core_ops. Can be NULL

tuner pointer to struct v4l2_subdev_tuner_ops. Can be NULL

audio pointer to struct v4l2_subdev_audio_ops. Can be NULL

video pointer to struct v4l2_subdev_video_ops. Can be NULL

vbi pointer to struct v4l2_subdev_vbi_ops. Can be NULL

ir pointer to struct v4l2_subdev_ir_ops. Can be NULL

sensor pointer to struct v4l2_subdev_sensor_ops. Can be NULL

pad pointer to struct v4l2_subdev_pad_ops. Can be NULL

2.2. Video4Linux devices 287

Linux Media Documentation

struct v4l2_subdev_internal_ops
V4L2 subdev internal ops

Definition

struct v4l2_subdev_internal_ops {
int (*registered)(struct v4l2_subdev *sd);
void (*unregistered)(struct v4l2_subdev *sd);
int (*open)(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh);
int (*close)(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh);
void (*release)(struct v4l2_subdev *sd);

};

Members
registered called when this subdev is registered. When called the v4l2_dev field is set to the

correct v4l2_device.

unregistered called when this subdev is unregistered. When called the v4l2_dev field is still
set to the correct v4l2_device.

open called when the subdev device node is opened by an application.

close called when the subdev device node is closed. Please note that it is possible for close to
be called after unregistered!

release called when the last user of the subdev device is gone. This happens after the unreg-
istered callback and when the last open filehandle to the v4l-subdevX device node was
closed. If no device node was created for this sub-device, then the release callback is
called right after the unregistered callback. The release callback is typically used to
free the memory containing the v4l2_subdev structure. It is almost certainly required for
any sub-device that sets the V4L2_SUBDEV_FL_HAS_DEVNODE flag.

Description

Note: Never call this from drivers, only the v4l2 framework can call these ops.

struct v4l2_subdev_platform_data
regulators config struct

Definition

struct v4l2_subdev_platform_data {
struct regulator_bulk_data *regulators;
int num_regulators;
void *host_priv;

};

Members
regulators Optional regulators used to power on/off the subdevice

num_regulators Number of regululators

host_priv Per-subdevice data, specific for a certain video host device

struct v4l2_subdev
describes a V4L2 sub-device

288 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Definition

struct v4l2_subdev {
#if defined(CONFIG_MEDIA_CONTROLLER);

struct media_entity entity;
#endif;

struct list_head list;
struct module *owner;
bool owner_v4l2_dev;
u32 flags;
struct v4l2_device *v4l2_dev;
const struct v4l2_subdev_ops *ops;
const struct v4l2_subdev_internal_ops *internal_ops;
struct v4l2_ctrl_handler *ctrl_handler;
char name[V4L2_SUBDEV_NAME_SIZE];
u32 grp_id;
void *dev_priv;
void *host_priv;
struct video_device *devnode;
struct device *dev;
struct fwnode_handle *fwnode;
struct list_head async_list;
struct v4l2_async_subdev *asd;
struct v4l2_async_notifier *notifier;
struct v4l2_async_notifier *subdev_notifier;
struct v4l2_subdev_platform_data *pdata;

};

Members
entity pointer to struct media_entity

list List of sub-devices

owner The owner is the same as the driver’s struct device owner.

owner_v4l2_dev true if the sd->ownermatches the owner of v4l2_dev->dev owner. Initialized
by v4l2_device_register_subdev().

flags subdev flags. Can be: V4L2_SUBDEV_FL_IS_I2C - Set this flag if this subdev is
a i2c device; V4L2_SUBDEV_FL_IS_SPI - Set this flag if this subdev is a spi de-
vice; V4L2_SUBDEV_FL_HAS_DEVNODE - Set this flag if this subdev needs a device node;
V4L2_SUBDEV_FL_HAS_EVENTS - Set this flag if this subdev generates events.

v4l2_dev pointer to struct v4l2_device

ops pointer to struct v4l2_subdev_ops

internal_ops pointer to struct v4l2_subdev_internal_ops. Never call these internal ops
from within a driver!

ctrl_handler The control handler of this subdev. May be NULL.

name Name of the sub-device. Please notice that the name must be unique.

grp_id can be used to group similar subdevs. Value is driver-specific

dev_priv pointer to private data

host_priv pointer to private data used by the device where the subdev is attached.

2.2. Video4Linux devices 289

Linux Media Documentation

devnode subdev device node

dev pointer to the physical device, if any

fwnode The fwnode_handle of the subdev, usually the same as either dev->of_node->fwnode or
dev->fwnode (whichever is non-NULL).

async_list Links this subdev to a global subdev_list or notifier->done list.
asd Pointer to respective struct v4l2_async_subdev.

notifier Pointer to the managing notifier.

subdev_notifier A sub-device notifier implicitly registered for the sub- device using
v4l2_async_register_subdev_sensor().

pdata common part of subdevice platform data

Description
Each instance of a subdev driver should create this struct, either stand-alone or embedded in
a larger struct.

This structure should be initialized by v4l2_subdev_init() or one of its variants:
v4l2_spi_subdev_init(), v4l2_i2c_subdev_init().

media_entity_to_v4l2_subdev(ent)
Returns a struct v4l2_subdev from the struct media_entity embedded in it.

Parameters
ent pointer to struct media_entity.

vdev_to_v4l2_subdev(vdev)
Returns a struct v4l2_subdev from the struct video_device embedded on it.

Parameters
vdev pointer to struct video_device

struct v4l2_subdev_fh
Used for storing subdev information per file handle

Definition

struct v4l2_subdev_fh {
struct v4l2_fh vfh;
struct module *owner;

#if defined(CONFIG_VIDEO_V4L2_SUBDEV_API);
struct v4l2_subdev_state *state;

#endif;
};

Members
vfh pointer to struct v4l2_fh

owner module pointer to the owner of this file handle

state pointer to struct v4l2_subdev_state

to_v4l2_subdev_fh(fh)
Returns a struct v4l2_subdev_fh from the struct v4l2_fh embedded on it.

290 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Parameters
fh pointer to struct v4l2_fh

struct v4l2_mbus_framefmt * v4l2_subdev_get_try_format(struct
v4l2_subdev *sd, struct
v4l2_subdev_state *state,
unsigned int pad)

ancillary routine to call struct v4l2_subdev_pad_config->try_fmt

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

struct v4l2_subdev_state *state pointer to struct v4l2_subdev_state

unsigned int pad index of the pad in the struct v4l2_subdev_state->pads array

struct v4l2_rect * v4l2_subdev_get_try_crop(struct v4l2_subdev *sd, struct
v4l2_subdev_state *state, unsigned
int pad)

ancillary routine to call struct v4l2_subdev_pad_config->try_crop

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

struct v4l2_subdev_state *state pointer to struct v4l2_subdev_state.

unsigned int pad index of the pad in the struct v4l2_subdev_state->pads array.

struct v4l2_rect * v4l2_subdev_get_try_compose(struct v4l2_subdev *sd, struct
v4l2_subdev_state *state, unsigned
int pad)

ancillary routine to call struct v4l2_subdev_pad_config->try_compose

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

struct v4l2_subdev_state *state pointer to struct v4l2_subdev_state.

unsigned int pad index of the pad in the struct v4l2_subdev_state->pads array.

void v4l2_set_subdevdata(struct v4l2_subdev *sd, void *p)
Sets V4L2 dev private device data

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

void *p pointer to the private device data to be stored.

void * v4l2_get_subdevdata(const struct v4l2_subdev *sd)
Gets V4L2 dev private device data

Parameters
const struct v4l2_subdev *sd pointer to struct v4l2_subdev

Description
Returns the pointer to the private device data to be stored.

2.2. Video4Linux devices 291

Linux Media Documentation

void v4l2_set_subdev_hostdata(struct v4l2_subdev *sd, void *p)
Sets V4L2 dev private host data

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

void *p pointer to the private data to be stored.

void * v4l2_get_subdev_hostdata(const struct v4l2_subdev *sd)
Gets V4L2 dev private data

Parameters
const struct v4l2_subdev *sd pointer to struct v4l2_subdev

Description
Returns the pointer to the private host data to be stored.

int v4l2_subdev_get_fwnode_pad_1_to_1(struct media_entity *entity, struct fwn-
ode_endpoint *endpoint)

Get pad number from a subdev fwnode endpoint, assuming 1:1 port:pad

Parameters
struct media_entity *entity Pointer to the subdev entity

struct fwnode_endpoint *endpoint Pointer to a parsed fwnode endpoint

Description
This function can be used as the .get_fwnode_pad operation for subdevices that map port num-
bers and pad indexes 1:1. If the endpoint is owned by the subdevice, the function returns the
endpoint port number.

Returns the endpoint port number on success or a negative error code.

int v4l2_subdev_link_validate_default(struct v4l2_subdev *sd, struct
media_link *link, struct
v4l2_subdev_format *source_fmt, struct
v4l2_subdev_format *sink_fmt)

validates a media link

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

struct media_link *link pointer to struct media_link

struct v4l2_subdev_format *source_fmt pointer to struct v4l2_subdev_format

struct v4l2_subdev_format *sink_fmt pointer to struct v4l2_subdev_format

Description
This function ensures that width, height and the media bus pixel code are equal on both source
and sink of the link.

int v4l2_subdev_link_validate(struct media_link *link)
validates a media link

Parameters

292 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct media_link *link pointer to struct media_link

Description
This function calls the subdev’s link_validate ops to validate if a media link is valid for streaming.
It also internally calls v4l2_subdev_link_validate_default() to ensure that width, height
and the media bus pixel code are equal on both source and sink of the link.

struct v4l2_subdev_state * v4l2_subdev_alloc_state(struct v4l2_subdev *sd)
allocate v4l2_subdev_state

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev for which the state is being allo-

cated.

Description
Must call v4l2_subdev_free_state() when state is no longer needed.

void v4l2_subdev_free_state(struct v4l2_subdev_state *state)
free a v4l2_subdev_state

Parameters
struct v4l2_subdev_state *state v4l2_subdev_state to be freed.

void v4l2_subdev_init(struct v4l2_subdev *sd, const struct v4l2_subdev_ops *ops)
initializes the sub-device struct

Parameters
struct v4l2_subdev *sd pointer to the struct v4l2_subdev to be initialized

const struct v4l2_subdev_ops *ops pointer to struct v4l2_subdev_ops.

v4l2_subdev_call(sd, o, f, args…)
call an operation of a v4l2_subdev.

Parameters
sd pointer to the struct v4l2_subdev

o name of the element at struct v4l2_subdev_ops that contains f. Each element there groups
a set of callbacks functions.

f callback function to be called. The callback functions are defined in groups, according to
each element at struct v4l2_subdev_ops.

args... arguments for f.
Example
err = v4l2_subdev_call(sd, video, s_std, norm);

v4l2_subdev_has_op(sd, o, f)
Checks if a subdev defines a certain operation.

Parameters
sd pointer to the struct v4l2_subdev

o The group of callback functions in struct v4l2_subdev_ops which f is a part of.
f callback function to be checked for its existence.

2.2. Video4Linux devices 293

Linux Media Documentation

void v4l2_subdev_notify_event(struct v4l2_subdev *sd, const struct v4l2_event *ev)
Delivers event notification for subdevice

Parameters
struct v4l2_subdev *sd The subdev for which to deliver the event

const struct v4l2_event *ev The event to deliver

Description
Will deliver the specified event to all userspace event listeners which are subscribed to the v42l
subdev event queue as well as to the bridge driver using the notify callback. The notification
type for the notify callback will be V4L2_DEVICE_NOTIFY_EVENT.

2.2.12 V4L2 events

The V4L2 events provide a generic way to pass events to user space. The driver must use
v4l2_fh to be able to support V4L2 events.

Events are subscribed per-filehandle. An event specification consists of a type and is optionally
associated with an object identified through the id field. If unused, then the id is 0. So an
event is uniquely identified by the (type, id) tuple.

The v4l2_fh struct has a list of subscribed events on its subscribed field.

When the user subscribes to an event, a v4l2_subscribed_event struct is added to v4l2_fh.
subscribed, one for every subscribed event.

Each v4l2_subscribed_event struct ends with a v4l2_kevent ringbuffer, with the size given
by the caller of v4l2_event_subscribe(). This ringbuffer is used to store any events raised by
the driver.

So every (type, ID) event tuple will have its own v4l2_kevent ringbuffer. This guarantees that
if a driver is generating lots of events of one type in a short time, then that will not overwrite
events of another type.

But if you get more events of one type than the size of the v4l2_kevent ringbuffer, then the
oldest event will be dropped and the new one added.

The v4l2_kevent struct links into the available list of the v4l2_fh struct so ioctl VID-
IOC_DQEVENT will know which event to dequeue first.

Finally, if the event subscription is associated with a particular object such as a V4L2 control,
then that object needs to know about that as well so that an event can be raised by that object.
So the node field can be used to link the v4l2_subscribed_event struct into a list of such
objects.

So to summarize:

• struct v4l2_fh has two lists: one of the subscribed events, and one of the available
events.

• struct v4l2_subscribed_event has a ringbuffer of raised (pending) events of that par-
ticular type.

• If struct v4l2_subscribed_event is associated with a specific object, then that object
will have an internal list of struct v4l2_subscribed_event so it knows who subscribed
an event to that object.

294 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Furthermore, the internal struct v4l2_subscribed_event has merge() and replace() call-
backs which drivers can set. These callbacks are called when a new event is raised and there
is no more room.

The replace() callback allows you to replace the payload of the old event with that of the new
event, merging any relevant data from the old payload into the new payload that replaces it. It
is called when this event type has a ringbuffer with size is one, i.e. only one event can be stored
in the ringbuffer.

The merge() callback allows you tomerge the oldest event payload into that of the second-oldest
event payload. It is called when the ringbuffer has size is greater than one.

This way no status information is lost, just the intermediate steps leading up to that state.

A good example of these replace/merge callbacks is in v4l2-event.c: ctrls_replace() and
ctrls_merge() callbacks for the control event.

Note: these callbacks can be called from interrupt context, so they must be fast.

In order to queue events to video device, drivers should call:

v4l2_event_queue (vdev, ev)

The driver’s only responsibility is to fill in the type and the data fields. The other fields will be
filled in by V4L2.

2.2.12.1 Event subscription

Subscribing to an event is via:

v4l2_event_subscribe (fh, sub , elems, ops)

This function is used to implement video_device-> ioctl_ops-> vidioc_subscribe_event,
but the driver must check first if the driver is able to produce events with specified event id,
and then should call v4l2_event_subscribe() to subscribe the event.

The elems argument is the size of the event queue for this event. If it is 0, then the framework
will fill in a default value (this depends on the event type).

The ops argument allows the driver to specify a number of callbacks:

Callback Description
add called when a new listener gets added (subscribing to the same event twice will

only cause this callback to get called once)
del called when a listener stops listening
replace replace event ‘old’ with event ‘new’.
merge merge event ‘old’ into event ‘new’.

All 4 callbacks are optional, if you don’t want to specify any callbacks the ops argument itself
maybe NULL.

2.2. Video4Linux devices 295

Linux Media Documentation

2.2.12.2 Unsubscribing an event

Unsubscribing to an event is via:

v4l2_event_unsubscribe (fh, sub)

This function is used to implement video_device-> ioctl_ops-> vidioc_unsubscribe_event.
A driver may call v4l2_event_unsubscribe() directly unless it wants to be involved in unsub-
scription process.

The special type V4L2_EVENT_ALLmay be used to unsubscribe all events. The drivers may want
to handle this in a special way.

2.2.12.3 Check if there’s a pending event

Checking if there’s a pending event is via:

v4l2_event_pending (fh)

This function returns the number of pending events. Useful when implementing poll.

2.2.12.4 How events work

Events are delivered to user space through the poll system call. The driver can use v4l2_fh-
>wait (a wait_queue_head_t) as the argument for poll_wait().

There are standard and private events. New standard events must use the smallest available
event type. The drivers must allocate their events from their own class starting from class base.
Class base is V4L2_EVENT_PRIVATE_START + n * 1000 where n is the lowest available number.
The first event type in the class is reserved for future use, so the first available event type is
‘class base + 1’.

An example on how the V4L2 events may be used can be found in the OMAP 3 ISP driver
(drivers/media/platform/omap3isp).

A subdev can directly send an event to the v4l2_device notify function with
V4L2_DEVICE_NOTIFY_EVENT. This allows the bridge to map the subdev that sends the
event to the video node(s) associated with the subdev that need to be informed about such an
event.

V4L2 event functions and data structures

struct v4l2_kevent
Internal kernel event struct.

Definition

struct v4l2_kevent {
struct list_head list;
struct v4l2_subscribed_event *sev;
struct v4l2_event event;
u64 ts;

};

296 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Members
list List node for the v4l2_fh->available list.

sev Pointer to parent v4l2_subscribed_event.

event The event itself.

ts The timestamp of the event.

struct v4l2_subscribed_event_ops
Subscribed event operations.

Definition

struct v4l2_subscribed_event_ops {
int (*add)(struct v4l2_subscribed_event *sev, unsigned int elems);
void (*del)(struct v4l2_subscribed_event *sev);
void (*replace)(struct v4l2_event *old, const struct v4l2_event *new);
void (*merge)(const struct v4l2_event *old, struct v4l2_event *new);

};

Members
add Optional callback, called when a new listener is added

del Optional callback, called when a listener stops listening

replace Optional callback that can replace event ‘old’ with event ‘new’.

merge Optional callback that can merge event ‘old’ into event ‘new’.

struct v4l2_subscribed_event
Internal struct representing a subscribed event.

Definition

struct v4l2_subscribed_event {
struct list_head list;
u32 type;
u32 id;
u32 flags;
struct v4l2_fh *fh;
struct list_head node;
const struct v4l2_subscribed_event_ops *ops;
unsigned int elems;
unsigned int first;
unsigned int in_use;
struct v4l2_kevent events[];

};

Members
list List node for the v4l2_fh->subscribed list.

type Event type.

id Associated object ID (e.g. control ID). 0 if there isn’t any.

flags Copy of v4l2_event_subscription->flags.

fh Filehandle that subscribed to this event.

2.2. Video4Linux devices 297

Linux Media Documentation

node List node that hooks into the object’s event list (if there is one).

ops v4l2_subscribed_event_ops

elems The number of elements in the events array.

first The index of the events containing the oldest available event.

in_use The number of queued events.

events An array of elems events.
int v4l2_event_dequeue(struct v4l2_fh *fh, struct v4l2_event *event, int nonblocking)

Dequeue events from video device.

Parameters
struct v4l2_fh *fh pointer to struct v4l2_fh

struct v4l2_event *event pointer to struct v4l2_event

int nonblocking if not zero, waits for an event to arrive

void v4l2_event_queue(struct video_device *vdev, const struct v4l2_event *ev)
Queue events to video device.

Parameters
struct video_device *vdev pointer to struct video_device

const struct v4l2_event *ev pointer to struct v4l2_event

Description
The event will be queued for all struct v4l2_fh file handlers.

Note: The driver’s only responsibility is to fill in the type and the data fields. The other fields
will be filled in by V4L2.

void v4l2_event_queue_fh(struct v4l2_fh *fh, const struct v4l2_event *ev)
Queue events to video device.

Parameters
struct v4l2_fh *fh pointer to struct v4l2_fh

const struct v4l2_event *ev pointer to struct v4l2_event

Description
The event will be queued only for the specified struct v4l2_fh file handler.

Note: The driver’s only responsibility is to fill in the type and the data fields. The other fields
will be filled in by V4L2.

void v4l2_event_wake_all(struct video_device *vdev)
Wake all filehandles.

Parameters
struct video_device *vdev pointer to struct video_device

298 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description
Used when unregistering a video device.

int v4l2_event_pending(struct v4l2_fh *fh)
Check if an event is available

Parameters
struct v4l2_fh *fh pointer to struct v4l2_fh

Description
Returns the number of pending events.

int v4l2_event_subscribe(struct v4l2_fh *fh, const struct v4l2_event_subscription *sub,
unsigned int elems, const struct
v4l2_subscribed_event_ops *ops)

Subscribes to an event

Parameters
struct v4l2_fh *fh pointer to struct v4l2_fh

const struct v4l2_event_subscription *sub pointer to struct
v4l2_event_subscription

unsigned int elems size of the events queue

const struct v4l2_subscribed_event_ops *ops pointer to v4l2_subscribed_event_ops

Description

Note: if elems is zero, the framework will fill in a default value, with is currently 1 element.

int v4l2_event_unsubscribe(struct v4l2_fh *fh, const struct
v4l2_event_subscription *sub)

Unsubscribes to an event

Parameters
struct v4l2_fh *fh pointer to struct v4l2_fh

const struct v4l2_event_subscription *sub pointer to struct
v4l2_event_subscription

void v4l2_event_unsubscribe_all(struct v4l2_fh *fh)
Unsubscribes to all events

Parameters
struct v4l2_fh *fh pointer to struct v4l2_fh

int v4l2_event_subdev_unsubscribe(struct v4l2_subdev *sd, struct v4l2_fh *fh, struct
v4l2_event_subscription *sub)

Subdev variant of v4l2_event_unsubscribe()

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

struct v4l2_fh *fh pointer to struct v4l2_fh

2.2. Video4Linux devices 299

Linux Media Documentation

struct v4l2_event_subscription *sub pointer to struct v4l2_event_subscription

Description

Note: This function should be used for the struct v4l2_subdev_core_ops
unsubscribe_event field.

int v4l2_src_change_event_subscribe(struct v4l2_fh *fh, const struct
v4l2_event_subscription *sub)

helper function that calls v4l2_event_subscribe() if the event is
V4L2_EVENT_SOURCE_CHANGE.

Parameters
struct v4l2_fh *fh pointer to struct v4l2_fh

const struct v4l2_event_subscription *sub pointer to struct
v4l2_event_subscription

int v4l2_src_change_event_subdev_subscribe(struct v4l2_subdev *sd,
struct v4l2_fh *fh, struct
v4l2_event_subscription *sub)

Variant of v4l2_event_subscribe(), meant to subscribe only events of the type
V4L2_EVENT_SOURCE_CHANGE.

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

struct v4l2_fh *fh pointer to struct v4l2_fh

struct v4l2_event_subscription *sub pointer to struct v4l2_event_subscription

2.2.13 V4L2 Controls

2.2.13.1 Introduction

The V4L2 control API seems simple enough, but quickly becomes very hard to implement cor-
rectly in drivers. But much of the code needed to handle controls is actually not driver specific
and can be moved to the V4L core framework.

After all, the only part that a driver developer is interested in is:

1) How do I add a control?

2) How do I set the control’s value? (i.e. s_ctrl)

And occasionally:

3) How do I get the control’s value? (i.e. g_volatile_ctrl)

4) How do I validate the user’s proposed control value? (i.e. try_ctrl)

All the rest is something that can be done centrally.

The control framework was created in order to implement all the rules of the V4L2 specification
with respect to controls in a central place. And to make life as easy as possible for the driver
developer.

300 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Note that the control framework relies on the presence of a struct v4l2_device for V4L2 drivers
and struct v4l2_subdev for sub-device drivers.

2.2.13.2 Objects in the framework

There are two main objects:

The v4l2_ctrl object describes the control properties and keeps track of the control’s value
(both the current value and the proposed new value).

v4l2_ctrl_handler is the object that keeps track of controls. It maintains a list of v4l2_ctrl
objects that it owns and another list of references to controls, possibly to controls owned by
other handlers.

2.2.13.3 Basic usage for V4L2 and sub-device drivers

1) Prepare the driver:

#include <media/v4l2-ctrls.h>

1.1) Add the handler to your driver’s top-level struct:

For V4L2 drivers:

struct foo_dev {
...
struct v4l2_device v4l2_dev;
...
struct v4l2_ctrl_handler ctrl_handler;
...

};

For sub-device drivers:

struct foo_dev {
...
struct v4l2_subdev sd;
...
struct v4l2_ctrl_handler ctrl_handler;
...

};

1.2) Initialize the handler:

v4l2_ctrl_handler_init(&foo->ctrl_handler, nr_of_controls);

The second argument is a hint telling the function how many controls this handler is expected
to handle. It will allocate a hashtable based on this information. It is a hint only.

1.3) Hook the control handler into the driver:

For V4L2 drivers:

foo->v4l2_dev.ctrl_handler = &foo->ctrl_handler;

For sub-device drivers:

2.2. Video4Linux devices 301

Linux Media Documentation

foo->sd.ctrl_handler = &foo->ctrl_handler;

1.4) Clean up the handler at the end:

v4l2_ctrl_handler_free(&foo->ctrl_handler);

2) Add controls:

You add non-menu controls by calling v4l2_ctrl_new_std():

struct v4l2_ctrl *v4l2_ctrl_new_std(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops,
u32 id, s32 min, s32 max, u32 step, s32 def);

Menu and integer menu controls are added by calling v4l2_ctrl_new_std_menu():

struct v4l2_ctrl *v4l2_ctrl_new_std_menu(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops,
u32 id, s32 max, s32 skip_mask, s32 def);

Menu controls with a driver specific menu are added by calling
v4l2_ctrl_new_std_menu_items():

struct v4l2_ctrl *v4l2_ctrl_new_std_menu_items(
struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops, u32 id, s32 max,
s32 skip_mask, s32 def, const char * const *qmenu);

Standard compound controls can be added by calling v4l2_ctrl_new_std_compound():

struct v4l2_ctrl *v4l2_ctrl_new_std_compound(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops, u32 id,
const union v4l2_ctrl_ptr p_def);

Integer menu controls with a driver specific menu can be added by calling
v4l2_ctrl_new_int_menu():

struct v4l2_ctrl *v4l2_ctrl_new_int_menu(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops,
u32 id, s32 max, s32 def, const s64 *qmenu_int);

These functions are typically called right after the v4l2_ctrl_handler_init():

static const s64 exp_bias_qmenu[] = {
-2, -1, 0, 1, 2

};
static const char * const test_pattern[] = {

"Disabled",
"Vertical Bars",
"Solid Black",
"Solid White",

};

v4l2_ctrl_handler_init(&foo->ctrl_handler, nr_of_controls);
v4l2_ctrl_new_std(&foo->ctrl_handler, &foo_ctrl_ops,

V4L2_CID_BRIGHTNESS, 0, 255, 1, 128);

302 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

v4l2_ctrl_new_std(&foo->ctrl_handler, &foo_ctrl_ops,
V4L2_CID_CONTRAST, 0, 255, 1, 128);

v4l2_ctrl_new_std_menu(&foo->ctrl_handler, &foo_ctrl_ops,
V4L2_CID_POWER_LINE_FREQUENCY,
V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0,
V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);

v4l2_ctrl_new_int_menu(&foo->ctrl_handler, &foo_ctrl_ops,
V4L2_CID_EXPOSURE_BIAS,
ARRAY_SIZE(exp_bias_qmenu) - 1,
ARRAY_SIZE(exp_bias_qmenu) / 2 - 1,
exp_bias_qmenu);

v4l2_ctrl_new_std_menu_items(&foo->ctrl_handler, &foo_ctrl_ops,
V4L2_CID_TEST_PATTERN, ARRAY_SIZE(test_pattern) - 1, 0,
0, test_pattern);

...
if (foo->ctrl_handler.error) {

int err = foo->ctrl_handler.error;

v4l2_ctrl_handler_free(&foo->ctrl_handler);
return err;

}

The v4l2_ctrl_new_std() function returns the v4l2_ctrl pointer to the new control, but if you
do not need to access the pointer outside the control ops, then there is no need to store it.

The v4l2_ctrl_new_std() function will fill in most fields based on the control ID except for the
min, max, step and default values. These are passed in the last four arguments. These values
are driver specific while control attributes like type, name, flags are all global. The control’s
current value will be set to the default value.

The v4l2_ctrl_new_std_menu() function is very similar but it is used for menu controls. There
is no min argument since that is always 0 for menu controls, and instead of a step there is a
skip_mask argument: if bit X is 1, then menu item X is skipped.

The v4l2_ctrl_new_int_menu() function creates a new standard integer menu control with
driver-specific items in the menu. It differs from v4l2_ctrl_new_std_menu in that it doesn’t
have the mask argument and takes as the last argument an array of signed 64-bit integers that
form an exact menu item list.

The v4l2_ctrl_new_std_menu_items() function is very similar to v4l2_ctrl_new_std_menu but
takes an extra parameter qmenu, which is the driver specific menu for an otherwise stan-
dard menu control. A good example for this control is the test pattern control for cap-
ture/display/sensors devices that have the capability to generate test patterns. These test pat-
terns are hardware specific, so the contents of the menu will vary from device to device.

Note that if something fails, the function will return NULL or an error and set ctrl_handler-
>error to the error code. If ctrl_handler->error was already set, then it will just return and
do nothing. This is also true for v4l2_ctrl_handler_init if it cannot allocate the internal data
structure.

This makes it easy to init the handler and just add all controls and only check the error code at
the end. Saves a lot of repetitive error checking.

It is recommended to add controls in ascending control ID order: it will be a bit faster that way.

3) Optionally force initial control setup:

2.2. Video4Linux devices 303

Linux Media Documentation

v4l2_ctrl_handler_setup(&foo->ctrl_handler);

This will call s_ctrl for all controls unconditionally. Effectively this initializes the hardware to
the default control values. It is recommended that you do this as this ensures that both the
internal data structures and the hardware are in sync.

4) Finally: implement the v4l2_ctrl_ops

static const struct v4l2_ctrl_ops foo_ctrl_ops = {
.s_ctrl = foo_s_ctrl,

};

Usually all you need is s_ctrl:

static int foo_s_ctrl(struct v4l2_ctrl *ctrl)
{

struct foo *state = container_of(ctrl->handler, struct foo, ctrl_handler);

switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:

write_reg(0x123, ctrl->val);
break;

case V4L2_CID_CONTRAST:
write_reg(0x456, ctrl->val);
break;

}
return 0;

}

The control ops are called with the v4l2_ctrl pointer as argument. The new control value has
already been validated, so all you need to do is to actually update the hardware registers.

You’re done! And this is sufficient for most of the drivers we have. No need to do any valida-
tion of control values, or implement QUERYCTRL, QUERY_EXT_CTRL and QUERYMENU. And
G/S_CTRL as well as G/TRY/S_EXT_CTRLS are automatically supported.

Note: The remainder sections deal with more advanced controls topics and scenarios. In
practice the basic usage as described above is sufficient for most drivers.

2.2.13.4 Inheriting Sub-device Controls

When a sub-device is registeredwith a V4L2 driver by calling v4l2_device_register_subdev()
and the ctrl_handler fields of both v4l2_subdev and v4l2_device are set, then the controls of the
subdev will become automatically available in the V4L2 driver as well. If the subdev driver
contains controls that already exist in the V4L2 driver, then those will be skipped (so a V4L2
driver can always override a subdev control).

What happens here is that v4l2_device_register_subdev() calls v4l2_ctrl_add_handler()
adding the controls of the subdev to the controls of v4l2_device.

304 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

2.2.13.5 Accessing Control Values

The following union is used inside the control framework to access control values:

union v4l2_ctrl_ptr {
s32 *p_s32;
s64 *p_s64;
char *p_char;
void *p;

};

The v4l2_ctrl struct contains these fields that can be used to access both current and new
values:

s32 val;
struct {

s32 val;
} cur;

union v4l2_ctrl_ptr p_new;
union v4l2_ctrl_ptr p_cur;

If the control has a simple s32 type, then:

&ctrl->val == ctrl->p_new.p_s32
&ctrl->cur.val == ctrl->p_cur.p_s32

For all other types use ctrl->p_cur.p<something>. Basically the val and cur.val fields can be
considered an alias since these are used so often.

Within the control ops you can freely use these. The val and cur.val speak for themselves.
The p_char pointers point to character buffers of length ctrl->maximum + 1, and are always
0-terminated.

Unless the control is marked volatile the p_cur field points to the current cached control value.
When you create a new control this value is made identical to the default value. After calling
v4l2_ctrl_handler_setup() this value is passed to the hardware. It is generally a good idea
to call this function.

Whenever a new value is set that new value is automatically cached. This means that most
drivers do not need to implement the g_volatile_ctrl() op. The exception is for controls that
return a volatile register such as a signal strength read-out that changes continuously. In that
case you will need to implement g_volatile_ctrl like this:

static int foo_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{

switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:

ctrl->val = read_reg(0x123);
break;

}
}

Note that you use the ‘new value’ union as well in g_volatile_ctrl. In general con-
trols that need to implement g_volatile_ctrl are read-only controls. If they are not, a
V4L2_EVENT_CTRL_CH_VALUE will not be generated when the control changes.

2.2. Video4Linux devices 305

Linux Media Documentation

To mark a control as volatile you have to set V4L2_CTRL_FLAG_VOLATILE:

ctrl = v4l2_ctrl_new_std(&sd->ctrl_handler, ...);
if (ctrl)

ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;

For try/s_ctrl the new values (i.e. as passed by the user) are filled in and you can modify them
in try_ctrl or set them in s_ctrl. The ‘cur’ union contains the current value, which you can use
(but not change!) as well.

If s_ctrl returns 0 (OK), then the control framework will copy the new final values to the ‘cur’
union.

While in g_volatile/s/try_ctrl you can access the value of all controls owned by the same handler
since the handler’s lock is held. If you need to access the value of controls owned by other
handlers, then you have to be very careful not to introduce deadlocks.

Outside of the control ops you have to go through to helper functions to get or set a single
control value safely in your driver:

s32 v4l2_ctrl_g_ctrl(struct v4l2_ctrl *ctrl);
int v4l2_ctrl_s_ctrl(struct v4l2_ctrl *ctrl, s32 val);

These functions go through the control framework just as VIDIOC_G/S_CTRL ioctls do. Don’t
use these inside the control ops g_volatile/s/try_ctrl, though, that will result in a deadlock since
these helpers lock the handler as well.

You can also take the handler lock yourself:

mutex_lock(&state->ctrl_handler.lock);
pr_info("String value is '%s'\n", ctrl1->p_cur.p_char);
pr_info("Integer value is '%s'\n", ctrl2->cur.val);
mutex_unlock(&state->ctrl_handler.lock);

2.2.13.6 Menu Controls

The v4l2_ctrl struct contains this union:

union {
u32 step;
u32 menu_skip_mask;

};

For menu controls menu_skip_mask is used. What it does is that it allows you to easily exclude
certain menu items. This is used in the VIDIOC_QUERYMENU implementation where you can
return -EINVAL if a certain menu item is not present. Note that VIDIOC_QUERYCTRL always
returns a step value of 1 for menu controls.

A good example is the MPEG Audio Layer II Bitrate menu control where the menu is a list of
standardized possible bitrates. But in practice hardware implementations will only support a
subset of those. By setting the skip mask you can tell the framework which menu items should
be skipped. Setting it to 0 means that all menu items are supported.

You set this mask either through the v4l2_ctrl_config struct for a custom control, or by calling
v4l2_ctrl_new_std_menu().

306 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

2.2.13.7 Custom Controls

Driver specific controls can be created using v4l2_ctrl_new_custom():

static const struct v4l2_ctrl_config ctrl_filter = {
.ops = &ctrl_custom_ops,
.id = V4L2_CID_MPEG_CX2341X_VIDEO_SPATIAL_FILTER,
.name = "Spatial Filter",
.type = V4L2_CTRL_TYPE_INTEGER,
.flags = V4L2_CTRL_FLAG_SLIDER,
.max = 15,
.step = 1,

};

ctrl = v4l2_ctrl_new_custom(&foo->ctrl_handler, &ctrl_filter, NULL);

The last argument is the priv pointer which can be set to driver-specific private data.

The v4l2_ctrl_config struct also has a field to set the is_private flag.

If the name field is not set, then the framework will assume this is a standard control and will
fill in the name, type and flags fields accordingly.

2.2.13.8 Active and Grabbed Controls

If you get more complex relationships between controls, then you may have to activate and
deactivate controls. For example, if the Chroma AGC control is on, then the Chroma Gain
control is inactive. That is, you may set it, but the value will not be used by the hardware as
long as the automatic gain control is on. Typically user interfaces can disable such input fields.

You can set the ‘active’ status using v4l2_ctrl_activate(). By default all controls are active.
Note that the framework does not check for this flag. It is meant purely for GUIs. The function
is typically called from within s_ctrl.

The other flag is the ‘grabbed’ flag. A grabbed control means that you cannot change it because
it is in use by some resource. Typical examples are MPEG bitrate controls that cannot be
changed while capturing is in progress.

If a control is set to ‘grabbed’ using v4l2_ctrl_grab(), then the framework will return -EBUSY
if an attempt is made to set this control. The v4l2_ctrl_grab() function is typically called from
the driver when it starts or stops streaming.

2.2.13.9 Control Clusters

By default all controls are independent from the others. But in more complex scenarios you can
get dependencies from one control to another. In that case you need to ‘cluster’ them:

struct foo {
struct v4l2_ctrl_handler ctrl_handler;

#define AUDIO_CL_VOLUME (0)
#define AUDIO_CL_MUTE (1)

struct v4l2_ctrl *audio_cluster[2];
...

};

2.2. Video4Linux devices 307

Linux Media Documentation

state->audio_cluster[AUDIO_CL_VOLUME] =
v4l2_ctrl_new_std(&state->ctrl_handler, ...);

state->audio_cluster[AUDIO_CL_MUTE] =
v4l2_ctrl_new_std(&state->ctrl_handler, ...);

v4l2_ctrl_cluster(ARRAY_SIZE(state->audio_cluster), state->audio_cluster);

From now on whenever one or more of the controls belonging to the same cluster is set (or
‘gotten’, or ‘tried’), only the control ops of the first control (‘volume’ in this example) is called.
You effectively create a new composite control. Similar to how a ‘struct’ works in C.

So when s_ctrl is called with V4L2_CID_AUDIO_VOLUME as argument, you should set all two
controls belonging to the audio_cluster:

static int foo_s_ctrl(struct v4l2_ctrl *ctrl)
{

struct foo *state = container_of(ctrl->handler, struct foo, ctrl_handler);

switch (ctrl->id) {
case V4L2_CID_AUDIO_VOLUME: {

struct v4l2_ctrl *mute = ctrl->cluster[AUDIO_CL_MUTE];

write_reg(0x123, mute->val ? 0 : ctrl->val);
break;

}
case V4L2_CID_CONTRAST:

write_reg(0x456, ctrl->val);
break;

}
return 0;

}

In the example above the following are equivalent for the VOLUME case:

ctrl == ctrl->cluster[AUDIO_CL_VOLUME] == state->audio_cluster[AUDIO_CL_VOLUME]
ctrl->cluster[AUDIO_CL_MUTE] == state->audio_cluster[AUDIO_CL_MUTE]

In practice using cluster arrays like this becomes very tiresome. So instead the following equiv-
alent method is used:

struct {
/* audio cluster */
struct v4l2_ctrl *volume;
struct v4l2_ctrl *mute;

};

The anonymous struct is used to clearly ‘cluster’ these two control pointers, but it serves no
other purpose. The effect is the same as creating an array with two control pointers. So you
can just do:

state->volume = v4l2_ctrl_new_std(&state->ctrl_handler, ...);
state->mute = v4l2_ctrl_new_std(&state->ctrl_handler, ...);
v4l2_ctrl_cluster(2, &state->volume);

And in foo_s_ctrl you can use these pointers directly: state->mute->val.

Note that controls in a cluster may be NULL. For example, if for some reason mute was never
added (because the hardware doesn’t support that particular feature), then mute will be NULL.

308 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

So in that case we have a cluster of 2 controls, of which only 1 is actually instantiated. The only
restriction is that the first control of the clustermust always be present, since that is the ‘master’
control of the cluster. The master control is the one that identifies the cluster and that provides
the pointer to the v4l2_ctrl_ops struct that is used for that cluster.

Obviously, all controls in the cluster array must be initialized to either a valid control or to
NULL.

In rare cases you might want to know which controls of a cluster actually were set explicitly
by the user. For this you can check the ‘is_new’ flag of each control. For example, in the case
of a volume/mute cluster the ‘is_new’ flag of the mute control would be set if the user called
VIDIOC_S_CTRL for mute only. If the user would call VIDIOC_S_EXT_CTRLS for both mute and
volume controls, then the ‘is_new’ flag would be 1 for both controls.

The ‘is_new’ flag is always 1 when called from v4l2_ctrl_handler_setup().

2.2.13.10 Handling autogain/gain-type Controls with Auto Clusters

A common type of control cluster is one that handles ‘auto-foo/foo’-type controls. Typical exam-
ples are autogain/gain, autoexposure/exposure, autowhitebalance/red balance/blue balance. In
all cases you have one control that determines whether another control is handled automatically
by the hardware, or whether it is under manual control from the user.

If the cluster is in automatic mode, then the manual controls should be marked inactive and
volatile. When the volatile controls are read the g_volatile_ctrl operation should return the
value that the hardware’s automatic mode set up automatically.

If the cluster is put in manual mode, then the manual controls should become active again and
the volatile flag is cleared (so g_volatile_ctrl is no longer called while in manual mode). In
addition just before switching to manual mode the current values as determined by the auto
mode are copied as the new manual values.

Finally the V4L2_CTRL_FLAG_UPDATE should be set for the auto control since changing that
control affects the control flags of the manual controls.

In order to simplify this a special variation of v4l2_ctrl_cluster was introduced:

void v4l2_ctrl_auto_cluster(unsigned ncontrols, struct v4l2_ctrl **controls,
u8 manual_val, bool set_volatile);

The first two arguments are identical to v4l2_ctrl_cluster. The third argument tells the frame-
work which value switches the cluster into manual mode. The last argument will optionally set
V4L2_CTRL_FLAG_VOLATILE for the non-auto controls. If it is false, then the manual controls
are never volatile. You would typically use that if the hardware does not give you the option
to read back to values as determined by the auto mode (e.g. if autogain is on, the hardware
doesn’t allow you to obtain the current gain value).

The first control of the cluster is assumed to be the ‘auto’ control.

Using this function will ensure that you don’t need to handle all the complex flag and volatile
handling.

2.2. Video4Linux devices 309

Linux Media Documentation

2.2.13.11 VIDIOC_LOG_STATUS Support

This ioctl allow you to dump the current status of a driver to the kernel log. The
v4l2_ctrl_handler_log_status(ctrl_handler, prefix) can be used to dump the value of the con-
trols owned by the given handler to the log. You can supply a prefix as well. If the prefix didn’t
end with a space, then ‘: ‘ will be added for you.

2.2.13.12 Different Handlers for Different Video Nodes

Usually the V4L2 driver has just one control handler that is global for all video nodes. But
you can also specify different control handlers for different video nodes. You can do that by
manually setting the ctrl_handler field of struct video_device.

That is no problem if there are no subdevs involved but if there are, then you need
to block the automatic merging of subdev controls to the global control handler. You
do that by simply setting the ctrl_handler field in struct v4l2_device to NULL. Now
v4l2_device_register_subdev() will no longer merge subdev controls.

After each subdev was added, you will then have to call v4l2_ctrl_add_handler manually to add
the subdev’s control handler (sd->ctrl_handler) to the desired control handler. This control
handler may be specific to the video_device or for a subset of video_device’s. For example: the
radio device nodes only have audio controls, while the video and vbi device nodes share the
same control handler for the audio and video controls.

If you want to have one handler (e.g. for a radio device node) have a subset of another handler
(e.g. for a video device node), then you should first add the controls to the first handler, add
the other controls to the second handler and finally add the first handler to the second. For
example:

v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_VOLUME, ...);
v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_MUTE, ...);
v4l2_ctrl_new_std(&video_ctrl_handler, &video_ops, V4L2_CID_BRIGHTNESS, ...);
v4l2_ctrl_new_std(&video_ctrl_handler, &video_ops, V4L2_CID_CONTRAST, ...);
v4l2_ctrl_add_handler(&video_ctrl_handler, &radio_ctrl_handler, NULL);

The last argument to v4l2_ctrl_add_handler() is a filter function that allows you to filter
which controls will be added. Set it to NULL if you want to add all controls.

Or you can add specific controls to a handler:

volume = v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_AUDIO_VOLUME, ...);
v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_BRIGHTNESS, ...);
v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_CONTRAST, ...);

What you should not do is make two identical controls for two handlers. For example:

v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_MUTE, ...);
v4l2_ctrl_new_std(&video_ctrl_handler, &video_ops, V4L2_CID_AUDIO_MUTE, ...);

This would be bad since muting the radio would not change the video mute control. The rule is
to have one control for each hardware ‘knob’ that you can twiddle.

310 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

2.2.13.13 Finding Controls

Normally you have created the controls yourself and you can store the struct v4l2_ctrl
pointer into your own struct.

But sometimes you need to find a control from another handler that you do not own. For exam-
ple, if you have to find a volume control from a subdev.

You can do that by calling v4l2_ctrl_find:

struct v4l2_ctrl *volume;

volume = v4l2_ctrl_find(sd->ctrl_handler, V4L2_CID_AUDIO_VOLUME);

Since v4l2_ctrl_find will lock the handler you have to be careful where you use it. For example,
this is not a good idea:

struct v4l2_ctrl_handler ctrl_handler;

v4l2_ctrl_new_std(&ctrl_handler, &video_ops, V4L2_CID_BRIGHTNESS, ...);
v4l2_ctrl_new_std(&ctrl_handler, &video_ops, V4L2_CID_CONTRAST, ...);

…and in video_ops.s_ctrl:

case V4L2_CID_BRIGHTNESS:
contrast = v4l2_find_ctrl(&ctrl_handler, V4L2_CID_CONTRAST);
...

When s_ctrl is called by the framework the ctrl_handler.lock is already taken, so attempting to
find another control from the same handler will deadlock.

It is recommended not to use this function from inside the control ops.

2.2.13.14 Preventing Controls inheritance

When one control handler is added to another using v4l2_ctrl_add_handler, then by default all
controls from one are merged to the other. But a subdev might have low-level controls that
make sense for some advanced embedded system, but not when it is used in consumer-level
hardware. In that case you want to keep those low-level controls local to the subdev. You can
do this by simply setting the ‘is_private’ flag of the control to 1:

static const struct v4l2_ctrl_config ctrl_private = {
.ops = &ctrl_custom_ops,
.id = V4L2_CID_...,
.name = "Some Private Control",
.type = V4L2_CTRL_TYPE_INTEGER,
.max = 15,
.step = 1,
.is_private = 1,

};

ctrl = v4l2_ctrl_new_custom(&foo->ctrl_handler, &ctrl_private, NULL);

These controls will now be skipped when v4l2_ctrl_add_handler is called.

2.2. Video4Linux devices 311

Linux Media Documentation

2.2.13.15 V4L2_CTRL_TYPE_CTRL_CLASS Controls

Controls of this type can be used by GUIs to get the name of the control class. A fully featured
GUI can make a dialog with multiple tabs with each tab containing the controls belonging to a
particular control class. The name of each tab can be found by querying a special control with
ID <control class | 1>.

Drivers do not have to care about this. The framework will automatically add a control of this
type whenever the first control belonging to a new control class is added.

2.2.13.16 Adding Notify Callbacks

Sometimes the platform or bridge driver needs to be notified when a control from a sub-device
driver changes. You can set a notify callback by calling this function:

void v4l2_ctrl_notify(struct v4l2_ctrl *ctrl,
void (*notify)(struct v4l2_ctrl *ctrl, void *priv), void *priv);

Whenever the give control changes value the notify callback will be called with a pointer to
the control and the priv pointer that was passed with v4l2_ctrl_notify. Note that the control’s
handler lock is held when the notify function is called.

There can be only one notify function per control handler. Any attempt to set another notify
function will cause a WARN_ON.

2.2.13.17 v4l2_ctrl functions and data structures

union v4l2_ctrl_ptr
A pointer to a control value.

Definition

union v4l2_ctrl_ptr {
s32 *p_s32;
s64 *p_s64;
u8 *p_u8;
u16 *p_u16;
u32 *p_u32;
char *p_char;
struct v4l2_ctrl_mpeg2_sequence *p_mpeg2_sequence;
struct v4l2_ctrl_mpeg2_picture *p_mpeg2_picture;
struct v4l2_ctrl_mpeg2_quantisation *p_mpeg2_quantisation;
struct v4l2_ctrl_fwht_params *p_fwht_params;
struct v4l2_ctrl_h264_sps *p_h264_sps;
struct v4l2_ctrl_h264_pps *p_h264_pps;
struct v4l2_ctrl_h264_scaling_matrix *p_h264_scaling_matrix;
struct v4l2_ctrl_h264_slice_params *p_h264_slice_params;
struct v4l2_ctrl_h264_decode_params *p_h264_decode_params;
struct v4l2_ctrl_h264_pred_weights *p_h264_pred_weights;
struct v4l2_ctrl_vp8_frame *p_vp8_frame;
struct v4l2_ctrl_hevc_sps *p_hevc_sps;
struct v4l2_ctrl_hevc_pps *p_hevc_pps;
struct v4l2_ctrl_hevc_slice_params *p_hevc_slice_params;
struct v4l2_ctrl_vp9_compressed_hdr *p_vp9_compressed_hdr_probs;
struct v4l2_ctrl_vp9_frame *p_vp9_frame;

312 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct v4l2_ctrl_hdr10_cll_info *p_hdr10_cll;
struct v4l2_ctrl_hdr10_mastering_display *p_hdr10_mastering;
struct v4l2_area *p_area;
void *p;
const void *p_const;

};

Members
p_s32 Pointer to a 32-bit signed value.

p_s64 Pointer to a 64-bit signed value.

p_u8 Pointer to a 8-bit unsigned value.

p_u16 Pointer to a 16-bit unsigned value.

p_u32 Pointer to a 32-bit unsigned value.

p_char Pointer to a string.

p_mpeg2_sequence Pointer to a MPEG2 sequence structure.

p_mpeg2_picture Pointer to a MPEG2 picture structure.

p_mpeg2_quantisation Pointer to a MPEG2 quantisation data structure.

p_fwht_params Pointer to a FWHT stateless parameters structure.

p_h264_sps Pointer to a struct v4l2_ctrl_h264_sps.

p_h264_pps Pointer to a struct v4l2_ctrl_h264_pps.

p_h264_scaling_matrix Pointer to a struct v4l2_ctrl_h264_scaling_matrix.

p_h264_slice_params Pointer to a struct v4l2_ctrl_h264_slice_params.

p_h264_decode_params Pointer to a struct v4l2_ctrl_h264_decode_params.

p_h264_pred_weights Pointer to a struct v4l2_ctrl_h264_pred_weights.

p_vp8_frame Pointer to a VP8 frame params structure.

p_hevc_sps Pointer to an HEVC sequence parameter set structure.

p_hevc_pps Pointer to an HEVC picture parameter set structure.

p_hevc_slice_params Pointer to an HEVC slice parameters structure.

p_vp9_compressed_hdr_probs Pointer to a VP9 frame compressed header probs structure.

p_vp9_frame Pointer to a VP9 frame params structure.

p_hdr10_cll Pointer to an HDR10 Content Light Level structure.

p_hdr10_mastering Pointer to an HDR10 Mastering Display structure.

p_area Pointer to an area.

p Pointer to a compound value.

p_const Pointer to a constant compound value.

union v4l2_ctrl_ptr v4l2_ctrl_ptr_create(void *ptr)
Helper function to return a v4l2_ctrl_ptr from a void pointer

2.2. Video4Linux devices 313

Linux Media Documentation

Parameters
void *ptr The void pointer

struct v4l2_ctrl_ops
The control operations that the driver has to provide.

Definition

struct v4l2_ctrl_ops {
int (*g_volatile_ctrl)(struct v4l2_ctrl *ctrl);
int (*try_ctrl)(struct v4l2_ctrl *ctrl);
int (*s_ctrl)(struct v4l2_ctrl *ctrl);

};

Members
g_volatile_ctrl Get a new value for this control. Generally only relevant for volatile (and

usually read-only) controls such as a control that returns the current signal strength which
changes continuously. If not set, then the currently cached value will be returned.

try_ctrl Test whether the control’s value is valid. Only relevant when the usual min/max/step
checks are not sufficient.

s_ctrl Actually set the new control value. s_ctrl is compulsory. The ctrl->handler->lock is
held when these ops are called, so no one else can access controls owned by that handler.

struct v4l2_ctrl_type_ops
The control type operations that the driver has to provide.

Definition

struct v4l2_ctrl_type_ops {
bool (*equal)(const struct v4l2_ctrl *ctrl, u32 idx,union v4l2_ctrl_ptr ptr1, union␣

↪→v4l2_ctrl_ptr ptr2);
void (*init)(const struct v4l2_ctrl *ctrl, u32 idx, union v4l2_ctrl_ptr ptr);
void (*log)(const struct v4l2_ctrl *ctrl);
int (*validate)(const struct v4l2_ctrl *ctrl, u32 idx, union v4l2_ctrl_ptr ptr);

};

Members
equal return true if both values are equal.

init initialize the value.

log log the value.

validate validate the value. Return 0 on success and a negative value otherwise.

v4l2_ctrl_notify_fnc
Typedef: typedef for a notify argument with a function that should be called when a control
value has changed.

Syntax
void v4l2_ctrl_notify_fnc (struct v4l2_ctrl *ctrl, void *priv)

Parameters
struct v4l2_ctrl *ctrl pointer to struct v4l2_ctrl

314 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

void *priv control private data

Description
This typedef definition is used as an argument to v4l2_ctrl_notify() and as an argument at
struct v4l2_ctrl_handler.

struct v4l2_ctrl
The control structure.

Definition

struct v4l2_ctrl {
struct list_head node;
struct list_head ev_subs;
struct v4l2_ctrl_handler *handler;
struct v4l2_ctrl **cluster;
unsigned int ncontrols;
unsigned int done:1;
unsigned int is_new:1;
unsigned int has_changed:1;
unsigned int is_private:1;
unsigned int is_auto:1;
unsigned int is_int:1;
unsigned int is_string:1;
unsigned int is_ptr:1;
unsigned int is_array:1;
unsigned int has_volatiles:1;
unsigned int call_notify:1;
unsigned int manual_mode_value:8;
const struct v4l2_ctrl_ops *ops;
const struct v4l2_ctrl_type_ops *type_ops;
u32 id;
const char *name;
enum v4l2_ctrl_type type;
s64 minimum, maximum, default_value;
u32 elems;
u32 elem_size;
u32 dims[V4L2_CTRL_MAX_DIMS];
u32 nr_of_dims;
union {
u64 step;
u64 menu_skip_mask;

};
union {
const char * const *qmenu;
const s64 *qmenu_int;

};
unsigned long flags;
void *priv;
s32 val;
struct {
s32 val;

} cur;
union v4l2_ctrl_ptr p_def;
union v4l2_ctrl_ptr p_new;
union v4l2_ctrl_ptr p_cur;

};

2.2. Video4Linux devices 315

Linux Media Documentation

Members
node The list node.

ev_subs The list of control event subscriptions.

handler The handler that owns the control.

cluster Point to start of cluster array.

ncontrols Number of controls in cluster array.

done Internal flag: set for each processed control.

is_new Set when the user specified a new value for this control. It is also set when called from
v4l2_ctrl_handler_setup(). Drivers should never set this flag.

has_changed Set when the current value differs from the new value. Drivers should never use
this flag.

is_private If set, then this control is private to its handler and it will not be added to any other
handlers. Drivers can set this flag.

is_auto If set, then this control selects whether the other cluster members are in ‘automatic’
mode or ‘manual’ mode. This is used for autogain/gain type clusters. Drivers should never
set this flag directly.

is_int If set, then this control has a simple integer value (i.e. it uses ctrl->val).

is_string If set, then this control has type V4L2_CTRL_TYPE_STRING.

is_ptr If set, then this control is an array and/or has type >= V4L2_CTRL_COMPOUND_TYPES
and/or has type V4L2_CTRL_TYPE_STRING. In other words, struct v4l2_ext_control uses
field p to point to the data.

is_array If set, then this control contains an N-dimensional array.

has_volatiles If set, then one or more members of the cluster are volatile. Drivers should
never touch this flag.

call_notify If set, then call the handler’s notify function whenever the control’s value
changes.

manual_mode_value If the is_auto flag is set, then this is the value of the auto control that
determines if that control is in manual mode. So if the value of the auto control equals
this value, then the whole cluster is in manual mode. Drivers should never set this flag
directly.

ops The control ops.

type_ops The control type ops.

id The control ID.

name The control name.

type The control type.

minimum The control’s minimum value.

maximum The control’s maximum value.

default_value The control’s default value.

316 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

elems The number of elements in the N-dimensional array.

elem_size The size in bytes of the control.

dims The size of each dimension.

nr_of_dims The number of dimensions in dims.
{unnamed_union} anonymous

step The control’s step value for non-menu controls.

menu_skip_mask The control’s skip mask for menu controls. This makes it easy to skip menu
items that are not valid. If bit X is set, then menu item X is skipped. Of course, this only
works for menus with <= 32 menu items. There are no menus that come close to that
number, so this is OK. Should we ever need more, then this will have to be extended to a
u64 or a bit array.

{unnamed_union} anonymous

qmenu A const char * array for all menu items. Array entries that are empty strings (“”) corre-
spond to non-existing menu items (this is in addition to the menu_skip_mask above). The
last entry must be NULL. Used only if the type is V4L2_CTRL_TYPE_MENU.

qmenu_int A 64-bit integer array for with integer menu items. The size of array must be
equal to the menu size, e. g.: ceil(maximum−minimum

step) + 1. Used only if the type is
V4L2_CTRL_TYPE_INTEGER_MENU.

flags The control’s flags.

priv The control’s private pointer. For use by the driver. It is untouched by the control frame-
work. Note that this pointer is not freed when the control is deleted. Should this be needed
then a new internal bitfield can be added to tell the framework to free this pointer.

val The control’s new s32 value.

cur Structure to store the current value.

cur.val The control’s current value, if the type is represented via a u32 integer (see enum
v4l2_ctrl_type).

p_def The control’s default value represented via a union which provides a standard way of
accessing control types through a pointer (for compound controls only).

p_new The control’s new value represented via a union which provides a standard way of ac-
cessing control types through a pointer.

p_cur The control’s current value represented via a union which provides a standard way of
accessing control types through a pointer.

struct v4l2_ctrl_ref
The control reference.

Definition

struct v4l2_ctrl_ref {
struct list_head node;
struct v4l2_ctrl_ref *next;
struct v4l2_ctrl *ctrl;
struct v4l2_ctrl_helper *helper;
bool from_other_dev;
bool req_done;

2.2. Video4Linux devices 317

Linux Media Documentation

bool valid_p_req;
union v4l2_ctrl_ptr p_req;

};

Members
node List node for the sorted list.

next Single-link list node for the hash.

ctrl The actual control information.

helper Pointer to helper struct. Used internally in prepare_ext_ctrls function at v4l2-ctrl.
c.

from_other_dev If true, then ctrl was defined in another device than the struct
v4l2_ctrl_handler.

req_done Internal flag: if the control handler containing this control reference is bound to a
media request, then this is set when the control has been applied. This prevents applying
controls from a cluster with multiple controls twice (when the first control of a cluster is
applied, they all are).

valid_p_req If set, then p_req contains the control value for the request.

p_req If the control handler containing this control reference is bound to a media request, then
this points to the value of the control that must be applied when the request is executed,
or to the value of the control at the time that the request was completed. If valid_p_req is
false, then this control was never set for this request and the control will not be updated
when this request is applied.

Description
Each control handler has a list of these refs. The list_head is used to keep a sorted-by-control-ID
list of all controls, while the next pointer is used to link the control in the hash’s bucket.

struct v4l2_ctrl_handler
The control handler keeps track of all the controls: both the controls owned by the handler
and those inherited from other handlers.

Definition

struct v4l2_ctrl_handler {
struct mutex _lock;
struct mutex *lock;
struct list_head ctrls;
struct list_head ctrl_refs;
struct v4l2_ctrl_ref *cached;
struct v4l2_ctrl_ref **buckets;
v4l2_ctrl_notify_fnc notify;
void *notify_priv;
u16 nr_of_buckets;
int error;
bool request_is_queued;
struct list_head requests;
struct list_head requests_queued;
struct media_request_object req_obj;

};

318 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Members
_lock Default for “lock”.

lock Lock to control access to this handler and its controls. May be replaced by the user right
after init.

ctrls The list of controls owned by this handler.

ctrl_refs The list of control references.

cached The last found control reference. It is common that the same control is needed multiple
times, so this is a simple optimization.

buckets Buckets for the hashing. Allows for quick control lookup.

notify A notify callback that is called whenever the control changes value. Note that the
handler’s lock is held when the notify function is called!

notify_priv Passed as argument to the v4l2_ctrl notify callback.

nr_of_buckets Total number of buckets in the array.

error The error code of the first failed control addition.

request_is_queued True if the request was queued.

requests List to keep track of open control handler request objects. For the parent control
handler (req_obj.ops == NULL) this is the list header. When the parent control handler
is removed, it has to unbind and put all these requests since they refer to the parent.

requests_queued List of the queued requests. This determines the order in which these con-
trols are applied. Once the request is completed it is removed from this list.

req_obj The struct media_request_object, used to link into a struct media_request. This
request object has a refcount.

struct v4l2_ctrl_config
Control configuration structure.

Definition

struct v4l2_ctrl_config {
const struct v4l2_ctrl_ops *ops;
const struct v4l2_ctrl_type_ops *type_ops;
u32 id;
const char *name;
enum v4l2_ctrl_type type;
s64 min;
s64 max;
u64 step;
s64 def;
union v4l2_ctrl_ptr p_def;
u32 dims[V4L2_CTRL_MAX_DIMS];
u32 elem_size;
u32 flags;
u64 menu_skip_mask;
const char * const *qmenu;
const s64 *qmenu_int;
unsigned int is_private:1;

};

2.2. Video4Linux devices 319

Linux Media Documentation

Members
ops The control ops.

type_ops The control type ops. Only needed for compound controls.

id The control ID.

name The control name.

type The control type.

min The control’s minimum value.

max The control’s maximum value.

step The control’s step value for non-menu controls.

def The control’s default value.

p_def The control’s default value for compound controls.

dims The size of each dimension.

elem_size The size in bytes of the control.

flags The control’s flags.

menu_skip_mask The control’s skip mask for menu controls. This makes it easy to skip menu
items that are not valid. If bit X is set, then menu item X is skipped. Of course, this only
works for menus with <= 64 menu items. There are no menus that come close to that
number, so this is OK. Should we ever need more, then this will have to be extended to a
bit array.

qmenu A const char * array for all menu items. Array entries that are empty strings (“”) corre-
spond to non-existing menu items (this is in addition to the menu_skip_mask above). The
last entry must be NULL.

qmenu_int A const s64 integer array for all menu items of the type
V4L2_CTRL_TYPE_INTEGER_MENU.

is_private If set, then this control is private to its handler and it will not be added to any other
handlers.

void v4l2_ctrl_fill(u32 id, const char **name, enum v4l2_ctrl_type *type, s64 *min,
s64 *max, u64 *step, s64 *def, u32 *flags)

Fill in the control fields based on the control ID.

Parameters
u32 id ID of the control

const char **name pointer to be filled with a string with the name of the control

enum v4l2_ctrl_type *type pointer for storing the type of the control

s64 *min pointer for storing the minimum value for the control

s64 *max pointer for storing the maximum value for the control

u64 *step pointer for storing the control step

s64 *def pointer for storing the default value for the control

u32 *flags pointer for storing the flags to be used on the control

320 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description
This works for all standard V4L2 controls. For non-standard controls it will only fill in the given
arguments and name content will be set to NULL.
This function will overwrite the contents of name, type and flags. The contents of min, max,
step and def may be modified depending on the type.

Note: Do not use in drivers! It is used internally for backwards compatibility control handling
only. Once all drivers are converted to use the new control framework this function will no
longer be exported.

int v4l2_ctrl_handler_init_class(struct v4l2_ctrl_handler *hdl, unsigned
int nr_of_controls_hint, struct lock_class_key *key,
const char *name)

Initialize the control handler.

Parameters
struct v4l2_ctrl_handler *hdl The control handler.

unsigned int nr_of_controls_hint A hint of how many controls this handler is expected to
refer to. This is the total number, so including any inherited controls. It doesn’t have to be
precise, but if it is way off, then you either waste memory (too many buckets are allocated)
or the control lookup becomes slower (not enough buckets are allocated, so there are more
slow list lookups). It will always work, though.

struct lock_class_key *key Used by the lock validator if CONFIG_LOCKDEP is set.

const char *name Used by the lock validator if CONFIG_LOCKDEP is set.

Description

Attention: Never use this call directly, always use the v4l2_ctrl_handler_init() macro
that hides the key and name arguments.

Return
returns an error if the buckets could not be allocated. This error will also be stored in hdl-
>error.
v4l2_ctrl_handler_init(hdl, nr_of_controls_hint)

helper function to create a static struct lock_class_key and calls
v4l2_ctrl_handler_init_class()

Parameters
hdl The control handler.

nr_of_controls_hint A hint of how many controls this handler is expected to refer to. This
is the total number, so including any inherited controls. It doesn’t have to be precise,
but if it is way off, then you either waste memory (too many buckets are allocated) or the
control lookup becomes slower (not enough buckets are allocated, so there are more slow
list lookups). It will always work, though.

Description

2.2. Video4Linux devices 321

Linux Media Documentation

This helper function creates a static struct lock_class_key and calls
v4l2_ctrl_handler_init_class(), providing a proper name for the lock validador.

Use this helper function to initialize a control handler.

void v4l2_ctrl_handler_free(struct v4l2_ctrl_handler *hdl)
Free all controls owned by the handler and free the control list.

Parameters
struct v4l2_ctrl_handler *hdl The control handler.

Description
Does nothing if hdl == NULL.
void v4l2_ctrl_lock(struct v4l2_ctrl *ctrl)

Helper function to lock the handler associated with the control.

Parameters
struct v4l2_ctrl *ctrl The control to lock.

void v4l2_ctrl_unlock(struct v4l2_ctrl *ctrl)
Helper function to unlock the handler associated with the control.

Parameters
struct v4l2_ctrl *ctrl The control to unlock.

int __v4l2_ctrl_handler_setup(struct v4l2_ctrl_handler *hdl)
Call the s_ctrl op for all controls belonging to the handler to initialize the hardware to the
current control values. The caller is responsible for acquiring the control handler mutex
on behalf of __v4l2_ctrl_handler_setup().

Parameters
struct v4l2_ctrl_handler *hdl The control handler.

Description
Button controls will be skipped, as are read-only controls.

If hdl == NULL, then this just returns 0.
int v4l2_ctrl_handler_setup(struct v4l2_ctrl_handler *hdl)

Call the s_ctrl op for all controls belonging to the handler to initialize the hardware to the
current control values.

Parameters
struct v4l2_ctrl_handler *hdl The control handler.

Description
Button controls will be skipped, as are read-only controls.

If hdl == NULL, then this just returns 0.
void v4l2_ctrl_handler_log_status(struct v4l2_ctrl_handler *hdl, const char *prefix)

Log all controls owned by the handler.

Parameters
struct v4l2_ctrl_handler *hdl The control handler.

322 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

const char *prefix The prefix to use when logging the control values. If the prefix does not
end with a space, then “: ” will be added after the prefix. If prefix == NULL, then no
prefix will be used.

Description
For use with VIDIOC_LOG_STATUS.

Does nothing if hdl == NULL.
struct v4l2_ctrl * v4l2_ctrl_new_custom(struct v4l2_ctrl_handler *hdl, const struct

v4l2_ctrl_config *cfg, void *priv)
Allocate and initialize a new custom V4L2 control.

Parameters
struct v4l2_ctrl_handler *hdl The control handler.

const struct v4l2_ctrl_config *cfg The control’s configuration data.

void *priv The control’s driver-specific private data.

Description
If the v4l2_ctrl struct could not be allocated then NULL is returned and hdl->error is set to
the error code (if it wasn’t set already).

struct v4l2_ctrl * v4l2_ctrl_new_std(struct v4l2_ctrl_handler *hdl, const struct
v4l2_ctrl_ops *ops, u32 id, s64 min, s64 max,
u64 step, s64 def)

Allocate and initialize a new standard V4L2 non-menu control.

Parameters
struct v4l2_ctrl_handler *hdl The control handler.

const struct v4l2_ctrl_ops *ops The control ops.

u32 id The control ID.

s64 min The control’s minimum value.

s64 max The control’s maximum value.

u64 step The control’s step value

s64 def The control’s default value.

Description
If the v4l2_ctrl struct could not be allocated, or the control ID is not known, then NULL is
returned and hdl->error is set to the appropriate error code (if it wasn’t set already).
If id refers to a menu control, then this function will return NULL.
Use v4l2_ctrl_new_std_menu() when adding menu controls.

struct v4l2_ctrl * v4l2_ctrl_new_std_menu(struct v4l2_ctrl_handler *hdl, const
struct v4l2_ctrl_ops *ops, u32 id, u8 max,
u64 mask, u8 def)

Allocate and initialize a new standard V4L2 menu control.

Parameters
struct v4l2_ctrl_handler *hdl The control handler.

2.2. Video4Linux devices 323

Linux Media Documentation

const struct v4l2_ctrl_ops *ops The control ops.

u32 id The control ID.

u8 max The control’s maximum value.

u64 mask The control’s skip mask for menu controls. This makes it easy to skip menu items
that are not valid. If bit X is set, then menu item X is skipped. Of course, this only works
for menus with <= 64 menu items. There are no menus that come close to that number,
so this is OK. Should we ever need more, then this will have to be extended to a bit array.

u8 def The control’s default value.

Description
Same as v4l2_ctrl_new_std(), butmin is set to 0 and themask value determines which menu
items are to be skipped.

If id refers to a non-menu control, then this function will return NULL.
struct v4l2_ctrl * v4l2_ctrl_new_std_menu_items(struct v4l2_ctrl_handler *hdl, const

struct v4l2_ctrl_ops *ops, u32 id,
u8 max, u64 mask, u8 def, const char
* const *qmenu)

Create a new standard V4L2 menu control with driver specific menu.

Parameters
struct v4l2_ctrl_handler *hdl The control handler.

const struct v4l2_ctrl_ops *ops The control ops.

u32 id The control ID.

u8 max The control’s maximum value.

u64 mask The control’s skip mask for menu controls. This makes it easy to skip menu items
that are not valid. If bit X is set, then menu item X is skipped. Of course, this only works
for menus with <= 64 menu items. There are no menus that come close to that number,
so this is OK. Should we ever need more, then this will have to be extended to a bit array.

u8 def The control’s default value.

const char * const *qmenu The new menu.

Description
Same as v4l2_ctrl_new_std_menu(), but qmenu will be the driver specific menu of this con-
trol.

struct v4l2_ctrl * v4l2_ctrl_new_std_compound(struct v4l2_ctrl_handler *hdl, const
struct v4l2_ctrl_ops *ops, u32 id, const
union v4l2_ctrl_ptr p_def)

Allocate and initialize a new standard V4L2 compound control.

Parameters
struct v4l2_ctrl_handler *hdl The control handler.

const struct v4l2_ctrl_ops *ops The control ops.

u32 id The control ID.

324 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

const union v4l2_ctrl_ptr p_def The control’s default value.

Description
Sames as v4l2_ctrl_new_std(), but with support to compound controls, thanks to
the p_def field. Use v4l2_ctrl_ptr_create() to create p_def from a pointer. Use
v4l2_ctrl_ptr_create(NULL) if the default value of the compound control should be all zeroes.

struct v4l2_ctrl * v4l2_ctrl_new_int_menu(struct v4l2_ctrl_handler *hdl, const struct
v4l2_ctrl_ops *ops, u32 id, u8 max, u8 def,
const s64 *qmenu_int)

Create a new standard V4L2 integer menu control.

Parameters
struct v4l2_ctrl_handler *hdl The control handler.

const struct v4l2_ctrl_ops *ops The control ops.

u32 id The control ID.

u8 max The control’s maximum value.

u8 def The control’s default value.

const s64 *qmenu_int The control’s menu entries.

Description
Same as v4l2_ctrl_new_std_menu(), butmask is set to 0 and it additionally takes as an argu-
ment an array of integers determining the menu items.

If id refers to a non-integer-menu control, then this function will return NULL.
v4l2_ctrl_filter

Typedef: Typedef to define the filter function to be used when adding a control handler.
Syntax

bool v4l2_ctrl_filter (const struct v4l2_ctrl *ctrl)

Parameters
const struct v4l2_ctrl *ctrl pointer to struct v4l2_ctrl.

int v4l2_ctrl_add_handler(struct v4l2_ctrl_handler *hdl, struct v4l2_ctrl_handler *add,
v4l2_ctrl_filter filter, bool from_other_dev)

Add all controls from handler add to handler hdl.
Parameters
struct v4l2_ctrl_handler *hdl The control handler.

struct v4l2_ctrl_handler *add The control handler whose controls you want to add to the
hdl control handler.

v4l2_ctrl_filter filter This function will filter which controls should be added.

bool from_other_dev If true, then the controls in add were defined in another device than
hdl.

Description

2.2. Video4Linux devices 325

Linux Media Documentation

Does nothing if either of the two handlers is a NULL pointer. If filter is NULL, then all controls
are added. Otherwise only those controls for which filter returns true will be added. In case
of an error hdl->error will be set to the error code (if it wasn’t set already).
bool v4l2_ctrl_radio_filter(const struct v4l2_ctrl *ctrl)

Standard filter for radio controls.

Parameters
const struct v4l2_ctrl *ctrl The control that is filtered.

Description
This will return true for any controls that are valid for radio device nodes. Those are all of the
V4L2_CID_AUDIO_* user controls and all FM transmitter class controls.

This function is to be used with v4l2_ctrl_add_handler().

void v4l2_ctrl_cluster(unsigned int ncontrols, struct v4l2_ctrl **controls)
Mark all controls in the cluster as belonging to that cluster.

Parameters
unsigned int ncontrols The number of controls in this cluster.

struct v4l2_ctrl **controls The cluster control array of size ncontrols.
void v4l2_ctrl_auto_cluster(unsigned int ncontrols, struct v4l2_ctrl **controls,

u8 manual_val, bool set_volatile)
Mark all controls in the cluster as belonging to that cluster and set it up for autofoo/foo-
type handling.

Parameters
unsigned int ncontrols The number of controls in this cluster.

struct v4l2_ctrl **controls The cluster control array of size ncontrols. The first control
must be the ‘auto’ control (e.g. autogain, autoexposure, etc.)

u8 manual_val The value for the first control in the cluster that equals the manual setting.

bool set_volatile If true, then all controls except the first auto control will be volatile.

Description
Use for control groups where one control selects some automatic feature and the other controls
are only active whenever the automatic feature is turned off (manual mode). Typical examples:
autogain vs gain, auto-whitebalance vs red and blue balance, etc.

The behavior of such controls is as follows:

When the autofoo control is set to automatic, then any manual controls are set to inactive and
any reads will call g_volatile_ctrl (if the control was marked volatile).

When the autofoo control is set to manual, then any manual controls will be marked active, and
any reads will just return the current value without going through g_volatile_ctrl.

In addition, this function will set the V4L2_CTRL_FLAG_UPDATE flag on the autofoo control and
V4L2_CTRL_FLAG_INACTIVE on the foo control(s) if autofoo is in auto mode.

struct v4l2_ctrl * v4l2_ctrl_find(struct v4l2_ctrl_handler *hdl, u32 id)
Find a control with the given ID.

326 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Parameters
struct v4l2_ctrl_handler *hdl The control handler.

u32 id The control ID to find.

Description
If hdl == NULL this will return NULL as well. Will lock the handler so do not use from inside
v4l2_ctrl_ops.

void v4l2_ctrl_activate(struct v4l2_ctrl *ctrl, bool active)
Make the control active or inactive.

Parameters
struct v4l2_ctrl *ctrl The control to (de)activate.

bool active True if the control should become active.

Description
This sets or clears the V4L2_CTRL_FLAG_INACTIVE flag atomically. Does nothing if ctrl ==
NULL. This will usually be called from within the s_ctrl op. The V4L2_EVENT_CTRL event will
be generated afterwards.

This function assumes that the control handler is locked.

void __v4l2_ctrl_grab(struct v4l2_ctrl *ctrl, bool grabbed)
Unlocked variant of v4l2_ctrl_grab.

Parameters
struct v4l2_ctrl *ctrl The control to (de)activate.

bool grabbed True if the control should become grabbed.

Description
This sets or clears the V4L2_CTRL_FLAG_GRABBED flag atomically. Does nothing if ctrl ==
NULL. The V4L2_EVENT_CTRL event will be generated afterwards. This will usually be called
when starting or stopping streaming in the driver.

This function assumes that the control handler is locked by the caller.

void v4l2_ctrl_grab(struct v4l2_ctrl *ctrl, bool grabbed)
Mark the control as grabbed or not grabbed.

Parameters
struct v4l2_ctrl *ctrl The control to (de)activate.

bool grabbed True if the control should become grabbed.

Description
This sets or clears the V4L2_CTRL_FLAG_GRABBED flag atomically. Does nothing if ctrl ==
NULL. The V4L2_EVENT_CTRL event will be generated afterwards. This will usually be called
when starting or stopping streaming in the driver.

This function assumes that the control handler is not locked and will take the lock itself.

2.2. Video4Linux devices 327

Linux Media Documentation

int __v4l2_ctrl_modify_range(struct v4l2_ctrl *ctrl, s64 min, s64 max, u64 step,
s64 def)

Unlocked variant of v4l2_ctrl_modify_range()

Parameters
struct v4l2_ctrl *ctrl The control to update.

s64 min The control’s minimum value.

s64 max The control’s maximum value.

u64 step The control’s step value

s64 def The control’s default value.

Description
Update the range of a control on the fly. This works for control types INTEGER, BOOLEAN,
MENU, INTEGER MENU and BITMASK. For menu controls the step value is interpreted as a
menu_skip_mask.

An error is returned if one of the range arguments is invalid for this control type.

The caller is responsible for acquiring the control handler mutex on behalf of
__v4l2_ctrl_modify_range().

int v4l2_ctrl_modify_range(struct v4l2_ctrl *ctrl, s64 min, s64 max, u64 step, s64 def)
Update the range of a control.

Parameters
struct v4l2_ctrl *ctrl The control to update.

s64 min The control’s minimum value.

s64 max The control’s maximum value.

u64 step The control’s step value

s64 def The control’s default value.

Description
Update the range of a control on the fly. This works for control types INTEGER, BOOLEAN,
MENU, INTEGER MENU and BITMASK. For menu controls the step value is interpreted as a
menu_skip_mask.

An error is returned if one of the range arguments is invalid for this control type.

This function assumes that the control handler is not locked and will take the lock itself.

void v4l2_ctrl_notify(struct v4l2_ctrl *ctrl, v4l2_ctrl_notify_fnc notify, void *priv)
Function to set a notify callback for a control.

Parameters
struct v4l2_ctrl *ctrl The control.

v4l2_ctrl_notify_fnc notify The callback function.

void *priv The callback private handle, passed as argument to the callback.

328 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description
This function sets a callback function for the control. If ctrl is NULL, then it will do nothing. If
notify is NULL, then the notify callback will be removed.
There can be only one notify. If another already exists, then a WARN_ON will be issued and the
function will do nothing.

const char * v4l2_ctrl_get_name(u32 id)
Get the name of the control

Parameters
u32 id The control ID.

Description
This function returns the name of the given control ID or NULL if it isn’t a known control.

const char * const * v4l2_ctrl_get_menu(u32 id)
Get the menu string array of the control

Parameters
u32 id The control ID.

Description
This function returns the NULL-terminated menu string array name of the given control ID or
NULL if it isn’t a known menu control.

const s64 * v4l2_ctrl_get_int_menu(u32 id, u32 *len)
Get the integer menu array of the control

Parameters
u32 id The control ID.

u32 *len The size of the integer array.

Description
This function returns the integer array of the given control ID or NULL if it if it isn’t a known
integer menu control.

s32 v4l2_ctrl_g_ctrl(struct v4l2_ctrl *ctrl)
Helper function to get the control’s value from within a driver.

Parameters
struct v4l2_ctrl *ctrl The control.

Description
This returns the control’s value safely by going through the control framework. This function
will lock the control’s handler, so it cannot be used from within the v4l2_ctrl_ops functions.

This function is for integer type controls only.

int __v4l2_ctrl_s_ctrl(struct v4l2_ctrl *ctrl, s32 val)
Unlocked variant of v4l2_ctrl_s_ctrl().

Parameters
struct v4l2_ctrl *ctrl The control.

2.2. Video4Linux devices 329

Linux Media Documentation

s32 val The new value.

Description
This sets the control’s new value safely by going through the control framework. This func-
tion assumes the control’s handler is already locked, allowing it to be used from within the
v4l2_ctrl_ops functions.

This function is for integer type controls only.

int v4l2_ctrl_s_ctrl(struct v4l2_ctrl *ctrl, s32 val)
Helper function to set the control’s value from within a driver.

Parameters
struct v4l2_ctrl *ctrl The control.

s32 val The new value.

Description
This sets the control’s new value safely by going through the control framework. This function
will lock the control’s handler, so it cannot be used from within the v4l2_ctrl_ops functions.

This function is for integer type controls only.

s64 v4l2_ctrl_g_ctrl_int64(struct v4l2_ctrl *ctrl)
Helper function to get a 64-bit control’s value from within a driver.

Parameters
struct v4l2_ctrl *ctrl The control.

Description
This returns the control’s value safely by going through the control framework. This function
will lock the control’s handler, so it cannot be used from within the v4l2_ctrl_ops functions.

This function is for 64-bit integer type controls only.

int __v4l2_ctrl_s_ctrl_int64(struct v4l2_ctrl *ctrl, s64 val)
Unlocked variant of v4l2_ctrl_s_ctrl_int64().

Parameters
struct v4l2_ctrl *ctrl The control.

s64 val The new value.

Description
This sets the control’s new value safely by going through the control framework. This func-
tion assumes the control’s handler is already locked, allowing it to be used from within the
v4l2_ctrl_ops functions.

This function is for 64-bit integer type controls only.

int v4l2_ctrl_s_ctrl_int64(struct v4l2_ctrl *ctrl, s64 val)
Helper function to set a 64-bit control’s value from within a driver.

Parameters
struct v4l2_ctrl *ctrl The control.

s64 val The new value.

330 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description
This sets the control’s new value safely by going through the control framework. This function
will lock the control’s handler, so it cannot be used from within the v4l2_ctrl_ops functions.

This function is for 64-bit integer type controls only.

int __v4l2_ctrl_s_ctrl_string(struct v4l2_ctrl *ctrl, const char *s)
Unlocked variant of v4l2_ctrl_s_ctrl_string().

Parameters
struct v4l2_ctrl *ctrl The control.

const char *s The new string.

Description
This sets the control’s new string safely by going through the control framework. This func-
tion assumes the control’s handler is already locked, allowing it to be used from within the
v4l2_ctrl_ops functions.

This function is for string type controls only.

int v4l2_ctrl_s_ctrl_string(struct v4l2_ctrl *ctrl, const char *s)
Helper function to set a control’s string value from within a driver.

Parameters
struct v4l2_ctrl *ctrl The control.

const char *s The new string.

Description
This sets the control’s new string safely by going through the control framework. This function
will lock the control’s handler, so it cannot be used from within the v4l2_ctrl_ops functions.

This function is for string type controls only.

int __v4l2_ctrl_s_ctrl_compound(struct v4l2_ctrl *ctrl, enum v4l2_ctrl_type type, const
void *p)

Unlocked variant to set a compound control

Parameters
struct v4l2_ctrl *ctrl The control.

enum v4l2_ctrl_type type The type of the data.

const void *p The new compound payload.

Description
This sets the control’s new compound payload safely by going through the control framework.
This function assumes the control’s handler is already locked, allowing it to be used from within
the v4l2_ctrl_ops functions.

This function is for compound type controls only.

int v4l2_ctrl_s_ctrl_compound(struct v4l2_ctrl *ctrl, enum v4l2_ctrl_type type, const
void *p)

Helper function to set a compound control from within a driver.

2.2. Video4Linux devices 331

Linux Media Documentation

Parameters
struct v4l2_ctrl *ctrl The control.

enum v4l2_ctrl_type type The type of the data.

const void *p The new compound payload.

Description
This sets the control’s new compound payload safely by going through the control framework.
This function will lock the control’s handler, so it cannot be used fromwithin the v4l2_ctrl_ops
functions.

This function is for compound type controls only.

void v4l2_ctrl_replace(struct v4l2_event *old, const struct v4l2_event *new)
Function to be used as a callback to struct v4l2_subscribed_event_ops replace()

Parameters
struct v4l2_event *old pointer to struct v4l2_event with the reported event;

const struct v4l2_event *new pointer to struct v4l2_event with the modified event;

void v4l2_ctrl_merge(const struct v4l2_event *old, struct v4l2_event *new)
Function to be used as a callback to struct v4l2_subscribed_event_ops merge()

Parameters
const struct v4l2_event *old pointer to struct v4l2_event with the reported event;

struct v4l2_event *new pointer to struct v4l2_event with the merged event;

int v4l2_ctrl_log_status(struct file *file, void *fh)
helper function to implement VIDIOC_LOG_STATUS ioctl

Parameters
struct file *file pointer to struct file

void *fh unused. Kept just to be compatible to the arguments expected by struct
v4l2_ioctl_ops.vidioc_log_status.

Description
Can be used as a vidioc_log_status function that just dumps all controls associated with the
filehandle.

int v4l2_ctrl_subscribe_event(struct v4l2_fh *fh, const struct
v4l2_event_subscription *sub)

Subscribes to an event

Parameters
struct v4l2_fh *fh pointer to struct v4l2_fh

const struct v4l2_event_subscription *sub pointer to struct
v4l2_event_subscription

Description
Can be used as a vidioc_subscribe_event function that just subscribes control events.

332 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

__poll_t v4l2_ctrl_poll(struct file *file, struct poll_table_struct *wait)
function to be used as a callback to the poll() That just polls for control events.

Parameters
struct file *file pointer to struct file

struct poll_table_struct *wait pointer to struct poll_table_struct

int v4l2_ctrl_request_setup(struct media_request *req, struct
v4l2_ctrl_handler *parent)

helper function to apply control values in a request

Parameters
struct media_request *req The request

struct v4l2_ctrl_handler *parent The parent control handler (‘priv’ in
media_request_object_find())

Description
This is a helper function to call the control handler’s s_ctrl callback with the control values
contained in the request. Do note that this approach of applying control values in a request is
only applicable to memory-to-memory devices.

void v4l2_ctrl_request_complete(struct media_request *req, struct
v4l2_ctrl_handler *parent)

Complete a control handler request object

Parameters
struct media_request *req The request

struct v4l2_ctrl_handler *parent The parent control handler (‘priv’ in
media_request_object_find())

Description
This function is to be called on each control handler that may have had a request object asso-
ciated with it, i.e. control handlers of a driver that supports requests.

The function first obtains the values of any volatile controls in the control handler and attach
them to the request. Then, the function completes the request object.

struct v4l2_ctrl_handler * v4l2_ctrl_request_hdl_find(struct me-
dia_request *req, struct
v4l2_ctrl_handler *parent)

Find the control handler in the request

Parameters
struct media_request *req The request

struct v4l2_ctrl_handler *parent The parent control handler (‘priv’ in
media_request_object_find())

Description
This function finds the control handler in the request. It may return NULL if not found. When
done, you must call v4l2_ctrl_request_put_hdl() with the returned handler pointer.

2.2. Video4Linux devices 333

Linux Media Documentation

If the request is not in state VALIDATING or QUEUED, then this function will always return
NULL.

Note that in state VALIDATING the req_queue_mutex is held, so no objects can be added or
deleted from the request.

In state QUEUED it is the driver that will have to ensure this.

void v4l2_ctrl_request_hdl_put(struct v4l2_ctrl_handler *hdl)
Put the control handler

Parameters
struct v4l2_ctrl_handler *hdl Put this control handler

Description
This function released the control handler previously obtained from’
v4l2_ctrl_request_hdl_find().

struct v4l2_ctrl * v4l2_ctrl_request_hdl_ctrl_find(struct v4l2_ctrl_handler *hdl,
u32 id)

Find a control with the given ID.

Parameters
struct v4l2_ctrl_handler *hdl The control handler from the request.

u32 id The ID of the control to find.

Description
This function returns a pointer to the control if this control is part of the request or NULL
otherwise.

int v4l2_queryctrl(struct v4l2_ctrl_handler *hdl, struct v4l2_queryctrl *qc)
Helper function to implement VIDIOC_QUERYCTRL ioctl

Parameters
struct v4l2_ctrl_handler *hdl pointer to struct v4l2_ctrl_handler

struct v4l2_queryctrl *qc pointer to struct v4l2_queryctrl

Description
If hdl == NULL then they will all return -EINVAL.

int v4l2_query_ext_ctrl(struct v4l2_ctrl_handler *hdl, struct v4l2_query_ext_ctrl *qc)
Helper function to implement VIDIOC_QUERY_EXT_CTRL ioctl

Parameters
struct v4l2_ctrl_handler *hdl pointer to struct v4l2_ctrl_handler

struct v4l2_query_ext_ctrl *qc pointer to struct v4l2_query_ext_ctrl

Description
If hdl == NULL then they will all return -EINVAL.

int v4l2_querymenu(struct v4l2_ctrl_handler *hdl, struct v4l2_querymenu *qm)
Helper function to implement VIDIOC_QUERYMENU ioctl

Parameters

334 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct v4l2_ctrl_handler *hdl pointer to struct v4l2_ctrl_handler

struct v4l2_querymenu *qm pointer to struct v4l2_querymenu

Description
If hdl == NULL then they will all return -EINVAL.

int v4l2_g_ctrl(struct v4l2_ctrl_handler *hdl, struct v4l2_control *ctrl)
Helper function to implement VIDIOC_G_CTRL ioctl

Parameters
struct v4l2_ctrl_handler *hdl pointer to struct v4l2_ctrl_handler

struct v4l2_control *ctrl pointer to struct v4l2_control

Description
If hdl == NULL then they will all return -EINVAL.

int v4l2_s_ctrl(struct v4l2_fh *fh, struct v4l2_ctrl_handler *hdl, struct
v4l2_control *ctrl)

Helper function to implement VIDIOC_S_CTRL ioctl

Parameters
struct v4l2_fh *fh pointer to struct v4l2_fh

struct v4l2_ctrl_handler *hdl pointer to struct v4l2_ctrl_handler

struct v4l2_control *ctrl pointer to struct v4l2_control

Description
If hdl == NULL then they will all return -EINVAL.

int v4l2_g_ext_ctrls(struct v4l2_ctrl_handler *hdl, struct video_device *vdev, struct
media_device *mdev, struct v4l2_ext_controls *c)

Helper function to implement VIDIOC_G_EXT_CTRLS ioctl

Parameters
struct v4l2_ctrl_handler *hdl pointer to struct v4l2_ctrl_handler

struct video_device *vdev pointer to struct video_device

struct media_device *mdev pointer to struct media_device

struct v4l2_ext_controls *c pointer to struct v4l2_ext_controls

Description
If hdl == NULL then they will all return -EINVAL.

int v4l2_try_ext_ctrls(struct v4l2_ctrl_handler *hdl, struct video_device *vdev, struct
media_device *mdev, struct v4l2_ext_controls *c)

Helper function to implement VIDIOC_TRY_EXT_CTRLS ioctl

Parameters
struct v4l2_ctrl_handler *hdl pointer to struct v4l2_ctrl_handler

struct video_device *vdev pointer to struct video_device

struct media_device *mdev pointer to struct media_device

2.2. Video4Linux devices 335

Linux Media Documentation

struct v4l2_ext_controls *c pointer to struct v4l2_ext_controls

Description
If hdl == NULL then they will all return -EINVAL.

int v4l2_s_ext_ctrls(struct v4l2_fh *fh, struct v4l2_ctrl_handler *hdl, struct
video_device *vdev, struct media_device *mdev, struct
v4l2_ext_controls *c)

Helper function to implement VIDIOC_S_EXT_CTRLS ioctl

Parameters
struct v4l2_fh *fh pointer to struct v4l2_fh

struct v4l2_ctrl_handler *hdl pointer to struct v4l2_ctrl_handler

struct video_device *vdev pointer to struct video_device

struct media_device *mdev pointer to struct media_device

struct v4l2_ext_controls *c pointer to struct v4l2_ext_controls

Description
If hdl == NULL then they will all return -EINVAL.

int v4l2_ctrl_subdev_subscribe_event(struct v4l2_subdev *sd, struct v4l2_fh *fh,
struct v4l2_event_subscription *sub)

Helper function to implement as a struct v4l2_subdev_core_ops subscribe_event func-
tion that just subscribes control events.

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

struct v4l2_fh *fh pointer to struct v4l2_fh

struct v4l2_event_subscription *sub pointer to struct v4l2_event_subscription

int v4l2_ctrl_subdev_log_status(struct v4l2_subdev *sd)
Log all controls owned by subdev’s control handler.

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

int v4l2_ctrl_new_fwnode_properties(struct v4l2_ctrl_handler *hdl, const struct
v4l2_ctrl_ops *ctrl_ops, const struct
v4l2_fwnode_device_properties *p)

Register controls for the device properties

Parameters
struct v4l2_ctrl_handler *hdl pointer to struct v4l2_ctrl_handler to register controls

on

const struct v4l2_ctrl_ops *ctrl_ops pointer to struct v4l2_ctrl_ops to register con-
trols with

const struct v4l2_fwnode_device_properties *p pointer to struct
v4l2_fwnode_device_properties

336 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description
This function registers controls associated to device properties, using the property values con-
tained in p parameter, if the property has been set to a value.
Currently the following v4l2 controls are parsed and registered: -
V4L2_CID_CAMERA_ORIENTATION - V4L2_CID_CAMERA_SENSOR_ROTATION;

Controls already registered by the caller with the hdl control handler are not overwritten.
Callers should register the controls they want to handle themselves before calling this function.

Return
0 on success, a negative error code on failure.

2.2.14 Videobuf Framework

Author: Jonathan Corbet <corbet@lwn.net>

Current as of 2.6.33

Note: The videobuf framework was deprecated in favor of videobuf2. Shouldn’t be used on
new drivers.

2.2.14.1 Introduction

The videobuf layer functions as a sort of glue layer between a V4L2 driver and user space. It
handles the allocation and management of buffers for the storage of video frames. There is a
set of functions which can be used to implement many of the standard POSIX I/O system calls,
including read(), poll(), and, happily, mmap(). Another set of functions can be used to implement
the bulk of the V4L2 ioctl() calls related to streaming I/O, including buffer allocation, queueing
and dequeueing, and streaming control. Using videobuf imposes a few design decisions on the
driver author, but the payback comes in the form of reduced code in the driver and a consistent
implementation of the V4L2 user-space API.

2.2.14.2 Buffer types

Not all video devices use the same kind of buffers. In fact, there are (at least) three common
variations:

• Buffers which are scattered in both the physical and (kernel) virtual address spaces. (Al-
most) all user-space buffers are like this, but it makes great sense to allocate kernel-space
buffers this way as well when it is possible. Unfortunately, it is not always possible; work-
ing with this kind of buffer normally requires hardware which can do scatter/gather DMA
operations.

• Buffers which are physically scattered, but which are virtually contiguous; buffers allo-
cated with vmalloc(), in other words. These buffers are just as hard to use for DMA op-
erations, but they can be useful in situations where DMA is not available but virtually-
contiguous buffers are convenient.

2.2. Video4Linux devices 337

mailto:corbet@lwn.net

Linux Media Documentation

• Buffers which are physically contiguous. Allocation of this kind of buffer can be unreliable
on fragmented systems, but simpler DMA controllers cannot deal with anything else.

Videobuf can work with all three types of buffers, but the driver author must pick one at the
outset and design the driver around that decision.

[It’s worth noting that there’s a fourth kind of buffer: “overlay” buffers which are located within
the system’s video memory. The overlay functionality is considered to be deprecated for most
use, but it still shows up occasionally in system-on-chip drivers where the performance benefits
merit the use of this technique. Overlay buffers can be handled as a form of scattered buffer,
but there are very few implementations in the kernel and a description of this technique is
currently beyond the scope of this document.]

2.2.14.3 Data structures, callbacks, and initialization

Depending on which type of buffers are being used, the driver should include one of the follow-
ing files:

<media/videobuf-dma-sg.h> /* Physically scattered */
<media/videobuf-vmalloc.h> /* vmalloc() buffers */
<media/videobuf-dma-contig.h> /* Physically contiguous */

The driver’s data structure describing a V4L2 device should include a struct videobuf_queue
instance for the management of the buffer queue, along with a list_head for the queue of avail-
able buffers. There will also need to be an interrupt-safe spinlock which is used to protect (at
least) the queue.

The next step is to write four simple callbacks to help videobuf deal with the management of
buffers:

struct videobuf_queue_ops {
int (*buf_setup)(struct videobuf_queue *q,

unsigned int *count, unsigned int *size);
int (*buf_prepare)(struct videobuf_queue *q,

struct videobuf_buffer *vb,
enum v4l2_field field);

void (*buf_queue)(struct videobuf_queue *q,
struct videobuf_buffer *vb);

void (*buf_release)(struct videobuf_queue *q,
struct videobuf_buffer *vb);

};

buf_setup() is called early in the I/O process, when streaming is being initiated; its purpose is to
tell videobuf about the I/O stream. The count parameter will be a suggested number of buffers
to use; the driver should check it for rationality and adjust it if need be. As a practical rule,
a minimum of two buffers are needed for proper streaming, and there is usually a maximum
(which cannot exceed 32) which makes sense for each device. The size parameter should be
set to the expected (maximum) size for each frame of data.

Each buffer (in the form of a struct videobuf_buffer pointer) will be passed to buf_prepare(),
which should set the buffer’s size, width, height, and field fields properly. If the buffer’s state
field is VIDEOBUF_NEEDS_INIT, the driver should pass it to:

int videobuf_iolock(struct videobuf_queue* q, struct videobuf_buffer *vb,
struct v4l2_framebuffer *fbuf);

338 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Among other things, this call will usually allocate memory for the buffer. Finally, the
buf_prepare() function should set the buffer’s state to VIDEOBUF_PREPARED.

When a buffer is queued for I/O, it is passed to buf_queue(), which should put it onto the driver’s
list of available buffers and set its state to VIDEOBUF_QUEUED. Note that this function is called
with the queue spinlock held; if it tries to acquire it as well things will come to a screeching halt.
Yes, this is the voice of experience. Note also that videobuf may wait on the first buffer in the
queue; placing other buffers in front of it could again gum up the works. So use list_add_tail()
to enqueue buffers.

Finally, buf_release() is called when a buffer is no longer intended to be used. The driver should
ensure that there is no I/O active on the buffer, then pass it to the appropriate free routine(s):

/* Scatter/gather drivers */
int videobuf_dma_unmap(struct videobuf_queue *q,

struct videobuf_dmabuf *dma);
int videobuf_dma_free(struct videobuf_dmabuf *dma);

/* vmalloc drivers */
void videobuf_vmalloc_free (struct videobuf_buffer *buf);

/* Contiguous drivers */
void videobuf_dma_contig_free(struct videobuf_queue *q,

struct videobuf_buffer *buf);

One way to ensure that a buffer is no longer under I/O is to pass it to:

int videobuf_waiton(struct videobuf_buffer *vb, int non_blocking, int intr);

Here, vb is the buffer, non_blocking indicates whether non-blocking I/O should be used (it should
be zero in the buf_release() case), and intr controls whether an interruptible wait is used.

2.2.14.4 File operations

At this point, much of the work is done; much of the rest is slipping videobuf calls into the
implementation of the other driver callbacks. The first step is in the open() function, which
must initialize the videobuf queue. The function to use depends on the type of buffer used:

void videobuf_queue_sg_init(struct videobuf_queue *q,
struct videobuf_queue_ops *ops,
struct device *dev,
spinlock_t *irqlock,
enum v4l2_buf_type type,
enum v4l2_field field,
unsigned int msize,
void *priv);

void videobuf_queue_vmalloc_init(struct videobuf_queue *q,
struct videobuf_queue_ops *ops,
struct device *dev,
spinlock_t *irqlock,
enum v4l2_buf_type type,
enum v4l2_field field,
unsigned int msize,
void *priv);

2.2. Video4Linux devices 339

Linux Media Documentation

void videobuf_queue_dma_contig_init(struct videobuf_queue *q,
struct videobuf_queue_ops *ops,
struct device *dev,
spinlock_t *irqlock,
enum v4l2_buf_type type,
enum v4l2_field field,
unsigned int msize,
void *priv);

In each case, the parameters are the same: q is the queue structure for the device, ops is the set
of callbacks as described above, dev is the device structure for this video device, irqlock is an
interrupt-safe spinlock to protect access to the data structures, type is the buffer type used by
the device (cameras will use V4L2_BUF_TYPE_VIDEO_CAPTURE, for example), field describes
which field is being captured (often V4L2_FIELD_NONE for progressive devices), msize is the
size of any containing structure used around struct videobuf_buffer, and priv is a private data
pointer which shows up in the priv_data field of struct videobuf_queue. Note that these are void
functions which, evidently, are immune to failure.

V4L2 capture drivers can be written to support either of two APIs: the read() system call and
the rather more complicated streaming mechanism. As a general rule, it is necessary to support
both to ensure that all applications have a chance of working with the device. Videobuf makes
it easy to do that with the same code. To implement read(), the driver need only make a call to
one of:

ssize_t videobuf_read_one(struct videobuf_queue *q,
char __user *data, size_t count,
loff_t *ppos, int nonblocking);

ssize_t videobuf_read_stream(struct videobuf_queue *q,
char __user *data, size_t count,
loff_t *ppos, int vbihack, int nonblocking);

Either one of these functions will read frame data into data, returning the amount actu-
ally read; the difference is that videobuf_read_one() will only read a single frame, while
videobuf_read_stream() will read multiple frames if they are needed to satisfy the count re-
quested by the application. A typical driver read() implementation will start the capture engine,
call one of the above functions, then stop the engine before returning (though a smarter imple-
mentation might leave the engine running for a little while in anticipation of another read() call
happening in the near future).

The poll() function can usually be implemented with a direct call to:

unsigned int videobuf_poll_stream(struct file *file,
struct videobuf_queue *q,
poll_table *wait);

Note that the actual wait queue eventually usedwill be the one associated with the first available
buffer.

When streaming I/O is done to kernel-space buffers, the driver must support the mmap() system
call to enable user space to access the data. In many V4L2 drivers, the often-complex mmap()
implementation simplifies to a single call to:

int videobuf_mmap_mapper(struct videobuf_queue *q,
struct vm_area_struct *vma);

340 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Everything else is handled by the videobuf code.

The release() function requires two separate videobuf calls:

void videobuf_stop(struct videobuf_queue *q);
int videobuf_mmap_free(struct videobuf_queue *q);

The call to videobuf_stop() terminates any I/O in progress - though it is still up to the driver
to stop the capture engine. The call to videobuf_mmap_free() will ensure that all buffers have
been unmapped; if so, they will all be passed to the buf_release() callback. If buffers remain
mapped, videobuf_mmap_free() returns an error code instead. The purpose is clearly to cause
the closing of the file descriptor to fail if buffers are still mapped, but every driver in the 2.6.32
kernel cheerfully ignores its return value.

2.2.14.5 ioctl() operations

The V4L2 API includes a very long list of driver callbacks to respond to the many ioctl() com-
mands made available to user space. A number of these - those associated with streaming I/O
- turn almost directly into videobuf calls. The relevant helper functions are:

int videobuf_reqbufs(struct videobuf_queue *q,
struct v4l2_requestbuffers *req);

int videobuf_querybuf(struct videobuf_queue *q, struct v4l2_buffer *b);
int videobuf_qbuf(struct videobuf_queue *q, struct v4l2_buffer *b);
int videobuf_dqbuf(struct videobuf_queue *q, struct v4l2_buffer *b,

int nonblocking);
int videobuf_streamon(struct videobuf_queue *q);
int videobuf_streamoff(struct videobuf_queue *q);

So, for example, a VIDIOC_REQBUFS call turns into a call to the driver’s vidioc_reqbufs() call-
back which, in turn, usually only needs to locate the proper struct videobuf_queue pointer and
pass it to videobuf_reqbufs(). These support functions can replace a great deal of buffer man-
agement boilerplate in a lot of V4L2 drivers.

The vidioc_streamon() and vidioc_streamoff() functions will be a bit more complex, of course,
since they will also need to deal with starting and stopping the capture engine.

2.2.14.6 Buffer allocation

Thus far, we have talked about buffers, but have not looked at how they are allocated. The
scatter/gather case is the most complex on this front. For allocation, the driver can leave buffer
allocation entirely up to the videobuf layer; in this case, buffers will be allocated as anony-
mous user-space pages and will be very scattered indeed. If the application is using user-space
buffers, no allocation is needed; the videobuf layer will take care of calling get_user_pages()
and filling in the scatterlist array.

If the driver needs to do its own memory allocation, it should be done in the vidioc_reqbufs()
function, after calling videobuf_reqbufs(). The first step is a call to:

struct videobuf_dmabuf *videobuf_to_dma(struct videobuf_buffer *buf);

The returned videobuf_dmabuf structure (defined in <media/videobuf-dma-sg.h>) includes a
couple of relevant fields:

2.2. Video4Linux devices 341

Linux Media Documentation

struct scatterlist *sglist;
int sglen;

The driver must allocate an appropriately-sized scatterlist array and populate it with pointers
to the pieces of the allocated buffer; sglen should be set to the length of the array.

Drivers using the vmalloc() method need not (and cannot) concern themselves with buffer allo-
cation at all; videobuf will handle those details. The same is normally true of contiguous-DMA
drivers as well; videobuf will allocate the buffers (with dma_alloc_coherent()) when it sees fit.
That means that these drivers may be trying to do high-order allocations at any time, an opera-
tion which is not always guaranteed to work. Some drivers play tricks by allocating DMA space
at system boot time; videobuf does not currently play well with those drivers.

As of 2.6.31, contiguous-DMA drivers can work with a user-supplied buffer, as long as that
buffer is physically contiguous. Normal user-space allocations will not meet that criterion, but
buffers obtained from other kernel drivers, or those contained within huge pages, will work
with these drivers.

2.2.14.7 Filling the buffers

The final part of a videobuf implementation has no direct callback - it’s the portion of the code
which actually puts frame data into the buffers, usually in response to interrupts from the de-
vice. For all types of drivers, this process works approximately as follows:

• Obtain the next available buffer and make sure that somebody is actually waiting for it.

• Get a pointer to the memory and put video data there.

• Mark the buffer as done and wake up the process waiting for it.

Step (1) above is done by looking at the driver-managed list_head structure - the one which
is filled in the buf_queue() callback. Because starting the engine and enqueueing buffers are
done in separate steps, it’s possible for the engine to be running without any buffers available
- in the vmalloc() case especially. So the driver should be prepared for the list to be empty. It
is equally possible that nobody is yet interested in the buffer; the driver should not remove it
from the list or fill it until a process is waiting on it. That test can be done by examining the
buffer’s done field (a wait_queue_head_t structure) with waitqueue_active().

A buffer’s state should be set to VIDEOBUF_ACTIVE before beingmapped for DMA; that ensures
that the videobuf layer will not try to do anything with it while the device is transferring data.

For scatter/gather drivers, the needed memory pointers will be found in the scatterlist structure
described above. Drivers using the vmalloc() method can get a memory pointer with:

void *videobuf_to_vmalloc(struct videobuf_buffer *buf);

For contiguous DMA drivers, the function to use is:

dma_addr_t videobuf_to_dma_contig(struct videobuf_buffer *buf);

The contiguous DMA API goes out of its way to hide the kernel-space address of the DMA buffer
from drivers.

The final step is to set the size field of the relevant videobuf_buffer structure to the actual size
of the captured image, set state to VIDEOBUF_DONE, then call wake_up() on the done queue.
At this point, the buffer is owned by the videobuf layer and the driver should not touch it again.

342 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Developers who are interested in more information can go into the relevant header files; there
are a few low-level functions declared there which have not been talked about here. Note also
that all of these calls are exported GPL-only, so they will not be available to non-GPL kernel
modules.

2.2.15 V4L2 videobuf2 functions and data structures

enum vb2_memory
type of memory model used to make the buffers visible on userspace.

Constants
VB2_MEMORY_UNKNOWN Buffer status is unknown or it is not used yet on userspace.

VB2_MEMORY_MMAP The buffers are allocated by the Kernel and it is memory mapped via mmap()
ioctl. This model is also used when the user is using the buffers via read() or write() system
calls.

VB2_MEMORY_USERPTR The buffers was allocated in userspace and it is memory mapped via
mmap() ioctl.

VB2_MEMORY_DMABUF The buffers are passed to userspace via DMA buffer.

struct vb2_mem_ops
memory handling/memory allocator operations.

Definition

struct vb2_mem_ops {
void *(*alloc)(struct vb2_buffer *vb,struct device *dev, unsigned long size);
void (*put)(void *buf_priv);
struct dma_buf *(*get_dmabuf)(struct vb2_buffer *vb,void *buf_priv, unsigned long␣

↪→flags);
void *(*get_userptr)(struct vb2_buffer *vb,struct device *dev,unsigned long vaddr,␣

↪→unsigned long size);
void (*put_userptr)(void *buf_priv);
void (*prepare)(void *buf_priv);
void (*finish)(void *buf_priv);
void *(*attach_dmabuf)(struct vb2_buffer *vb,struct device *dev,struct dma_buf *dbuf,

↪→ unsigned long size);
void (*detach_dmabuf)(void *buf_priv);
int (*map_dmabuf)(void *buf_priv);
void (*unmap_dmabuf)(void *buf_priv);
void *(*vaddr)(struct vb2_buffer *vb, void *buf_priv);
void *(*cookie)(struct vb2_buffer *vb, void *buf_priv);
unsigned int (*num_users)(void *buf_priv);
int (*mmap)(void *buf_priv, struct vm_area_struct *vma);

};

Members
alloc allocate video memory and, optionally, allocator private data, return ERR_PTR() on fail-

ure or a pointer to allocator private, per-buffer data on success; the returned private struc-
ture will then be passed as buf_priv argument to other ops in this structure. The size
argument to this function shall be page aligned.

2.2. Video4Linux devices 343

Linux Media Documentation

put inform the allocator that the buffer will no longer be used; usually will result in the allocator
freeing the buffer (if no other users of this buffer are present); the buf_priv argument is
the allocator private per-buffer structure previously returned from the alloc callback.

get_dmabuf acquire userspace memory for a hardware operation; used for DMABUF memory
types.

get_userptr acquire userspace memory for a hardware operation; used for USERPTR memory
types; vaddr is the address passed to the videobuf layer when queuing a video buffer of
USERPTR type; should return an allocator private per-buffer structure associated with the
buffer on success, ERR_PTR() on failure; the returned private structure will then be passed
as buf_priv argument to other ops in this structure.

put_userptr inform the allocator that a USERPTR buffer will no longer be used.

prepare called every time the buffer is passed from userspace to the driver, useful for cache
synchronisation, optional.

finish called every time the buffer is passed back from the driver to the userspace, also op-
tional.

attach_dmabuf attach a shared struct dma_buf for a hardware operation; used for DMABUF
memory types; dev is the alloc device dbuf is the shared dma_buf; returns ERR_PTR() on
failure; allocator private per-buffer structure on success; this needs to be used for further
accesses to the buffer.

detach_dmabuf inform the exporter of the buffer that the current DMABUF buffer is no longer
used; the buf_priv argument is the allocator private per-buffer structure previously re-
turned from the attach_dmabuf callback.

map_dmabuf request for access to the dmabuf from allocator; the allocator of dmabuf is in-
formed that this driver is going to use the dmabuf.

unmap_dmabuf releases access control to the dmabuf - allocator is notified that this driver is
done using the dmabuf for now.

vaddr return a kernel virtual address to a given memory buffer associated with the passed
private structure or NULL if no such mapping exists.

cookie return allocator specific cookie for a given memory buffer associated with the passed
private structure or NULL if not available.

num_users return the current number of users of a memory buffer; return 1 if the videobuf
layer (or actually the driver using it) is the only user.

mmap setup a userspace mapping for a given memory buffer under the provided virtual memory
region.

Description
Those operations are used by the videobuf2 core to implement the memory handling/memory
allocators for each type of supported streaming I/O method.

Note:
1) Required ops for USERPTR types: get_userptr, put_userptr.

2) Required ops for MMAP types: alloc, put, num_users, mmap.

3) Required ops for read/write access types: alloc, put, num_users, vaddr.

344 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

4) Required ops for DMABUF types: attach_dmabuf, detach_dmabuf, map_dmabuf, un-
map_dmabuf.

struct vb2_plane
plane information.

Definition

struct vb2_plane {
void *mem_priv;
struct dma_buf *dbuf;
unsigned int dbuf_mapped;
unsigned int bytesused;
unsigned int length;
unsigned int min_length;
union {

unsigned int offset;
unsigned long userptr;
int fd;

} m;
unsigned int data_offset;

};

Members
mem_priv private data with this plane.

dbuf dma_buf - shared buffer object.

dbuf_mapped flag to show whether dbuf is mapped or not

bytesused number of bytes occupied by data in the plane (payload).

length size of this plane (NOT the payload) in bytes. The maximum valid size is MAX_UINT -
PAGE_SIZE.

min_length minimum required size of this plane (NOT the payload) in bytes. length is always
greater or equal tomin_length, and like length, it is limited to MAX_UINT - PAGE_SIZE.

m Union with memtype-specific data.

m.offset when memory in the associated struct vb2_buffer is VB2_MEMORY_MMAP, equals the
offset from the start of the device memory for this plane (or is a “cookie” that should be
passed to mmap() called on the video node).

m.userptr when memory is VB2_MEMORY_USERPTR, a userspace pointer pointing to this plane.

m.fd when memory is VB2_MEMORY_DMABUF, a userspace file descriptor associated with this
plane.

data_offset offset in the plane to the start of data; usually 0, unless there is a header in front
of the data.

Description
Should contain enough information to be able to cover all the fields of struct v4l2_plane at
videodev2.h.

enum vb2_io_modes
queue access methods.

2.2. Video4Linux devices 345

Linux Media Documentation

Constants
VB2_MMAP driver supports MMAP with streaming API.

VB2_USERPTR driver supports USERPTR with streaming API.

VB2_READ driver supports read() style access.

VB2_WRITE driver supports write() style access.

VB2_DMABUF driver supports DMABUF with streaming API.

enum vb2_buffer_state
current video buffer state.

Constants
VB2_BUF_STATE_DEQUEUED buffer under userspace control.

VB2_BUF_STATE_IN_REQUEST buffer is queued in media request.

VB2_BUF_STATE_PREPARING buffer is being prepared in videobuf.

VB2_BUF_STATE_QUEUED buffer queued in videobuf, but not in driver.

VB2_BUF_STATE_ACTIVE buffer queued in driver and possibly used in a hardware operation.

VB2_BUF_STATE_DONE buffer returned from driver to videobuf, but not yet dequeued to
userspace.

VB2_BUF_STATE_ERROR same as above, but the operation on the buffer has ended with an error,
which will be reported to the userspace when it is dequeued.

struct vb2_buffer
represents a video buffer.

Definition

struct vb2_buffer {
struct vb2_queue *vb2_queue;
unsigned int index;
unsigned int type;
unsigned int memory;
unsigned int num_planes;
u64 timestamp;
struct media_request *request;
struct media_request_object req_obj;

};

Members
vb2_queue pointer to struct vb2_queue with the queue to which this driver belongs.

index id number of the buffer.

type buffer type.

memory the method, in which the actual data is passed.

num_planes number of planes in the buffer on an internal driver queue.

timestamp frame timestamp in ns.

request the request this buffer is associated with.

346 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

req_obj used to bind this buffer to a request. This request object has a refcount.

struct vb2_ops
driver-specific callbacks.

Definition

struct vb2_ops {
int (*queue_setup)(struct vb2_queue *q,unsigned int *num_buffers, unsigned int *num_

↪→planes, unsigned int sizes[], struct device *alloc_devs[]);
void (*wait_prepare)(struct vb2_queue *q);
void (*wait_finish)(struct vb2_queue *q);
int (*buf_out_validate)(struct vb2_buffer *vb);
int (*buf_init)(struct vb2_buffer *vb);
int (*buf_prepare)(struct vb2_buffer *vb);
void (*buf_finish)(struct vb2_buffer *vb);
void (*buf_cleanup)(struct vb2_buffer *vb);
int (*start_streaming)(struct vb2_queue *q, unsigned int count);
void (*stop_streaming)(struct vb2_queue *q);
void (*buf_queue)(struct vb2_buffer *vb);
void (*buf_request_complete)(struct vb2_buffer *vb);

};

Members
queue_setup called from VIDIOC_REQBUFS() and VIDIOC_CREATE_BUFS() handlers before

memory allocation. It can be called twice: if the original number of requested buffers
could not be allocated, then it will be called a second time with the actually allocated
number of buffers to verify if that is OK. The driver should return the required number of
buffers in *num_buffers, the required number of planes per buffer in *num_planes, the size
of each plane should be set in the sizes[] array and optional per-plane allocator specific
device in the alloc_devs[] array. When called from VIDIOC_REQBUFS(), *num_planes ==
0, the driver has to use the currently configured format to determine the plane sizes and
*num_buffers is the total number of buffers that are being allocated. When called from
VIDIOC_CREATE_BUFS(), *num_planes != 0 and it describes the requested number of
planes and sizes[] contains the requested plane sizes. In this case *num_buffers are being
allocated additionally to q->num_buffers. If either *num_planes or the requested sizes are
invalid callback must return -EINVAL.

wait_prepare release any locks taken while calling vb2 functions; it is called before an ioctl
needs to wait for a new buffer to arrive; required to avoid a deadlock in blocking access
type.

wait_finish reacquire all locks released in the previous callback; required to continue opera-
tion after sleeping while waiting for a new buffer to arrive.

buf_out_validate called when the output buffer is prepared or queued to a request; drivers
can use this to validate userspace-provided information; this is required only for OUTPUT
queues.

buf_init called once after allocating a buffer (in MMAP case) or after acquiring a new
USERPTR buffer; drivers may perform additional buffer-related initialization; initializa-
tion failure (return != 0) will prevent queue setup from completing successfully; optional.

buf_prepare called every time the buffer is queued from userspace and from the VID-
IOC_PREPARE_BUF() ioctl; drivers may perform any initialization required before each
hardware operation in this callback; drivers can access/modify the buffer here as it is still

2.2. Video4Linux devices 347

Linux Media Documentation

synced for the CPU; drivers that support VIDIOC_CREATE_BUFS() must also validate the
buffer size; if an error is returned, the buffer will not be queued in driver; optional.

buf_finish called before every dequeue of the buffer back to userspace; the buffer is synced
for the CPU, so drivers can access/modify the buffer contents; drivers may perform any
operations required before userspace accesses the buffer; optional. The buffer state can
be one of the following: DONE and ERROR occur while streaming is in progress, and the
PREPARED state occurs when the queue has been canceled and all pending buffers are
being returned to their default DEQUEUED state. Typically you only have to do something
if the state is VB2_BUF_STATE_DONE, since in all other cases the buffer contents will be
ignored anyway.

buf_cleanup called once before the buffer is freed; driversmay perform any additional cleanup;
optional.

start_streaming called once to enter ‘streaming’ state; the driver may receive buffers with
buf_queue callback before start_streaming is called; the driver gets the number of al-
ready queued buffers in count parameter; driver can return an error if hardware fails,
in that case all buffers that have been already given by the buf_queue callback are to
be returned by the driver by calling vb2_buffer_done() with VB2_BUF_STATE_QUEUED.
If you need a minimum number of buffers before you can start streaming, then set
vb2_queue->min_buffers_needed. If that is non-zero then start_streaming won’t be
called until at least that many buffers have been queued up by userspace.

stop_streaming called when ‘streaming’ state must be disabled; driver should stop any
DMA transactions or wait until they finish and give back all buffers it got from
buf_queue callback by calling vb2_buffer_done() with either VB2_BUF_STATE_DONE or
VB2_BUF_STATE_ERROR; may use vb2_wait_for_all_buffers() function

buf_queue passes buffer vb to the driver; driver may start hardware operation on this buffer;
driver should give the buffer back by calling vb2_buffer_done() function; it is always
called after calling VIDIOC_STREAMON() ioctl; might be called before start_streaming
callback if user pre-queued buffers before calling VIDIOC_STREAMON().

buf_request_complete a buffer that was never queued to the driver but is associated with
a queued request was canceled. The driver will have to mark associated objects in the
request as completed; required if requests are supported.

Description
These operations are not called from interrupt context except where mentioned specifically.

struct vb2_buf_ops
driver-specific callbacks.

Definition

struct vb2_buf_ops {
int (*verify_planes_array)(struct vb2_buffer *vb, const void *pb);
void (*init_buffer)(struct vb2_buffer *vb);
void (*fill_user_buffer)(struct vb2_buffer *vb, void *pb);
int (*fill_vb2_buffer)(struct vb2_buffer *vb, struct vb2_plane *planes);
void (*copy_timestamp)(struct vb2_buffer *vb, const void *pb);

};

Members

348 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

verify_planes_array Verify that a given user space structure contains enough planes for the
buffer. This is called for each dequeued buffer.

init_buffer given a vb2_buffer initialize the extra data after struct vb2_buffer. For V4L2
this is a struct vb2_v4l2_buffer.

fill_user_buffer given a vb2_buffer fill in the userspace structure. For V4L2 this is a struct
v4l2_buffer.

fill_vb2_buffer given a userspace structure, fill in the vb2_buffer. If the userspace struc-
ture is invalid, then this op will return an error.

copy_timestamp copy the timestamp from a userspace structure to the struct vb2_buffer.

struct vb2_queue
a videobuf queue.

Definition

struct vb2_queue {
unsigned int type;
unsigned int io_modes;
struct device *dev;
unsigned long dma_attrs;
unsigned int bidirectional:1;
unsigned int fileio_read_once:1;
unsigned int fileio_write_immediately:1;
unsigned int allow_zero_bytesused:1;
unsigned int quirk_poll_must_check_waiting_for_buffers:1;
unsigned int supports_requests:1;
unsigned int requires_requests:1;
unsigned int uses_qbuf:1;
unsigned int uses_requests:1;
unsigned int allow_cache_hints:1;
unsigned int non_coherent_mem:1;
struct mutex *lock;
void *owner;
const struct vb2_ops *ops;
const struct vb2_mem_ops *mem_ops;
const struct vb2_buf_ops *buf_ops;
void *drv_priv;
u32 subsystem_flags;
unsigned int buf_struct_size;
u32 timestamp_flags;
gfp_t gfp_flags;
u32 min_buffers_needed;
struct device *alloc_devs[VB2_MAX_PLANES];

};

Members
type private buffer type whose content is defined by the vb2-core caller. For example, for V4L2,

it should match the types defined on enum v4l2_buf_type.

io_modes supported io methods (see enum vb2_io_modes).

dev device to use for the default allocation context if the driver doesn’t fill in the alloc_devs
array.

dma_attrs DMA attributes to use for the DMA.

2.2. Video4Linux devices 349

Linux Media Documentation

bidirectional when this flag is set the DMA direction for the buffers of this queue will be
overridden with DMA_BIDIRECTIONAL direction. This is useful in cases where the hard-
ware (firmware) writes to a buffer which is mapped as read (DMA_TO_DEVICE), or reads
from buffer which is mapped for write (DMA_FROM_DEVICE) in order to satisfy some internal
hardware restrictions or adds a padding needed by the processing algorithm. In case the
DMA mapping is not bidirectional but the hardware (firmware) trying to access the buffer
(in the opposite direction) this could lead to an IOMMU protection faults.

fileio_read_once report EOF after reading the first buffer

fileio_write_immediately queue buffer after each write() call

allow_zero_bytesused allow bytesused == 0 to be passed to the driver

quirk_poll_must_check_waiting_for_buffers Return EPOLLERR at poll when QBUF has not
been called. This is a vb1 idiom that has been adopted also by vb2.

supports_requests this queue supports the Request API.

requires_requests this queue requires the Request API. If this is set to 1, then sup-
ports_requests must be set to 1 as well.

uses_qbuf qbuf was used directly for this queue. Set to 1 the first time this is called. Set to 0
when the queue is canceled. If this is 1, then you cannot queue buffers from a request.

uses_requests requests are used for this queue. Set to 1 the first time a request is queued.
Set to 0 when the queue is canceled. If this is 1, then you cannot queue buffers directly.

allow_cache_hints when set user-space can pass cache management hints in order to skip
cache flush/invalidation on ->prepare() or/and ->finish().

non_coherent_mem when set queue will attempt to allocate buffers using non-coherent memory.

lock pointer to a mutex that protects the struct vb2_queue. The driver can set this to a mutex
to let the v4l2 core serialize the queuing ioctls. If the driver wants to handle locking itself,
then this should be set to NULL. This lock is not used by the videobuf2 core API.

owner The filehandle that ‘owns’ the buffers, i.e. the filehandle that called reqbufs, cre-
ate_buffers or started fileio. This field is not used by the videobuf2 core API, but it allows
drivers to easily associate an owner filehandle with the queue.

ops driver-specific callbacks

mem_ops memory allocator specific callbacks

buf_ops callbacks to deliver buffer information. between user-space and kernel-space.

drv_priv driver private data.

subsystem_flags Flags specific to the subsystem (V4L2/DVB/etc.). Not used by the vb2 core.

buf_struct_size size of the driver-specific buffer structure; “0” indicates the driver doesn’t
want to use a custom buffer structure type. In that case a subsystem-specific struct will
be used (in the case of V4L2 that is sizeof(struct vb2_v4l2_buffer)). The first field of
the driver-specific buffer structure must be the subsystem-specific struct (vb2_v4l2_buffer
in the case of V4L2).

timestamp_flags Timestamp flags; V4L2_BUF_FLAG_TIMESTAMP_* and
V4L2_BUF_FLAG_TSTAMP_SRC_*

350 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

gfp_flags additional gfp flags used when allocating the buffers. Typically this is 0, but it may
be e.g. GFP_DMA or __GFP_DMA32 to force the buffer allocation to a specific memory zone.

min_buffers_needed the minimum number of buffers needed before start_streaming can be
called. Used when a DMA engine cannot be started unless at least this number of buffers
have been queued into the driver.

alloc_devs struct device memory type/allocator-specific per-plane device

bool vb2_queue_allows_cache_hints(struct vb2_queue *q)
Return true if the queue allows cache and memory consistency hints.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue

void * vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no)
Return a kernel virtual address of a given plane.

Parameters
struct vb2_buffer *vb pointer to struct vb2_buffer to which the plane in question belongs

to.

unsigned int plane_no plane number for which the address is to be returned.

Description
This function returns a kernel virtual address of a given plane if such a mapping exist, NULL
otherwise.

void * vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no)
Return allocator specific cookie for the given plane.

Parameters
struct vb2_buffer *vb pointer to struct vb2_buffer to which the plane in question belongs

to.

unsigned int plane_no plane number for which the cookie is to be returned.

Description
This function returns an allocator specific cookie for a given plane if available, NULL otherwise.
The allocator should provide some simple static inline function, which would convert this cookie
to the allocator specific type that can be used directly by the driver to access the buffer. This
can be for example physical address, pointer to scatter list or IOMMU mapping.

void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state)
inform videobuf that an operation on a buffer is finished.

Parameters
struct vb2_buffer *vb pointer to struct vb2_buffer to be used.

enum vb2_buffer_state state state of the buffer, as defined by enum vb2_buffer_state. Ei-
ther VB2_BUF_STATE_DONE if the operation finished successfully, VB2_BUF_STATE_ERROR if
the operation finished with an error or VB2_BUF_STATE_QUEUED.

Description
This function should be called by the driver after a hardware operation on a buffer is finished
and the buffer may be returned to userspace. The driver cannot use this buffer anymore until

2.2. Video4Linux devices 351

Linux Media Documentation

it is queued back to it by videobuf by the means of vb2_ops->buf_queue callback. Only buffers
previously queued to the driver by vb2_ops->buf_queue can be passed to this function.

While streaming a buffer can only be returned in state DONE or ERROR. The
vb2_ops->start_streaming op can also return them in case the DMA engine cannot be started
for some reason. In that case the buffers should be returned with state QUEUED to put them
back into the queue.

void vb2_discard_done(struct vb2_queue *q)
discard all buffers marked as DONE.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

Description
This function is intended to be used with suspend/resume operations. It discards all ‘done’
buffers as they would be too old to be requested after resume.

Drivers must stop the hardware and synchronize with interrupt handlers and/or delayed works
before calling this function tomake sure no buffer will be touched by the driver and/or hardware.

int vb2_wait_for_all_buffers(struct vb2_queue *q)
wait until all buffers are given back to vb2.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

Description
This function will wait until all buffers that have been given to the driver by
vb2_ops->buf_queue are given back to vb2 with vb2_buffer_done(). It doesn’t call
vb2_ops->wait_prepare/vb2_ops->wait_finish pair. It is intended to be called with all locks
taken, for example from vb2_ops->stop_streaming callback.

void vb2_core_querybuf(struct vb2_queue *q, unsigned int index, void *pb)
query video buffer information.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

unsigned int index id number of the buffer.

void *pb buffer struct passed from userspace.

Description
Videobuf2 core helper to implement VIDIOC_QUERYBUF() operation. It is called internally by
VB2 by an API-specific handler, like videobuf2-v4l2.h.

The passed buffer should have been verified.

This function fills the relevant information for the userspace.

Return
returns zero on success; an error code otherwise.

352 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

int vb2_core_reqbufs(struct vb2_queue *q, enum vb2_memory memory, unsigned
int flags, unsigned int *count)

Initiate streaming.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

enum vb2_memory memory memory type, as defined by enum vb2_memory.

unsigned int flags auxiliary queue/buffer management flags. Currently, the only used flag
is V4L2_MEMORY_FLAG_NON_COHERENT.

unsigned int *count requested buffer count.

Description
Videobuf2 core helper to implement VIDIOC_REQBUF() operation. It is called internally by VB2
by an API-specific handler, like videobuf2-v4l2.h.

This function:

1) verifies streaming parameters passed from the userspace;

2) sets up the queue;

3) negotiates number of buffers and planes per buffer with the driver to be used during
streaming;

4) allocates internal buffer structures (struct vb2_buffer), according to the agreed param-
eters;

5) for MMAP memory type, allocates actual video memory, using the memory han-
dling/allocation routines provided during queue initialization.

If req->count is 0, all the memory will be freed instead.

If the queue has been allocated previously by a previous vb2_core_reqbufs() call and the
queue is not busy, memory will be reallocated.

Return
returns zero on success; an error code otherwise.

int vb2_core_create_bufs(struct vb2_queue *q, enum vb2_memory memory, unsigned
int flags, unsigned int *count, unsigned int requested_planes,
const unsigned int requested_sizes[])

Allocate buffers and any required auxiliary structs

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

enum vb2_memory memory memory type, as defined by enum vb2_memory.

unsigned int flags auxiliary queue/buffer management flags.

unsigned int *count requested buffer count.

unsigned int requested_planes number of planes requested.

const unsigned int requested_sizes[] array with the size of the planes.

2.2. Video4Linux devices 353

Linux Media Documentation

Description
Videobuf2 core helper to implement VIDIOC_CREATE_BUFS() operation. It is called internally
by VB2 by an API-specific handler, like videobuf2-v4l2.h.

This function:

1) verifies parameter sanity;

2) calls the vb2_ops->queue_setup queue operation;

3) performs any necessary memory allocations.

Return
returns zero on success; an error code otherwise.

int vb2_core_prepare_buf(struct vb2_queue *q, unsigned int index, void *pb)
Pass ownership of a buffer from userspace to the kernel.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

unsigned int index id number of the buffer.

void *pb buffer structure passed from userspace to v4l2_ioctl_ops->vidioc_prepare_buf
handler in driver.

Description
Videobuf2 core helper to implement VIDIOC_PREPARE_BUF() operation. It is called internally
by VB2 by an API-specific handler, like videobuf2-v4l2.h.

The passed buffer should have been verified.

This function calls vb2_ops->buf_prepare callback in the driver (if provided), in which driver-
specific buffer initialization can be performed.

Return
returns zero on success; an error code otherwise.

int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb, struct me-
dia_request *req)

Queue a buffer from userspace

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

unsigned int index id number of the buffer

void *pb buffer structure passed from userspace to v4l2_ioctl_ops->vidioc_qbuf handler in
driver

struct media_request *req pointer to struct media_request, may be NULL.

Description
Videobuf2 core helper to implement VIDIOC_QBUF() operation. It is called internally by VB2
by an API-specific handler, like videobuf2-v4l2.h.

This function:

354 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

1) If req is non-NULL, then the buffer will be bound to this media request and it returns. The
buffer will be prepared and queued to the driver (i.e. the next two steps) when the request
itself is queued.

2) if necessary, calls vb2_ops->buf_prepare callback in the driver (if provided), in which
driver-specific buffer initialization can be performed;

3) if streaming is on, queues the buffer in driver by the means of vb2_ops->buf_queue call-
back for processing.

Return
returns zero on success; an error code otherwise.

int vb2_core_dqbuf(struct vb2_queue *q, unsigned int *pindex, void *pb,
bool nonblocking)

Dequeue a buffer to the userspace

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue

unsigned int *pindex pointer to the buffer index. May be NULL

void *pb buffer structure passed from userspace to v4l2_ioctl_ops->vidioc_dqbuf handler in
driver.

bool nonblocking if true, this call will not sleep waiting for a buffer if no buffers ready for de-
queuing are present. Normally the driver would be passing (file->f_flags &O_NONBLOCK)
here.

Description
Videobuf2 core helper to implement VIDIOC_DQBUF() operation. It is called internally by VB2
by an API-specific handler, like videobuf2-v4l2.h.

This function:

1) calls buf_finish callback in the driver (if provided), in which driver can perform any addi-
tional operations that may be required before returning the buffer to userspace, such as
cache sync,

2) the buffer struct members are filled with relevant information for the userspace.

Return
returns zero on success; an error code otherwise.

int vb2_core_streamon(struct vb2_queue *q, unsigned int type)
Implements VB2 stream ON logic

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue

unsigned int type type of the queue to be started. For V4L2, this is defined by enum
v4l2_buf_type type.

Description
Videobuf2 core helper to implement VIDIOC_STREAMON() operation. It is called internally by
VB2 by an API-specific handler, like videobuf2-v4l2.h.

2.2. Video4Linux devices 355

Linux Media Documentation

Return
returns zero on success; an error code otherwise.

int vb2_core_streamoff(struct vb2_queue *q, unsigned int type)
Implements VB2 stream OFF logic

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue

unsigned int type type of the queue to be started. For V4L2, this is defined by enum
v4l2_buf_type type.

Description
Videobuf2 core helper to implement VIDIOC_STREAMOFF() operation. It is called internally
by VB2 by an API-specific handler, like videobuf2-v4l2.h.

Return
returns zero on success; an error code otherwise.

int vb2_core_expbuf(struct vb2_queue *q, int *fd, unsigned int type, unsigned int index,
unsigned int plane, unsigned int flags)

Export a buffer as a file descriptor.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

int *fd pointer to the file descriptor associated with DMABUF (set by driver).

unsigned int type buffer type.

unsigned int index id number of the buffer.

unsigned int plane index of the plane to be exported, 0 for single plane queues

unsigned int flags file flags for newly created file, as defined at include/uapi/asm-
generic/fcntl.h. Currently, the only used flag is O_CLOEXEC. is supported, refer to manual
of open syscall for more details.

Description
Videobuf2 core helper to implement VIDIOC_EXPBUF() operation. It is called internally by VB2
by an API-specific handler, like videobuf2-v4l2.h.

Return
returns zero on success; an error code otherwise.

int vb2_core_queue_init(struct vb2_queue *q)
initialize a videobuf2 queue

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue. This structure

should be allocated in driver

Description
The vb2_queue structure should be allocated by the driver. The driver is responsible of clearing
it’s content and setting initial values for some required entries before calling this function.

356 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Note: The following fields at q should be set before calling this function: vb2_queue->ops,
vb2_queue->mem_ops, vb2_queue->type.

void vb2_core_queue_release(struct vb2_queue *q)
stop streaming, release the queue and free memory

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

Description
This function stops streaming and performs necessary clean ups, including freeing video buffer
memory. The driver is responsible for freeing the struct vb2_queue itself.

void vb2_queue_error(struct vb2_queue *q)
signal a fatal error on the queue

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

Description
Flag that a fatal unrecoverable error has occurred and wake up all processes waiting on the
queue. Polling will now set EPOLLERR and queuing and dequeuing buffers will return -EIO.

The error flag will be cleared when canceling the queue, either from vb2_streamoff() or
vb2_queue_release(). Drivers should thus not call this function before starting the stream,
otherwise the error flag will remain set until the queue is released when closing the device
node.

int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma)
map video buffers into application address space.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

struct vm_area_struct *vma pointer to struct vm_area_struct with the vma passed to the
mmap file operation handler in the driver.

Description
Should be called from mmap file operation handler of a driver. This function maps one plane
of one of the available video buffers to userspace. To map whole video memory allocated on
reqbufs, this function has to be called once per each plane per each buffer previously allocated.

When the userspace application calls mmap, it passes to it an offset returned to it earlier by the
means of v4l2_ioctl_ops->vidioc_querybuf handler. That offset acts as a “cookie”, which is
then used to identify the plane to be mapped.

This function finds a plane with a matching offset and a mapping is performed by the means of
a provided memory operation.

The return values from this function are intended to be directly returned from themmap handler
in driver.

2.2. Video4Linux devices 357

Linux Media Documentation

unsigned long vb2_get_unmapped_area(struct vb2_queue *q, unsigned long addr, un-
signed long len, unsigned long pgoff, unsigned
long flags)

map video buffers into application address space.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

unsigned long addr memory address.

unsigned long len buffer size.

unsigned long pgoff page offset.

unsigned long flags memory flags.

Description
This function is used in noMMU platforms to propose address mapping for a given buffer. It’s
intended to be used as a handler for the file_operations->get_unmapped_area operation.

This is called by the mmap() syscall routines will call this to get a proposed address for the
mapping, when !CONFIG_MMU.

__poll_t vb2_core_poll(struct vb2_queue *q, struct file *file, poll_table *wait)
implements poll syscall() logic.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

struct file *file struct file argument passed to the poll file operation handler.

poll_table *wait poll_table wait argument passed to the poll file operation handler.

Description
This function implements poll file operation handler for a driver. For CAPTURE queues, if a
buffer is ready to be dequeued, the userspace will be informed that the file descriptor of a
video device is available for reading. For OUTPUT queues, if a buffer is ready to be dequeued,
the file descriptor will be reported as available for writing.

The return values from this function are intended to be directly returned from poll handler in
driver.

size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count, loff_t *ppos,
int nonblock)

implements read() syscall logic.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

char __user *data pointed to target userspace buffer

size_t count number of bytes to read

loff_t *ppos file handle position tracking pointer

int nonblock mode selector (1 means blocking calls, 0 means nonblocking)

358 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count, loff_t *ppos,
int nonblock)

implements write() syscall logic.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

const char __user *data pointed to target userspace buffer

size_t count number of bytes to write

loff_t *ppos file handle position tracking pointer

int nonblock mode selector (1 means blocking calls, 0 means nonblocking)

vb2_thread_fnc
Typedef: callback function for use with vb2_thread.

Syntax
int vb2_thread_fnc (struct vb2_buffer *vb, void *priv)

Parameters
struct vb2_buffer *vb pointer to struct vb2_buffer.

void *priv pointer to a private data.

Description
This is called whenever a buffer is dequeued in the thread.

int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv, const
char *thread_name)

start a thread for the given queue.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

vb2_thread_fnc fnc vb2_thread_fnc callback function.

void *priv priv pointer passed to the callback function.

const char *thread_name the name of the thread. This will be prefixed with “vb2-“.

Description
This starts a thread that will queue and dequeue until an error occurs or vb2_thread_stop()
is called.

Attention: This function should not be used for anything else but the videobuf2-dvb sup-
port. If you think you have another good use-case for this, then please contact the linux-
media mailing list first.

int vb2_thread_stop(struct vb2_queue *q)
stop the thread for the given queue.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

2.2. Video4Linux devices 359

Linux Media Documentation

bool vb2_is_streaming(struct vb2_queue *q)
return streaming status of the queue.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

bool vb2_fileio_is_active(struct vb2_queue *q)
return true if fileio is active.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

Description
This returns true if read() or write() is used to stream the data as opposed to stream I/O. This is
almost never an important distinction, except in rare cases. One such case is that using read()
or write() to stream a format using V4L2_FIELD_ALTERNATE is not allowed since there is no way
you can pass the field information of each buffer to/from userspace. A driver that supports this
field format should check for this in the vb2_ops->queue_setup op and reject it if this function
returns true.

bool vb2_is_busy(struct vb2_queue *q)
return busy status of the queue.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

Description
This function checks if queue has any buffers allocated.

void * vb2_get_drv_priv(struct vb2_queue *q)
return driver private data associated with the queue.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

void vb2_set_plane_payload(struct vb2_buffer *vb, unsigned int plane_no, unsigned
long size)

set bytesused for the plane plane_no.
Parameters
struct vb2_buffer *vb pointer to struct vb2_buffer to which the plane in question belongs

to.

unsigned int plane_no plane number for which payload should be set.

unsigned long size payload in bytes.

unsigned long vb2_get_plane_payload(struct vb2_buffer *vb, unsigned int plane_no)
get bytesused for the plane plane_no

Parameters
struct vb2_buffer *vb pointer to struct vb2_buffer to which the plane in question belongs

to.

unsigned int plane_no plane number for which payload should be set.

360 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

unsigned long vb2_plane_size(struct vb2_buffer *vb, unsigned int plane_no)
return plane size in bytes.

Parameters
struct vb2_buffer *vb pointer to struct vb2_buffer to which the plane in question belongs

to.

unsigned int plane_no plane number for which size should be returned.

bool vb2_start_streaming_called(struct vb2_queue *q)
return streaming status of driver.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

void vb2_clear_last_buffer_dequeued(struct vb2_queue *q)
clear last buffer dequeued flag of queue.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

struct vb2_buffer * vb2_get_buffer(struct vb2_queue *q, unsigned int index)
get a buffer from a queue

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

unsigned int index buffer index

Description
This function obtains a buffer from a queue, by its index. Keep in mind that there is no ref-
counting involved in this operation, so the buffer lifetime should be taken into consideration.

bool vb2_buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb)
return true if the buffer is in use and the queue cannot be freed (by the means of VID-
IOC_REQBUFS(0)) call.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

struct vb2_buffer *vb buffer for which plane size should be returned.

int vb2_verify_memory_type(struct vb2_queue *q, enum vb2_memory memory, unsigned
int type)

Check whether the memory type and buffer type passed to a buffer operation are compat-
ible with the queue.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

enum vb2_memory memory memory model, as defined by enum vb2_memory.

unsigned int type private buffer type whose content is defined by the vb2-core caller. For
example, for V4L2, it should match the types defined on enum v4l2_buf_type.

2.2. Video4Linux devices 361

Linux Media Documentation

bool vb2_request_object_is_buffer(struct media_request_object *obj)
return true if the object is a buffer

Parameters
struct media_request_object *obj the request object.

unsigned int vb2_request_buffer_cnt(struct media_request *req)
return the number of buffers in the request

Parameters
struct media_request *req the request.

struct vb2_v4l2_buffer
video buffer information for v4l2.

Definition

struct vb2_v4l2_buffer {
struct vb2_buffer vb2_buf;
__u32 flags;
__u32 field;
struct v4l2_timecode timecode;
__u32 sequence;
__s32 request_fd;
bool is_held;
struct vb2_plane planes[VB2_MAX_PLANES];

};

Members
vb2_buf embedded struct vb2_buffer.

flags buffer informational flags.

field field order of the image in the buffer, as defined by enum v4l2_field.

timecode frame timecode.

sequence sequence count of this frame.

request_fd the request_fd associated with this buffer

is_held if true, then this capture buffer was held

planes plane information (userptr/fd, length, bytesused, data_offset).

Description
Should contain enough information to be able to cover all the fields of struct v4l2_buffer at
videodev2.h.

int vb2_find_timestamp(const struct vb2_queue *q, u64 timestamp, unsigned
int start_idx)

Find buffer with given timestamp in the queue

Parameters
const struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

u64 timestamp the timestamp to find.

362 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

unsigned int start_idx the start index (usually 0) in the buffer array to start searching from.
Note that there may be multiple buffers with the same timestamp value, so you can restart
the search by setting start_idx to the previously found index + 1.

Description
Returns the buffer index of the buffer with the given timestamp, or -1 if no buffer with times-
tamp was found.
int vb2_reqbufs(struct vb2_queue *q, struct v4l2_requestbuffers *req)

Wrapper for vb2_core_reqbufs() that also verifies the memory and type values.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

struct v4l2_requestbuffers *req struct v4l2_requestbuffers passed from userspace to
v4l2_ioctl_ops->vidioc_reqbufs handler in driver.

int vb2_create_bufs(struct vb2_queue *q, struct v4l2_create_buffers *create)
Wrapper for vb2_core_create_bufs() that also verifies the memory and type values.

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

struct v4l2_create_buffers *create creation parameters, passed from userspace to
v4l2_ioctl_ops->vidioc_create_bufs handler in driver

int vb2_prepare_buf(struct vb2_queue *q, struct media_device *mdev, struct
v4l2_buffer *b)

Pass ownership of a buffer from userspace to the kernel

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

struct media_device *mdev pointer to struct media_device, may be NULL.

struct v4l2_buffer *b buffer structure passed from userspace to
v4l2_ioctl_ops->vidioc_prepare_buf handler in driver

Description
Should be called from v4l2_ioctl_ops->vidioc_prepare_buf ioctl handler of a driver.

This function:

1) verifies the passed buffer,

2) calls vb2_ops->buf_prepare callback in the driver (if provided), in which driver-specific
buffer initialization can be performed.

3) if b->request_fd is non-zero andmdev->ops->req_queue is set, then bind the prepared
buffer to the request.

The return values from this function are intended to be directly returned from
v4l2_ioctl_ops->vidioc_prepare_buf handler in driver.

int vb2_qbuf(struct vb2_queue *q, struct media_device *mdev, struct v4l2_buffer *b)
Queue a buffer from userspace

Parameters

2.2. Video4Linux devices 363

Linux Media Documentation

struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

struct media_device *mdev pointer to struct media_device, may be NULL.

struct v4l2_buffer *b buffer structure passed from userspace to
v4l2_ioctl_ops->vidioc_qbuf handler in driver

Description
Should be called from v4l2_ioctl_ops->vidioc_qbuf handler of a driver.

This function:

1) verifies the passed buffer;

2) if b->request_fd is non-zero andmdev->ops->req_queue is set, then bind the buffer to
the request.

3) if necessary, calls vb2_ops->buf_prepare callback in the driver (if provided), in which
driver-specific buffer initialization can be performed;

4) if streaming is on, queues the buffer in driver by the means of vb2_ops->buf_queue call-
back for processing.

The return values from this function are intended to be directly returned from
v4l2_ioctl_ops->vidioc_qbuf handler in driver.

int vb2_expbuf(struct vb2_queue *q, struct v4l2_exportbuffer *eb)
Export a buffer as a file descriptor

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

struct v4l2_exportbuffer *eb export buffer structure passed from userspace to
v4l2_ioctl_ops->vidioc_expbuf handler in driver

Description
The return values from this function are intended to be directly returned from
v4l2_ioctl_ops->vidioc_expbuf handler in driver.

int vb2_dqbuf(struct vb2_queue *q, struct v4l2_buffer *b, bool nonblocking)
Dequeue a buffer to the userspace

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

struct v4l2_buffer *b buffer structure passed from userspace to
v4l2_ioctl_ops->vidioc_dqbuf handler in driver

bool nonblocking if true, this call will not sleep waiting for a buffer if no buffers ready
for dequeuing are present. Normally the driver would be passing (file->f_flags &
O_NONBLOCK) here

Description
Should be called from v4l2_ioctl_ops->vidioc_dqbuf ioctl handler of a driver.

This function:

1) verifies the passed buffer;

364 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

2) calls vb2_ops->buf_finish callback in the driver (if provided), in which driver can perform
any additional operations that may be required before returning the buffer to userspace,
such as cache sync;

3) the buffer struct members are filled with relevant information for the userspace.

The return values from this function are intended to be directly returned from
v4l2_ioctl_ops->vidioc_dqbuf handler in driver.

int vb2_streamon(struct vb2_queue *q, enum v4l2_buf_type type)
start streaming

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

enum v4l2_buf_type type type argument passed from userspace to vidioc_streamon handler,
as defined by enum v4l2_buf_type.

Description
Should be called from v4l2_ioctl_ops->vidioc_streamon handler of a driver.

This function:

1) verifies current state

2) passes any previously queued buffers to the driver and starts streaming

The return values from this function are intended to be directly returned from
v4l2_ioctl_ops->vidioc_streamon handler in the driver.

int vb2_streamoff(struct vb2_queue *q, enum v4l2_buf_type type)
stop streaming

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

enum v4l2_buf_type type type argument passed from userspace to vidioc_streamoff handler

Description
Should be called from vidioc_streamoff handler of a driver.

This function:

1) verifies current state,

2) stop streaming and dequeues any queued buffers, including those previously passed to the
driver (after waiting for the driver to finish).

This call can be used for pausing playback. The return values from this function are intended
to be directly returned from vidioc_streamoff handler in the driver

int vb2_queue_init(struct vb2_queue *q)
initialize a videobuf2 queue

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

Description

2.2. Video4Linux devices 365

Linux Media Documentation

The vb2_queue structure should be allocated by the driver. The driver is responsible of clearing
it’s content and setting initial values for some required entries before calling this function.
q->ops, q->mem_ops, q->type and q->io_modes are mandatory. Please refer to the struct
vb2_queue description in include/media/videobuf2-core.h for more information.

int vb2_queue_init_name(struct vb2_queue *q, const char *name)
initialize a videobuf2 queue with a name

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

const char *name the queue name

Description
This function initializes the vb2_queue exactly like vb2_queue_init(), and additionally sets
the queue name. The queue name is used for logging purpose, and should uniquely identify
the queue within the context of the device it belongs to. This is useful to attribute kernel log
messages to the right queue for m2m devices or other devices that handle multiple queues.

void vb2_queue_release(struct vb2_queue *q)
stop streaming, release the queue and free memory

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

Description
This function stops streaming and performs necessary clean ups, including freeing video buffer
memory. The driver is responsible for freeing the vb2_queue structure itself.

int vb2_queue_change_type(struct vb2_queue *q, unsigned int type)
change the type of an inactive vb2_queue

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

unsigned int type the type to change to (V4L2_BUF_TYPE_VIDEO_*)

Description
This function changes the type of the vb2_queue. This is only possible if the queue is not busy
(i.e. no buffers have been allocated).

vb2_queue_change_type() can be used to support multiple buffer types using the same queue.
The driver can implement v4l2_ioctl_ops.vidioc_reqbufs and v4l2_ioctl_ops.vidioc_create_bufs
functions and call vb2_queue_change_type() before calling vb2_ioctl_reqbufs() or
vb2_ioctl_create_bufs(), and thus “lock” the buffer type until the buffers have been released.

__poll_t vb2_poll(struct vb2_queue *q, struct file *file, poll_table *wait)
implements poll userspace operation

Parameters
struct vb2_queue *q pointer to struct vb2_queue with videobuf2 queue.

struct file *file file argument passed to the poll file operation handler

poll_table *wait wait argument passed to the poll file operation handler

366 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description
This function implements poll file operation handler for a driver. For CAPTURE queues, if a
buffer is ready to be dequeued, the userspace will be informed that the file descriptor of a
video device is available for reading. For OUTPUT queues, if a buffer is ready to be dequeued,
the file descriptor will be reported as available for writing.

If the driver uses struct v4l2_fh, then vb2_poll() will also check for any pending events.

The return values from this function are intended to be directly returned from poll handler in
driver.

void vb2_video_unregister_device(struct video_device *vdev)
unregister the video device and release queue

Parameters
struct video_device *vdev pointer to struct video_device

Description
If the driver uses vb2_fop_release()/_vb2_fop_release(), then it should use
vb2_video_unregister_device() instead of video_unregister_device().

This function will call video_unregister_device() and then release the vb2_queue if stream-
ing is in progress. This will stop streaming and this will simplify the unbind sequence since
after this call all subdevs will have stopped streaming as well.

void vb2_ops_wait_prepare(struct vb2_queue *vq)
helper function to lock a struct vb2_queue

Parameters
struct vb2_queue *vq pointer to struct vb2_queue

Description
..note:: only use if vq->lock is non-NULL.

void vb2_ops_wait_finish(struct vb2_queue *vq)
helper function to unlock a struct vb2_queue

Parameters
struct vb2_queue *vq pointer to struct vb2_queue

Description
..note:: only use if vq->lock is non-NULL.

struct vb2_vmarea_handler
common vma refcount tracking handler.

Definition

struct vb2_vmarea_handler {
refcount_t *refcount;
void (*put)(void *arg);
void *arg;

};

Members

2.2. Video4Linux devices 367

Linux Media Documentation

refcount pointer to refcount_t entry in the buffer.

put callback to function that decreases buffer refcount.

arg argument for put callback.

2.2.16 V4L2 DV Timings functions

struct v4l2_fract v4l2_calc_timeperframe(const struct v4l2_dv_timings *t)
helper function to calculate timeperframe based v4l2_dv_timings fields.

Parameters
const struct v4l2_dv_timings *t Timings for the video mode.

Description
Calculates the expected timeperframe using the pixel clock value and horizontal/vertical mea-
sures. This means that v4l2_dv_timings structure must be correctly and fully filled.

v4l2_check_dv_timings_fnc
Typedef: timings check callback

Syntax
bool v4l2_check_dv_timings_fnc (const struct v4l2_dv_timings *t, void
*handle)

Parameters
const struct v4l2_dv_timings *t the v4l2_dv_timings struct.

void *handle a handle from the driver.

Description
Returns true if the given timings are valid.

bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t, const struct
v4l2_dv_timings_cap *cap, v4l2_check_dv_timings_fnc fnc,
void *fnc_handle)

are these timings valid?

Parameters
const struct v4l2_dv_timings *t the v4l2_dv_timings struct.

const struct v4l2_dv_timings_cap *cap the v4l2_dv_timings_cap capabilities.

v4l2_check_dv_timings_fnc fnc callback to check if this timing is OK. May be NULL.

void *fnc_handle a handle that is passed on to fnc.
Description
Returns true if the given dv_timings struct is supported by the hardware capabilities and the
callback function (if non-NULL), returns false otherwise.

int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t, const
struct v4l2_dv_timings_cap *cap,
v4l2_check_dv_timings_fnc fnc, void *fnc_handle)

Helper function to enumerate possible DV timings based on capabilities

368 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Parameters
struct v4l2_enum_dv_timings *t the v4l2_enum_dv_timings struct.

const struct v4l2_dv_timings_cap *cap the v4l2_dv_timings_cap capabilities.

v4l2_check_dv_timings_fnc fnc callback to check if this timing is OK. May be NULL.

void *fnc_handle a handle that is passed on to fnc.
Description
This enumerates dv_timings using the full list of possible CEA-861 and DMT timings, filtering
out any timings that are not supported based on the hardware capabilities and the callback
function (if non-NULL).

If a valid timing for the given index is found, it will fill in t and return 0, otherwise it returns
-EINVAL.

bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t, const struct
v4l2_dv_timings_cap *cap, unsigned pclock_delta,
v4l2_check_dv_timings_fnc fnc, void *fnc_handle)

Find the closest timings struct

Parameters
struct v4l2_dv_timings *t the v4l2_enum_dv_timings struct.

const struct v4l2_dv_timings_cap *cap the v4l2_dv_timings_cap capabilities.

unsigned pclock_delta maximum delta between t->pixelclock and the timing struct under
consideration.

v4l2_check_dv_timings_fnc fnc callback to check if a given timings struct is OK. May be
NULL.

void *fnc_handle a handle that is passed on to fnc.
Description
This function tries to map the given timings to an entry in the full list of possible CEA-861 and
DMT timings, filtering out any timings that are not supported based on the hardware capabilities
and the callback function (if non-NULL).

On success it will fill in t with the found timings and it returns true. On failure it will return
false.

bool v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings *t, u8 vic)
find timings based on CEA-861 VIC

Parameters
struct v4l2_dv_timings *t the timings data.

u8 vic CEA-861 VIC code

Description
On success it will fill in t with the found timings and it returns true. On failure it will return
false.

2.2. Video4Linux devices 369

Linux Media Documentation

bool v4l2_match_dv_timings(const struct v4l2_dv_timings *measured, const struct
v4l2_dv_timings *standard, unsigned pclock_delta,
bool match_reduced_fps)

do two timings match?

Parameters
const struct v4l2_dv_timings *measured the measured timings data.

const struct v4l2_dv_timings *standard the timings according to the standard.

unsigned pclock_delta maximum delta in Hz between standard->pixelclock and the mea-
sured timings.

bool match_reduced_fps if true, then fail if V4L2_DV_FL_REDUCED_FPS does not match.

Description
Returns true if the two timings match, returns false otherwise.

void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix, const struct
v4l2_dv_timings *t, bool detailed)

log the contents of a dv_timings struct

Parameters
const char *dev_prefix device prefix for each log line.

const char *prefix additional prefix for each log line, may be NULL.

const struct v4l2_dv_timings *t the timings data.

bool detailed if true, give a detailed log.

bool v4l2_detect_cvt(unsigned frame_height, unsigned hfreq, unsigned vsync, un-
signed active_width, u32 polarities, bool interlaced, struct
v4l2_dv_timings *fmt)

detect if the given timings follow the CVT standard

Parameters
unsigned frame_height the total height of the frame (including blanking) in lines.

unsigned hfreq the horizontal frequency in Hz.

unsigned vsync the height of the vertical sync in lines.

unsigned active_width active width of image (does not include blanking). This information is
needed only in case of version 2 of reduced blanking. In other cases, this parameter does
not have any effect on timings.

u32 polarities the horizontal and vertical polarities (same as struct v4l2_bt_timings polari-
ties).

bool interlaced if this flag is true, it indicates interlaced format

struct v4l2_dv_timings *fmt the resulting timings.

Description
This function will attempt to detect if the given values correspond to a valid CVT format. If so,
then it will return true, and fmt will be filled in with the found CVT timings.

370 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

bool v4l2_detect_gtf(unsigned frame_height, unsigned hfreq, unsigned vsync,
u32 polarities, bool interlaced, struct v4l2_fract aspect, struct
v4l2_dv_timings *fmt)

detect if the given timings follow the GTF standard

Parameters
unsigned frame_height the total height of the frame (including blanking) in lines.

unsigned hfreq the horizontal frequency in Hz.

unsigned vsync the height of the vertical sync in lines.

u32 polarities the horizontal and vertical polarities (same as struct v4l2_bt_timings polari-
ties).

bool interlaced if this flag is true, it indicates interlaced format

struct v4l2_fract aspect preferred aspect ratio. GTF has no method of determining the
aspect ratio in order to derive the image width from the image height, so it has to be
passed explicitly. Usually the native screen aspect ratio is used for this. If it is not filled in
correctly, then 16:9 will be assumed.

struct v4l2_dv_timings *fmt the resulting timings.

Description
This function will attempt to detect if the given values correspond to a valid GTF format. If so,
then it will return true, and fmt will be filled in with the found GTF timings.

struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
calculate the aspect ratio based on bytes 0x15 and 0x16 from the EDID.

Parameters
u8 hor_landscape byte 0x15 from the EDID.

u8 vert_portrait byte 0x16 from the EDID.

Description
Determines the aspect ratio from the EDID. See VESA Enhanced EDID standard, release A, rev
2, section 3.6.2: “Horizontal and Vertical Screen Size or Aspect Ratio”

struct v4l2_fract v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings *t)
calculate the aspect ratio based on the v4l2_dv_timings information.

Parameters
const struct v4l2_dv_timings *t the timings data.

bool can_reduce_fps(struct v4l2_bt_timings *bt)
check if conditions for reduced fps are true.

Parameters
struct v4l2_bt_timings *bt v4l2 timing structure

Description
For different timings reduced fps is allowed if the following conditions are met:

• For CVT timings: if reduced blanking v2 (vsync == 8) is true.

2.2. Video4Linux devices 371

Linux Media Documentation

• For CEA861 timings: if V4L2_DV_FL_CAN_REDUCE_FPS flag is true.

struct v4l2_hdmi_colorimetry
describes the HDMI colorimetry information

Definition

struct v4l2_hdmi_colorimetry {
enum v4l2_colorspace colorspace;
enum v4l2_ycbcr_encoding ycbcr_enc;
enum v4l2_quantization quantization;
enum v4l2_xfer_func xfer_func;

};

Members
colorspace enum v4l2_colorspace, the colorspace

ycbcr_enc enum v4l2_ycbcr_encoding, Y’CbCr encoding

quantization enum v4l2_quantization, colorspace quantization

xfer_func enum v4l2_xfer_func, colorspace transfer function

2.2.17 V4L2 flash functions and data structures

struct v4l2_flash_ctrl_data
flash control initialization data, filled basing on the features declared by the LED flash
class driver in the v4l2_flash_config

Definition

struct v4l2_flash_ctrl_data {
struct v4l2_ctrl_config config;
u32 cid;

};

Members
config initialization data for a control

cid contains v4l2 flash control id if the config field was initialized, 0 otherwise

struct v4l2_flash_ops
V4L2 flash operations

Definition

struct v4l2_flash_ops {
int (*external_strobe_set)(struct v4l2_flash *v4l2_flash, bool enable);
enum led_brightness (*intensity_to_led_brightness) (struct v4l2_flash *v4l2_flash,␣

↪→s32 intensity);
s32 (*led_brightness_to_intensity) (struct v4l2_flash *v4l2_flash, enum led_

↪→brightness);
};

Members
external_strobe_set Setup strobing the flash by hardware pin state assertion.

372 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

intensity_to_led_brightness Convert intensity to brightness in a device specific manner

led_brightness_to_intensity convert brightness to intensity in a device specific manner.

struct v4l2_flash_config
V4L2 Flash sub-device initialization data

Definition

struct v4l2_flash_config {
char dev_name[32];
struct led_flash_setting intensity;
u32 flash_faults;
unsigned int has_external_strobe:1;

};

Members
dev_name the name of the media entity, unique in the system

intensity non-flash strobe constraints for the LED

flash_faults bitmask of flash faults that the LED flash class device can report; corresponding
LED_FAULT* bit definitions are available in the header file <linux/led-class-flash.h>

has_external_strobe external strobe capability

struct v4l2_flash
Flash sub-device context

Definition

struct v4l2_flash {
struct led_classdev_flash *fled_cdev;
struct led_classdev *iled_cdev;
const struct v4l2_flash_ops *ops;
struct v4l2_subdev sd;
struct v4l2_ctrl_handler hdl;
struct v4l2_ctrl **ctrls;

};

Members
fled_cdev LED flash class device controlled by this sub-device

iled_cdev LED class device representing indicator LED associated with the LED flash class
device

ops V4L2 specific flash ops

sd V4L2 sub-device

hdl flash controls handler

ctrls array of pointers to controls, whose values define the sub-device state

struct v4l2_flash * v4l2_subdev_to_v4l2_flash(struct v4l2_subdev *sd)
Returns a struct v4l2_flash from the struct v4l2_subdev embedded on it.

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

2.2. Video4Linux devices 373

Linux Media Documentation

struct v4l2_flash * v4l2_ctrl_to_v4l2_flash(struct v4l2_ctrl *c)
Returns a struct v4l2_flash from the struct v4l2_ctrl embedded on it.

Parameters
struct v4l2_ctrl *c pointer to struct v4l2_ctrl

struct v4l2_flash * v4l2_flash_init(struct device *dev, struct fwnode_handle *fwn,
struct led_classdev_flash *fled_cdev,
const struct v4l2_flash_ops *ops, struct
v4l2_flash_config *config)

initialize V4L2 flash led sub-device

Parameters
struct device *dev flash device, e.g. an I2C device

struct fwnode_handle *fwn fwnode_handle of the LED, may be NULL if the same as device’s

struct led_classdev_flash *fled_cdev LED flash class device to wrap

const struct v4l2_flash_ops *ops V4L2 Flash device ops

struct v4l2_flash_config *config initialization data for V4L2 Flash sub-device

Description
Create V4L2 Flash sub-device wrapping given LED subsystem device. The ops pointer is stored
by the V4L2 flash framework. No references are held to config nor its contents once this func-
tion has returned.

Return
A valid pointer, or, when an error occurs, the return value is encoded using ERR_PTR(). Use
IS_ERR() to check and PTR_ERR() to obtain the numeric return value.

struct v4l2_flash * v4l2_flash_indicator_init(struct device *dev, struct
fwnode_handle *fwn, struct
led_classdev *iled_cdev, struct
v4l2_flash_config *config)

initialize V4L2 indicator sub-device

Parameters
struct device *dev flash device, e.g. an I2C device

struct fwnode_handle *fwn fwnode_handle of the LED, may be NULL if the same as device’s

struct led_classdev *iled_cdev LED flash class device representing the indicator LED

struct v4l2_flash_config *config initialization data for V4L2 Flash sub-device

Description
Create V4L2 Flash sub-device wrapping given LED subsystem device. The ops pointer is stored
by the V4L2 flash framework. No references are held to config nor its contents once this func-
tion has returned.

Return
A valid pointer, or, when an error occurs, the return value is encoded using ERR_PTR(). Use
IS_ERR() to check and PTR_ERR() to obtain the numeric return value.

374 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

void v4l2_flash_release(struct v4l2_flash *v4l2_flash)
release V4L2 Flash sub-device

Parameters
struct v4l2_flash *v4l2_flash the V4L2 Flash sub-device to release

Description
Release V4L2 Flash sub-device.

2.2.18 V4L2 Media Controller functions and data structures

int v4l2_mc_create_media_graph(struct media_device *mdev)
create Media Controller links at the graph.

Parameters
struct media_device *mdev pointer to the media_device struct.

Description
Add links between the entities commonly found on PC customer’s hardware at the V4L2 side:
camera sensors, audio and video PLL-IF decoders, tuners, analog TV decoder and I/O entities
(video, VBI and Software Defined Radio).

Note: Webcams are modelled on a very simple way: the sensor is connected directly to the I/O
entity. All dirty details, like scaler and crop HW are hidden. While such mapping is enough for
v4l2 interface centric PC-consumer’s hardware, V4L2 subdev centric camera hardware should
not use this routine, as it will not build the right graph.

int v4l_enable_media_source(struct video_device *vdev)
Hold media source for exclusive use if free

Parameters
struct video_device *vdev pointer to struct video_device

Description
This interface calls enable_source handler to determine if media source is free for use. The
enable_source handler is responsible for checking is themedia source is free and start a pipeline
between the media source and the media entity associated with the video device. This interface
should be called from v4l2-core and dvb-core interfaces that change the source configuration.

Return
returns zero on success or a negative error code.

void v4l_disable_media_source(struct video_device *vdev)
Release media source

Parameters
struct video_device *vdev pointer to struct video_device

Description

2.2. Video4Linux devices 375

Linux Media Documentation

This interface calls disable_source handler to release the media source. The disable_source
handler stops the active media pipeline between the media source and the media entity associ-
ated with the video device.

Return
returns zero on success or a negative error code.

int v4l2_create_fwnode_links_to_pad(struct v4l2_subdev *src_sd, struct me-
dia_pad *sink, u32 flags)

Create fwnode-based links from a source subdev to a sink subdev pad.

Parameters
struct v4l2_subdev *src_sd pointer to a source subdev

struct media_pad *sink pointer to a subdev sink pad

u32 flags the link flags

Description
This function searches for fwnode endpoint connections from a source subdevice to a single sink
pad, and if suitable connections are found, translates them into media links to that pad. The
function can be called by the sink subdevice, in its v4l2-async notifier subdev bound callback,
to create links from a bound source subdevice.

The flags argument specifies the link flags. The caller shall ensure that the flags are
valid regardless of the number of links that may be created. For instance, setting the ME-
DIA_LNK_FL_ENABLED flag will cause all created links to be enabled, which isn’t valid if more
than one link is created.

Note: Any sink subdevice that calls this function must implement the .get_fwnode_pad media
operation in order to verify endpoints passed to the sink are owned by the sink.

Return 0 on success or a negative error code on failure.

int v4l2_create_fwnode_links(struct v4l2_subdev *src_sd, struct v4l2_subdev *sink_sd)
Create fwnode-based links from a source subdev to a sink subdev.

Parameters
struct v4l2_subdev *src_sd pointer to a source subdevice

struct v4l2_subdev *sink_sd pointer to a sink subdevice

Description
This function searches for any and all fwnode endpoint connections between source and sink
subdevices, and translates them into media links. The function can be called by the sink sub-
device, in its v4l2-async notifier subdev bound callback, to create all links from a bound source
subdevice.

Note: Any sink subdevice that calls this function must implement the .get_fwnode_pad media
operation in order to verify endpoints passed to the sink are owned by the sink.

Return 0 on success or a negative error code on failure.

376 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

int v4l2_pipeline_pm_get(struct media_entity *entity)
Increase the use count of a pipeline

Parameters
struct media_entity *entity The root entity of a pipeline

Description
Update the use count of all entities in the pipeline and power entities on.

This function is intended to be called in video node open. It uses struct
media_entity.use_count to track the power status. The use of this function should be
paired with v4l2_pipeline_link_notify().

Return 0 on success or a negative error code on failure.

void v4l2_pipeline_pm_put(struct media_entity *entity)
Decrease the use count of a pipeline

Parameters
struct media_entity *entity The root entity of a pipeline

Description
Update the use count of all entities in the pipeline and power entities off.

This function is intended to be called in video node release. It uses struct
media_entity.use_count to track the power status. The use of this function should be paired
with v4l2_pipeline_link_notify().

int v4l2_pipeline_link_notify(struct media_link *link, u32 flags, unsigned
int notification)

Link management notification callback

Parameters
struct media_link *link The link

u32 flags New link flags that will be applied

unsigned int notification The link’s state change notification type (ME-
DIA_DEV_NOTIFY_*)

Description
React to link management on powered pipelines by updating the use count of all entities in the
source and sink sides of the link. Entities are powered on or off accordingly. The use of this
function should be paired with v4l2_pipeline_pm_{get,put}().

Return 0 on success or a negative error code on failure. Powering entities off is assumed to
never fail. This function will not fail for disconnection events.

2.2. Video4Linux devices 377

Linux Media Documentation

2.2.19 V4L2 Media Bus functions and data structures

enum v4l2_mbus_type
media bus type

Constants
V4L2_MBUS_UNKNOWN unknown bus type, no V4L2 mediabus configuration

V4L2_MBUS_PARALLEL parallel interface with hsync and vsync

V4L2_MBUS_BT656 parallel interface with embedded synchronisation, can also be used for
BT.1120

V4L2_MBUS_CSI1 MIPI CSI-1 serial interface

V4L2_MBUS_CCP2 CCP2 (Compact Camera Port 2)

V4L2_MBUS_CSI2_DPHY MIPI CSI-2 serial interface, with D-PHY

V4L2_MBUS_CSI2_CPHY MIPI CSI-2 serial interface, with C-PHY

V4L2_MBUS_INVALID invalid bus type (keep as last)

struct v4l2_mbus_config
media bus configuration

Definition

struct v4l2_mbus_config {
enum v4l2_mbus_type type;
unsigned int flags;

};

Members
type in: interface type

flags in / out: configuration flags, depending on type
void v4l2_fill_pix_format(struct v4l2_pix_format *pix_fmt, const struct

v4l2_mbus_framefmt *mbus_fmt)
Ancillary routine that fills a struct v4l2_pix_format fields from a struct
v4l2_mbus_framefmt.

Parameters
struct v4l2_pix_format *pix_fmt pointer to struct v4l2_pix_format to be filled

const struct v4l2_mbus_framefmt *mbus_fmt pointer to struct v4l2_mbus_framefmt to
be used as model

void v4l2_fill_mbus_format(struct v4l2_mbus_framefmt *mbus_fmt, const struct
v4l2_pix_format *pix_fmt, u32 code)

Ancillary routine that fills a struct v4l2_mbus_framefmt from a struct
v4l2_pix_format and a data format code.

Parameters
struct v4l2_mbus_framefmt *mbus_fmt pointer to struct v4l2_mbus_framefmt to be filled

const struct v4l2_pix_format *pix_fmt pointer to struct v4l2_pix_format to be used as
model

378 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

u32 code data format code (from enum v4l2_mbus_pixelcode)

void v4l2_fill_pix_format_mplane(struct v4l2_pix_format_mplane *pix_mp_fmt, const
struct v4l2_mbus_framefmt *mbus_fmt)

Ancillary routine that fills a struct v4l2_pix_format_mplane fields from a media bus
structure.

Parameters
struct v4l2_pix_format_mplane *pix_mp_fmt pointer to struct v4l2_pix_format_mplane

to be filled

const struct v4l2_mbus_framefmt *mbus_fmt pointer to struct v4l2_mbus_framefmt to
be used as model

void v4l2_fill_mbus_format_mplane(struct v4l2_mbus_framefmt *mbus_fmt, const
struct v4l2_pix_format_mplane *pix_mp_fmt)

Ancillary routine that fills a struct v4l2_mbus_framefmt from a struct
v4l2_pix_format_mplane.

Parameters
struct v4l2_mbus_framefmt *mbus_fmt pointer to struct v4l2_mbus_framefmt to be filled

const struct v4l2_pix_format_mplane *pix_mp_fmt pointer to struct
v4l2_pix_format_mplane to be used as model

2.2.20 V4L2 Memory to Memory functions and data structures

struct v4l2_m2m_ops
mem-to-mem device driver callbacks

Definition

struct v4l2_m2m_ops {
void (*device_run)(void *priv);
int (*job_ready)(void *priv);
void (*job_abort)(void *priv);

};

Members
device_run required. Begin the actual job (transaction) inside this callback. The job does

NOT have to end before this callback returns (and it will be the usual case). When the
job finishes, v4l2_m2m_job_finish() or v4l2_m2m_buf_done_and_job_finish() has to
be called.

job_ready optional. Should return 0 if the driver does not have a job fully prepared to run yet
(i.e. it will not be able to finish a transaction without sleeping). If not provided, it will be
assumed that one source and one destination buffer are all that is required for the driver
to perform one full transaction. This method may not sleep.

job_abort optional. Informs the driver that it has to abort the currently running transac-
tion as soon as possible (i.e. as soon as it can stop the device safely; e.g. in the next
interrupt handler), even if the transaction would not have been finished by then. Af-
ter the driver performs the necessary steps, it has to call v4l2_m2m_job_finish() or

2.2. Video4Linux devices 379

Linux Media Documentation

v4l2_m2m_buf_done_and_job_finish() as if the transaction ended normally. This func-
tion does not have to (and will usually not) wait until the device enters a state when it can
be stopped.

struct v4l2_m2m_queue_ctx
represents a queue for buffers ready to be processed

Definition

struct v4l2_m2m_queue_ctx {
struct vb2_queue q;
struct list_head rdy_queue;
spinlock_t rdy_spinlock;
u8 num_rdy;
bool buffered;

};

Members
q pointer to struct vb2_queue

rdy_queue List of V4L2 mem-to-mem queues

rdy_spinlock spin lock to protect the struct usage

num_rdy number of buffers ready to be processed

buffered is the queue buffered?

Description
Queue for buffers ready to be processed as soon as this instance receives access to the device.

struct v4l2_m2m_ctx
Memory to memory context structure

Definition

struct v4l2_m2m_ctx {
struct mutex *q_lock;
bool new_frame;
bool is_draining;
struct vb2_v4l2_buffer *last_src_buf;
bool next_buf_last;
bool has_stopped;
struct v4l2_m2m_dev *m2m_dev;
struct v4l2_m2m_queue_ctx cap_q_ctx;
struct v4l2_m2m_queue_ctx out_q_ctx;
struct list_head queue;
unsigned long job_flags;
wait_queue_head_t finished;
void *priv;

};

Members
q_lock struct mutex lock

new_frame valid in the device_run callback: if true, then this starts a new frame; if
false, then this is a new slice for an existing frame. This is always true unless

380 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

V4L2_BUF_CAP_SUPPORTS_M2M_HOLD_CAPTURE_BUF is set, which indicates slicing
support.

is_draining indicates device is in draining phase

last_src_buf indicate the last source buffer for draining

next_buf_last next capture queud buffer will be tagged as last

has_stopped indicate the device has been stopped

m2m_dev opaque pointer to the internal data to handle M2M context

cap_q_ctx Capture (output to memory) queue context

out_q_ctx Output (input from memory) queue context

queue List of memory to memory contexts

job_flags Job queue flags, used internally by v4l2-mem2mem.c: TRANS_QUEUED,
TRANS_RUNNING and TRANS_ABORT.

finished Wait queue used to signalize when a job queue finished.

priv Instance private data

Description
The memory to memory context is specific to a file handle, NOT to e.g. a device.

struct v4l2_m2m_buffer
Memory to memory buffer

Definition

struct v4l2_m2m_buffer {
struct vb2_v4l2_buffer vb;
struct list_head list;

};

Members
vb pointer to struct vb2_v4l2_buffer

list list of m2m buffers

void * v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev)
return driver private data for the currently running instance or NULL if no instance is
running

Parameters
struct v4l2_m2m_dev *m2m_dev opaque pointer to the internal data to handle M2M context

struct vb2_queue * v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx, enum
v4l2_buf_type type)

return vb2_queue for the given type

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

enum v4l2_buf_type type type of the V4L2 buffer, as defined by enum v4l2_buf_type

2.2. Video4Linux devices 381

Linux Media Documentation

void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx)
check whether an instance is ready to be added to the pending job queue and add it if so.

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

Description
There are three basic requirements an instance has to meet to be able to run: 1) at least one
source buffer has to be queued, 2) at least one destination buffer has to be queued, 3) streaming
has to be on.

If a queue is buffered (for example a decoder hardware ringbuffer that has to be drained before
doing streamoff), allow scheduling without v4l2 buffers on that queue.

There may also be additional, custom requirements. In such case the driver should supply
a custom callback (job_ready in v4l2_m2m_ops) that should return 1 if the instance is ready.
An example of the above could be an instance that requires more than one src/dst buffer per
transaction.

void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev, struct
v4l2_m2m_ctx *m2m_ctx)

inform the framework that a job has been finished and have it clean up

Parameters
struct v4l2_m2m_dev *m2m_dev opaque pointer to the internal data to handle M2M context

struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct
v4l2_m2m_ctx

Description
Called by a driver to yield back the device after it has finished with it. Should be called as soon
as possible after reaching a state which allows other instances to take control of the device.

This function has to be called only after v4l2_m2m_ops->device_run callback has been
called on the driver. To prevent recursion, it should not be called directly from the
v4l2_m2m_ops->device_run callback though.

void v4l2_m2m_buf_done_and_job_finish(struct v4l2_m2m_dev *m2m_dev,
struct v4l2_m2m_ctx *m2m_ctx, enum
vb2_buffer_state state)

return source/destination buffers with state and inform the framework that a job has been
finished and have it clean up

Parameters
struct v4l2_m2m_dev *m2m_dev opaque pointer to the internal data to handle M2M context

struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct
v4l2_m2m_ctx

enum vb2_buffer_state state vb2 buffer state passed to v4l2_m2m_buf_done().

Description
Drivers that set V4L2_BUF_CAP_SUPPORTS_M2M_HOLD_CAPTURE_BUF must use this func-
tion instead of job_finish() to take held buffers into account. It is optional for other drivers.

382 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

This function removes the source buffer from the ready list and returns it with the given state.
The same is done for the destination buffer, unless it is marked ‘held’. In that case the buffer is
kept on the ready list.

After that the job is finished (see job_finish()).

This allows for multiple output buffers to be used to fill in a single capture buffer. This is
typically used by stateless decoders where multiple e.g. H.264 slices contribute to a single
decoded frame.

void v4l2_m2m_clear_state(struct v4l2_m2m_ctx *m2m_ctx)
clear encoding/decoding state

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

void v4l2_m2m_mark_stopped(struct v4l2_m2m_ctx *m2m_ctx)
set current encoding/decoding state as stopped

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

bool v4l2_m2m_dst_buf_is_last(struct v4l2_m2m_ctx *m2m_ctx)
return the current encoding/decoding session draining management state of next queued
capture buffer

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

Description
This last capture buffer should be tagged with V4L2_BUF_FLAG_LAST to notify the end of the
capture session.

bool v4l2_m2m_has_stopped(struct v4l2_m2m_ctx *m2m_ctx)
return the current encoding/decoding session stopped state

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

bool v4l2_m2m_is_last_draining_src_buf(struct v4l2_m2m_ctx *m2m_ctx, struct
vb2_v4l2_buffer *vbuf)

return the output buffer draining state in the current encoding/decoding session

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

struct vb2_v4l2_buffer *vbuf pointer to struct v4l2_buffer

Description

2.2. Video4Linux devices 383

Linux Media Documentation

This will identify the last output buffer queued before a session stop was required, leading to
an actual encoding/decoding session stop state in the encoding/decoding process after being
processed.

void v4l2_m2m_last_buffer_done(struct v4l2_m2m_ctx *m2m_ctx, struct
vb2_v4l2_buffer *vbuf)

marks the buffer with LAST flag and DONE

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

struct vb2_v4l2_buffer *vbuf pointer to struct v4l2_buffer

void v4l2_m2m_suspend(struct v4l2_m2m_dev *m2m_dev)
stop new jobs from being run and wait for current job to finish

Parameters
struct v4l2_m2m_dev *m2m_dev opaque pointer to the internal data to handle M2M context

Description
Called by a driver in the suspend hook. Stop new jobs from being run, and wait for current
running job to finish.

void v4l2_m2m_resume(struct v4l2_m2m_dev *m2m_dev)
resume job running and try to run a queued job

Parameters
struct v4l2_m2m_dev *m2m_dev opaque pointer to the internal data to handle M2M context

Description
Called by a driver in the resume hook. This reverts the operation of v4l2_m2m_suspend() and
allows job to be run. Also try to run a queued job if there is any.

int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct
v4l2_requestbuffers *reqbufs)

multi-queue-aware REQBUFS multiplexer

Parameters
struct file *file pointer to struct file

struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct
v4l2_m2m_ctx

struct v4l2_requestbuffers *reqbufs pointer to struct v4l2_requestbuffers

int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct
v4l2_buffer *buf)

multi-queue-aware QUERYBUF multiplexer

Parameters
struct file *file pointer to struct file

struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct
v4l2_m2m_ctx

struct v4l2_buffer *buf pointer to struct v4l2_buffer

384 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description
See v4l2_m2m_mmap() documentation for details.

int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct
v4l2_buffer *buf)

enqueue a source or destination buffer, depending on the type

Parameters
struct file *file pointer to struct file

struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct
v4l2_m2m_ctx

struct v4l2_buffer *buf pointer to struct v4l2_buffer

int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct
v4l2_buffer *buf)

dequeue a source or destination buffer, depending on the type

Parameters
struct file *file pointer to struct file

struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct
v4l2_m2m_ctx

struct v4l2_buffer *buf pointer to struct v4l2_buffer

int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct
v4l2_buffer *buf)

prepare a source or destination buffer, depending on the type

Parameters
struct file *file pointer to struct file

struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct
v4l2_m2m_ctx

struct v4l2_buffer *buf pointer to struct v4l2_buffer

int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct
v4l2_create_buffers *create)

create a source or destination buffer, depending on the type

Parameters
struct file *file pointer to struct file

struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct
v4l2_m2m_ctx

struct v4l2_create_buffers *create pointer to struct v4l2_create_buffers

int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct
v4l2_exportbuffer *eb)

export a source or destination buffer, depending on the type

Parameters
struct file *file pointer to struct file

2.2. Video4Linux devices 385

Linux Media Documentation

struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct
v4l2_m2m_ctx

struct v4l2_exportbuffer *eb pointer to struct v4l2_exportbuffer

int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, enum
v4l2_buf_type type)

turn on streaming for a video queue

Parameters
struct file *file pointer to struct file

struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct
v4l2_m2m_ctx

enum v4l2_buf_type type type of the V4L2 buffer, as defined by enum v4l2_buf_type

int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, enum
v4l2_buf_type type)

turn off streaming for a video queue

Parameters
struct file *file pointer to struct file

struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct
v4l2_m2m_ctx

enum v4l2_buf_type type type of the V4L2 buffer, as defined by enum v4l2_buf_type

void v4l2_m2m_update_start_streaming_state(struct v4l2_m2m_ctx *m2m_ctx, struct
vb2_queue *q)

update the encoding/decoding session state when a start of streaming of a video queue is
requested

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

struct vb2_queue *q queue

void v4l2_m2m_update_stop_streaming_state(struct v4l2_m2m_ctx *m2m_ctx, struct
vb2_queue *q)

update the encoding/decoding session state when a stop of streaming of a video queue is
requested

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

struct vb2_queue *q queue

int v4l2_m2m_encoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct
v4l2_encoder_cmd *ec)

execute an encoder command

Parameters
struct file *file pointer to struct file

386 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct
v4l2_m2m_ctx

struct v4l2_encoder_cmd *ec pointer to the encoder command

int v4l2_m2m_decoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct
v4l2_decoder_cmd *dc)

execute a decoder command

Parameters
struct file *file pointer to struct file

struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct
v4l2_m2m_ctx

struct v4l2_decoder_cmd *dc pointer to the decoder command

__poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct
poll_table_struct *wait)

poll replacement, for destination buffers only

Parameters
struct file *file pointer to struct file

struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct
v4l2_m2m_ctx

struct poll_table_struct *wait pointer to struct poll_table_struct

Description
Call from the driver’s poll() function. Will poll both queues. If a buffer is available to dequeue
(with dqbuf) from the source queue, this will indicate that a non-blocking write can be per-
formed, while read will be returned in case of the destination queue.

int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct
vm_area_struct *vma)

source and destination queues-aware mmap multiplexer

Parameters
struct file *file pointer to struct file

struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct
v4l2_m2m_ctx

struct vm_area_struct *vma pointer to struct vm_area_struct

Description
Call from driver’s mmap() function. Will handle mmap() for both queues seamlessly for
videobuffer, which will receive normal per-queue offsets and proper videobuf queue pointers.
The differentiation is made outside videobuf by adding a predefined offset to buffers from one
of the queues and subtracting it before passing it back to videobuf. Only drivers (and thus
applications) receive modified offsets.

struct v4l2_m2m_dev * v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops)
initialize per-driver m2m data

Parameters

2.2. Video4Linux devices 387

Linux Media Documentation

const struct v4l2_m2m_ops *m2m_ops pointer to struct v4l2_m2m_ops

Description
Usually called from driver’s probe() function.

Return
returns an opaque pointer to the internal data to handle M2M context

void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev)
cleans up and frees a m2m_dev structure

Parameters
struct v4l2_m2m_dev *m2m_dev opaque pointer to the internal data to handle M2M context

Description
Usually called from driver’s remove() function.

struct v4l2_m2m_ctx * v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev,
void *drv_priv, int (*queue_init)(void *priv,
struct vb2_queue *src_vq, struct vb2_queue
*dst_vq))

allocate and initialize a m2m context

Parameters
struct v4l2_m2m_dev *m2m_dev opaque pointer to the internal data to handle M2M context

void *drv_priv driver’s instance private data

int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq)
a callback for queue type-specific initialization function to be used for initializing
videobuf_queues

Description
Usually called from driver’s open() function.

void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx)
release m2m context

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

Description
Usually called from driver’s release() function.

void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx, struct vb2_v4l2_buffer *vbuf)
add a buffer to the proper ready buffers list.

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

struct vb2_v4l2_buffer *vbuf pointer to struct vb2_v4l2_buffer

388 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description
Call from videobuf_queue_ops->ops->buf_queue, videobuf_queue_ops callback.

unsigned int v4l2_m2m_num_src_bufs_ready(struct v4l2_m2m_ctx *m2m_ctx)
return the number of source buffers ready for use

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

unsigned int v4l2_m2m_num_dst_bufs_ready(struct v4l2_m2m_ctx *m2m_ctx)
return the number of destination buffers ready for use

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

struct vb2_v4l2_buffer * v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx)
return next buffer from the list of ready buffers

Parameters
struct v4l2_m2m_queue_ctx *q_ctx pointer to struct v4l2_m2m_queue_ctx
struct vb2_v4l2_buffer * v4l2_m2m_next_src_buf(struct v4l2_m2m_ctx *m2m_ctx)

return next source buffer from the list of ready buffers

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

struct vb2_v4l2_buffer * v4l2_m2m_next_dst_buf(struct v4l2_m2m_ctx *m2m_ctx)
return next destination buffer from the list of ready buffers

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

struct vb2_v4l2_buffer * v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx)
return last buffer from the list of ready buffers

Parameters
struct v4l2_m2m_queue_ctx *q_ctx pointer to struct v4l2_m2m_queue_ctx
struct vb2_v4l2_buffer * v4l2_m2m_last_src_buf(struct v4l2_m2m_ctx *m2m_ctx)

return last destination buffer from the list of ready buffers

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

struct vb2_v4l2_buffer * v4l2_m2m_last_dst_buf(struct v4l2_m2m_ctx *m2m_ctx)
return last destination buffer from the list of ready buffers

Parameters

2.2. Video4Linux devices 389

Linux Media Documentation

struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct
v4l2_m2m_ctx

v4l2_m2m_for_each_dst_buf(m2m_ctx, b)
iterate over a list of destination ready buffers

Parameters
m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx

b current buffer of type struct v4l2_m2m_buffer

v4l2_m2m_for_each_src_buf(m2m_ctx, b)
iterate over a list of source ready buffers

Parameters
m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx

b current buffer of type struct v4l2_m2m_buffer

v4l2_m2m_for_each_dst_buf_safe(m2m_ctx, b, n)
iterate over a list of destination ready buffers safely

Parameters
m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx

b current buffer of type struct v4l2_m2m_buffer

n used as temporary storage

v4l2_m2m_for_each_src_buf_safe(m2m_ctx, b, n)
iterate over a list of source ready buffers safely

Parameters
m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx

b current buffer of type struct v4l2_m2m_buffer

n used as temporary storage

struct vb2_queue * v4l2_m2m_get_src_vq(struct v4l2_m2m_ctx *m2m_ctx)
return vb2_queue for source buffers

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

struct vb2_queue * v4l2_m2m_get_dst_vq(struct v4l2_m2m_ctx *m2m_ctx)
return vb2_queue for destination buffers

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

struct vb2_v4l2_buffer * v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx)
take off a buffer from the list of ready buffers and return it

Parameters
struct v4l2_m2m_queue_ctx *q_ctx pointer to struct v4l2_m2m_queue_ctx

390 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct vb2_v4l2_buffer * v4l2_m2m_src_buf_remove(struct v4l2_m2m_ctx *m2m_ctx)
take off a source buffer from the list of ready buffers and return it

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

struct vb2_v4l2_buffer * v4l2_m2m_dst_buf_remove(struct v4l2_m2m_ctx *m2m_ctx)
take off a destination buffer from the list of ready buffers and return it

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx, struct
vb2_v4l2_buffer *vbuf)

take off exact buffer from the list of ready buffers

Parameters
struct v4l2_m2m_queue_ctx *q_ctx pointer to struct v4l2_m2m_queue_ctx
struct vb2_v4l2_buffer *vbuf the buffer to be removed

void v4l2_m2m_src_buf_remove_by_buf(struct v4l2_m2m_ctx *m2m_ctx, struct
vb2_v4l2_buffer *vbuf)

take off exact source buffer from the list of ready buffers

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

struct vb2_v4l2_buffer *vbuf the buffer to be removed

void v4l2_m2m_dst_buf_remove_by_buf(struct v4l2_m2m_ctx *m2m_ctx, struct
vb2_v4l2_buffer *vbuf)

take off exact destination buffer from the list of ready buffers

Parameters
struct v4l2_m2m_ctx *m2m_ctx m2m context assigned to the instance given by struct

v4l2_m2m_ctx

struct vb2_v4l2_buffer *vbuf the buffer to be removed

void v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer *out_vb, struct
vb2_v4l2_buffer *cap_vb, bool copy_frame_flags)

copy buffer metadata from the output buffer to the capture buffer

Parameters
const struct vb2_v4l2_buffer *out_vb the output buffer that is the source of the metadata.

struct vb2_v4l2_buffer *cap_vb the capture buffer that will receive the metadata.

bool copy_frame_flags copy the KEY/B/PFRAME flags as well.

Description

2.2. Video4Linux devices 391

Linux Media Documentation

This helper function copies the timestamp, timecode (if the TIMECODE buffer flag was set),
field and the TIMECODE, KEYFRAME, BFRAME, PFRAME and TSTAMP_SRC_MASK flags from
out_vb to cap_vb.
If copy_frame_flags is false, then the KEYFRAME, BFRAME and PFRAME flags are not copied.
This is typically needed for encoders that set this bits explicitly.

2.2.21 V4L2 async kAPI

enum v4l2_async_match_type
type of asynchronous subdevice logic to be used in order to identify a match

Constants
V4L2_ASYNC_MATCH_I2C Match will check for I2C adapter ID and address

V4L2_ASYNC_MATCH_FWNODE Match will use firmware node

Description
This enum is used by the asynchronous sub-device logic to define the algorithm that will be
used to match an asynchronous device.

struct v4l2_async_subdev
sub-device descriptor, as known to a bridge

Definition

struct v4l2_async_subdev {
enum v4l2_async_match_type match_type;
union {
struct fwnode_handle *fwnode;
struct {
int adapter_id;
unsigned short address;

} i2c;
} match;
struct list_head list;
struct list_head asd_list;

};

Members
match_type type of match that will be used

match union of per-bus type matching data sets

match.fwnode

pointer to struct fwnode_handle to be matched. Used if match_type is
V4L2_ASYNC_MATCH_FWNODE.

match.i2c embedded struct with I2C parameters to be matched. Bothmatch.i2c.adapter_id
and match.i2c.address should be matched. Used if match_type is
V4L2_ASYNC_MATCH_I2C.

match.i2c.adapter_id

I2C adapter ID to be matched. Used if match_type is V4L2_ASYNC_MATCH_I2C.

392 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

match.i2c.address

I2C address to be matched. Used if match_type is V4L2_ASYNC_MATCH_I2C.
list used to link struct v4l2_async_subdev objects, waiting to be probed, to a notifier-

>waiting list

asd_list used to add struct v4l2_async_subdev objects to the master notifier asd_list
Description
When this struct is used as a member in a driver specific struct, the driver specific struct shall
contain the struct v4l2_async_subdev as its first member.

struct v4l2_async_notifier_operations
Asynchronous V4L2 notifier operations

Definition

struct v4l2_async_notifier_operations {
int (*bound)(struct v4l2_async_notifier *notifier,struct v4l2_subdev *subdev, struct␣

↪→v4l2_async_subdev *asd);
int (*complete)(struct v4l2_async_notifier *notifier);
void (*unbind)(struct v4l2_async_notifier *notifier,struct v4l2_subdev *subdev,␣

↪→struct v4l2_async_subdev *asd);
};

Members
bound a subdevice driver has successfully probed one of the subdevices

complete All subdevices have been probed successfully. The complete callback is only executed
for the root notifier.

unbind a subdevice is leaving

struct v4l2_async_notifier
v4l2_device notifier data

Definition

struct v4l2_async_notifier {
const struct v4l2_async_notifier_operations *ops;
struct v4l2_device *v4l2_dev;
struct v4l2_subdev *sd;
struct v4l2_async_notifier *parent;
struct list_head asd_list;
struct list_head waiting;
struct list_head done;
struct list_head list;

};

Members
ops notifier operations

v4l2_dev v4l2_device of the root notifier, NULL otherwise

sd sub-device that registered the notifier, NULL otherwise

parent parent notifier

2.2. Video4Linux devices 393

Linux Media Documentation

asd_list master list of struct v4l2_async_subdev

waiting list of struct v4l2_async_subdev, waiting for their drivers

done list of struct v4l2_subdev, already probed

list member in a global list of notifiers

void v4l2_async_debug_init(struct dentry *debugfs_dir)
Initialize debugging tools.

Parameters
struct dentry *debugfs_dir pointer to the parent debugfs struct dentry

void v4l2_async_nf_init(struct v4l2_async_notifier *notifier)
Initialize a notifier.

Parameters
struct v4l2_async_notifier *notifier pointer to struct v4l2_async_notifier

Description
This function initializes the notifier asd_list. It must be called before adding
a subdevice to a notifier, using one of: v4l2_async_nf_add_fwnode_remote(),
v4l2_async_nf_add_fwnode(), v4l2_async_nf_add_i2c(), __v4l2_async_nf_add_subdev()
or v4l2_async_nf_parse_fwnode_endpoints().

int __v4l2_async_nf_add_subdev(struct v4l2_async_notifier *notifier, struct
v4l2_async_subdev *asd)

Add an async subdev to the notifier’s master asd list.

Parameters
struct v4l2_async_notifier *notifier pointer to struct v4l2_async_notifier

struct v4l2_async_subdev *asd pointer to struct v4l2_async_subdev

Description
warning: Drivers should avoid using this function and instead use one
of: v4l2_async_nf_add_fwnode(), v4l2_async_nf_add_fwnode_remote() or
v4l2_async_nf_add_i2c().

Call this function before registering a notifier to link the provided asd to the notifiers master
asd_list. The asd must be allocated with k*alloc() as it will be freed by the framework when
the notifier is destroyed.

v4l2_async_nf_add_fwnode(notifier, fwnode, type)
Allocate and add a fwnode async subdev to the notifier’s master asd_list.

Parameters
notifier pointer to struct v4l2_async_notifier

fwnode fwnode handle of the sub-device to be matched, pointer to struct fwnode_handle

type Type of the driver’s async sub-device struct. The struct v4l2_async_subdev shall be the
first member of the driver’s async sub-device struct, i.e. both begin at the same memory
address.

394 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description
Allocate a fwnode-matched asd of size asd_struct_size, and add it to the notifiers asd_list. The
function also gets a reference of the fwnode which is released later at notifier cleanup time.

v4l2_async_nf_add_fwnode_remote(notifier, ep, type)
Allocate and add a fwnode remote async subdev to the notifier’s master asd_list.

Parameters
notifier pointer to struct v4l2_async_notifier

ep local endpoint pointing to the remote sub-device to be matched, pointer to struct
fwnode_handle

type Type of the driver’s async sub-device struct. The struct v4l2_async_subdev shall be the
first member of the driver’s async sub-device struct, i.e. both begin at the same memory
address.

Description
Gets the remote endpoint of a given local endpoint, set it up for fwnode matching and adds the
async sub-device to the notifier’s asd_list. The function also gets a reference of the fwnode
which is released later at notifier cleanup time.

This is just like v4l2_async_nf_add_fwnode(), but with the exception that the fwnode refers
to a local endpoint, not the remote one.

v4l2_async_nf_add_i2c(notifier, adapter, address, type)
Allocate and add an i2c async subdev to the notifier’s master asd_list.

Parameters
notifier pointer to struct v4l2_async_notifier

adapter I2C adapter ID to be matched

address I2C address of sub-device to be matched

type Type of the driver’s async sub-device struct. The struct v4l2_async_subdev shall be the
first member of the driver’s async sub-device struct, i.e. both begin at the same memory
address.

Description
Same as v4l2_async_nf_add_fwnode() but for I2C matched sub-devices.

int v4l2_async_nf_register(struct v4l2_device *v4l2_dev, struct
v4l2_async_notifier *notifier)

registers a subdevice asynchronous notifier

Parameters
struct v4l2_device *v4l2_dev pointer to struct v4l2_device

struct v4l2_async_notifier *notifier pointer to struct v4l2_async_notifier

int v4l2_async_subdev_nf_register(struct v4l2_subdev *sd, struct
v4l2_async_notifier *notifier)

registers a subdevice asynchronous notifier for a sub-device

Parameters

2.2. Video4Linux devices 395

Linux Media Documentation

struct v4l2_subdev *sd pointer to struct v4l2_subdev

struct v4l2_async_notifier *notifier pointer to struct v4l2_async_notifier

void v4l2_async_nf_unregister(struct v4l2_async_notifier *notifier)
unregisters a subdevice asynchronous notifier

Parameters
struct v4l2_async_notifier *notifier pointer to struct v4l2_async_notifier

void v4l2_async_nf_cleanup(struct v4l2_async_notifier *notifier)
clean up notifier resources

Parameters
struct v4l2_async_notifier *notifier the notifier the resources of which are to be cleaned

up

Description
Release memory resources related to a notifier, including the async sub-devices allocated
for the purposes of the notifier but not the notifier itself. The user is responsible for call-
ing this function to clean up the notifier after calling v4l2_async_nf_add_fwnode_remote(),
v4l2_async_nf_add_fwnode(), v4l2_async_nf_add_i2c(), __v4l2_async_nf_add_subdev()
or v4l2_async_nf_parse_fwnode_endpoints().

There is no harm from calling v4l2_async_nf_cleanup() in other cases as long as its memory
has been zeroed after it has been allocated.

int v4l2_async_register_subdev(struct v4l2_subdev *sd)
registers a sub-device to the asynchronous subdevice framework

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

int v4l2_async_register_subdev_sensor(struct v4l2_subdev *sd)
registers a sensor sub-device to the asynchronous sub-device framework and parse set up
common sensor related devices

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

Description
This function is just like v4l2_async_register_subdev() with the exception
that calling it will also parse firmware interfaces for remote references using
v4l2_async_nf_parse_fwnode_sensor() and registers the async sub-devices. The sub-device is
similarly unregistered by calling v4l2_async_unregister_subdev().

While registered, the subdev module is marked as in-use.

An error is returned if the module is no longer loaded on any attempts to register it.

void v4l2_async_unregister_subdev(struct v4l2_subdev *sd)
unregisters a sub-device to the asynchronous subdevice framework

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

396 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

2.2.22 V4L2 fwnode kAPI

struct v4l2_fwnode_bus_mipi_csi2
MIPI CSI-2 bus data structure

Definition

struct v4l2_fwnode_bus_mipi_csi2 {
unsigned int flags;
unsigned char data_lanes[V4L2_FWNODE_CSI2_MAX_DATA_LANES];
unsigned char clock_lane;
unsigned char num_data_lanes;
bool lane_polarities[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES];

};

Members
flags media bus (V4L2_MBUS_*) flags

data_lanes an array of physical data lane indexes

clock_lane physical lane index of the clock lane

num_data_lanes number of data lanes

lane_polarities polarity of the lanes. The order is the same of the physical lanes.

struct v4l2_fwnode_bus_parallel
parallel data bus data structure

Definition

struct v4l2_fwnode_bus_parallel {
unsigned int flags;
unsigned char bus_width;
unsigned char data_shift;

};

Members
flags media bus (V4L2_MBUS_*) flags

bus_width bus width in bits

data_shift data shift in bits

struct v4l2_fwnode_bus_mipi_csi1
CSI-1/CCP2 data bus structure

Definition

struct v4l2_fwnode_bus_mipi_csi1 {
unsigned char clock_inv:1;
unsigned char strobe:1;
bool lane_polarity[2];
unsigned char data_lane;
unsigned char clock_lane;

};

Members

2.2. Video4Linux devices 397

Linux Media Documentation

clock_inv polarity of clock/strobe signal false - not inverted, true - inverted

strobe false - data/clock, true - data/strobe

lane_polarity the polarities of the clock (index 0) and data lanes index (1)

data_lane the number of the data lane

clock_lane the number of the clock lane

struct v4l2_fwnode_endpoint
the endpoint data structure

Definition

struct v4l2_fwnode_endpoint {
struct fwnode_endpoint base;
enum v4l2_mbus_type bus_type;
struct {
struct v4l2_fwnode_bus_parallel parallel;
struct v4l2_fwnode_bus_mipi_csi1 mipi_csi1;
struct v4l2_fwnode_bus_mipi_csi2 mipi_csi2;

} bus;
u64 *link_frequencies;
unsigned int nr_of_link_frequencies;

};

Members
base fwnode endpoint of the v4l2_fwnode

bus_type bus type

bus bus configuration data structure

bus.parallel embedded struct v4l2_fwnode_bus_parallel. Used if the bus is parallel.

bus.mipi_csi1 embedded struct v4l2_fwnode_bus_mipi_csi1. Used if the bus is MIPI Al-
liance’s Camera Serial Interface version 1 (MIPI CSI1) or Standard Mobile Imaging Archi-
tecture’s Compact Camera Port 2 (SMIA CCP2).

bus.mipi_csi2 embedded struct v4l2_fwnode_bus_mipi_csi2. Used if the bus is MIPI Al-
liance’s Camera Serial Interface version 2 (MIPI CSI2).

link_frequencies array of supported link frequencies

nr_of_link_frequencies number of elements in link_frequenccies array

V4L2_FWNODE_PROPERTY_UNSET()
identify a non initialized property

Parameters
Description
All properties in struct v4l2_fwnode_device_properties are initialized to this value.

enum v4l2_fwnode_orientation
possible device orientation

Constants
V4L2_FWNODE_ORIENTATION_FRONT device installed on the front side

398 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

V4L2_FWNODE_ORIENTATION_BACK device installed on the back side

V4L2_FWNODE_ORIENTATION_EXTERNAL device externally located

struct v4l2_fwnode_device_properties
fwnode device properties

Definition

struct v4l2_fwnode_device_properties {
enum v4l2_fwnode_orientation orientation;
unsigned int rotation;

};

Members
orientation device orientation. See enum v4l2_fwnode_orientation

rotation device rotation

struct v4l2_fwnode_link
a link between two endpoints

Definition

struct v4l2_fwnode_link {
struct fwnode_handle *local_node;
unsigned int local_port;
unsigned int local_id;
struct fwnode_handle *remote_node;
unsigned int remote_port;
unsigned int remote_id;

};

Members
local_node pointer to device_node of this endpoint

local_port identifier of the port this endpoint belongs to

local_id identifier of the id this endpoint belongs to

remote_node pointer to device_node of the remote endpoint

remote_port identifier of the port the remote endpoint belongs to

remote_id identifier of the id the remote endpoint belongs to

enum v4l2_connector_type
connector type

Constants
V4L2_CONN_UNKNOWN unknown connector type, no V4L2 connector configuration

V4L2_CONN_COMPOSITE analog composite connector

V4L2_CONN_SVIDEO analog svideo connector

struct v4l2_connector_link
connector link data structure

Definition

2.2. Video4Linux devices 399

Linux Media Documentation

struct v4l2_connector_link {
struct list_head head;
struct v4l2_fwnode_link fwnode_link;

};

Members
head structure to be used to add the link to the struct v4l2_fwnode_connector

fwnode_link struct v4l2_fwnode_link link between the connector and the device the con-
nector belongs to.

struct v4l2_fwnode_connector_analog
analog connector data structure

Definition

struct v4l2_fwnode_connector_analog {
v4l2_std_id sdtv_stds;

};

Members
sdtv_stds sdtv standards this connector supports, set to V4L2_STD_ALL if no restrictions are

specified.

struct v4l2_fwnode_connector
the connector data structure

Definition

struct v4l2_fwnode_connector {
const char *name;
const char *label;
enum v4l2_connector_type type;
struct list_head links;
unsigned int nr_of_links;
union {
struct v4l2_fwnode_connector_analog analog;

} connector;
};

Members
name the connector device name

label optional connector label

type connector type

links list of all connector struct v4l2_connector_link links

nr_of_links total number of links

connector connector configuration

connector.analog analog connector configuration struct v4l2_fwnode_connector_analog

enum v4l2_fwnode_bus_type
Video bus types defined by firmware properties

400 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Constants
V4L2_FWNODE_BUS_TYPE_GUESS Default value if no bus-type fwnode property

V4L2_FWNODE_BUS_TYPE_CSI2_CPHY MIPI CSI-2 bus, C-PHY physical layer

V4L2_FWNODE_BUS_TYPE_CSI1 MIPI CSI-1 bus

V4L2_FWNODE_BUS_TYPE_CCP2 SMIA Compact Camera Port 2 bus

V4L2_FWNODE_BUS_TYPE_CSI2_DPHY MIPI CSI-2 bus, D-PHY physical layer

V4L2_FWNODE_BUS_TYPE_PARALLEL Camera Parallel Interface bus

V4L2_FWNODE_BUS_TYPE_BT656 BT.656 video format bus-type

NR_OF_V4L2_FWNODE_BUS_TYPE Number of bus-types

int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode, struct
v4l2_fwnode_endpoint *vep)

parse all fwnode node properties

Parameters
struct fwnode_handle *fwnode pointer to the endpoint’s fwnode handle

struct v4l2_fwnode_endpoint *vep pointer to the V4L2 fwnode data structure

Description
This function parses the V4L2 fwnode endpoint specific parameters from the firmware. There
are two ways to use this function, either by letting it obtain the type of the bus (by setting the
vep.bus_type field to V4L2_MBUS_UNKNOWN) or specifying the bus type explicitly to one of
the enum v4l2_mbus_type types.

When vep.bus_type is V4L2_MBUS_UNKNOWN, the function will use the “bus-type” property
to determine the type when it is available. The caller is responsible for validating the contents
of vep.bus_type field after the call returns.
As a deprecated functionality to support older DT bindings without “bus-type” property for
devices that support multiple types, if the “bus-type” property does not exist, the function will
attempt to guess the type based on the endpoint properties available. NEVER RELY ONGUESS-
ING THE BUS TYPE IN NEW DRIVERS OR BINDINGS.

It is also possible to set vep.bus_type corresponding to an actual bus. In this case the function
will only attempt to parse properties related to this bus, and it will return an error if the value
of the “bus-type” property corresponds to a different bus.

The caller is required to initialise all fields of vep, either with explicitly values, or by zeroing
them.

The function does not change the V4L2 fwnode endpoint state if it fails.

NOTE
This function does not parse “link-frequencies” property as its size is not known in advance.
Please use v4l2_fwnode_endpoint_alloc_parse() if you need properties of variable size.

Return
0 on success or a negative error code on failure: -ENOMEM on memory allocation failure

-EINVAL on parsing failure -ENXIO on mismatching bus types

2.2. Video4Linux devices 401

Linux Media Documentation

void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
free the V4L2 fwnode acquired by v4l2_fwnode_endpoint_alloc_parse()

Parameters
struct v4l2_fwnode_endpoint *vep the V4L2 fwnode the resources of which are to be re-

leased

Description
It is safe to call this function with NULL argument or on a V4L2 fwnode the parsing of which
failed.

int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode, struct
v4l2_fwnode_endpoint *vep)

parse all fwnode node properties

Parameters
struct fwnode_handle *fwnode pointer to the endpoint’s fwnode handle

struct v4l2_fwnode_endpoint *vep pointer to the V4L2 fwnode data structure

Description
This function parses the V4L2 fwnode endpoint specific parameters from the firmware. There
are two ways to use this function, either by letting it obtain the type of the bus (by setting the
vep.bus_type field to V4L2_MBUS_UNKNOWN) or specifying the bus type explicitly to one of
the enum v4l2_mbus_type types.

When vep.bus_type is V4L2_MBUS_UNKNOWN, the function will use the “bus-type” property
to determine the type when it is available. The caller is responsible for validating the contents
of vep.bus_type field after the call returns.
As a deprecated functionality to support older DT bindings without “bus-type” property for
devices that support multiple types, if the “bus-type” property does not exist, the function will
attempt to guess the type based on the endpoint properties available. NEVER RELY ONGUESS-
ING THE BUS TYPE IN NEW DRIVERS OR BINDINGS.

It is also possible to set vep.bus_type corresponding to an actual bus. In this case the function
will only attempt to parse properties related to this bus, and it will return an error if the value
of the “bus-type” property corresponds to a different bus.

The caller is required to initialise all fields of vep, either with explicitly values, or by zeroing
them.

The function does not change the V4L2 fwnode endpoint state if it fails.

v4l2_fwnode_endpoint_alloc_parse() has two important differences to
v4l2_fwnode_endpoint_parse():

1. It also parses variable size data.

2. The memory it has allocated to store the variable size data must be freed using
v4l2_fwnode_endpoint_free() when no longer needed.

Return
0 on success or a negative error code on failure: -ENOMEM on memory allocation failure

-EINVAL on parsing failure -ENXIO on mismatching bus types

402 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode, struct
v4l2_fwnode_link *link)

parse a link between two endpoints

Parameters
struct fwnode_handle *fwnode pointer to the endpoint’s fwnode at the local end of the link

struct v4l2_fwnode_link *link pointer to the V4L2 fwnode link data structure

Description
Fill the link structure with the local and remote nodes and port numbers. The local_node and
remote_node fields are set to point to the local and remote port’s parent nodes respectively (the
port parent node being the parent node of the port node if that node isn’t a ‘ports’ node, or the
grand-parent node of the port node otherwise).

A reference is taken to both the local and remote nodes, the caller must use
v4l2_fwnode_put_link() to drop the references when done with the link.

Return
0 on success, or -ENOLINK if the remote endpoint fwnode can’t be found.

void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
drop references to nodes in a link

Parameters
struct v4l2_fwnode_link *link pointer to the V4L2 fwnode link data structure

Description
Drop references to the local and remote nodes in the link. This function must be called on every
link parsed with v4l2_fwnode_parse_link().

void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector)
free the V4L2 connector acquired memory

Parameters
struct v4l2_fwnode_connector *connector the V4L2 connector resources of which are to

be released

Description
Free all allocated memory and put all links acquired by v4l2_fwnode_connector_parse() and
v4l2_fwnode_connector_add_link().

It is safe to call this function with NULL argument or on a V4L2 connector the parsing of which
failed.

int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode, struct
v4l2_fwnode_connector *connector)

initialize the ‘struct v4l2_fwnode_connector’

Parameters
struct fwnode_handle *fwnode pointer to the subdev endpoint’s fwnode handle where the

connector is connected to or to the connector endpoint fwnode handle.

struct v4l2_fwnode_connector *connector pointer to the V4L2 fwnode connector data
structure

2.2. Video4Linux devices 403

Linux Media Documentation

Description
Fill the struct v4l2_fwnode_connector with the connector type, label and all enum
v4l2_connector_type specific connector data. The label is optional so it is set to NULL if no
one was found. The function initialize the links to zero. Adding links to the connector is done
by calling v4l2_fwnode_connector_add_link().

The memory allocated for the label must be freed when no longer needed. Freeing the memory
is done by v4l2_fwnode_connector_free().

Return
• 0 on success or a negative error code on failure:

• -EINVAL if fwnode is invalid
• -ENOTCONN if connector type is unknown or connector device can’t be found

int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode, struct
v4l2_fwnode_connector *connector)

add a link between a connector node and a v4l2-subdev node.

Parameters
struct fwnode_handle *fwnode pointer to the subdev endpoint’s fwnode handle where the

connector is connected to

struct v4l2_fwnode_connector *connector pointer to the V4L2 fwnode connector data
structure

Description
Add a new struct v4l2_connector_link link to the struct v4l2_fwnode_connector connec-
tor links list. The link local_node points to the connector node, the remote_node to the host
v4l2 (sub)dev.

The taken references to remote_node and local_node must be dropped and the al-
located memory must be freed when no longer needed. Both is done by calling
v4l2_fwnode_connector_free().

Return
• 0 on success or a negative error code on failure:

• -EINVAL if fwnode or connector is invalid or connector type is unknown
• -ENOMEM on link memory allocation failure

• -ENOTCONN if remote connector device can’t be found

• -ENOLINK if link parsing between v4l2 (sub)dev and connector fails

int v4l2_fwnode_device_parse(struct device *dev, struct v4l2_fwnode_device_properties *props)
parse fwnode device properties

Parameters
struct device *dev pointer to struct device

struct v4l2_fwnode_device_properties *props pointer to struct
v4l2_fwnode_device_properties where to store the parsed properties values

404 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description
This function parses and validates the V4L2 fwnode device properties from the firmware inter-
face, and fills the struct v4l2_fwnode_device_properties provided by the caller.
Return

% 0 on success -EINVAL if a parsed property value is not valid

parse_endpoint_func
Typedef: Driver’s callback function to be called on each V4L2 fwnode endpoint.

Syntax
int parse_endpoint_func (struct device *dev, struct
v4l2_fwnode_endpoint *vep, struct v4l2_async_subdev *asd)

Parameters
struct device *dev pointer to struct device

struct v4l2_fwnode_endpoint *vep pointer to struct v4l2_fwnode_endpoint

struct v4l2_async_subdev *asd pointer to struct v4l2_async_subdev

Return
• 0 on success

• -ENOTCONN if the endpoint is to be skipped but this should not be considered as an error

• -EINVAL if the endpoint configuration is invalid

int v4l2_async_nf_parse_fwnode_endpoints(struct device *dev, struct
v4l2_async_notifier *notifier,
size_t asd_struct_size,
parse_endpoint_func parse_endpoint)

Parse V4L2 fwnode endpoints in a device node

Parameters
struct device *dev the device the endpoints of which are to be parsed

struct v4l2_async_notifier *notifier notifier for dev
size_t asd_struct_size size of the driver’s async sub-device struct, including sizeof(struct

v4l2_async_subdev). The struct v4l2_async_subdev shall be the first member of the
driver’s async sub-device struct, i.e. both begin at the same memory address.

parse_endpoint_func parse_endpoint Driver’s callback function called on each V4L2 fwnode
endpoint. Optional.

Description
DEPRECATED! This function is deprecated. Don’t use it in new drivers. Instead see an example
in cio2_parse_firmware() function in drivers/media/pci/intel/ipu3/ipu3-cio2.c .

Parse the fwnode endpoints of the dev device and populate the async sub- devices list in the noti-
fier. The parse_endpoint callback function is called for each endpoint with the corresponding
async sub-device pointer to let the caller initialize the driver-specific part of the async sub-
device structure.

The notifier memory shall be zeroed before this function is called on the notifier.

2.2. Video4Linux devices 405

Linux Media Documentation

This function may not be called on a registered notifier and may be called on a notifier only
once.

The struct v4l2_fwnode_endpoint passed to the callback function parse_endpoint is re-
leased once the function is finished. If there is a need to retain that configuration, the user
needs to allocate memory for it.

Any notifier populated using this function must be released with a call to
v4l2_async_nf_cleanup() after it has been unregistered and the async sub-devices are
no longer in use, even if the function returned an error.

Return
0 on success, including when no async sub-devices are found -ENOMEM if memory alloca-

tion failed -EINVAL if graph or endpoint parsing failed Other error codes as returned by
parse_endpoint

2.2.23 V4L2 rect helper functions

void v4l2_rect_set_size_to(struct v4l2_rect *r, const struct v4l2_rect *size)
copy the width/height values.

Parameters
struct v4l2_rect *r rect whose width and height fields will be set

const struct v4l2_rect *size rect containing the width and height fields you need.

void v4l2_rect_set_min_size(struct v4l2_rect *r, const struct v4l2_rect *min_size)
width and height of r should be >= min_size.

Parameters
struct v4l2_rect *r rect whose width and height will be modified

const struct v4l2_rect *min_size rect containing the minimal width and height

void v4l2_rect_set_max_size(struct v4l2_rect *r, const struct v4l2_rect *max_size)
width and height of r should be <= max_size

Parameters
struct v4l2_rect *r rect whose width and height will be modified

const struct v4l2_rect *max_size rect containing the maximum width and height

void v4l2_rect_map_inside(struct v4l2_rect *r, const struct v4l2_rect *boundary)
r should be inside boundary.

Parameters
struct v4l2_rect *r rect that will be modified

const struct v4l2_rect *boundary rect containing the boundary for r
bool v4l2_rect_same_size(const struct v4l2_rect *r1, const struct v4l2_rect *r2)

return true if r1 has the same size as r2

Parameters
const struct v4l2_rect *r1 rectangle.

406 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

const struct v4l2_rect *r2 rectangle.

Description
Return true if both rectangles have the same size.

bool v4l2_rect_same_position(const struct v4l2_rect *r1, const struct v4l2_rect *r2)
return true if r1 has the same position as r2

Parameters
const struct v4l2_rect *r1 rectangle.

const struct v4l2_rect *r2 rectangle.

Description
Return true if both rectangles have the same position

bool v4l2_rect_equal(const struct v4l2_rect *r1, const struct v4l2_rect *r2)
return true if r1 equals r2

Parameters
const struct v4l2_rect *r1 rectangle.

const struct v4l2_rect *r2 rectangle.

Description
Return true if both rectangles have the same size and position.

void v4l2_rect_intersect(struct v4l2_rect *r, const struct v4l2_rect *r1, const struct
v4l2_rect *r2)

calculate the intersection of two rects.

Parameters
struct v4l2_rect *r intersection of r1 and r2.
const struct v4l2_rect *r1 rectangle.

const struct v4l2_rect *r2 rectangle.

void v4l2_rect_scale(struct v4l2_rect *r, const struct v4l2_rect *from, const struct
v4l2_rect *to)

scale rect r by to/from

Parameters
struct v4l2_rect *r rect to be scaled.

const struct v4l2_rect *from from rectangle.

const struct v4l2_rect *to to rectangle.

Description
This scales rectangle r horizontally by to->width / from->width and vertically by to->height
/ from->height.
Typically r is a rectangle inside from and you want the rectangle as it would appear after scaling
from to to. So the resulting r will be the scaled rectangle inside to.

2.2. Video4Linux devices 407

Linux Media Documentation

bool v4l2_rect_overlap(const struct v4l2_rect *r1, const struct v4l2_rect *r2)
do r1 and r2 overlap?

Parameters
const struct v4l2_rect *r1 rectangle.

const struct v4l2_rect *r2 rectangle.

Description
Returns true if r1 and r2 overlap.
bool v4l2_rect_enclosed(struct v4l2_rect *r1, struct v4l2_rect *r2)

is r1 enclosed in r2?

Parameters
struct v4l2_rect *r1 rectangle.

struct v4l2_rect *r2 rectangle.

Description
Returns true if r1 is enclosed in r2.

2.2.24 Tuner functions and data structures

enum tuner_mode
Mode of the tuner

Constants
T_RADIO Tuner core will work in radio mode

T_ANALOG_TV Tuner core will work in analog TV mode

Description
Older boards only had a single tuner device, but some devices have a separate tuner for radio.
In any case, the tuner-core needs to know if the tuner chip(s) will be used in radio mode or
analog TV mode, as, on radio mode, frequencies are specified on a different range than on TV
mode. This enum is used by the tuner core in order to work with the proper tuner range and
eventually use a different tuner chip while in radio mode.

struct tuner_setup
setup the tuner chipsets

Definition

struct tuner_setup {
unsigned short addr;
unsigned int type;
unsigned int mode_mask;
void *config;
int (*tuner_callback)(void *dev, int component, int cmd, int arg);

};

Members
addr I2C address used to control the tuner device/chipset

408 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

type Type of the tuner, as defined at the TUNER_* macros. Each different tuner model should
have an unique identifier.

mode_mask Mask with the allowed tuner modes: V4L2_TUNER_RADIO,
V4L2_TUNER_ANALOG_TV and/or V4L2_TUNER_DIGITAL_TV, describing if the tuner
should be used to support Radio, analog TV and/or digital TV.

config Used to send tuner-specific configuration for complex tuners that require extra param-
eters to be set. Only a very few tuners require it and its usage on newer tuners should be
avoided.

tuner_callback Some tuners require to call back the bridge driver, in order to do some tasks
like rising a GPIO at the bridge chipset, in order to do things like resetting the device.

Description
Older boards only had a single tuner device. Nowadays multiple tuner devices may be present
on a single board. Using TUNER_SET_TYPE_ADDR to pass the tuner_setup structure it is pos-
sible to setup each tuner device in turn.

Since multiple devices may be present it is no longer sufficient to send a command to a single
i2c device. Instead you should broadcast the command to all i2c devices.

By setting the mode_mask correctly you can select which commands are accepted by a specific
tuner device. For example, set mode_mask to T_RADIO if the device is a radio-only tuner. That
specific tuner will only accept commands when the tuner is in radio mode and ignore them
when the tuner is set to TV mode.

enum param_type
type of the tuner pameters

Constants
TUNER_PARAM_TYPE_RADIO Tuner params are for FM and/or AM radio

TUNER_PARAM_TYPE_PAL Tuner params are for PAL color TV standard

TUNER_PARAM_TYPE_SECAM Tuner params are for SECAM color TV standard

TUNER_PARAM_TYPE_NTSC Tuner params are for NTSC color TV standard

TUNER_PARAM_TYPE_DIGITAL Tuner params are for digital TV

struct tuner_range
define the frequencies supported by the tuner

Definition

struct tuner_range {
unsigned short limit;
unsigned char config;
unsigned char cb;

};

Members
limit Max frequency supported by that range, in 62.5 kHz (TV) or 62.5 Hz (Radio), as defined

by V4L2_TUNER_CAP_LOW.

config Value of the band switch byte (BB) to setup this mode.

cb Value of the CB byte to setup this mode.

2.2. Video4Linux devices 409

Linux Media Documentation

Description
Please notice that digital tuners like xc3028/xc4000/xc5000 don’t use those ranges, as they’re
defined inside the driver. This is used by analog tuners that are compatible with the “Philips
way” to setup the tuners. On those devices, the tuner set is done via 4 bytes:

1) divider byte1 (DB1)

2) divider byte 2 (DB2)

3) Control byte (CB)

4) band switch byte (BB)

Some tuners also have an additional optional Auxiliary byte (AB).

struct tuner_params
Parameters to be used to setup the tuner. Those are used by drivers/media/tuners/tuner-
types.c in order to specify the tuner properties. Most of the parameters are for tuners
based on tda9887 IF-PLL multi-standard analog TV/Radio demodulator, with is very com-
mon on legacy analog tuners.

Definition

struct tuner_params {
enum param_type type;
unsigned int cb_first_if_lower_freq:1;
unsigned int has_tda9887:1;
unsigned int port1_fm_high_sensitivity:1;
unsigned int port2_fm_high_sensitivity:1;
unsigned int fm_gain_normal:1;
unsigned int intercarrier_mode:1;
unsigned int port1_active:1;
unsigned int port2_active:1;
unsigned int port1_invert_for_secam_lc:1;
unsigned int port2_invert_for_secam_lc:1;
unsigned int port1_set_for_fm_mono:1;
unsigned int default_pll_gating_18:1;
unsigned int radio_if:2;
signed int default_top_low:5;
signed int default_top_mid:5;
signed int default_top_high:5;
signed int default_top_secam_low:5;
signed int default_top_secam_mid:5;
signed int default_top_secam_high:5;
u16 iffreq;
unsigned int count;
struct tuner_range *ranges;

};

Members
type Type of the tuner parameters, as defined at enum param_type. If the tuner supports mul-

tiple standards, an array should be used, with one row per different standard.

cb_first_if_lower_freq Many Philips-based tuners have a comment in their datasheet like
“For channel selection involving band switching, and to ensure smooth tuning to the de-
sired channel without causing unnecessary charge pump action, it is recommended to
consider the difference between wanted channel frequency and the current channel fre-

410 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

quency. Unnecessary charge pump action will result in very low tuning voltage which may
drive the oscillator to extreme conditions”. Set cb_first_if_lower_freq to 1, if this check is
required for this tuner. I tested this for PAL by first setting the TV frequency to 203 MHz
and then switching to 96.6 MHz FM radio. The result was static unless the control byte
was sent first.

has_tda9887 Set to 1 if this tuner uses a tda9887

port1_fm_high_sensitivity Many Philips tuners use tda9887 PORT1 to select the FM radio
sensitivity. If this setting is 1, then set PORT1 to 1 to get proper FM reception.

port2_fm_high_sensitivity Some Philips tuners use tda9887 PORT2 to select the FM radio
sensitivity. If this setting is 1, then set PORT2 to 1 to get proper FM reception.

fm_gain_normal Some Philips tuners use tda9887 cGainNormal to select the FM radio sensi-
tivity. If this setting is 1, e register will use cGainNormal instead of cGainLow.

intercarrier_mode Most tuners with a tda9887 use QSS mode. Some (cheaper) tuners use
Intercarrier mode. If this setting is 1, then the tuner needs to be set to intercarrier mode.

port1_active This setting sets the default value for PORT1. 0 means inactive, 1 means active.
Note: the actual bit value written to the tda9887 is inverted. So a 0 here means a 1 in the
B6 bit.

port2_active This setting sets the default value for PORT2. 0 means inactive, 1 means active.
Note: the actual bit value written to the tda9887 is inverted. So a 0 here means a 1 in the
B7 bit.

port1_invert_for_secam_lc Sometimes PORT1 is inverted when the SECAM-L’ standard is
selected. Set this bit to 1 if this is needed.

port2_invert_for_secam_lc Sometimes PORT2 is inverted when the SECAM-L’ standard is
selected. Set this bit to 1 if this is needed.

port1_set_for_fm_mono Some cards require PORT1 to be 1 for mono Radio FM and 0 for
stereo.

default_pll_gating_18 Select 18% (or according to datasheet 0%) L standard PLL gating, vs
the driver default of 36%.

radio_if IF to use in radio mode. Tuners with a separate radio IF filter seem to use 10.7, while
those without use 33.3 for PAL/SECAM tuners and 41.3 for NTSC tuners. 0 = 10.7, 1 =
33.3, 2 = 41.3

default_top_low Default tda9887 TOP value in dB for the low band. Default is 0. Range:
-16:+15

default_top_mid Default tda9887 TOP value in dB for the mid band. Default is 0. Range:
-16:+15

default_top_high Default tda9887 TOP value in dB for the high band. Default is 0. Range:
-16:+15

default_top_secam_low Default tda9887 TOP value in dB for SECAM-L/L’ for the low band.
Default is 0. Several tuners require a different TOP value for the SECAM-L/L’ standards.
Range: -16:+15

default_top_secam_mid Default tda9887 TOP value in dB for SECAM-L/L’ for the mid band.
Default is 0. Several tuners require a different TOP value for the SECAM-L/L’ standards.
Range: -16:+15

2.2. Video4Linux devices 411

Linux Media Documentation

default_top_secam_high Default tda9887 TOP value in dB for SECAM-L/L’ for the high band.
Default is 0. Several tuners require a different TOP value for the SECAM-L/L’ standards.
Range: -16:+15

iffreq Intermediate frequency (IF) used by the tuner on digital mode.

count Size of the ranges array.

ranges Array with the frequency ranges supported by the tuner.

struct tunertype
describes the known tuners.

Definition

struct tunertype {
char *name;
unsigned int count;
struct tuner_params *params;
u16 min;
u16 max;
u32 stepsize;
u8 *initdata;
u8 *sleepdata;

};

Members
name string with the tuner’s name.

count size of struct tuner_params array.

params pointer to struct tuner_params array.

min minimal tuner frequency, in 62.5 kHz step. should be multiplied to 16 to convert to MHz.

max minimal tuner frequency, in 62.5 kHz step. Should be multiplied to 16 to convert to MHz.

stepsize frequency step, in Hz.

initdata optional byte sequence to initialize the tuner.

sleepdata optional byte sequence to power down the tuner.

2.2.25 V4L2 common functions and data structures

int v4l2_ctrl_query_fill(struct v4l2_queryctrl *qctrl, s32 min, s32 max, s32 step,
s32 def)

Fill in a struct v4l2_queryctrl

Parameters
struct v4l2_queryctrl *qctrl pointer to the struct v4l2_queryctrl to be filled

s32 min minimum value for the control

s32 max maximum value for the control

s32 step control step

s32 def default value for the control

412 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description
Fills the struct v4l2_queryctrl fields for the query control.

Note: This function assumes that the qctrl->id field is filled.

Returns -EINVAL if the control is not known by the V4L2 core, 0 on success.

enum v4l2_i2c_tuner_type
specifies the range of tuner address that should be used when seeking for I2C devices.

Constants
ADDRS_RADIO Radio tuner addresses. Represent the following I2C addresses: 0x10 (if compiled

with tea5761 support) and 0x60.

ADDRS_DEMOD Demod tuner addresses. Represent the following I2C addresses: 0x42, 0x43,
0x4a and 0x4b.

ADDRS_TV TV tuner addresses. Represent the following I2C addresses: 0x42, 0x43, 0x4a, 0x4b,
0x60, 0x61, 0x62, 0x63 and 0x64.

ADDRS_TV_WITH_DEMOD TV tuner addresses if demod is present, this excludes addresses used
by the demodulator from the list of candidates. Represent the following I2C addresses:
0x60, 0x61, 0x62, 0x63 and 0x64.

NOTE
All I2C addresses above use the 7-bit notation.

struct v4l2_subdev * v4l2_i2c_new_subdev(struct v4l2_device *v4l2_dev,
struct i2c_adapter *adapter, const
char *client_type, u8 addr, const unsigned
short *probe_addrs)

Load an i2c module and return an initialized struct v4l2_subdev.

Parameters
struct v4l2_device *v4l2_dev pointer to struct v4l2_device

struct i2c_adapter *adapter pointer to struct i2c_adapter

const char *client_type name of the chip that’s on the adapter.

u8 addr I2C address. If zero, it will use probe_addrs
const unsigned short *probe_addrs array with a list of address. The last entry at such array

should be I2C_CLIENT_END.

Description
returns a struct v4l2_subdev pointer.

struct v4l2_subdev * v4l2_i2c_new_subdev_board(struct v4l2_device *v4l2_dev,
struct i2c_adapter *adapter, struct
i2c_board_info *info, const unsigned
short *probe_addrs)

Load an i2c module and return an initialized struct v4l2_subdev.

Parameters

2.2. Video4Linux devices 413

Linux Media Documentation

struct v4l2_device *v4l2_dev pointer to struct v4l2_device

struct i2c_adapter *adapter pointer to struct i2c_adapter

struct i2c_board_info *info pointer to struct i2c_board_info used to replace the irq, plat-
form_data and addr arguments.

const unsigned short *probe_addrs array with a list of address. The last entry at such array
should be I2C_CLIENT_END.

Description
returns a struct v4l2_subdev pointer.

void v4l2_i2c_subdev_set_name(struct v4l2_subdev *sd, struct i2c_client *client, const
char *devname, const char *postfix)

Set name for an I2C sub-device

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

struct i2c_client *client pointer to struct i2c_client

const char *devname the name of the device; if NULL, the I2C device’s name will be used

const char *postfix sub-device specific string to put right after the I2C device name; may
be NULL

void v4l2_i2c_subdev_init(struct v4l2_subdev *sd, struct i2c_client *client, const struct
v4l2_subdev_ops *ops)

Initializes a struct v4l2_subdev with data from an i2c_client struct.

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

struct i2c_client *client pointer to struct i2c_client

const struct v4l2_subdev_ops *ops pointer to struct v4l2_subdev_ops

unsigned short v4l2_i2c_subdev_addr(struct v4l2_subdev *sd)
returns i2c client address of struct v4l2_subdev.

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

Description
Returns the address of an I2C sub-device

const unsigned short * v4l2_i2c_tuner_addrs(enum v4l2_i2c_tuner_type type)
Return a list of I2C tuner addresses to probe.

Parameters
enum v4l2_i2c_tuner_type type type of the tuner to seek, as defined by enum

v4l2_i2c_tuner_type.

NOTE
Use only if the tuner addresses are unknown.

414 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

void v4l2_i2c_subdev_unregister(struct v4l2_subdev *sd)
Unregister a v4l2_subdev

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

struct v4l2_subdev * v4l2_spi_new_subdev(struct v4l2_device *v4l2_dev,
struct spi_master *master, struct
spi_board_info *info)

Load an spi module and return an initialized struct v4l2_subdev.

Parameters
struct v4l2_device *v4l2_dev pointer to struct v4l2_device.

struct spi_master *master pointer to struct spi_master.

struct spi_board_info *info pointer to struct spi_board_info.

Description
returns a struct v4l2_subdev pointer.

void v4l2_spi_subdev_init(struct v4l2_subdev *sd, struct spi_device *spi, const struct
v4l2_subdev_ops *ops)

Initialize a v4l2_subdev with data from an spi_device struct.

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

struct spi_device *spi pointer to struct spi_device.

const struct v4l2_subdev_ops *ops pointer to struct v4l2_subdev_ops

void v4l2_spi_subdev_unregister(struct v4l2_subdev *sd)
Unregister a v4l2_subdev

Parameters
struct v4l2_subdev *sd pointer to struct v4l2_subdev

void v4l_bound_align_image(unsigned int *width, unsigned int wmin, unsigned
int wmax, unsigned int walign, unsigned int *height,
unsigned int hmin, unsigned int hmax, unsigned int halign,
unsigned int salign)

adjust video dimensions according to a given constraints.

Parameters
unsigned int *width pointer to width that will be adjusted if needed.

unsigned int wmin minimum width.

unsigned int wmax maximum width.

unsigned int walign least significant bit on width.

unsigned int *height pointer to height that will be adjusted if needed.

unsigned int hmin minimum height.

unsigned int hmax maximum height.

2.2. Video4Linux devices 415

Linux Media Documentation

unsigned int halign least significant bit on height.

unsigned int salign least significant bit for the image size (e. g. width ∗ height).

Description
Clip an image to have width between wmin and wmax, and height between hmin and hmax,
inclusive.

Additionally, the width will be a multiple of 2walign, the height will be a multiple of 2halign, and
the overall size width ∗ height will be a multiple of 2salign.

Note:
1. The clipping rectangle may be shrunk or enlarged to fit the alignment constraints.

2. wmax must not be smaller than wmin.
3. hmax must not be smaller than hmin.
4. The alignments must not be so high there are no possible image sizes within the allowed
bounds.

5. wmin and hmin must be at least 1 (don’t use 0).
6. For walign, halign and salign, if you don’t care about a certain alignment, specify 0, as

20 = 1 and one byte alignment is equivalent to no alignment.

7. If you only want to adjust downward, specify a maximum that’s the same as the initial
value.

v4l2_find_nearest_size(array, array_size, width_field, height_field, width, height)
Find the nearest size among a discrete set of resolutions contained in an array of a driver
specific struct.

Parameters
array a driver specific array of image sizes

array_size the length of the driver specific array of image sizes

width_field the name of the width field in the driver specific struct

height_field the name of the height field in the driver specific struct

width desired width.

height desired height.

Description
Finds the closest resolution to minimize the width and height differences between what re-
quested and the supported resolutions. The size of the width and height fields in the driver
specific must equal to that of u32, i.e. four bytes.

Returns the best match or NULL if the length of the array is zero.

int v4l2_g_parm_cap(struct video_device *vdev, struct v4l2_subdev *sd, struct
v4l2_streamparm *a)

helper routine for vidioc_g_parm to fill this in by calling the g_frame_interval op of the given

416 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

subdev. It only works for V4L2_BUF_TYPE_VIDEO_CAPTURE(_MPLANE), hence the _cap
in the function name.

Parameters
struct video_device *vdev the struct video_device pointer. Used to determine the device

caps.

struct v4l2_subdev *sd the sub-device pointer.

struct v4l2_streamparm *a the VIDIOC_G_PARM argument.

int v4l2_s_parm_cap(struct video_device *vdev, struct v4l2_subdev *sd, struct
v4l2_streamparm *a)

helper routine for vidioc_s_parm to fill this in by calling the s_frame_interval op of the given
subdev. It only works for V4L2_BUF_TYPE_VIDEO_CAPTURE(_MPLANE), hence the _cap
in the function name.

Parameters
struct video_device *vdev the struct video_device pointer. Used to determine the device

caps.

struct v4l2_subdev *sd the sub-device pointer.

struct v4l2_streamparm *a the VIDIOC_S_PARM argument.

enum v4l2_pixel_encoding
specifies the pixel encoding value

Constants
V4L2_PIXEL_ENC_UNKNOWN Pixel encoding is unknown/un-initialized

V4L2_PIXEL_ENC_YUV Pixel encoding is YUV

V4L2_PIXEL_ENC_RGB Pixel encoding is RGB

V4L2_PIXEL_ENC_BAYER Pixel encoding is Bayer

struct v4l2_format_info
information about a V4L2 format

Definition

struct v4l2_format_info {
u32 format;
u8 pixel_enc;
u8 mem_planes;
u8 comp_planes;
u8 bpp[4];
u8 hdiv;
u8 vdiv;
u8 block_w[4];
u8 block_h[4];

};

Members
format 4CC format identifier (V4L2_PIX_FMT_*)

pixel_enc Pixel encoding (see enum v4l2_pixel_encoding above)

2.2. Video4Linux devices 417

Linux Media Documentation

mem_planes Number of memory planes, which includes the alpha plane (1 to 4).

comp_planes Number of component planes, which includes the alpha plane (1 to 4).

bpp Array of per-plane bytes per pixel

hdiv Horizontal chroma subsampling factor

vdiv Vertical chroma subsampling factor

block_w Per-plane macroblock pixel width (optional)

block_h Per-plane macroblock pixel height (optional)

s64 v4l2_get_link_freq(struct v4l2_ctrl_handler *handler, unsigned int mul, unsigned
int div)

Get link rate from transmitter

Parameters
struct v4l2_ctrl_handler *handler The transmitter’s control handler

unsigned int mul The multiplier between pixel rate and link frequency. Bits per pixel on D-
PHY, samples per clock on parallel. 0 otherwise.

unsigned int div The divisor between pixel rate and link frequency. Number of data lanes
times two on D-PHY, 1 on parallel. 0 otherwise.

Description
This function is intended for obtaining the link frequency from the transmitter sub-devices. It
returns the link rate, either from the V4L2_CID_LINK_FREQ control implemented by the trans-
mitter, or value calculated based on the V4L2_CID_PIXEL_RATE implemented by the transmit-
ter.

Returns link frequency on success, otherwise a negative error code: -ENOENT: Link
frequency or pixel rate control not found -EINVAL: Invalid link frequency value

struct v4l2_ioctl_ops
describe operations for each V4L2 ioctl

Definition

struct v4l2_ioctl_ops {
int (*vidioc_querycap)(struct file *file, void *fh, struct v4l2_capability *cap);
int (*vidioc_enum_fmt_vid_cap)(struct file *file, void *fh, struct v4l2_fmtdesc *f);
int (*vidioc_enum_fmt_vid_overlay)(struct file *file, void *fh, struct v4l2_fmtdesc␣

↪→*f);
int (*vidioc_enum_fmt_vid_out)(struct file *file, void *fh, struct v4l2_fmtdesc *f);
int (*vidioc_enum_fmt_sdr_cap)(struct file *file, void *fh, struct v4l2_fmtdesc *f);
int (*vidioc_enum_fmt_sdr_out)(struct file *file, void *fh, struct v4l2_fmtdesc *f);
int (*vidioc_enum_fmt_meta_cap)(struct file *file, void *fh, struct v4l2_fmtdesc *f);
int (*vidioc_enum_fmt_meta_out)(struct file *file, void *fh, struct v4l2_fmtdesc *f);
int (*vidioc_g_fmt_vid_cap)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_g_fmt_vid_overlay)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_g_fmt_vid_out)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_g_fmt_vid_out_overlay)(struct file *file, void *fh, struct v4l2_format␣

↪→*f);
int (*vidioc_g_fmt_vbi_cap)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_g_fmt_vbi_out)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_g_fmt_sliced_vbi_cap)(struct file *file, void *fh, struct v4l2_format␣

↪→*f);

418 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

int (*vidioc_g_fmt_sliced_vbi_out)(struct file *file, void *fh, struct v4l2_format␣
↪→*f);
int (*vidioc_g_fmt_vid_cap_mplane)(struct file *file, void *fh, struct v4l2_format␣

↪→*f);
int (*vidioc_g_fmt_vid_out_mplane)(struct file *file, void *fh, struct v4l2_format␣

↪→*f);
int (*vidioc_g_fmt_sdr_cap)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_g_fmt_sdr_out)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_g_fmt_meta_cap)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_g_fmt_meta_out)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_s_fmt_vid_cap)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_s_fmt_vid_overlay)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_s_fmt_vid_out)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_s_fmt_vid_out_overlay)(struct file *file, void *fh, struct v4l2_format␣

↪→*f);
int (*vidioc_s_fmt_vbi_cap)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_s_fmt_vbi_out)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_s_fmt_sliced_vbi_cap)(struct file *file, void *fh, struct v4l2_format␣

↪→*f);
int (*vidioc_s_fmt_sliced_vbi_out)(struct file *file, void *fh, struct v4l2_format␣

↪→*f);
int (*vidioc_s_fmt_vid_cap_mplane)(struct file *file, void *fh, struct v4l2_format␣

↪→*f);
int (*vidioc_s_fmt_vid_out_mplane)(struct file *file, void *fh, struct v4l2_format␣

↪→*f);
int (*vidioc_s_fmt_sdr_cap)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_s_fmt_sdr_out)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_s_fmt_meta_cap)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_s_fmt_meta_out)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_try_fmt_vid_cap)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_try_fmt_vid_overlay)(struct file *file, void *fh, struct v4l2_format␣

↪→*f);
int (*vidioc_try_fmt_vid_out)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_try_fmt_vid_out_overlay)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_try_fmt_vbi_cap)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_try_fmt_vbi_out)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_try_fmt_sliced_vbi_cap)(struct file *file, void *fh, struct v4l2_format␣

↪→*f);
int (*vidioc_try_fmt_sliced_vbi_out)(struct file *file, void *fh, struct v4l2_format␣

↪→*f);
int (*vidioc_try_fmt_vid_cap_mplane)(struct file *file, void *fh, struct v4l2_format␣

↪→*f);
int (*vidioc_try_fmt_vid_out_mplane)(struct file *file, void *fh, struct v4l2_format␣

↪→*f);
int (*vidioc_try_fmt_sdr_cap)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_try_fmt_sdr_out)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_try_fmt_meta_cap)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_try_fmt_meta_out)(struct file *file, void *fh, struct v4l2_format *f);
int (*vidioc_reqbufs)(struct file *file, void *fh, struct v4l2_requestbuffers *b);
int (*vidioc_querybuf)(struct file *file, void *fh, struct v4l2_buffer *b);
int (*vidioc_qbuf)(struct file *file, void *fh, struct v4l2_buffer *b);
int (*vidioc_expbuf)(struct file *file, void *fh, struct v4l2_exportbuffer *e);
int (*vidioc_dqbuf)(struct file *file, void *fh, struct v4l2_buffer *b);
int (*vidioc_create_bufs)(struct file *file, void *fh, struct v4l2_create_buffers␣

↪→*b);
int (*vidioc_prepare_buf)(struct file *file, void *fh, struct v4l2_buffer *b);

2.2. Video4Linux devices 419

Linux Media Documentation

int (*vidioc_overlay)(struct file *file, void *fh, unsigned int i);
int (*vidioc_g_fbuf)(struct file *file, void *fh, struct v4l2_framebuffer *a);
int (*vidioc_s_fbuf)(struct file *file, void *fh, const struct v4l2_framebuffer *a);
int (*vidioc_streamon)(struct file *file, void *fh, enum v4l2_buf_type i);
int (*vidioc_streamoff)(struct file *file, void *fh, enum v4l2_buf_type i);
int (*vidioc_g_std)(struct file *file, void *fh, v4l2_std_id *norm);
int (*vidioc_s_std)(struct file *file, void *fh, v4l2_std_id norm);
int (*vidioc_querystd)(struct file *file, void *fh, v4l2_std_id *a);
int (*vidioc_enum_input)(struct file *file, void *fh, struct v4l2_input *inp);
int (*vidioc_g_input)(struct file *file, void *fh, unsigned int *i);
int (*vidioc_s_input)(struct file *file, void *fh, unsigned int i);
int (*vidioc_enum_output)(struct file *file, void *fh, struct v4l2_output *a);
int (*vidioc_g_output)(struct file *file, void *fh, unsigned int *i);
int (*vidioc_s_output)(struct file *file, void *fh, unsigned int i);
int (*vidioc_queryctrl)(struct file *file, void *fh, struct v4l2_queryctrl *a);
int (*vidioc_query_ext_ctrl)(struct file *file, void *fh, struct v4l2_query_ext_ctrl␣

↪→*a);
int (*vidioc_g_ctrl)(struct file *file, void *fh, struct v4l2_control *a);
int (*vidioc_s_ctrl)(struct file *file, void *fh, struct v4l2_control *a);
int (*vidioc_g_ext_ctrls)(struct file *file, void *fh, struct v4l2_ext_controls *a);
int (*vidioc_s_ext_ctrls)(struct file *file, void *fh, struct v4l2_ext_controls *a);
int (*vidioc_try_ext_ctrls)(struct file *file, void *fh, struct v4l2_ext_controls␣

↪→*a);
int (*vidioc_querymenu)(struct file *file, void *fh, struct v4l2_querymenu *a);
int (*vidioc_enumaudio)(struct file *file, void *fh, struct v4l2_audio *a);
int (*vidioc_g_audio)(struct file *file, void *fh, struct v4l2_audio *a);
int (*vidioc_s_audio)(struct file *file, void *fh, const struct v4l2_audio *a);
int (*vidioc_enumaudout)(struct file *file, void *fh, struct v4l2_audioout *a);
int (*vidioc_g_audout)(struct file *file, void *fh, struct v4l2_audioout *a);
int (*vidioc_s_audout)(struct file *file, void *fh, const struct v4l2_audioout *a);
int (*vidioc_g_modulator)(struct file *file, void *fh, struct v4l2_modulator *a);
int (*vidioc_s_modulator)(struct file *file, void *fh, const struct v4l2_modulator␣

↪→*a);
int (*vidioc_g_pixelaspect)(struct file *file, void *fh, int buf_type, struct v4l2_

↪→fract *aspect);
int (*vidioc_g_selection)(struct file *file, void *fh, struct v4l2_selection *s);
int (*vidioc_s_selection)(struct file *file, void *fh, struct v4l2_selection *s);
int (*vidioc_g_jpegcomp)(struct file *file, void *fh, struct v4l2_jpegcompression␣

↪→*a);
int (*vidioc_s_jpegcomp)(struct file *file, void *fh, const struct v4l2_

↪→jpegcompression *a);
int (*vidioc_g_enc_index)(struct file *file, void *fh, struct v4l2_enc_idx *a);
int (*vidioc_encoder_cmd)(struct file *file, void *fh, struct v4l2_encoder_cmd *a);
int (*vidioc_try_encoder_cmd)(struct file *file, void *fh, struct v4l2_encoder_cmd␣

↪→*a);
int (*vidioc_decoder_cmd)(struct file *file, void *fh, struct v4l2_decoder_cmd *a);
int (*vidioc_try_decoder_cmd)(struct file *file, void *fh, struct v4l2_decoder_cmd␣

↪→*a);
int (*vidioc_g_parm)(struct file *file, void *fh, struct v4l2_streamparm *a);
int (*vidioc_s_parm)(struct file *file, void *fh, struct v4l2_streamparm *a);
int (*vidioc_g_tuner)(struct file *file, void *fh, struct v4l2_tuner *a);
int (*vidioc_s_tuner)(struct file *file, void *fh, const struct v4l2_tuner *a);
int (*vidioc_g_frequency)(struct file *file, void *fh, struct v4l2_frequency *a);
int (*vidioc_s_frequency)(struct file *file, void *fh, const struct v4l2_frequency␣

↪→*a);
int (*vidioc_enum_freq_bands)(struct file *file, void *fh, struct v4l2_frequency_

↪→band *band);

420 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

int (*vidioc_g_sliced_vbi_cap)(struct file *file, void *fh, struct v4l2_sliced_vbi_
↪→cap *a);
int (*vidioc_log_status)(struct file *file, void *fh);
int (*vidioc_s_hw_freq_seek)(struct file *file, void *fh, const struct v4l2_hw_freq_

↪→seek *a);
#ifdef CONFIG_VIDEO_ADV_DEBUG;

int (*vidioc_g_register)(struct file *file, void *fh, struct v4l2_dbg_register *reg);
int (*vidioc_s_register)(struct file *file, void *fh, const struct v4l2_dbg_register␣

↪→*reg);
int (*vidioc_g_chip_info)(struct file *file, void *fh, struct v4l2_dbg_chip_info␣

↪→*chip);
#endif;

int (*vidioc_enum_framesizes)(struct file *file, void *fh, struct v4l2_frmsizeenum␣
↪→*fsize);
int (*vidioc_enum_frameintervals)(struct file *file, void *fh, struct v4l2_

↪→frmivalenum *fival);
int (*vidioc_s_dv_timings)(struct file *file, void *fh, struct v4l2_dv_timings␣

↪→*timings);
int (*vidioc_g_dv_timings)(struct file *file, void *fh, struct v4l2_dv_timings␣

↪→*timings);
int (*vidioc_query_dv_timings)(struct file *file, void *fh, struct v4l2_dv_timings␣

↪→*timings);
int (*vidioc_enum_dv_timings)(struct file *file, void *fh, struct v4l2_enum_dv_

↪→timings *timings);
int (*vidioc_dv_timings_cap)(struct file *file, void *fh, struct v4l2_dv_timings_cap␣

↪→*cap);
int (*vidioc_g_edid)(struct file *file, void *fh, struct v4l2_edid *edid);
int (*vidioc_s_edid)(struct file *file, void *fh, struct v4l2_edid *edid);
int (*vidioc_subscribe_event)(struct v4l2_fh *fh, const struct v4l2_event_

↪→subscription *sub);
int (*vidioc_unsubscribe_event)(struct v4l2_fh *fh, const struct v4l2_event_

↪→subscription *sub);
long (*vidioc_default)(struct file *file, void *fh, bool valid_prio, unsigned int␣

↪→cmd, void *arg);
};

Members
vidioc_querycap pointer to the function that implements VIDIOC_QUERYCAP ioctl

vidioc_enum_fmt_vid_cap pointer to the function that implements VIDIOC_ENUM_FMT ioctl
logic for video capture in single and multi plane mode

vidioc_enum_fmt_vid_overlay pointer to the function that implements VIDIOC_ENUM_FMT
ioctl logic for video overlay

vidioc_enum_fmt_vid_out pointer to the function that implements VIDIOC_ENUM_FMT ioctl
logic for video output in single and multi plane mode

vidioc_enum_fmt_sdr_cap pointer to the function that implements VIDIOC_ENUM_FMT ioctl
logic for Software Defined Radio capture

vidioc_enum_fmt_sdr_out pointer to the function that implements VIDIOC_ENUM_FMT ioctl
logic for Software Defined Radio output

vidioc_enum_fmt_meta_cap pointer to the function that implements VIDIOC_ENUM_FMT ioctl
logic for metadata capture

2.2. Video4Linux devices 421

Linux Media Documentation

vidioc_enum_fmt_meta_out pointer to the function that implements VIDIOC_ENUM_FMT ioctl
logic for metadata output

vidioc_g_fmt_vid_cap pointer to the function that implements VIDIOC_G_FMT ioctl logic for
video capture in single plane mode

vidioc_g_fmt_vid_overlay pointer to the function that implements VIDIOC_G_FMT ioctl logic
for video overlay

vidioc_g_fmt_vid_out pointer to the function that implements VIDIOC_G_FMT ioctl logic for
video out in single plane mode

vidioc_g_fmt_vid_out_overlay pointer to the function that implements VIDIOC_G_FMT ioctl
logic for video overlay output

vidioc_g_fmt_vbi_cap pointer to the function that implements VIDIOC_G_FMT ioctl logic for
raw VBI capture

vidioc_g_fmt_vbi_out pointer to the function that implements VIDIOC_G_FMT ioctl logic for
raw VBI output

vidioc_g_fmt_sliced_vbi_cap pointer to the function that implements VIDIOC_G_FMT ioctl
logic for sliced VBI capture

vidioc_g_fmt_sliced_vbi_out pointer to the function that implements VIDIOC_G_FMT ioctl
logic for sliced VBI output

vidioc_g_fmt_vid_cap_mplane pointer to the function that implements VIDIOC_G_FMT ioctl
logic for video capture in multiple plane mode

vidioc_g_fmt_vid_out_mplane pointer to the function that implements VIDIOC_G_FMT ioctl
logic for video out in multiplane plane mode

vidioc_g_fmt_sdr_cap pointer to the function that implements VIDIOC_G_FMT ioctl logic for
Software Defined Radio capture

vidioc_g_fmt_sdr_out pointer to the function that implements VIDIOC_G_FMT ioctl logic for
Software Defined Radio output

vidioc_g_fmt_meta_cap pointer to the function that implements VIDIOC_G_FMT ioctl logic for
metadata capture

vidioc_g_fmt_meta_out pointer to the function that implements VIDIOC_G_FMT ioctl logic for
metadata output

vidioc_s_fmt_vid_cap pointer to the function that implements VIDIOC_S_FMT ioctl logic for
video capture in single plane mode

vidioc_s_fmt_vid_overlay pointer to the function that implements VIDIOC_S_FMT ioctl logic
for video overlay

vidioc_s_fmt_vid_out pointer to the function that implements VIDIOC_S_FMT ioctl logic for
video out in single plane mode

vidioc_s_fmt_vid_out_overlay pointer to the function that implements VIDIOC_S_FMT ioctl
logic for video overlay output

vidioc_s_fmt_vbi_cap pointer to the function that implements VIDIOC_S_FMT ioctl logic for
raw VBI capture

422 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

vidioc_s_fmt_vbi_out pointer to the function that implements VIDIOC_S_FMT ioctl logic for
raw VBI output

vidioc_s_fmt_sliced_vbi_cap pointer to the function that implements VIDIOC_S_FMT ioctl
logic for sliced VBI capture

vidioc_s_fmt_sliced_vbi_out pointer to the function that implements VIDIOC_S_FMT ioctl
logic for sliced VBI output

vidioc_s_fmt_vid_cap_mplane pointer to the function that implements VIDIOC_S_FMT ioctl
logic for video capture in multiple plane mode

vidioc_s_fmt_vid_out_mplane pointer to the function that implements VIDIOC_S_FMT ioctl
logic for video out in multiplane plane mode

vidioc_s_fmt_sdr_cap pointer to the function that implements VIDIOC_S_FMT ioctl logic for
Software Defined Radio capture

vidioc_s_fmt_sdr_out pointer to the function that implements VIDIOC_S_FMT ioctl logic for
Software Defined Radio output

vidioc_s_fmt_meta_cap pointer to the function that implements VIDIOC_S_FMT ioctl logic for
metadata capture

vidioc_s_fmt_meta_out pointer to the function that implements VIDIOC_S_FMT ioctl logic for
metadata output

vidioc_try_fmt_vid_cap pointer to the function that implementsVIDIOC_TRY_FMT ioctl logic
for video capture in single plane mode

vidioc_try_fmt_vid_overlay pointer to the function that implements VIDIOC_TRY_FMT ioctl
logic for video overlay

vidioc_try_fmt_vid_out pointer to the function that implementsVIDIOC_TRY_FMT ioctl logic
for video out in single plane mode

vidioc_try_fmt_vid_out_overlay pointer to the function that implements VIDIOC_TRY_FMT
ioctl logic for video overlay output

vidioc_try_fmt_vbi_cap pointer to the function that implementsVIDIOC_TRY_FMT ioctl logic
for raw VBI capture

vidioc_try_fmt_vbi_out pointer to the function that implementsVIDIOC_TRY_FMT ioctl logic
for raw VBI output

vidioc_try_fmt_sliced_vbi_cap pointer to the function that implements VIDIOC_TRY_FMT
ioctl logic for sliced VBI capture

vidioc_try_fmt_sliced_vbi_out pointer to the function that implements VIDIOC_TRY_FMT
ioctl logic for sliced VBI output

vidioc_try_fmt_vid_cap_mplane pointer to the function that implements VIDIOC_TRY_FMT
ioctl logic for video capture in multiple plane mode

vidioc_try_fmt_vid_out_mplane pointer to the function that implements VIDIOC_TRY_FMT
ioctl logic for video out in multiplane plane mode

vidioc_try_fmt_sdr_cap pointer to the function that implementsVIDIOC_TRY_FMT ioctl logic
for Software Defined Radio capture

2.2. Video4Linux devices 423

Linux Media Documentation

vidioc_try_fmt_sdr_out pointer to the function that implementsVIDIOC_TRY_FMT ioctl logic
for Software Defined Radio output

vidioc_try_fmt_meta_cap pointer to the function that implements VIDIOC_TRY_FMT ioctl
logic for metadata capture

vidioc_try_fmt_meta_out pointer to the function that implements VIDIOC_TRY_FMT ioctl
logic for metadata output

vidioc_reqbufs pointer to the function that implements VIDIOC_REQBUFS ioctl

vidioc_querybuf pointer to the function that implements VIDIOC_QUERYBUF ioctl

vidioc_qbuf pointer to the function that implements VIDIOC_QBUF ioctl

vidioc_expbuf pointer to the function that implements VIDIOC_EXPBUF ioctl

vidioc_dqbuf pointer to the function that implements VIDIOC_DQBUF ioctl

vidioc_create_bufs pointer to the function that implements VIDIOC_CREATE_BUFS ioctl

vidioc_prepare_buf pointer to the function that implements VIDIOC_PREPARE_BUF ioctl

vidioc_overlay pointer to the function that implements VIDIOC_OVERLAY ioctl

vidioc_g_fbuf pointer to the function that implements VIDIOC_G_FBUF ioctl

vidioc_s_fbuf pointer to the function that implements VIDIOC_S_FBUF ioctl

vidioc_streamon pointer to the function that implements VIDIOC_STREAMON ioctl

vidioc_streamoff pointer to the function that implements VIDIOC_STREAMOFF ioctl

vidioc_g_std pointer to the function that implements VIDIOC_G_STD ioctl

vidioc_s_std pointer to the function that implements VIDIOC_S_STD ioctl

vidioc_querystd pointer to the function that implements VIDIOC_QUERYSTD ioctl

vidioc_enum_input pointer to the function that implements VIDIOC_ENUM_INPUT ioctl

vidioc_g_input pointer to the function that implements VIDIOC_G_INPUT ioctl

vidioc_s_input pointer to the function that implements VIDIOC_S_INPUT ioctl

vidioc_enum_output pointer to the function that implements VIDIOC_ENUM_OUTPUT ioctl

vidioc_g_output pointer to the function that implements VIDIOC_G_OUTPUT ioctl

vidioc_s_output pointer to the function that implements VIDIOC_S_OUTPUT ioctl

vidioc_queryctrl pointer to the function that implements VIDIOC_QUERYCTRL ioctl

vidioc_query_ext_ctrl pointer to the function that implements VIDIOC_QUERY_EXT_CTRL
ioctl

vidioc_g_ctrl pointer to the function that implements VIDIOC_G_CTRL ioctl

vidioc_s_ctrl pointer to the function that implements VIDIOC_S_CTRL ioctl

vidioc_g_ext_ctrls pointer to the function that implements VIDIOC_G_EXT_CTRLS ioctl

vidioc_s_ext_ctrls pointer to the function that implements VIDIOC_S_EXT_CTRLS ioctl

vidioc_try_ext_ctrls pointer to the function that implements VIDIOC_TRY_EXT_CTRLS ioctl

vidioc_querymenu pointer to the function that implements VIDIOC_QUERYMENU ioctl

424 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

vidioc_enumaudio pointer to the function that implements VIDIOC_ENUMAUDIO ioctl

vidioc_g_audio pointer to the function that implements VIDIOC_G_AUDIO ioctl

vidioc_s_audio pointer to the function that implements VIDIOC_S_AUDIO ioctl

vidioc_enumaudout pointer to the function that implements VIDIOC_ENUMAUDOUT ioctl

vidioc_g_audout pointer to the function that implements VIDIOC_G_AUDOUT ioctl

vidioc_s_audout pointer to the function that implements VIDIOC_S_AUDOUT ioctl

vidioc_g_modulator pointer to the function that implements VIDIOC_G_MODULATOR ioctl

vidioc_s_modulator pointer to the function that implements VIDIOC_S_MODULATOR ioctl

vidioc_g_pixelaspect pointer to the function that implements the pixelaspect part of the VID-
IOC_CROPCAP ioctl

vidioc_g_selection pointer to the function that implements VIDIOC_G_SELECTION ioctl

vidioc_s_selection pointer to the function that implements VIDIOC_S_SELECTION ioctl

vidioc_g_jpegcomp pointer to the function that implements VIDIOC_G_JPEGCOMP ioctl

vidioc_s_jpegcomp pointer to the function that implements VIDIOC_S_JPEGCOMP ioctl

vidioc_g_enc_index pointer to the function that implements VIDIOC_G_ENC_INDEX ioctl

vidioc_encoder_cmd pointer to the function that implements VIDIOC_ENCODER_CMD ioctl

vidioc_try_encoder_cmd pointer to the function that implements VID-
IOC_TRY_ENCODER_CMD ioctl

vidioc_decoder_cmd pointer to the function that implements VIDIOC_DECODER_CMD ioctl

vidioc_try_decoder_cmd pointer to the function that implements VID-
IOC_TRY_DECODER_CMD ioctl

vidioc_g_parm pointer to the function that implements VIDIOC_G_PARM ioctl

vidioc_s_parm pointer to the function that implements VIDIOC_S_PARM ioctl

vidioc_g_tuner pointer to the function that implements VIDIOC_G_TUNER ioctl

vidioc_s_tuner pointer to the function that implements VIDIOC_S_TUNER ioctl

vidioc_g_frequency pointer to the function that implements VIDIOC_G_FREQUENCY ioctl

vidioc_s_frequency pointer to the function that implements VIDIOC_S_FREQUENCY ioctl

vidioc_enum_freq_bands pointer to the function that implements VID-
IOC_ENUM_FREQ_BANDS ioctl

vidioc_g_sliced_vbi_cap pointer to the function that implements VID-
IOC_G_SLICED_VBI_CAP ioctl

vidioc_log_status pointer to the function that implements VIDIOC_LOG_STATUS ioctl

vidioc_s_hw_freq_seek pointer to the function that implements VIDIOC_S_HW_FREQ_SEEK
ioctl

vidioc_g_register pointer to the function that implements VIDIOC_DBG_G_REGISTER ioctl

vidioc_s_register pointer to the function that implements VIDIOC_DBG_S_REGISTER ioctl

2.2. Video4Linux devices 425

Linux Media Documentation

vidioc_g_chip_info pointer to the function that implements VIDIOC_DBG_G_CHIP_INFO
ioctl

vidioc_enum_framesizes pointer to the function that implements VID-
IOC_ENUM_FRAMESIZES ioctl

vidioc_enum_frameintervals pointer to the function that implements VID-
IOC_ENUM_FRAMEINTERVALS ioctl

vidioc_s_dv_timings pointer to the function that implements VIDIOC_S_DV_TIMINGS ioctl

vidioc_g_dv_timings pointer to the function that implements VIDIOC_G_DV_TIMINGS ioctl

vidioc_query_dv_timings pointer to the function that implements VID-
IOC_QUERY_DV_TIMINGS ioctl

vidioc_enum_dv_timings pointer to the function that implements VID-
IOC_ENUM_DV_TIMINGS ioctl

vidioc_dv_timings_cap pointer to the function that implements VIDIOC_DV_TIMINGS_CAP
ioctl

vidioc_g_edid pointer to the function that implements VIDIOC_G_EDID ioctl

vidioc_s_edid pointer to the function that implements VIDIOC_S_EDID ioctl

vidioc_subscribe_event pointer to the function that implements VID-
IOC_SUBSCRIBE_EVENT ioctl

vidioc_unsubscribe_event pointer to the function that implements VID-
IOC_UNSUBSCRIBE_EVENT ioctl

vidioc_default pointed used to allow other ioctls

const char * v4l2_norm_to_name(v4l2_std_id id)
Ancillary routine to analog TV standard name from its ID.

Parameters
v4l2_std_id id analog TV standard ID.

Return
returns a string with the name of the analog TV standard. If the standard is not found or if id
points to multiple standard, it returns “Unknown”.

void v4l2_video_std_frame_period(int id, struct v4l2_fract *frameperiod)
Ancillary routine that fills a struct v4l2_fract pointer with the default framerate fraction.

Parameters
int id analog TV standard ID.

struct v4l2_fract *frameperiod struct v4l2_fract pointer to be filled

int v4l2_video_std_construct(struct v4l2_standard *vs, int id, const char *name)
Ancillary routine that fills in the fields of a v4l2_standard structure according to the id
parameter.

Parameters
struct v4l2_standard *vs struct v4l2_standard pointer to be filled

int id analog TV standard ID.

426 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

const char *name name of the standard to be used

Description

Note: This ancillary routine is obsolete. Shouldn’t be used on newer drivers.

int v4l_video_std_enumstd(struct v4l2_standard *vs, v4l2_std_id id)
Ancillary routine that fills in the fields of a v4l2_standard structure according to the id
and vs->index parameters.

Parameters
struct v4l2_standard *vs struct v4l2_standard pointer to be filled.

v4l2_std_id id analog TV standard ID.

void v4l_printk_ioctl(const char *prefix, unsigned int cmd)
Ancillary routine that prints the ioctl in a human-readable format.

Parameters
const char *prefix prefix to be added at the ioctl prints.

unsigned int cmd ioctl name

Description

Note: If prefix != NULL, then it will issue a printk(KERN_DEBUG "``s: “, prefix)`` first.

long int v4l2_compat_ioctl32(struct file *file, unsigned int cmd, unsigned long arg)
32 Bits compatibility layer for 64 bits processors

Parameters
struct file *file Pointer to struct file.

unsigned int cmd Ioctl name.

unsigned long arg Ioctl argument.

v4l2_kioctl
Typedef: Typedef used to pass an ioctl handler.

Syntax
long v4l2_kioctl (struct file *file, unsigned int cmd, void *arg)

Parameters
struct file *file Pointer to struct file.

unsigned int cmd Ioctl name.

void *arg Ioctl argument.

long int video_usercopy(struct file *file, unsigned int cmd, unsigned long int arg,
v4l2_kioctl func)

copies data from/to userspace memory when an ioctl is issued.

Parameters

2.2. Video4Linux devices 427

Linux Media Documentation

struct file *file Pointer to struct file.

unsigned int cmd Ioctl name.

unsigned long int arg Ioctl argument.

v4l2_kioctl func function that will handle the ioctl

Description

Note: This routine should be used only inside the V4L2 core.

long int video_ioctl2(struct file *file, unsigned int cmd, unsigned long int arg)
Handles a V4L2 ioctl.

Parameters
struct file *file Pointer to struct file.

unsigned int cmd Ioctl name.

unsigned long int arg Ioctl argument.

Description
Method used to hancle an ioctl. Should be used to fill the v4l2_ioctl_ops.unlocked_ioctl on
all V4L2 drivers.

2.2.26 Hauppauge TV EEPROM functions and data structures

enum tveeprom_audio_processor
Specifies the type of audio processor used on a Hauppauge device.

Constants
TVEEPROM_AUDPROC_NONE No audio processor present

TVEEPROM_AUDPROC_INTERNAL The audio processor is internal to the video processor

TVEEPROM_AUDPROC_MSP The audio processor is a MSPXXXX device

TVEEPROM_AUDPROC_OTHER The audio processor is another device

struct tveeprom
Contains the fields parsed from Hauppauge eeproms

Definition

struct tveeprom {
u32 has_radio;
u32 has_ir;
u32 has_MAC_address;
u32 tuner_type;
u32 tuner_formats;
u32 tuner_hauppauge_model;
u32 tuner2_type;
u32 tuner2_formats;
u32 tuner2_hauppauge_model;
u32 audio_processor;

428 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

u32 decoder_processor;
u32 model;
u32 revision;
u32 serial_number;
char rev_str[5];
u8 MAC_address[ETH_ALEN];

};

Members
has_radio 1 if the device has radio; 0 otherwise.

has_ir If has_ir == 0, then it is unknown what the IR capabilities are. Otherwise: bit 0) 1 (= IR
capabilities are known); bit 1) IR receiver present; bit 2) IR transmitter (blaster) present.

has_MAC_address 0: no MAC, 1: MAC present, 2: unknown.

tuner_type type of the tuner (TUNER_*, as defined at include/media/tuner.h).

tuner_formats Supported analog TV standards (V4L2_STD_*).

tuner_hauppauge_model Hauppauge’s code for the device model number.

tuner2_type type of the second tuner (TUNER_*, as defined at include/media/tuner.h).

tuner2_formats Tuner 2 supported analog TV standards (V4L2_STD_*).

tuner2_hauppauge_model tuner 2 Hauppauge’s code for the device model number.

audio_processor analog audio decoder, as defined by enum tveeprom_audio_processor.

decoder_processor Hauppauge’s code for the decoder chipset. Unused by the drivers, as they
probe the decoder based on the PCI or USB ID.

model Hauppauge’s model number

revision Card revision number

serial_number Card’s serial number

rev_str Card revision converted to number

MAC_address MAC address for the network interface

void tveeprom_hauppauge_analog(struct tveeprom *tvee, unsigned char *eeprom_data)
Fill struct tveeprom using the contents of the eeprom previously filled at eeprom_data
field.

Parameters
struct tveeprom *tvee Struct to where the eeprom parsed data will be filled;

unsigned char *eeprom_data Array with the contents of the eeprom_data. It should contain
256 bytes filled with the contents of the eeprom read from the Hauppauge device.

int tveeprom_read(struct i2c_client *c, unsigned char *eedata, int len)
Reads the contents of the eeprom found at the Hauppauge devices.

Parameters
struct i2c_client *c I2C client struct

unsigned char *eedata Array where the eeprom content will be stored.

2.2. Video4Linux devices 429

Linux Media Documentation

int len Size of eedata array. If the eeprom content will be latter be parsed by
tveeprom_hauppauge_analog(), len should be, at least, 256.

2.3 Digital TV (DVB) devices

Digital TV devices are implemented by several different drivers:

• A bridge driver that is responsible to talk with the bus where the other devices are con-
nected (PCI, USB, SPI), bind to the other drivers and implement the digital demux logic
(either in software or in hardware);

• Frontend drivers that are usually implemented as two separate drivers:

– A tuner driver that implements the logic which commands the part of the hardware
responsible for tuning into a digital TV transponder or physical channel. The output
of a tuner is usually a baseband or Intermediate Frequency (IF) signal;

– A demodulator driver (a.k.a “demod”) that implements the logic which commands the
digital TV decoding hardware. The output of a demod is a digital stream, with multiple
audio, video and data channels typically multiplexed using MPEG Transport Stream1.

On most hardware, the frontend drivers talk with the bridge driver using an I2C bus.

2.3.1 Digital TV Common functions

2.3.1.1 Math functions

Provide some commonly-used math functions, usually required in order to estimate signal
strength and signal to noise measurements in dB.

unsigned int intlog2(u32 value)
computes log2 of a value; the result is shifted left by 24 bits

Parameters
u32 value The value (must be != 0)

Description
to use rational values you can use the following method:

intlog2(value) = intlog2(value * 2^x) - x * 2^24

Some usecase examples:

intlog2(8) will give 3 << 24 = 3 * 2^24

intlog2(9) will give 3 << 24 + … = 3.16… * 2^24

intlog2(1.5) = intlog2(3) - 2^24 = 0.584… * 2^24

Return
log2(value) * 2^24

1 Some standards use TCP/IP for multiplexing data, like DVB-H (an abandoned standard, not used anymore) and
ATSC version 3.0 current proposals. Currently, the DVB subsystem doesn’t implement those standards.

430 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

unsigned int intlog10(u32 value)
computes log10 of a value; the result is shifted left by 24 bits

Parameters
u32 value The value (must be != 0)

Description
to use rational values you can use the following method:

intlog10(value) = intlog10(value * 10^x) - x * 2^24

An usecase example:

intlog10(1000) will give 3 << 24 = 3 * 2^24

due to the implementation intlog10(1000) might be not exactly 3 * 2^24

look at intlog2 for similar examples

Return
log10(value) * 2^24

2.3.1.2 DVB devices

Those functions are responsible for handling the DVB device nodes.

enum dvb_device_type
type of the Digital TV device

Constants
DVB_DEVICE_SEC Digital TV standalone Common Interface (CI)

DVB_DEVICE_FRONTEND Digital TV frontend.

DVB_DEVICE_DEMUX Digital TV demux.

DVB_DEVICE_DVR Digital TV digital video record (DVR).

DVB_DEVICE_CA Digital TV Conditional Access (CA).

DVB_DEVICE_NET Digital TV network.

DVB_DEVICE_VIDEO Digital TV video decoder. Deprecated. Used only on av7110-av.

DVB_DEVICE_AUDIO Digital TV audio decoder. Deprecated. Used only on av7110-av.

DVB_DEVICE_OSD Digital TV On Screen Display (OSD). Deprecated. Used only on av7110.

struct dvb_adapter
represents a Digital TV adapter using Linux DVB API

Definition

struct dvb_adapter {
int num;
struct list_head list_head;
struct list_head device_list;
const char *name;
u8 proposed_mac [6];

2.3. Digital TV (DVB) devices 431

Linux Media Documentation

void* priv;
struct device *device;
struct module *module;
int mfe_shared;
struct dvb_device *mfe_dvbdev;
struct mutex mfe_lock;

#if defined(CONFIG_MEDIA_CONTROLLER_DVB);
struct mutex mdev_lock;
struct media_device *mdev;
struct media_entity *conn;
struct media_pad *conn_pads;

#endif;
};

Members
num Number of the adapter

list_head List with the DVB adapters

device_list List with the DVB devices

name Name of the adapter

proposed_mac proposed MAC address for the adapter

priv private data

device pointer to struct device

module pointer to struct module

mfe_shared indicates mutually exclusive frontends. Use of this flag is currently deprecated.

mfe_dvbdev Frontend device in use, in the case of MFE

mfe_lock Lock to prevent using the other frontends when MFE is used.

mdev_lock Protect access to the mdev pointer.

mdev pointer to struct media_device, used when the media controller is used.

conn RF connector. Used only if the device has no separate tuner.

conn_pads pointer to struct media_pad associated with conn;
struct dvb_device

represents a DVB device node

Definition

struct dvb_device {
struct list_head list_head;
const struct file_operations *fops;
struct dvb_adapter *adapter;
enum dvb_device_type type;
int minor;
u32 id;
int readers;
int writers;
int users;
wait_queue_head_t wait_queue;

432 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

int (*kernel_ioctl)(struct file *file, unsigned int cmd, void *arg);
#if defined(CONFIG_MEDIA_CONTROLLER_DVB);

const char *name;
struct media_intf_devnode *intf_devnode;
unsigned tsout_num_entities;
struct media_entity *entity, *tsout_entity;
struct media_pad *pads, *tsout_pads;

#endif;
void *priv;

};

Members
list_head List head with all DVB devices

fops pointer to struct file_operations

adapter pointer to the adapter that holds this device node

type type of the device, as defined by enum dvb_device_type.

minor devnode minor number. Major number is always DVB_MAJOR.

id device ID number, inside the adapter

readers Initialized by the caller. Each call to open() in Read Only mode decreases this counter
by one.

writers Initialized by the caller. Each call to open() in Read/Write mode decreases this counter
by one.

users Initialized by the caller. Each call to open() in any mode decreases this counter by one.

wait_queue wait queue, used to wait for certain events inside one of the DVB API callers

kernel_ioctl callback function used to handle ioctl calls from userspace.

name Name to be used for the device at the Media Controller

intf_devnode Pointer to media_intf_devnode. Used by the dvbdev core to store the MC device
node interface

tsout_num_entities Number of Transport Stream output entities

entity pointer to struct media_entity associated with the device node

tsout_entity array with MC entities associated to each TS output node

pads pointer to struct media_pad associated with entity;
tsout_pads array with the source pads for each tsout_entity
priv private data

Description
This structure is used by the DVB core (frontend, CA, net, demux) in order to create the device
nodes. Usually, driver should not initialize this struct diretly.

int dvb_register_adapter(struct dvb_adapter *adap, const char *name, struct mod-
ule *module, struct device *device, short *adapter_nums)

Registers a new DVB adapter

2.3. Digital TV (DVB) devices 433

Linux Media Documentation

Parameters
struct dvb_adapter *adap pointer to struct dvb_adapter

const char *name Adapter’s name

struct module *module initialized with THIS_MODULE at the caller

struct device *device pointer to struct device that corresponds to the device driver

short *adapter_nums Array with a list of the numbers for dvb_register_adapter; to select
among them. Typically, initializedwith: DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nums)

int dvb_unregister_adapter(struct dvb_adapter *adap)
Unregisters a DVB adapter

Parameters
struct dvb_adapter *adap pointer to struct dvb_adapter

int dvb_register_device(struct dvb_adapter *adap, struct dvb_device **pdvbdev,
const struct dvb_device *template, void *priv, enum
dvb_device_type type, int demux_sink_pads)

Registers a new DVB device

Parameters
struct dvb_adapter *adap pointer to struct dvb_adapter

struct dvb_device **pdvbdev pointer to the place where the new struct dvb_device will
be stored

const struct dvb_device *template Template used to create pdvbdev;

void *priv private data

enum dvb_device_type type type of the device, as defined by enum dvb_device_type.

int demux_sink_pads Number of demux outputs, to be used to create the TS outputs via the
Media Controller.

void dvb_remove_device(struct dvb_device *dvbdev)
Remove a registered DVB device

Parameters
struct dvb_device *dvbdev pointer to struct dvb_device

Description
This does not free memory. To do that, call dvb_free_device().

void dvb_free_device(struct dvb_device *dvbdev)
Free memory occupied by a DVB device.

Parameters
struct dvb_device *dvbdev pointer to struct dvb_device

Description
Call dvb_unregister_device() before calling this function.

void dvb_unregister_device(struct dvb_device *dvbdev)
Unregisters a DVB device

434 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Parameters
struct dvb_device *dvbdev pointer to struct dvb_device

Description
This is a combination of dvb_remove_device() and dvb_free_device(). Using this function is
usually a mistake, and is often an indicator for a use-after-free bug (when a userspace process
keeps a file handle to a detached device).

int dvb_create_media_graph(struct dvb_adapter *adap, bool create_rf_connector)
Creates media graph for the Digital TV part of the device.

Parameters
struct dvb_adapter *adap pointer to struct dvb_adapter

bool create_rf_connector if true, it creates the RF connector too

Description
This function checks all DVB-related functions at the media controller entities and creates the
needed links for the media graph. It is capable of working with multiple tuners or multiple
frontends, but it won’t create links if the device has multiple tuners and multiple frontends or
if the device has multiple muxes. In such case, the caller driver should manually create the
remaining links.

void dvb_register_media_controller(struct dvb_adapter *adap, struct me-
dia_device *mdev)

registers a media controller at DVB adapter

Parameters
struct dvb_adapter *adap pointer to struct dvb_adapter

struct media_device *mdev pointer to struct media_device

struct media_device * dvb_get_media_controller(struct dvb_adapter *adap)
gets the associated media controller

Parameters
struct dvb_adapter *adap pointer to struct dvb_adapter

int dvb_generic_open(struct inode *inode, struct file *file)
Digital TV open function, used by DVB devices

Parameters
struct inode *inode pointer to struct inode.

struct file *file pointer to struct file.

Description
Checks if a DVB devnode is still valid, and if the permissions are OK and increment negative
use count.

int dvb_generic_release(struct inode *inode, struct file *file)
Digital TV close function, used by DVB devices

Parameters
struct inode *inode pointer to struct inode.

2.3. Digital TV (DVB) devices 435

Linux Media Documentation

struct file *file pointer to struct file.

Description
Checks if a DVB devnode is still valid, and if the permissions are OK and decrement negative
use count.

long dvb_generic_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
Digital TV close function, used by DVB devices

Parameters
struct file *file pointer to struct file.

unsigned int cmd Ioctl name.

unsigned long arg Ioctl argument.

Description
Checks if a DVB devnode and struct dvbdev.kernel_ioctl is still valid. If so, calls
dvb_usercopy().

int dvb_usercopy(struct file *file, unsigned int cmd, unsigned long arg, int (*func)(struct
file *file, unsigned int cmd, void *arg))

copies data from/to userspace memory when an ioctl is issued.

Parameters
struct file *file Pointer to struct file.

unsigned int cmd Ioctl name.

unsigned long arg Ioctl argument.

int (*func)(struct file *file, unsigned int cmd, void *arg) function that will actu-
ally handle the ioctl

Description
Ancillary function that uses ioctl direction and size to copy from userspace. Then, it calls func,
and, if needed, data is copied back to userspace.

struct i2c_client * dvb_module_probe(const char *module_name, const char *name,
struct i2c_adapter *adap, unsigned char addr,
void *platform_data)

helper routine to probe an I2C module

Parameters
const char *module_name

Name of the I2C module to be probed

const char *name

Optional name for the I2C module. Used for debug purposes. If NULL, defaults to
module_name.

struct i2c_adapter *adap

pointer to struct i2c_adapter that describes the I2C adapter where the module will
be bound.

436 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

unsigned char addr

I2C address of the adapter, in 7-bit notation.

void *platform_data

Platform data to be passed to the I2C module probed.

Description
This function binds an I2C device into the DVB core. Should be used by all drivers that
use I2C bus to control the hardware. A module bound with dvb_module_probe() should use
dvb_module_release() to unbind.

Note: In the past, DVB modules (mainly, frontends) were bound via dvb_attach()macro, with
does an ugly hack, using I2C low level functions. Such usage is deprecated and will be removed
soon. Instead, use this routine.

Return
On success, return an struct i2c_client, pointing to the bound I2C device. NULL
otherwise.

void dvb_module_release(struct i2c_client *client)
releases an I2C device allocated with dvb_module_probe().

Parameters
struct i2c_client *client pointer to struct i2c_clientwith the I2C client to be released.

can be NULL.

Description
This function should be used to free all resources reserved by dvb_module_probe() and un-
binding the I2C hardware.

dvb_attach(FUNCTION, ARGS…)
attaches a DVB frontend into the DVB core.

Parameters
FUNCTION function on a frontend module to be called.

ARGS... FUNCTION arguments.
Description
This ancillary function loads a frontend module in runtime and runs the FUNCTION function
there, with ARGS. As it increments symbol usage cont, at unregister, dvb_detach() should be
called.

Note: In the past, DVB modules (mainly, frontends) were bound via dvb_attach()macro, with
does an ugly hack, using I2C low level functions. Such usage is deprecated and will be removed
soon. Instead, you should use dvb_module_probe().

dvb_detach(FUNC)
detaches a DVB frontend loaded via dvb_attach()

2.3. Digital TV (DVB) devices 437

Linux Media Documentation

Parameters
FUNC attach function

Description
Decrements usage count for a function previously called via dvb_attach().

2.3.1.3 Digital TV Ring buffer

Those routines implement ring buffers used to handle digital TV data and copy it from/to
userspace.

Note:
1) For performance reasons read and write routines don’t check buffer sizes and/or number
of bytes free/available. This has to be done before these routines are called. For example:

/* write @buflen: bytes */
free = dvb_ringbuffer_free(rbuf);
if (free >= buflen)

count = dvb_ringbuffer_write(rbuf, buffer, buflen);
else

/* do something */

/* read min. 1000, max. @bufsize: bytes */
avail = dvb_ringbuffer_avail(rbuf);
if (avail >= 1000)

count = dvb_ringbuffer_read(rbuf, buffer, min(avail, bufsize));
else

/* do something */

2) If there is exactly one reader and one writer, there is no need to lock read or write opera-
tions. Two or more readers must be locked against each other. Flushing the buffer counts
as a read operation. Resetting the buffer counts as a read and write operation. Two or
more writers must be locked against each other.

struct dvb_ringbuffer
Describes a ring buffer used at DVB framework

Definition

struct dvb_ringbuffer {
u8 *data;
ssize_t size;
ssize_t pread;
ssize_t pwrite;
int error;
wait_queue_head_t queue;
spinlock_t lock;

};

Members
data Area were the ringbuffer data is written

438 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

size size of the ringbuffer

pread next position to read

pwrite next position to write

error used by ringbuffer clients to indicate that an error happened.

queue Wait queue used by ringbuffer clients to indicate when buffer was filled

lock Spinlock used to protect the ringbuffer

void dvb_ringbuffer_init(struct dvb_ringbuffer *rbuf, void *data, size_t len)
initialize ring buffer, lock and queue

Parameters
struct dvb_ringbuffer *rbuf pointer to struct dvb_ringbuffer

void *data pointer to the buffer where the data will be stored

size_t len bytes from ring buffer into buf
int dvb_ringbuffer_empty(struct dvb_ringbuffer *rbuf)

test whether buffer is empty

Parameters
struct dvb_ringbuffer *rbuf pointer to struct dvb_ringbuffer

ssize_t dvb_ringbuffer_free(struct dvb_ringbuffer *rbuf)
returns the number of free bytes in the buffer

Parameters
struct dvb_ringbuffer *rbuf pointer to struct dvb_ringbuffer

Return
number of free bytes in the buffer

ssize_t dvb_ringbuffer_avail(struct dvb_ringbuffer *rbuf)
returns the number of bytes waiting in the buffer

Parameters
struct dvb_ringbuffer *rbuf pointer to struct dvb_ringbuffer

Return
number of bytes waiting in the buffer

void dvb_ringbuffer_reset(struct dvb_ringbuffer *rbuf)
resets the ringbuffer to initial state

Parameters
struct dvb_ringbuffer *rbuf pointer to struct dvb_ringbuffer

Description
Resets the read and write pointers to zero and flush the buffer.

This counts as a read and write operation

2.3. Digital TV (DVB) devices 439

Linux Media Documentation

void dvb_ringbuffer_flush(struct dvb_ringbuffer *rbuf)
flush buffer

Parameters
struct dvb_ringbuffer *rbuf pointer to struct dvb_ringbuffer

void dvb_ringbuffer_flush_spinlock_wakeup(struct dvb_ringbuffer *rbuf)
flush buffer protected by spinlock and wake-up waiting task(s)

Parameters
struct dvb_ringbuffer *rbuf pointer to struct dvb_ringbuffer

DVB_RINGBUFFER_PEEK(rbuf, offs)
peek at byte offs in the buffer

Parameters
rbuf pointer to struct dvb_ringbuffer

offs offset inside the ringbuffer

DVB_RINGBUFFER_SKIP(rbuf, num)
advance read ptr by num bytes

Parameters
rbuf pointer to struct dvb_ringbuffer

num number of bytes to advance

ssize_t dvb_ringbuffer_read_user(struct dvb_ringbuffer *rbuf, u8 __user *buf,
size_t len)

Reads a buffer into a user pointer

Parameters
struct dvb_ringbuffer *rbuf pointer to struct dvb_ringbuffer

u8 __user *buf pointer to the buffer where the data will be stored

size_t len bytes from ring buffer into buf
Description
This variant assumes that the buffer is a memory at the userspace. So, it will internally call
copy_to_user().

Return
number of bytes transferred or -EFAULT

void dvb_ringbuffer_read(struct dvb_ringbuffer *rbuf, u8 *buf, size_t len)
Reads a buffer into a pointer

Parameters
struct dvb_ringbuffer *rbuf pointer to struct dvb_ringbuffer

u8 *buf pointer to the buffer where the data will be stored

size_t len bytes from ring buffer into buf

440 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description
This variant assumes that the buffer is a memory at the Kernel space

Return
number of bytes transferred or -EFAULT

DVB_RINGBUFFER_WRITE_BYTE(rbuf, byte)
write single byte to ring buffer

Parameters
rbuf pointer to struct dvb_ringbuffer

byte byte to write

ssize_t dvb_ringbuffer_write(struct dvb_ringbuffer *rbuf, const u8 *buf, size_t len)
Writes a buffer into the ringbuffer

Parameters
struct dvb_ringbuffer *rbuf pointer to struct dvb_ringbuffer

const u8 *buf pointer to the buffer where the data will be read

size_t len bytes from ring buffer into buf
Description
This variant assumes that the buffer is a memory at the Kernel space

Return
number of bytes transferred or -EFAULT

ssize_t dvb_ringbuffer_write_user(struct dvb_ringbuffer *rbuf, const u8 __user *buf,
size_t len)

Writes a buffer received via a user pointer

Parameters
struct dvb_ringbuffer *rbuf pointer to struct dvb_ringbuffer

const u8 __user *buf pointer to the buffer where the data will be read

size_t len bytes from ring buffer into buf
Description
This variant assumes that the buffer is a memory at the userspace. So, it will internally call
copy_from_user().

Return
number of bytes transferred or -EFAULT

ssize_t dvb_ringbuffer_pkt_write(struct dvb_ringbuffer *rbuf, u8 *buf, size_t len)
Write a packet into the ringbuffer.

Parameters
struct dvb_ringbuffer *rbuf Ringbuffer to write to.

u8 *buf Buffer to write.

2.3. Digital TV (DVB) devices 441

Linux Media Documentation

size_t len Length of buffer (currently limited to 65535 bytes max).

Return
Number of bytes written, or -EFAULT, -ENOMEM, -EVINAL.

ssize_t dvb_ringbuffer_pkt_read_user(struct dvb_ringbuffer *rbuf, size_t idx, int offset,
u8 __user *buf, size_t len)

Read from a packet in the ringbuffer.

Parameters
struct dvb_ringbuffer *rbuf Ringbuffer concerned.

size_t idx Packet index as returned by dvb_ringbuffer_pkt_next().

int offset Offset into packet to read from.

u8 __user *buf Destination buffer for data.

size_t len Size of destination buffer.

Return
Number of bytes read, or -EFAULT.

Description

Note: unlike dvb_ringbuffer_read(), this does NOT update the read pointer in the ring-
buffer. You must use dvb_ringbuffer_pkt_dispose() to mark a packet as no longer required.

ssize_t dvb_ringbuffer_pkt_read(struct dvb_ringbuffer *rbuf, size_t idx, int offset,
u8 *buf, size_t len)

Read from a packet in the ringbuffer.

Parameters
struct dvb_ringbuffer *rbuf Ringbuffer concerned.

size_t idx Packet index as returned by dvb_ringbuffer_pkt_next().

int offset Offset into packet to read from.

u8 *buf Destination buffer for data.

size_t len Size of destination buffer.

Note
unlike dvb_ringbuffer_read_user(), this DOES update the read pointer in the ringbuffer.

Return
Number of bytes read, or -EFAULT.

void dvb_ringbuffer_pkt_dispose(struct dvb_ringbuffer *rbuf, size_t idx)
Dispose of a packet in the ring buffer.

Parameters
struct dvb_ringbuffer *rbuf Ring buffer concerned.

size_t idx Packet index as returned by dvb_ringbuffer_pkt_next().

442 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

ssize_t dvb_ringbuffer_pkt_next(struct dvb_ringbuffer *rbuf, size_t idx, size_t *pktlen)
Get the index of the next packet in a ringbuffer.

Parameters
struct dvb_ringbuffer *rbuf Ringbuffer concerned.

size_t idx Previous packet index, or -1 to return the first packet index.

size_t *pktlen On success, will be updated to contain the length of the packet in bytes. re-
turns Packet index (if >=0), or -1 if no packets available.

2.3.1.4 Digital TV VB2 handler

enum dvb_buf_type
types of Digital TV memory-mapped buffers

Constants
DVB_BUF_TYPE_CAPTURE buffer is filled by the Kernel, with a received Digital TV stream

enum dvb_vb2_states
states to control VB2 state machine

Constants
DVB_VB2_STATE_NONE

VB2 engine not initialized yet, init failed or VB2 was released.

DVB_VB2_STATE_INIT

VB2 engine initialized.

DVB_VB2_STATE_REQBUFS

Buffers were requested

DVB_VB2_STATE_STREAMON

VB2 is streaming. Callers should not check it directly. Instead, they should use
dvb_vb2_is_streaming().

Note
Description
Callers should not touch at the state machine directly. This is handled inside dvb_vb2.c.

struct dvb_buffer
video buffer information for v4l2.

Definition

struct dvb_buffer {
struct vb2_buffer vb;
struct list_head list;

};

Members
vb embedded struct vb2_buffer.

2.3. Digital TV (DVB) devices 443

Linux Media Documentation

list list of struct dvb_buffer.

struct dvb_vb2_ctx
control struct for VB2 handler

Definition

struct dvb_vb2_ctx {
struct vb2_queue vb_q;
struct mutex mutex;
spinlock_t slock;
struct list_head dvb_q;
struct dvb_buffer *buf;
int offset;
int remain;
int state;
int buf_siz;
int buf_cnt;
int nonblocking;
enum dmx_buffer_flags flags;
u32 count;
char name[DVB_VB2_NAME_MAX + 1];

};

Members
vb_q pointer to struct vb2_queue with videobuf2 queue.

mutex mutex to serialize vb2 operations. Used by vb2 core wait_prepare and wait_finish
operations.

slock spin lock used to protect buffer filling at dvb_vb2.c.

dvb_q List of buffers that are not filled yet.

buf Pointer to the buffer that are currently being filled.

offset index to the next position at the buf to be filled.
remain How many bytes are left to be filled at buf.
state bitmask of buffer states as defined by enum dvb_vb2_states.

buf_siz size of each VB2 buffer.

buf_cnt number of VB2 buffers.

nonblocking

If different than zero, device is operating on non-blocking mode.

flags buffer flags as defined by enum dmx_buffer_flags. Filled only at DMX_DQBUF. DMX_QBUF
should zero this field.

count monotonic counter for filled buffers. Helps to identify data stream loses. Filled only at
DMX_DQBUF. DMX_QBUF should zero this field.

name name of the device type. Currently, it can either be “dvr” or “demux_filter”.

int dvb_vb2_init(struct dvb_vb2_ctx *ctx, const char *name, int non_blocking)
initializes VB2 handler

Parameters

444 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct dvb_vb2_ctx *ctx control struct for VB2 handler

const char *name name for the VB2 handler

int non_blocking

if not zero, it means that the device is at non-blocking mode

int dvb_vb2_release(struct dvb_vb2_ctx *ctx)
Releases the VB2 handler allocated resources and put ctx at DVB_VB2_STATE_NONE
state.

Parameters
struct dvb_vb2_ctx *ctx control struct for VB2 handler

int dvb_vb2_is_streaming(struct dvb_vb2_ctx *ctx)
checks if the VB2 handler is streaming

Parameters
struct dvb_vb2_ctx *ctx control struct for VB2 handler

Return
0 if not streaming, 1 otherwise.

int dvb_vb2_fill_buffer(struct dvb_vb2_ctx *ctx, const unsigned char *src, int len,
enum dmx_buffer_flags *buffer_flags)

fills a VB2 buffer

Parameters
struct dvb_vb2_ctx *ctx control struct for VB2 handler

const unsigned char *src place where the data is stored

int len number of bytes to be copied from src
enum dmx_buffer_flags *buffer_flags

pointer to buffer flags as defined by enum dmx_buffer_flags. can be NULL.

__poll_t dvb_vb2_poll(struct dvb_vb2_ctx *ctx, struct file *file, poll_table *wait)
Wrapper to vb2_core_streamon() for Digital TV buffer handling.

Parameters
struct dvb_vb2_ctx *ctx control struct for VB2 handler

struct file *file struct file argument passed to the poll file operation handler.

poll_table *wait poll_table wait argument passed to the poll file operation handler.

Description
Implements poll syscall() logic.

int dvb_vb2_stream_on(struct dvb_vb2_ctx *ctx)
Wrapper to vb2_core_streamon() for Digital TV buffer handling.

Parameters
struct dvb_vb2_ctx *ctx control struct for VB2 handler

2.3. Digital TV (DVB) devices 445

Linux Media Documentation

Description
Starts dvb streaming

int dvb_vb2_stream_off(struct dvb_vb2_ctx *ctx)
Wrapper to vb2_core_streamoff() for Digital TV buffer handling.

Parameters
struct dvb_vb2_ctx *ctx control struct for VB2 handler

Description
Stops dvb streaming

int dvb_vb2_reqbufs(struct dvb_vb2_ctx *ctx, struct dmx_requestbuffers *req)
Wrapper to vb2_core_reqbufs() for Digital TV buffer handling.

Parameters
struct dvb_vb2_ctx *ctx control struct for VB2 handler

struct dmx_requestbuffers *req struct dmx_requestbuffers passed from userspace in
order to handle DMX_REQBUFS.

Description
Initiate streaming by requesting a number of buffers. Also used to free previously requested
buffers, is req->count is zero.

int dvb_vb2_querybuf(struct dvb_vb2_ctx *ctx, struct dmx_buffer *b)
Wrapper to vb2_core_querybuf() for Digital TV buffer handling.

Parameters
struct dvb_vb2_ctx *ctx control struct for VB2 handler

struct dmx_buffer *b struct dmx_buffer passed from userspace in order to handle
DMX_QUERYBUF.

int dvb_vb2_expbuf(struct dvb_vb2_ctx *ctx, struct dmx_exportbuffer *exp)
Wrapper to vb2_core_expbuf() for Digital TV buffer handling.

Parameters
struct dvb_vb2_ctx *ctx control struct for VB2 handler

struct dmx_exportbuffer *exp struct dmx_exportbuffer passed from userspace in order
to handle DMX_EXPBUF.

Description
Export a buffer as a file descriptor.

int dvb_vb2_qbuf(struct dvb_vb2_ctx *ctx, struct dmx_buffer *b)
Wrapper to vb2_core_qbuf() for Digital TV buffer handling.

Parameters
struct dvb_vb2_ctx *ctx control struct for VB2 handler

struct dmx_buffer *b struct dmx_buffer passed from userspace in order to handle
DMX_QBUF.

446 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description
Queue a Digital TV buffer as requested by userspace

int dvb_vb2_dqbuf(struct dvb_vb2_ctx *ctx, struct dmx_buffer *b)
Wrapper to vb2_core_dqbuf() for Digital TV buffer handling.

Parameters
struct dvb_vb2_ctx *ctx control struct for VB2 handler

struct dmx_buffer *b struct dmx_buffer passed from userspace in order to handle
DMX_DQBUF.

Description
Dequeue a Digital TV buffer to the userspace

int dvb_vb2_mmap(struct dvb_vb2_ctx *ctx, struct vm_area_struct *vma)
Wrapper to vb2_mmap() for Digital TV buffer handling.

Parameters
struct dvb_vb2_ctx *ctx control struct for VB2 handler

struct vm_area_struct *vma pointer to struct vm_area_struct with the vma passed to the
mmap file operation handler in the driver.

Description
map Digital TV video buffers into application address space.

2.3.2 Digital TV Frontend kABI

2.3.2.1 Digital TV Frontend

The Digital TV Frontend kABI defines a driver-internal interface for registering low-level, hard-
ware specific driver to a hardware independent frontend layer. It is only of interest for Digital
TV device driver writers. The header file for this API is named dvb_frontend.h and located in
include/media/.

Demodulator driver

The demodulator driver is responsible for talking with the decoding part of the hardware. Such
driver should implement dvb_frontend_ops, which tells what type of digital TV standards are
supported, and points to a series of functions that allow the DVB core to command the hardware
via the code under include/media/dvb_frontend.c.

A typical example of such struct in a driver foo is:

static struct dvb_frontend_ops foo_ops = {
.delsys = { SYS_DVBT, SYS_DVBT2, SYS_DVBC_ANNEX_A },
.info = {

.name = "foo DVB-T/T2/C driver",

.caps = FE_CAN_FEC_1_2 |
FE_CAN_FEC_2_3 |
FE_CAN_FEC_3_4 |

2.3. Digital TV (DVB) devices 447

Linux Media Documentation

FE_CAN_FEC_5_6 |
FE_CAN_FEC_7_8 |
FE_CAN_FEC_AUTO |
FE_CAN_QPSK |
FE_CAN_QAM_16 |
FE_CAN_QAM_32 |
FE_CAN_QAM_64 |
FE_CAN_QAM_128 |
FE_CAN_QAM_256 |
FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_HIERARCHY_AUTO |
FE_CAN_MUTE_TS |
FE_CAN_2G_MODULATION,

.frequency_min = 42000000, /* Hz */

.frequency_max = 1002000000, /* Hz */

.symbol_rate_min = 870000,

.symbol_rate_max = 11700000
},
.init = foo_init,
.sleep = foo_sleep,
.release = foo_release,
.set_frontend = foo_set_frontend,
.get_frontend = foo_get_frontend,
.read_status = foo_get_status_and_stats,
.tune = foo_tune,
.i2c_gate_ctrl = foo_i2c_gate_ctrl,
.get_frontend_algo = foo_get_algo,

};

A typical example of such struct in a driver bar meant to be used on Satellite TV reception is:

static const struct dvb_frontend_ops bar_ops = {
.delsys = { SYS_DVBS, SYS_DVBS2 },
.info = {

.name = "Bar DVB-S/S2 demodulator",

.frequency_min = 500000, /* KHz */

.frequency_max = 2500000, /* KHz */

.frequency_stepsize = 0,

.symbol_rate_min = 1000000,

.symbol_rate_max = 45000000,

.symbol_rate_tolerance = 500,

.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_AUTO |
FE_CAN_QPSK,

},
.init = bar_init,
.sleep = bar_sleep,
.release = bar_release,
.set_frontend = bar_set_frontend,
.get_frontend = bar_get_frontend,
.read_status = bar_get_status_and_stats,
.i2c_gate_ctrl = bar_i2c_gate_ctrl,
.get_frontend_algo = bar_get_algo,
.tune = bar_tune,

448 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

/* Satellite-specific */
.diseqc_send_master_cmd = bar_send_diseqc_msg,
.diseqc_send_burst = bar_send_burst,
.set_tone = bar_set_tone,
.set_voltage = bar_set_voltage,

};

Note:
1) For satellite digital TV standards (DVB-S, DVB-S2, ISDB-S), the frequencies are specified
in kHz, while, for terrestrial and cable standards, they’re specified in Hz. Due to that, if the
same frontend supports both types, you’ll need to have two separate dvb_frontend_ops
structures, one for each standard.

2) The .i2c_gate_ctrl field is present only when the hardware has allows controlling an I2C
gate (either directly of via some GPIO pin), in order to remove the tuner from the I2C bus
after a channel is tuned.

3) All new drivers should implement the DVBv5 statistics via .read_status. Yet, there are a
number of callbacks meant to get statistics for signal strength, S/N and UCB. Those are
there to provide backward compatibility with legacy applications that don’t support the
DVBv5 API. Implementing those callbacks are optional. Those callbacks may be removed
in the future, after we have all existing drivers supporting DVBv5 stats.

4) Other callbacks are required for satellite TV standards, in order to control LNBf and DiS-
EqC: .diseqc_send_master_cmd, .diseqc_send_burst, .set_tone, .set_voltage.

The include/media/dvb_frontend.c has a kernel thread which is responsible for tuning the
device. It supports multiple algorithms to detect a channel, as defined at enum dvbfe_algo().

The algorithm to be used is obtained via .get_frontend_algo. If the driver doesn’t fill its field
at struct dvb_frontend_ops, it will default to DVBFE_ALGO_SW, meaning that the dvb-core will
do a zigzag when tuning, e. g. it will try first to use the specified center frequency f, then, it
will do f + Δ, f - Δ, f + 2 x Δ, f - 2 x Δ and so on.

If the hardware has internally a some sort of zigzag algorithm, you should define a .
get_frontend_algo function that would return DVBFE_ALGO_HW.

Note: The core frontend support also supports a third type (DVBFE_ALGO_CUSTOM), in order to
allow the driver to define its own hardware-assisted algorithm. Very few hardware need to use
it nowadays. Using DVBFE_ALGO_CUSTOM require to provide other function callbacks at struct
dvb_frontend_ops.

2.3. Digital TV (DVB) devices 449

Linux Media Documentation

Attaching frontend driver to the bridge driver

Before using the Digital TV frontend core, the bridge driver should attach the fron-
tend demod, tuner and SEC devices and call dvb_register_frontend(), in order to reg-
ister the new frontend at the subsystem. At device detach/removal, the bridge driver
should call dvb_unregister_frontend() to remove the frontend from the core and then
dvb_frontend_detach() to free the memory allocated by the frontend drivers.

The drivers should also call dvb_frontend_suspend() as part of their handler for
the device_driver.suspend(), and dvb_frontend_resume() as part of their handler for
device_driver.resume().

A few other optional functions are provided to handle some special cases.

2.3.2.2 Digital TV Frontend statistics

Introduction

Digital TV frontends provide a range of statisticsmeant to help tuning the device and measuring
the quality of service.

For each statistics measurement, the driver should set the type of scale used, or
FE_SCALE_NOT_AVAILABLE if the statistics is not available on a given time. Drivers should also
provide the number of statistics for each type. that’s usually 1 for most video standards1.

Drivers should initialize each statistic counters with length and scale at its init code. For exam-
ple, if the frontend provides signal strength, it should have, on its init code:

struct dtv_frontend_properties *c = &state->fe.dtv_property_cache;

c->strength.len = 1;
c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;

And, when the statistics got updated, set the scale:

c->strength.stat[0].scale = FE_SCALE_DECIBEL;
c->strength.stat[0].uvalue = strength;

Note: Please prefer to use FE_SCALE_DECIBEL instead of FE_SCALE_RELATIVE for signal
strength and CNR measurements.

1 For ISDB-T, it may provide both a global statistics and a per-layer set of statistics. On such cases, len should be
equal to 4. The first value corresponds to the global stat; the other ones to each layer, e. g.:

• c->cnr.stat[0] for global S/N carrier ratio,
• c->cnr.stat[1] for Layer A S/N carrier ratio,
• c->cnr.stat[2] for layer B S/N carrier ratio,
• c->cnr.stat[3] for layer C S/N carrier ratio.

450 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Groups of statistics

There are several groups of statistics currently supported:

Signal strength (DTV_STAT_SIGNAL_STRENGTH)
• Measures the signal strength level at the analog part of the tuner or demod.

• Typically obtained from the gain applied to the tuner and/or frontend in order to detect
the carrier. When no carrier is detected, the gain is at themaximum value (so, strength
is on its minimal).

• As the gain is visible through the set of registers that adjust the gain, typically, this
statistics is always available2.

• Drivers should try to make it available all the times, as these statistics can be used
when adjusting an antenna position and to check for troubles at the cabling.

Carrier Signal to Noise ratio (DTV_STAT_CNR)
• Signal to Noise ratio for the main carrier.

• Signal to Noisemeasurement depends on the device. On some hardware, it is available
when the main carrier is detected. On those hardware, CNR measurement usually
comes from the tuner (e. g. after FE_HAS_CARRIER, see fe_status).

On other devices, it requires inner FEC decoding, as the frontend measures it indi-
rectly from other parameters (e. g. after FE_HAS_VITERBI, see fe_status).

Having it available after inner FEC is more common.

Bit counts post-FEC (DTV_STAT_POST_ERROR_BIT_COUNT and DTV_STAT_POST_TOTAL_BIT_COUNT)

• Those counters measure the number of bits and bit errors after the forward error
correction (FEC) on the inner coding block (after Viterbi, LDPC or other inner code).

• Due to its nature, those statistics depend on full coding lock (e. g. after FE_HAS_SYNC
or after FE_HAS_LOCK, see fe_status).

Bit counts pre-FEC (DTV_STAT_PRE_ERROR_BIT_COUNT and DTV_STAT_PRE_TOTAL_BIT_COUNT)

• Those counters measure the number of bits and bit errors before the forward error
correction (FEC) on the inner coding block (before Viterbi, LDPC or other inner code).

• Not all frontends provide this kind of statistics.

• Due to its nature, those statistics depend on inner coding lock (e. g. after
FE_HAS_VITERBI, see fe_status).

Block counts (DTV_STAT_ERROR_BLOCK_COUNT and DTV-STAT_TOTAL_BLOCK_COUNT)

• Those counters measure the number of blocks and block errors after the forward error
correction (FEC) on the inner coding block (before Viterbi, LDPC or other inner code).

2 On a few devices, the gain keeps floating if there is no carrier. On such devices, strength report should check
first if carrier is detected at the tuner (FE_HAS_CARRIER, see fe_status), and otherwise return the lowest possible
value.

2.3. Digital TV (DVB) devices 451

Linux Media Documentation

• Due to its nature, those statistics depend on full coding lock (e. g. after FE_HAS_SYNC
or after FE_HAS_LOCK, see fe_status).

Note: All counters should be monotonically increased as they’re collected from the hardware.

A typical example of the logic that handle status and statistics is:

static int foo_get_status_and_stats(struct dvb_frontend *fe)
{

struct foo_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;

int rc;
enum fe_status *status;

/* Both status and strength are always available */
rc = foo_read_status(fe, &status);
if (rc < 0)

return rc;

rc = foo_read_strength(fe);
if (rc < 0)

return rc;

/* Check if CNR is available */
if (!(fe->status & FE_HAS_CARRIER))

return 0;

rc = foo_read_cnr(fe);
if (rc < 0)

return rc;

/* Check if pre-BER stats are available */
if (!(fe->status & FE_HAS_VITERBI))

return 0;

rc = foo_get_pre_ber(fe);
if (rc < 0)

return rc;

/* Check if post-BER stats are available */
if (!(fe->status & FE_HAS_SYNC))

return 0;

rc = foo_get_post_ber(fe);
if (rc < 0)

return rc;
}

static const struct dvb_frontend_ops ops = {
/* ... */
.read_status = foo_get_status_and_stats,

};

452 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Statistics collection

On almost all frontend hardware, the bit and byte counts are stored by the hardware after
a certain amount of time or after the total bit/block counter reaches a certain value (usually
programmable), for example, on every 1000 ms or after receiving 1,000,000 bits.

So, if you read the registers too soon, you’ll end by reading the same value as in the previous
reading, causing the monotonic value to be incremented too often.

Drivers should take the responsibility to avoid too often reads. That can be done using two
approaches:

if the driver have a bit that indicates when a collected data is ready

Driver should check such bit before making the statistics available.

An example of such behavior can be found at this code snippet (adapted frommb86a20s driver’s
logic):

static int foo_get_pre_ber(struct dvb_frontend *fe)
{

struct foo_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int rc, bit_error;

/* Check if the BER measures are already available */
rc = foo_read_u8(state, 0x54);
if (rc < 0)

return rc;

if (!rc)
return 0;

/* Read Bit Error Count */
bit_error = foo_read_u32(state, 0x55);
if (bit_error < 0)

return bit_error;

/* Read Total Bit Count */
rc = foo_read_u32(state, 0x51);
if (rc < 0)

return rc;

c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
c->pre_bit_error.stat[0].uvalue += bit_error;
c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
c->pre_bit_count.stat[0].uvalue += rc;

return 0;
}

2.3. Digital TV (DVB) devices 453

Linux Media Documentation

If the driver doesn’t provide a statistics available check bit

A few devices, however, may not provide a way to check if the stats are available (or the way
to check it is unknown). They may not even provide a way to directly read the total number of
bits or blocks.

On those devices, the driver need to ensure that it won’t be reading from the register too often
and/or estimate the total number of bits/blocks.

On such drivers, a typical routine to get statistics would be like (adapted from dib8000 driver’s
logic):

struct foo_state {
/* ... */

unsigned long per_jiffies_stats;
}

static int foo_get_pre_ber(struct dvb_frontend *fe)
{

struct foo_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int rc, bit_error;
u64 bits;

/* Check if time for stats was elapsed */
if (!time_after(jiffies, state->per_jiffies_stats))

return 0;

/* Next stat should be collected in 1000 ms */
state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000);

/* Read Bit Error Count */
bit_error = foo_read_u32(state, 0x55);
if (bit_error < 0)

return bit_error;

/*
* On this particular frontend, there's no register that
* would provide the number of bits per 1000ms sample. So,
* some function would calculate it based on DTV properties
*/

bits = get_number_of_bits_per_1000ms(fe);

c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
c->pre_bit_error.stat[0].uvalue += bit_error;
c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
c->pre_bit_count.stat[0].uvalue += bits;

return 0;
}

Please notice that, on both cases, we’re getting the statistics using the dvb_frontend_ops .
read_status callback. The rationale is that the frontend core will automatically call this func-
tion periodically (usually, 3 times per second, when the frontend is locked).

That warrants that we won’t miss to collect a counter and increment the monotonic stats at the

454 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

right time.

2.3.2.3 Digital TV Frontend functions and types

struct dvb_frontend_tune_settings
parameters to adjust frontend tuning

Definition

struct dvb_frontend_tune_settings {
int min_delay_ms;
int step_size;
int max_drift;

};

Members
min_delay_ms minimum delay for tuning, in ms

step_size step size between two consecutive frequencies

max_drift maximum drift

NOTE
step_size is in Hz, for terrestrial/cable or kHz for satellite

struct dvb_tuner_info
Frontend name and min/max ranges/bandwidths

Definition

struct dvb_tuner_info {
char name[128];
u32 frequency_min_hz;
u32 frequency_max_hz;
u32 frequency_step_hz;
u32 bandwidth_min;
u32 bandwidth_max;
u32 bandwidth_step;

};

Members
name name of the Frontend

frequency_min_hz minimal frequency supported in Hz

frequency_max_hz maximum frequency supported in Hz

frequency_step_hz frequency step in Hz

bandwidth_min minimal frontend bandwidth supported

bandwidth_max maximum frontend bandwidth supported

bandwidth_step frontend bandwidth step

struct analog_parameters
Parameters to tune into an analog/radio channel

2.3. Digital TV (DVB) devices 455

Linux Media Documentation

Definition

struct analog_parameters {
unsigned int frequency;
unsigned int mode;
unsigned int audmode;
u64 std;

};

Members
frequency Frequency used by analog TV tuner (either in 62.5 kHz step, for TV, or 62.5 Hz for

radio)

mode Tuner mode, as defined on enum v4l2_tuner_type

audmode Audio mode as defined for the rxsubchans field at videodev2.h, e. g.
V4L2_TUNER_MODE_*

std TV standard bitmap as defined at videodev2.h, e. g. V4L2_STD_*

Description
Hybrid tuners should be supported by both V4L2 and DVB APIs. This struct contains the data
that are used by the V4L2 side. To avoid dependencies from V4L2 headers, all enums here are
declared as integers.

enum dvbfe_algo
defines the algorithm used to tune into a channel

Constants
DVBFE_ALGO_HW Hardware Algorithm - Devices that support this algorithm do everything in

hardware and no software support is needed to handle them. Requesting these devices to
LOCK is the only thing required, device is supposed to do everything in the hardware.

DVBFE_ALGO_SW Software Algorithm - These are dumb devices, that require software to do ev-
erything

DVBFE_ALGO_CUSTOM Customizable Agorithm - Devices having this algorithm can be customized
to have specific algorithms in the frontend driver, rather than simply doing a software zig-
zag. In this case the zigzag maybe hardware assisted or it maybe completely done in
hardware. In all cases, usage of this algorithm, in conjunction with the search and track
callbacks, utilizes the driver specific algorithm.

DVBFE_ALGO_RECOVERY Recovery Algorithm - These devices have AUTO recovery capabilities
from LOCK failure

enum dvbfe_search
search callback possible return status

Constants
DVBFE_ALGO_SEARCH_SUCCESS

The frontend search algorithm completed and returned successfully

DVBFE_ALGO_SEARCH_ASLEEP

The frontend search algorithm is sleeping

DVBFE_ALGO_SEARCH_FAILED

456 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

The frontend search for a signal failed

DVBFE_ALGO_SEARCH_INVALID

The frontend search algorithm was probably supplied with invalid parameters and
the search is an invalid one

DVBFE_ALGO_SEARCH_AGAIN

The frontend search algorithm was requested to search again

DVBFE_ALGO_SEARCH_ERROR

The frontend search algorithm failed due to some error

struct dvb_tuner_ops
Tuner information and callbacks

Definition

struct dvb_tuner_ops {
struct dvb_tuner_info info;
void (*release)(struct dvb_frontend *fe);
int (*init)(struct dvb_frontend *fe);
int (*sleep)(struct dvb_frontend *fe);
int (*suspend)(struct dvb_frontend *fe);
int (*resume)(struct dvb_frontend *fe);
int (*set_params)(struct dvb_frontend *fe);
int (*set_analog_params)(struct dvb_frontend *fe, struct analog_parameters *p);
int (*set_config)(struct dvb_frontend *fe, void *priv_cfg);
int (*get_frequency)(struct dvb_frontend *fe, u32 *frequency);
int (*get_bandwidth)(struct dvb_frontend *fe, u32 *bandwidth);
int (*get_if_frequency)(struct dvb_frontend *fe, u32 *frequency);

#define TUNER_STATUS_LOCKED 1;
#define TUNER_STATUS_STEREO 2;

int (*get_status)(struct dvb_frontend *fe, u32 *status);
int (*get_rf_strength)(struct dvb_frontend *fe, u16 *strength);
int (*get_afc)(struct dvb_frontend *fe, s32 *afc);
int (*calc_regs)(struct dvb_frontend *fe, u8 *buf, int buf_len);
int (*set_frequency)(struct dvb_frontend *fe, u32 frequency);
int (*set_bandwidth)(struct dvb_frontend *fe, u32 bandwidth);

};

Members
info embedded struct dvb_tuner_info with tuner properties

release callback function called when frontend is detached. drivers should free any allocated
memory.

init callback function used to initialize the tuner device.

sleep callback function used to put the tuner to sleep.

suspend callback function used to inform that the Kernel will suspend.

resume callback function used to inform that the Kernel is resuming from suspend.

set_params callback function used to inform the tuner to tune into a digital TV channel. The
properties to be used are stored at struct dvb_frontend.dtv_property_cache. The tuner
demod can change the parameters to reflect the changes needed for the channel to be

2.3. Digital TV (DVB) devices 457

Linux Media Documentation

tuned, and update statistics. This is the recommended way to set the tuner parameters
and should be used on newer drivers.

set_analog_params callback function used to tune into an analog TV channel on hybrid tuners.
It passes analog_parameters to the driver.

set_config callback function used to send some tuner-specific parameters.

get_frequency get the actual tuned frequency

get_bandwidth get the bandwidth used by the low pass filters

get_if_frequency get the Intermediate Frequency, in Hz. For baseband, should return 0.

get_status returns the frontend lock status

get_rf_strength returns the RF signal strength. Used mostly to support analog
TV and radio. Digital TV should report, instead, via DVBv5 API (struct
dvb_frontend.dtv_property_cache).

get_afc Used only by analog TV core. Reports the frequency drift due to AFC.

calc_regs callback function used to pass register data settings for simple tuners. Shouldn’t
be used on newer drivers.

set_frequency Set a new frequency. Shouldn’t be used on newer drivers.

set_bandwidth Set a new frequency. Shouldn’t be used on newer drivers.

NOTE
frequencies used on get_frequency and set_frequency are in Hz for terrestrial/cable or kHz
for satellite.

struct analog_demod_info
Information struct for analog TV part of the demod

Definition

struct analog_demod_info {
char *name;

};

Members
name Name of the analog TV demodulator

struct analog_demod_ops
Demodulation information and callbacks for analog TV and radio

Definition

struct analog_demod_ops {
struct analog_demod_info info;
void (*set_params)(struct dvb_frontend *fe, struct analog_parameters *params);
int (*has_signal)(struct dvb_frontend *fe, u16 *signal);
int (*get_afc)(struct dvb_frontend *fe, s32 *afc);
void (*tuner_status)(struct dvb_frontend *fe);
void (*standby)(struct dvb_frontend *fe);
void (*release)(struct dvb_frontend *fe);
int (*i2c_gate_ctrl)(struct dvb_frontend *fe, int enable);

458 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

int (*set_config)(struct dvb_frontend *fe, void *priv_cfg);
};

Members
info pointer to struct analog_demod_info

set_params callback function used to inform the demod to set the demodulator parameters
needed to decode an analog or radio channel. The properties are passed via struct
analog_params.

has_signal returns 0xffff if has signal, or 0 if it doesn’t.

get_afc Used only by analog TV core. Reports the frequency drift due to AFC.

tuner_status callback function that returns tuner status bits, e. g. TUNER_STATUS_LOCKED and
TUNER_STATUS_STEREO.

standby set the tuner to standby mode.

release callback function called when frontend is detached. drivers should free any allocated
memory.

i2c_gate_ctrl controls the I2C gate. Newer drivers should use I2C mux support instead.

set_config callback function used to send some tuner-specific parameters.

struct dvb_frontend_internal_info
Frontend properties and capabilities

Definition

struct dvb_frontend_internal_info {
char name[128];
u32 frequency_min_hz;
u32 frequency_max_hz;
u32 frequency_stepsize_hz;
u32 frequency_tolerance_hz;
u32 symbol_rate_min;
u32 symbol_rate_max;
u32 symbol_rate_tolerance;
enum fe_caps caps;

};

Members
name Name of the frontend

frequency_min_hz Minimal frequency supported by the frontend.

frequency_max_hz Minimal frequency supported by the frontend.

frequency_stepsize_hz All frequencies are multiple of this value.

frequency_tolerance_hz Frequency tolerance.

symbol_rate_min Minimal symbol rate, in bauds (for Cable/Satellite systems).

symbol_rate_max Maximal symbol rate, in bauds (for Cable/Satellite systems).

symbol_rate_tolerance Maximal symbol rate tolerance, in ppm (for Cable/Satellite systems).

2.3. Digital TV (DVB) devices 459

Linux Media Documentation

caps Capabilities supported by the frontend, as specified in enum fe_caps.

struct dvb_frontend_ops
Demodulation information and callbacks for ditialt TV

Definition

struct dvb_frontend_ops {
struct dvb_frontend_internal_info info;
u8 delsys[MAX_DELSYS];
void (*detach)(struct dvb_frontend *fe);
void (*release)(struct dvb_frontend* fe);
void (*release_sec)(struct dvb_frontend* fe);
int (*init)(struct dvb_frontend* fe);
int (*sleep)(struct dvb_frontend* fe);
int (*suspend)(struct dvb_frontend *fe);
int (*resume)(struct dvb_frontend *fe);
int (*write)(struct dvb_frontend* fe, const u8 buf[], int len);
int (*tune)(struct dvb_frontend* fe,bool re_tune,unsigned int mode_flags,unsigned␣

↪→int *delay, enum fe_status *status);
enum dvbfe_algo (*get_frontend_algo)(struct dvb_frontend *fe);
int (*set_frontend)(struct dvb_frontend *fe);
int (*get_tune_settings)(struct dvb_frontend* fe, struct dvb_frontend_tune_settings*␣

↪→settings);
int (*get_frontend)(struct dvb_frontend *fe, struct dtv_frontend_properties *props);
int (*read_status)(struct dvb_frontend *fe, enum fe_status *status);
int (*read_ber)(struct dvb_frontend* fe, u32* ber);
int (*read_signal_strength)(struct dvb_frontend* fe, u16* strength);
int (*read_snr)(struct dvb_frontend* fe, u16* snr);
int (*read_ucblocks)(struct dvb_frontend* fe, u32* ucblocks);
int (*diseqc_reset_overload)(struct dvb_frontend* fe);
int (*diseqc_send_master_cmd)(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd*␣

↪→cmd);
int (*diseqc_recv_slave_reply)(struct dvb_frontend* fe, struct dvb_diseqc_slave_

↪→reply* reply);
int (*diseqc_send_burst)(struct dvb_frontend *fe, enum fe_sec_mini_cmd minicmd);
int (*set_tone)(struct dvb_frontend *fe, enum fe_sec_tone_mode tone);
int (*set_voltage)(struct dvb_frontend *fe, enum fe_sec_voltage voltage);
int (*enable_high_lnb_voltage)(struct dvb_frontend* fe, long arg);
int (*dishnetwork_send_legacy_command)(struct dvb_frontend* fe, unsigned long cmd);
int (*i2c_gate_ctrl)(struct dvb_frontend* fe, int enable);
int (*ts_bus_ctrl)(struct dvb_frontend* fe, int acquire);
int (*set_lna)(struct dvb_frontend *);
enum dvbfe_search (*search)(struct dvb_frontend *fe);
struct dvb_tuner_ops tuner_ops;
struct analog_demod_ops analog_ops;

};

Members
info embedded struct dvb_tuner_info with tuner properties

delsys Delivery systems supported by the frontend

detach callback function called when frontend is detached. drivers should clean up, but not
yet free the struct dvb_frontend allocation.

release callback function called when frontend is ready to be freed. drivers should free any
allocated memory.

460 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

release_sec callback function requesting that the Satellite Equipment Control (SEC) driver to
release and free any memory allocated by the driver.

init callback function used to initialize the tuner device.

sleep callback function used to put the tuner to sleep.

suspend callback function used to inform that the Kernel will suspend.

resume callback function used to inform that the Kernel is resuming from suspend.

write callback function used by some demod legacy drivers to allow other drivers to write data
into their registers. Should not be used on new drivers.

tune callback function used by demod drivers that use DVBFE_ALGO_HW to tune into a fre-
quency.

get_frontend_algo returns the desired hardware algorithm.

set_frontend callback function used to inform the demod to set the parameters for de-
modulating a digital TV channel. The properties to be used are stored at struct
dvb_frontend.dtv_property_cache. The demod can change the parameters to reflect the
changes needed for the channel to be decoded, and update statistics.

get_tune_settings callback function

get_frontend callback function used to inform the parameters actuall in use. The properties
to be used are stored at struct dvb_frontend.dtv_property_cache and update statistics.
Please notice that it should not return an error code if the statistics are not available
because the demog is not locked.

read_status returns the locking status of the frontend.

read_ber legacy callback function to return the bit error rate. Newer drivers should provide
such info via DVBv5 API, e. g. set_frontend;/get_frontend, implementing this callback
only if DVBv3 API compatibility is wanted.

read_signal_strength legacy callback function to return the signal strength. Newer drivers
should provide such info via DVBv5 API, e. g. set_frontend/get_frontend, implementing
this callback only if DVBv3 API compatibility is wanted.

read_snr legacy callback function to return the Signal/Noise rate. Newer drivers should pro-
vide such info via DVBv5 API, e. g. set_frontend/get_frontend, implementing this call-
back only if DVBv3 API compatibility is wanted.

read_ucblocks legacy callback function to return the Uncorrected Error Blocks. Newer drivers
should provide such info via DVBv5 API, e. g. set_frontend/get_frontend, implementing
this callback only if DVBv3 API compatibility is wanted.

diseqc_reset_overload callback function to implement the FE_DISEQC_RESET_OVERLOAD()
ioctl (only Satellite)

diseqc_send_master_cmd callback function to implement the FE_DISEQC_SEND_MASTER_CMD()
ioctl (only Satellite).

diseqc_recv_slave_reply callback function to implement the FE_DISEQC_RECV_SLAVE_REPLY()
ioctl (only Satellite)

diseqc_send_burst callback function to implement the FE_DISEQC_SEND_BURST() ioctl
(only Satellite).

2.3. Digital TV (DVB) devices 461

Linux Media Documentation

set_tone callback function to implement the FE_SET_TONE() ioctl (only Satellite).

set_voltage callback function to implement the FE_SET_VOLTAGE() ioctl (only Satellite).

enable_high_lnb_voltage callback function to implement the FE_ENABLE_HIGH_LNB_VOLTAGE()
ioctl (only Satellite).

dishnetwork_send_legacy_command callback function to implement the
FE_DISHNETWORK_SEND_LEGACY_CMD() ioctl (only Satellite). Drivers should not
use this, except when the DVB core emulation fails to provide proper support (e.g. if
set_voltage takes more than 8ms to work), and when backward compatibility with this
legacy API is required.

i2c_gate_ctrl controls the I2C gate. Newer drivers should use I2C mux support instead.

ts_bus_ctrl callback function used to take control of the TS bus.

set_lna callback function to power on/off/auto the LNA.

search callback function used on some custom algo search algos.

tuner_ops pointer to struct dvb_tuner_ops

analog_ops pointer to struct analog_demod_ops

struct dtv_frontend_properties
contains a list of properties that are specific to a digital TV standard.

Definition

struct dtv_frontend_properties {
u32 frequency;
enum fe_modulation modulation;
enum fe_sec_voltage voltage;
enum fe_sec_tone_mode sectone;
enum fe_spectral_inversion inversion;
enum fe_code_rate fec_inner;
enum fe_transmit_mode transmission_mode;
u32 bandwidth_hz;
enum fe_guard_interval guard_interval;
enum fe_hierarchy hierarchy;
u32 symbol_rate;
enum fe_code_rate code_rate_HP;
enum fe_code_rate code_rate_LP;
enum fe_pilot pilot;
enum fe_rolloff rolloff;
enum fe_delivery_system delivery_system;
enum fe_interleaving interleaving;
u8 isdbt_partial_reception;
u8 isdbt_sb_mode;
u8 isdbt_sb_subchannel;
u32 isdbt_sb_segment_idx;
u32 isdbt_sb_segment_count;
u8 isdbt_layer_enabled;
struct {

u8 segment_count;
enum fe_code_rate fec;
enum fe_modulation modulation;
u8 interleaving;

} layer[3];

462 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

u32 stream_id;
u32 scrambling_sequence_index;
u8 atscmh_fic_ver;
u8 atscmh_parade_id;
u8 atscmh_nog;
u8 atscmh_tnog;
u8 atscmh_sgn;
u8 atscmh_prc;
u8 atscmh_rs_frame_mode;
u8 atscmh_rs_frame_ensemble;
u8 atscmh_rs_code_mode_pri;
u8 atscmh_rs_code_mode_sec;
u8 atscmh_sccc_block_mode;
u8 atscmh_sccc_code_mode_a;
u8 atscmh_sccc_code_mode_b;
u8 atscmh_sccc_code_mode_c;
u8 atscmh_sccc_code_mode_d;
u32 lna;
struct dtv_fe_stats strength;
struct dtv_fe_stats cnr;
struct dtv_fe_stats pre_bit_error;
struct dtv_fe_stats pre_bit_count;
struct dtv_fe_stats post_bit_error;
struct dtv_fe_stats post_bit_count;
struct dtv_fe_stats block_error;
struct dtv_fe_stats block_count;

};

Members
frequency frequency in Hz for terrestrial/cable or in kHz for Satellite

modulation Frontend modulation type

voltage SEC voltage (only Satellite)

sectone SEC tone mode (only Satellite)

inversion Spectral inversion

fec_inner Forward error correction inner Code Rate

transmission_mode Transmission Mode

bandwidth_hz Bandwidth, in Hz. A zero value means that userspace wants to autodetect.

guard_interval Guard Interval

hierarchy Hierarchy

symbol_rate Symbol Rate

code_rate_HP high priority stream code rate

code_rate_LP low priority stream code rate

pilot Enable/disable/autodetect pilot tones

rolloff Rolloff factor (alpha)

delivery_system FE delivery system (e. g. digital TV standard)

2.3. Digital TV (DVB) devices 463

Linux Media Documentation

interleaving interleaving

isdbt_partial_reception ISDB-T partial reception (only ISDB standard)

isdbt_sb_mode ISDB-T Sound Broadcast (SB) mode (only ISDB standard)

isdbt_sb_subchannel ISDB-T SB subchannel (only ISDB standard)

isdbt_sb_segment_idx ISDB-T SB segment index (only ISDB standard)

isdbt_sb_segment_count ISDB-T SB segment count (only ISDB standard)

isdbt_layer_enabled ISDB Layer enabled (only ISDB standard)

layer ISDB per-layer data (only ISDB standard)

layer.segment_count Segment Count;

layer.fec per layer code rate;

layer.modulation per layer modulation;

layer.interleaving per layer interleaving.

stream_id If different than zero, enable substream filtering, if hardware supports (DVB-S2 and
DVB-T2).

scrambling_sequence_index Carries the index of the DVB-S2 physical layer scrambling se-
quence.

atscmh_fic_ver Version number of the FIC (Fast Information Channel) signaling data (only
ATSC-M/H)

atscmh_parade_id Parade identification number (only ATSC-M/H)

atscmh_nog Number of MH groups per MH subframe for a designated parade (only ATSC-M/H)

atscmh_tnog Total number of MH groups including all MH groups belonging to all MH parades
in one MH subframe (only ATSC-M/H)

atscmh_sgn Start group number (only ATSC-M/H)

atscmh_prc Parade repetition cycle (only ATSC-M/H)

atscmh_rs_frame_mode Reed Solomon (RS) frame mode (only ATSC-M/H)

atscmh_rs_frame_ensemble RS frame ensemble (only ATSC-M/H)

atscmh_rs_code_mode_pri RS code mode pri (only ATSC-M/H)

atscmh_rs_code_mode_sec RS code mode sec (only ATSC-M/H)

atscmh_sccc_block_mode Series Concatenated Convolutional Code (SCCC) Block Mode (only
ATSC-M/H)

atscmh_sccc_code_mode_a SCCC code mode A (only ATSC-M/H)

atscmh_sccc_code_mode_b SCCC code mode B (only ATSC-M/H)

atscmh_sccc_code_mode_c SCCC code mode C (only ATSC-M/H)

atscmh_sccc_code_mode_d SCCC code mode D (only ATSC-M/H)

lna Power ON/OFF/AUTO the Linear Now-noise Amplifier (LNA)

strength DVBv5 API statistics: Signal Strength

464 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

cnr DVBv5 API statistics: Signal to Noise ratio of the (main) carrier

pre_bit_error DVBv5 API statistics: pre-Viterbi bit error count

pre_bit_count DVBv5 API statistics: pre-Viterbi bit count

post_bit_error DVBv5 API statistics: post-Viterbi bit error count

post_bit_count DVBv5 API statistics: post-Viterbi bit count

block_error DVBv5 API statistics: block error count

block_count DVBv5 API statistics: block count

NOTE
derivated statistics like Uncorrected Error blocks (UCE) are calculated on userspace.

Description
Only a subset of the properties are needed for a given delivery system. For more info, consult
the media_api.html with the documentation of the Userspace API.

struct dvb_frontend
Frontend structure to be used on drivers.

Definition

struct dvb_frontend {
struct kref refcount;
struct dvb_frontend_ops ops;
struct dvb_adapter *dvb;
void *demodulator_priv;
void *tuner_priv;
void *frontend_priv;
void *sec_priv;
void *analog_demod_priv;
struct dtv_frontend_properties dtv_property_cache;

#define DVB_FRONTEND_COMPONENT_TUNER 0;
#define DVB_FRONTEND_COMPONENT_DEMOD 1;

int (*callback)(void *adapter_priv, int component, int cmd, int arg);
int id;
unsigned int exit;

};

Members
refcount refcount to keep track of struct dvb_frontend references

ops embedded struct dvb_frontend_ops

dvb pointer to struct dvb_adapter

demodulator_priv demod private data

tuner_priv tuner private data

frontend_priv frontend private data

sec_priv SEC private data

analog_demod_priv Analog demod private data

dtv_property_cache embedded struct dtv_frontend_properties

2.3. Digital TV (DVB) devices 465

Linux Media Documentation

callback callback function used on some drivers to call either the tuner or the demodulator.

id Frontend ID

exit Used to inform the DVB core that the frontend thread should exit (usually, means that the
hardware got disconnected.

int dvb_register_frontend(struct dvb_adapter *dvb, struct dvb_frontend *fe)
Registers a DVB frontend at the adapter

Parameters
struct dvb_adapter *dvb pointer to struct dvb_adapter

struct dvb_frontend *fe pointer to struct dvb_frontend

Description
Allocate and initialize the private data needed by the frontend core to manage the frontend and
calls dvb_register_device() to register a new frontend. It also cleans the property cache that
stores the frontend parameters and selects the first available delivery system.

int dvb_unregister_frontend(struct dvb_frontend *fe)
Unregisters a DVB frontend

Parameters
struct dvb_frontend *fe pointer to struct dvb_frontend

Description
Stops the frontend kthread, calls dvb_unregister_device() and frees the private frontend
data allocated by dvb_register_frontend().

NOTE
This function doesn’t frees the memory allocated by the demod, by the SEC driver and by the
tuner. In order to free it, an explicit call to dvb_frontend_detach() is needed, after calling this
function.

void dvb_frontend_detach(struct dvb_frontend *fe)
Detaches and frees frontend specific data

Parameters
struct dvb_frontend *fe pointer to struct dvb_frontend

Description
This function should be called after dvb_unregister_frontend(). It calls the SEC,
tuner and demod release functions: dvb_frontend_ops.release_sec, dvb_frontend_ops.
tuner_ops.release, dvb_frontend_ops.analog_ops.release and dvb_frontend_ops.release.

If the driver is compiled with CONFIG_MEDIA_ATTACH, it also decreases the module reference
count, needed to allow userspace to remove the previously used DVB frontend modules.

int dvb_frontend_suspend(struct dvb_frontend *fe)
Suspends a Digital TV frontend

Parameters
struct dvb_frontend *fe pointer to struct dvb_frontend

466 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description
This function prepares a Digital TV frontend to suspend.

In order to prepare the tuner to suspend, if dvb_frontend_ops.tuner_ops.suspend() is avail-
able, it calls it. Otherwise, it will call dvb_frontend_ops.tuner_ops.sleep(), if available.

It will also call dvb_frontend_ops.suspend() to put the demod to suspend, if available. Other-
wise it will call dvb_frontend_ops.sleep().

The drivers should also call dvb_frontend_suspend() as part of their handler for the
device_driver.suspend().

int dvb_frontend_resume(struct dvb_frontend *fe)
Resumes a Digital TV frontend

Parameters
struct dvb_frontend *fe pointer to struct dvb_frontend

Description
This function resumes the usual operation of the tuner after resume.

In order to resume the frontend, it calls the demod dvb_frontend_ops.resume() if available.
Otherwise it calls demod dvb_frontend_ops.init().

If dvb_frontend_ops.tuner_ops.resume() is available, It, it calls it. Otherwise,t will call
dvb_frontend_ops.tuner_ops.init(), if available.

Once tuner and demods are resumed, it will enforce that the SEC voltage and tone are restored
to their previous values and wake up the frontend’s kthread in order to retune the frontend.

The drivers should also call dvb_frontend_resume() as part of their handler for the
device_driver.resume().

void dvb_frontend_reinitialise(struct dvb_frontend *fe)
forces a reinitialisation at the frontend

Parameters
struct dvb_frontend *fe pointer to struct dvb_frontend

Description
Calls dvb_frontend_ops.init() and dvb_frontend_ops.tuner_ops.init(), and resets SEC tone
and voltage (for Satellite systems).

NOTE
Currently, this function is used only by one driver (budget-av). It seems to be due to address
some special issue with that specific frontend.

void dvb_frontend_sleep_until(ktime_t *waketime, u32 add_usec)
Sleep for the amount of time given by add_usec parameter

Parameters
ktime_t *waketime pointer to struct ktime_t

u32 add_usec time to sleep, in microseconds

2.3. Digital TV (DVB) devices 467

Linux Media Documentation

Description
This function is used to measure the time required for the
FE_DISHNETWORK_SEND_LEGACY_CMD() ioctl to work. It needs to be as precise as
possible, as it affects the detection of the dish tone command at the satellite subsystem.

Its used internally by the DVB frontend core, in order to emulate
FE_DISHNETWORK_SEND_LEGACY_CMD() using the dvb_frontend_ops.set_voltage()
callback.

NOTE
it should not be used at the drivers, as the emulation for the legacy callback is provided by the
Kernel. The only situation where this should be at the drivers is when there are some bugs
at the hardware that would prevent the core emulation to work. On such cases, the driver
would be writing a dvb_frontend_ops.dishnetwork_send_legacy_command() and calling this
function directly.

2.3.3 Digital TV Demux kABI

2.3.3.1 Digital TV Demux

The Kernel Digital TV Demux kABI defines a driver-internal interface for registering low-level,
hardware specific driver to a hardware independent demux layer. It is only of interest for
Digital TV device driver writers. The header file for this kABI is named demux.h and located in
include/media.

The demux kABI should be implemented for each demux in the system. It is used to select the
TS source of a demux and to manage the demux resources. When the demux client allocates a
resource via the demux kABI, it receives a pointer to the kABI of that resource.

Each demux receives its TS input from a DVB front-end or from memory, as set via this demux
kABI. In a system with more than one front-end, the kABI can be used to select one of the DVB
front-ends as a TS source for a demux, unless this is fixed in the HW platform.

The demux kABI only controls front-ends regarding to their connections with demuxes; the
kABI used to set the other front-end parameters, such as tuning, are devined via the Digital TV
Frontend kABI.

The functions that implement the abstract interface demux should be defined static or module
private and registered to the Demux core for external access. It is not necessary to implement
every function in the struct dmx_demux. For example, a demux interface might support Section
filtering, but not PES filtering. The kABI client is expected to check the value of any function
pointer before calling the function: the value of NULL means that the function is not available.

Whenever the functions of the demux API modify shared data, the possibilities of lost update and
race condition problems should be addressed, e.g. by protecting parts of code with mutexes.

Note that functions called from a bottom half context must not sleep. Even a simple memory
allocation without using GFP_ATOMIC can result in a kernel thread being put to sleep if swapping
is needed. For example, the Linux Kernel calls the functions of a network device interface from
a bottom half context. Thus, if a demux kABI function is called from network device code, the
function must not sleep.

468 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

2.3.3.2 Demux Callback API

This kernel-space API comprises the callback functions that deliver filtered data to the demux
client. Unlike the other DVB kABIs, these functions are provided by the client and called from
the demux code.

The function pointers of this abstract interface are not packed into a structure as in the other
demux APIs, because the callback functions are registered and used independent of each other.
As an example, it is possible for the API client to provide several callback functions for receiving
TS packets and no callbacks for PES packets or sections.

The functions that implement the callback API need not be re-entrant: when a demux driver
calls one of these functions, the driver is not allowed to call the function again before the
original call returns. If a callback is triggered by a hardware interrupt, it is recommended to
use the Linux bottom half mechanism or start a tasklet instead of making the callback function
call directly from a hardware interrupt.

This mechanism is implemented by dmx_ts_cb() and dmx_section_cb() callbacks.

2.3.3.3 Digital TV Demux device registration functions and data structures

enum dmxdev_type
type of demux filter type.

Constants
DMXDEV_TYPE_NONE no filter set.

DMXDEV_TYPE_SEC section filter.

DMXDEV_TYPE_PES Program Elementary Stream (PES) filter.

enum dmxdev_state
state machine for the dmxdev.

Constants
DMXDEV_STATE_FREE indicates that the filter is freed.

DMXDEV_STATE_ALLOCATED indicates that the filter was allocated to be used.

DMXDEV_STATE_SET indicates that the filter parameters are set.

DMXDEV_STATE_GO indicates that the filter is running.

DMXDEV_STATE_DONE indicates that a packet was already filtered and the filter is now disabled.
Set only if DMX_ONESHOT. See dmx_sct_filter_params.

DMXDEV_STATE_TIMEDOUT Indicates a timeout condition.

struct dmxdev_feed
digital TV dmxdev feed

Definition

struct dmxdev_feed {
u16 pid;
struct dmx_ts_feed *ts;
struct list_head next;

};

2.3. Digital TV (DVB) devices 469

Linux Media Documentation

Members
pid Program ID to be filtered

ts pointer to struct dmx_ts_feed

next struct list_head pointing to the next feed.

struct dmxdev_filter
digital TV dmxdev filter

Definition

struct dmxdev_filter {
union {
struct dmx_section_filter *sec;

} filter;
union {
struct list_head ts;
struct dmx_section_feed *sec;

} feed;
union {
struct dmx_sct_filter_params sec;
struct dmx_pes_filter_params pes;

} params;
enum dmxdev_type type;
enum dmxdev_state state;
struct dmxdev *dev;
struct dvb_ringbuffer buffer;
struct dvb_vb2_ctx vb2_ctx;
struct mutex mutex;
struct timer_list timer;
int todo;
u8 secheader[3];

};

Members
filter a union describing a dmxdev filter. Currently used only for section filters.

filter.sec a struct dmx_section_filter pointer. For section filter only.

feed a union describing a dmxdev feed. Depending on the filter type, it can be either feed.ts
or feed.sec.

feed.ts a struct list_head list. For TS and PES feeds.

feed.sec a struct dmx_section_feed pointer. For section feed only.

params a union describing dmxdev filter parameters. Depending on the filter type, it can be
either params.sec or params.pes.

params.sec a struct dmx_sct_filter_params embedded struct. For section filter only.

params.pes a struct dmx_pes_filter_params embedded struct. For PES filter only.

type type of the dmxdev filter, as defined by enum dmxdev_type.

state state of the dmxdev filter, as defined by enum dmxdev_state.

470 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

dev pointer to struct dmxdev.

buffer an embedded struct dvb_ringbuffer buffer.

vb2_ctx control struct for VB2 handler

mutex protects the access to struct dmxdev_filter.

timer struct timer_list embedded timer, used to check for feed timeouts. Only for section
filter.

todo index for the secheader. Only for section filter.
secheader buffer cache to parse the section header. Only for section filter.

struct dmxdev
Describes a digital TV demux device.

Definition

struct dmxdev {
struct dvb_device *dvbdev;
struct dvb_device *dvr_dvbdev;
struct dmxdev_filter *filter;
struct dmx_demux *demux;
int filternum;
int capabilities;
unsigned int may_do_mmap:1;
unsigned int exit:1;

#define DMXDEV_CAP_DUPLEX 1;
struct dmx_frontend *dvr_orig_fe;
struct dvb_ringbuffer dvr_buffer;

#define DVR_BUFFER_SIZE (10*188*1024);
struct dvb_vb2_ctx dvr_vb2_ctx;
struct mutex mutex;
spinlock_t lock;

};

Members
dvbdev pointer to struct dvb_device associated with the demux device node.

dvr_dvbdev pointer to struct dvb_device associated with the dvr device node.

filter pointer to struct dmxdev_filter.

demux pointer to struct dmx_demux.

filternum number of filters.

capabilities demux capabilities as defined by enum dmx_demux_caps.

may_do_mmap flag used to indicate if the device may do mmap.

exit flag to indicate that the demux is being released.

dvr_orig_fe pointer to struct dmx_frontend.

dvr_buffer embedded struct dvb_ringbuffer for DVB output.

dvr_vb2_ctx control struct for VB2 handler

mutex protects the usage of this structure.

2.3. Digital TV (DVB) devices 471

Linux Media Documentation

lock protects access to dmxdev->filter->data.

int dvb_dmxdev_init(struct dmxdev *dmxdev, struct dvb_adapter *adap)
initializes a digital TV demux and registers both demux and DVR devices.

Parameters
struct dmxdev *dmxdev pointer to struct dmxdev.

struct dvb_adapter *adap pointer to struct dvb_adapter.

void dvb_dmxdev_release(struct dmxdev *dmxdev)
releases a digital TV demux and unregisters it.

Parameters
struct dmxdev *dmxdev pointer to struct dmxdev.

2.3.3.4 High-level Digital TV demux interface

enum dvb_dmx_filter_type
type of demux feed.

Constants
DMX_TYPE_TS feed is in TS mode.

DMX_TYPE_SEC feed is in Section mode.

enum dvb_dmx_state
state machine for a demux filter.

Constants
DMX_STATE_FREE indicates that the filter is freed.

DMX_STATE_ALLOCATED indicates that the filter was allocated to be used.

DMX_STATE_READY indicates that the filter is ready to be used.

DMX_STATE_GO indicates that the filter is running.

struct dvb_demux_filter
Describes a DVB demux section filter.

Definition

struct dvb_demux_filter {
struct dmx_section_filter filter;
u8 maskandmode[DMX_MAX_FILTER_SIZE];
u8 maskandnotmode[DMX_MAX_FILTER_SIZE];
bool doneq;
struct dvb_demux_filter *next;
struct dvb_demux_feed *feed;
int index;
enum dvb_dmx_state state;
enum dvb_dmx_filter_type type;

};

Members
filter Section filter as defined by struct dmx_section_filter.

472 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

maskandmode logical and bit mask.

maskandnotmode logical and not bit mask.

doneq flag that indicates when a filter is ready.

next pointer to the next section filter.

feed struct dvb_demux_feed pointer.

index index of the used demux filter.

state state of the filter as described by enum dvb_dmx_state.

type type of the filter as described by enum dvb_dmx_filter_type.

struct dvb_demux_feed
describes a DVB field

Definition

struct dvb_demux_feed {
union {
struct dmx_ts_feed ts;
struct dmx_section_feed sec;

} feed;
union {
dmx_ts_cb ts;
dmx_section_cb sec;

} cb;
struct dvb_demux *demux;
void *priv;
enum dvb_dmx_filter_type type;
enum dvb_dmx_state state;
u16 pid;
ktime_t timeout;
struct dvb_demux_filter *filter;
u32 buffer_flags;
enum ts_filter_type ts_type;
enum dmx_ts_pes pes_type;
int cc;
bool pusi_seen;
u16 peslen;
struct list_head list_head;
unsigned int index;

};

Members
feed a union describing a digital TV feed. Depending on the feed type, it can be either feed.ts

or feed.sec.
feed.ts a struct dmx_ts_feed pointer. For TS feed only.

feed.sec a struct dmx_section_feed pointer. For section feed only.

cb a union describing digital TV callbacks. Depending on the feed type, it can be either cb.ts
or cb.sec.

cb.ts a dmx_ts_cb() calback function pointer. For TS feed only.

cb.sec a dmx_section_cb() callback function pointer. For section feed only.

2.3. Digital TV (DVB) devices 473

Linux Media Documentation

demux pointer to struct dvb_demux.

priv private data that can optionally be used by a DVB driver.

type type of the filter, as defined by enum dvb_dmx_filter_type.

state state of the filter as defined by enum dvb_dmx_state.

pid PID to be filtered.

timeout feed timeout.

filter pointer to struct dvb_demux_filter.

buffer_flags Buffer flags used to report discontinuity users via DVB memory mapped API, as
defined by enum dmx_buffer_flags.

ts_type type of TS, as defined by enum ts_filter_type.

pes_type type of PES, as defined by enum dmx_ts_pes.

cc MPEG-TS packet continuity counter

pusi_seen if true, indicates that a discontinuity was detected. it is used to prevent feeding of
garbage from previous section.

peslen length of the PES (Packet Elementary Stream).

list_head head for the list of digital TV demux feeds.

index a unique index for each feed. Can be used as hardware pid filter index.

struct dvb_demux
represents a digital TV demux

Definition

struct dvb_demux {
struct dmx_demux dmx;
void *priv;
int filternum;
int feednum;
int (*start_feed)(struct dvb_demux_feed *feed);
int (*stop_feed)(struct dvb_demux_feed *feed);
int (*write_to_decoder)(struct dvb_demux_feed *feed, const u8 *buf, size_t len);
u32 (*check_crc32)(struct dvb_demux_feed *feed, const u8 *buf, size_t len);
void (*memcopy)(struct dvb_demux_feed *feed, u8 *dst, const u8 *src, size_t len);
int users;

#define MAX_DVB_DEMUX_USERS 10;
struct dvb_demux_filter *filter;
struct dvb_demux_feed *feed;
struct list_head frontend_list;
struct dvb_demux_feed *pesfilter[DMX_PES_OTHER];
u16 pids[DMX_PES_OTHER];

#define DMX_MAX_PID 0x2000;
struct list_head feed_list;
u8 tsbuf[204];
int tsbufp;
struct mutex mutex;
spinlock_t lock;
uint8_t *cnt_storage;
ktime_t speed_last_time;

474 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

uint32_t speed_pkts_cnt;
};

Members
dmx embedded struct dmx_demux with demux capabilities and callbacks.

priv private data that can optionally be used by a DVB driver.

filternum maximum amount of DVB filters.

feednum maximum amount of DVB feeds.

start_feed callback routine to be called in order to start a DVB feed.

stop_feed callback routine to be called in order to stop a DVB feed.

write_to_decoder callback routine to be called if the feed is TS and it is routed to an A/V
decoder, when a new TS packet is received. Used only on av7110-av.c.

check_crc32 callback routine to check CRC. If not initialized, dvb_demux will use an internal
one.

memcopy callback routine to memcopy received data. If not initialized, dvb_demux will default
to memcpy().

users counter for the number of demux opened file descriptors. Currently, it is limited to 10
users.

filter pointer to struct dvb_demux_filter.

feed pointer to struct dvb_demux_feed.

frontend_list struct list_head with frontends used by the demux.

pesfilter array of struct dvb_demux_feed with the PES types that will be filtered.

pids list of filtered program IDs.

feed_list struct list_head with feeds.

tsbuf temporary buffer used internally to store TS packets.

tsbufp temporary buffer index used internally.

mutex pointer to struct mutex used to protect feed set logic.

lock pointer to spinlock_t, used to protect buffer handling.

cnt_storage buffer used for TS/TEI continuity check.

speed_last_time ktime_t used for TS speed check.

speed_pkts_cnt packets count used for TS speed check.

int dvb_dmx_init(struct dvb_demux *demux)
initialize a digital TV demux struct.

Parameters
struct dvb_demux *demux struct dvb_demux to be initialized.

Description

2.3. Digital TV (DVB) devices 475

Linux Media Documentation

Before being able to register a digital TV demux struct, drivers should call this routine. On its
typical usage, some fields should be initialized at the driver before calling it.

A typical usecase is:

dvb->demux.dmx.capabilities =
DMX_TS_FILTERING | DMX_SECTION_FILTERING |
DMX_MEMORY_BASED_FILTERING;

dvb->demux.priv = dvb;
dvb->demux.filternum = 256;
dvb->demux.feednum = 256;
dvb->demux.start_feed = driver_start_feed;
dvb->demux.stop_feed = driver_stop_feed;
ret = dvb_dmx_init(&dvb->demux);
if (ret < 0)

return ret;

void dvb_dmx_release(struct dvb_demux *demux)
releases a digital TV demux internal buffers.

Parameters
struct dvb_demux *demux struct dvb_demux to be released.

Description
The DVB core internally allocates data at demux. This routine releases those data. Please
notice that the struct itelf is not released, as it can be embedded on other structs.

void dvb_dmx_swfilter_packets(struct dvb_demux *demux, const u8 *buf, size_t count)
use dvb software filter for a buffer with multiple MPEG-TS packets with 188 bytes each.

Parameters
struct dvb_demux *demux pointer to struct dvb_demux

const u8 *buf buffer with data to be filtered

size_t count number of MPEG-TS packets with size of 188.

Description
The routine will discard a DVB packet that don’t start with 0x47.

Use this routine if the DVB demux fills MPEG-TS buffers that are already aligned.

NOTE
The buf size should have size equal to count * 188.

void dvb_dmx_swfilter(struct dvb_demux *demux, const u8 *buf, size_t count)
use dvb software filter for a buffer with multiple MPEG-TS packets with 188 bytes each.

Parameters
struct dvb_demux *demux pointer to struct dvb_demux

const u8 *buf buffer with data to be filtered

size_t count number of MPEG-TS packets with size of 188.

Description
If a DVB packet doesn’t start with 0x47, it will seek for the first byte that starts with 0x47.

476 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Use this routine if the DVB demux fill buffers that may not start with a packet start mark (0x47).

NOTE
The buf size should have size equal to count * 188.

void dvb_dmx_swfilter_204(struct dvb_demux *demux, const u8 *buf, size_t count)
use dvb software filter for a buffer with multiple MPEG-TS packets with 204 bytes each.

Parameters
struct dvb_demux *demux pointer to struct dvb_demux

const u8 *buf buffer with data to be filtered

size_t count number of MPEG-TS packets with size of 204.

Description
If a DVB packet doesn’t start with 0x47, it will seek for the first byte that starts with 0x47.

Use this routine if the DVB demux fill buffers that may not start with a packet start mark (0x47).

NOTE
The buf size should have size equal to count * 204.

void dvb_dmx_swfilter_raw(struct dvb_demux *demux, const u8 *buf, size_t count)
make the raw data available to userspace without filtering

Parameters
struct dvb_demux *demux pointer to struct dvb_demux

const u8 *buf buffer with data

size_t count number of packets to be passed. The actual size of each packet depends on the
dvb_demux->feed->cb.ts logic.

Description
Use it if the driver needs to deliver the raw payload to userspace without passing through the
kernel demux. That is meant to support some delivery systems that aren’t based on MPEG-TS.

This function relies on dvb_demux->feed->cb.ts to actually handle the buffer.

2.3.3.5 Driver-internal low-level hardware specific driver demux interface

enum ts_filter_type
filter type bitmap for dmx_ts_feed.set()

Constants
TS_PACKET Send TS packets (188 bytes) to callback (default).

TS_PAYLOAD_ONLY In case TS_PACKET is set, only send the TS payload (<=184 bytes per
packet) to callback

TS_DECODER Send stream to built-in decoder (if present).

TS_DEMUX In case TS_PACKET is set, send the TS to the demux device, not to the dvr device

struct dmx_ts_feed
Structure that contains a TS feed filter

2.3. Digital TV (DVB) devices 477

Linux Media Documentation

Definition

struct dmx_ts_feed {
int is_filtering;
struct dmx_demux *parent;
void *priv;
int (*set)(struct dmx_ts_feed *feed,u16 pid,int type,enum dmx_ts_pes pes_type, ktime_

↪→t timeout);
int (*start_filtering)(struct dmx_ts_feed *feed);
int (*stop_filtering)(struct dmx_ts_feed *feed);

};

Members
is_filtering Set to non-zero when filtering in progress

parent pointer to struct dmx_demux

priv pointer to private data of the API client

set sets the TS filter

start_filtering starts TS filtering

stop_filtering stops TS filtering

Description
A TS feed is typically mapped to a hardware PID filter on the demux chip. Using this API, the
client can set the filtering properties to start/stop filtering TS packets on a particular TS feed.

struct dmx_section_filter
Structure that describes a section filter

Definition

struct dmx_section_filter {
u8 filter_value[DMX_MAX_FILTER_SIZE];
u8 filter_mask[DMX_MAX_FILTER_SIZE];
u8 filter_mode[DMX_MAX_FILTER_SIZE];
struct dmx_section_feed *parent;
void *priv;

};

Members
filter_value Contains up to 16 bytes (128 bits) of the TS section header that will be matched

by the section filter

filter_mask Contains a 16 bytes (128 bits) filter mask with the bits specified by filter_value
that will be used on the filter match logic.

filter_mode Contains a 16 bytes (128 bits) filter mode.

parent Back-pointer to struct dmx_section_feed.

priv Pointer to private data of the API client.

Description

478 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

The filter_mask controls which bits of filter_value are compared with the section head-
ers/payload. On a binary value of 1 in filter_mask, the corresponding bits are compared. The
filter only accepts sections that are equal to filter_value in all the tested bit positions.

struct dmx_section_feed
Structure that contains a section feed filter

Definition

struct dmx_section_feed {
int is_filtering;
struct dmx_demux *parent;
void *priv;
int check_crc;
int (*set)(struct dmx_section_feed *feed,u16 pid, int check_crc);
int (*allocate_filter)(struct dmx_section_feed *feed, struct dmx_section_filter␣

↪→**filter);
int (*release_filter)(struct dmx_section_feed *feed, struct dmx_section_filter␣

↪→*filter);
int (*start_filtering)(struct dmx_section_feed *feed);
int (*stop_filtering)(struct dmx_section_feed *feed);

};

Members
is_filtering Set to non-zero when filtering in progress

parent pointer to struct dmx_demux

priv pointer to private data of the API client

check_crc If non-zero, check the CRC values of filtered sections.

set sets the section filter

allocate_filter This function is used to allocate a section filter on the demux. It should only
be called when no filtering is in progress on this section feed. If a filter cannot be allocated,
the function fails with -ENOSPC.

release_filter This function releases all the resources of a previously allocated section filter.
The function should not be called while filtering is in progress on this section feed. After
calling this function, the caller should not try to dereference the filter pointer.

start_filtering starts section filtering

stop_filtering stops section filtering

Description
A TS feed is typically mapped to a hardware PID filter on the demux chip. Using this API, the
client can set the filtering properties to start/stop filtering TS packets on a particular TS feed.

dmx_ts_cb
Typedef: DVB demux TS filter callback function prototype

Syntax
int dmx_ts_cb (const u8 *buffer1, size_t buffer1_length, const u8
*buffer2, size_t buffer2_length, struct dmx_ts_feed *source, u32
*buffer_flags)

2.3. Digital TV (DVB) devices 479

Linux Media Documentation

Parameters
const u8 *buffer1 Pointer to the start of the filtered TS packets.

size_t buffer1_length Length of the TS data in buffer1.

const u8 *buffer2 Pointer to the tail of the filtered TS packets, or NULL.

size_t buffer2_length Length of the TS data in buffer2.

struct dmx_ts_feed *source Indicates which TS feed is the source of the callback.

u32 *buffer_flags Address where buffer flags are stored. Those are used to report disconti-
nuity users via DVB memory mapped API, as defined by enum dmx_buffer_flags.

Description
This function callback prototype, provided by the client of the demux API, is called from the
demux code. The function is only called when filtering on a TS feed has been enabled using
the start_filtering() function at the dmx_demux. Any TS packets that match the filter settings
are copied to a circular buffer. The filtered TS packets are delivered to the client using this
callback function. It is expected that the buffer1 and buffer2 callback parameters point to
addresses within the circular buffer, but other implementations are also possible. Note that the
called party should not try to free the memory the buffer1 and buffer2 parameters point to.
When this function is called, the buffer1 parameter typically points to the start of the first
undelivered TS packet within a circular buffer. The buffer2 buffer parameter is normally
NULL, except when the received TS packets have crossed the last address of the circular
buffer and “wrapped” to the beginning of the buffer. In the latter case the buffer1 param-
eter would contain an address within the circular buffer, while the buffer2 parameter would
contain the first address of the circular buffer. The number of bytes delivered with this func-
tion (i.e. buffer1_length + buffer2_length) is usually equal to the value of callback_length
parameter given in the set() function, with one exception: if a timeout occurs before receiv-
ing callback_length bytes of TS data, any undelivered packets are immediately delivered to the
client by calling this function. The timeout duration is controlled by the set() function in the TS
Feed API.

If a TS packet is received with errors that could not be fixed by the TS-level forward error
correction (FEC), the Transport_error_indicator flag of the TS packet header should be set.
The TS packet should not be discarded, as the error can possibly be corrected by a higher layer
protocol. If the called party is slow in processing the callback, it is possible that the circular
buffer eventually fills up. If this happens, the demux driver should discard any TS packets
received while the buffer is full and return -EOVERFLOW.

The type of data returned to the callback can be selected by the dmx_ts_feed.**set** func-
tion. The type parameter decides if the raw TS packet (TS_PACKET) or just the payload
(TS_PACKET|TS_PAYLOAD_ONLY) should be returned. If additionally the TS_DECODER bit
is set the stream will also be sent to the hardware MPEG decoder.

• 0, on success;

• -EOVERFLOW, on buffer overflow.

Return
dmx_section_cb

Typedef: DVB demux TS filter callback function prototype
Syntax

480 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

int dmx_section_cb (const u8 *buffer1, size_t buffer1_len, const u8
*buffer2, size_t buffer2_len, struct dmx_section_filter *source, u32
*buffer_flags)

Parameters
const u8 *buffer1 Pointer to the start of the filtered section, e.g. within the circular buffer

of the demux driver.

size_t buffer1_len Length of the filtered section data in buffer1, including headers and
CRC.

const u8 *buffer2 Pointer to the tail of the filtered section data, or NULL. Useful to handle
the wrapping of a circular buffer.

size_t buffer2_len Length of the filtered section data in buffer2, including headers and
CRC.

struct dmx_section_filter *source Indicates which section feed is the source of the call-
back.

u32 *buffer_flags Address where buffer flags are stored. Those are used to report disconti-
nuity users via DVB memory mapped API, as defined by enum dmx_buffer_flags.

Description
This function callback prototype, provided by the client of the demux API, is called from the
demux code. The function is only called when filtering of sections has been enabled using
the function dmx_ts_feed.**start_filtering**. When the demux driver has received a complete
section that matches at least one section filter, the client is notified via this callback function.
Normally this function is called for each received section; however, it is also possible to deliver
multiple sections with one callback, for example when the system load is high. If an error occurs
while receiving a section, this function should be called with the corresponding error type set
in the success field, whether or not there is data to deliver. The Section Feed implementation
should maintain a circular buffer for received sections. However, this is not necessary if the
Section Feed API is implemented as a client of the TS Feed API, because the TS Feed implemen-
tation then buffers the received data. The size of the circular buffer can be configured using
the dmx_ts_feed.**set** function in the Section Feed API. If there is no room in the circular
buffer when a new section is received, the section must be discarded. If this happens, the value
of the success parameter should be DMX_OVERRUN_ERROR on the next callback.

enum dmx_frontend_source
Used to identify the type of frontend

Constants
DMX_MEMORY_FE The source of the demux is memory. It means that the MPEG-TS to be filtered

comes from userspace, via write() syscall.

DMX_FRONTEND_0 The source of the demux is a frontend connected to the demux.

struct dmx_frontend
Structure that lists the frontends associated with a demux

Definition

struct dmx_frontend {
struct list_head connectivity_list;

2.3. Digital TV (DVB) devices 481

Linux Media Documentation

enum dmx_frontend_source source;
};

Members
connectivity_list List of front-ends that can be connected to a particular demux;

source Type of the frontend.

Description
FIXME: this structure should likely be replaced soon by some media-controller based

logic.

enum dmx_demux_caps
MPEG-2 TS Demux capabilities bitmap

Constants
DMX_TS_FILTERING set if TS filtering is supported;

DMX_SECTION_FILTERING set if section filtering is supported;

DMX_MEMORY_BASED_FILTERING set if write() available.

Description
Those flags are OR’ed in the dmx_demux.capabilities field

DMX_FE_ENTRY(list)
Casts elements in the list of registered front-ends from the generic type struct list_head to
the type * struct dmx_frontend

Parameters
list list of struct dmx_frontend

struct dmx_demux
Structure that contains the demux capabilities and callbacks.

Definition

struct dmx_demux {
enum dmx_demux_caps capabilities;
struct dmx_frontend *frontend;
void *priv;
int (*open)(struct dmx_demux *demux);
int (*close)(struct dmx_demux *demux);
int (*write)(struct dmx_demux *demux, const char __user *buf, size_t count);
int (*allocate_ts_feed)(struct dmx_demux *demux,struct dmx_ts_feed **feed, dmx_ts_cb␣

↪→callback);
int (*release_ts_feed)(struct dmx_demux *demux, struct dmx_ts_feed *feed);
int (*allocate_section_feed)(struct dmx_demux *demux,struct dmx_section_feed **feed,␣

↪→dmx_section_cb callback);
int (*release_section_feed)(struct dmx_demux *demux, struct dmx_section_feed *feed);
int (*add_frontend)(struct dmx_demux *demux, struct dmx_frontend *frontend);
int (*remove_frontend)(struct dmx_demux *demux, struct dmx_frontend *frontend);
struct list_head *(*get_frontends)(struct dmx_demux *demux);
int (*connect_frontend)(struct dmx_demux *demux, struct dmx_frontend *frontend);
int (*disconnect_frontend)(struct dmx_demux *demux);

482 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

int (*get_pes_pids)(struct dmx_demux *demux, u16 *pids);
};

Members
capabilities Bitfield of capability flags.

frontend Front-end connected to the demux

priv Pointer to private data of the API client

open This function reserves the demux for use by the caller and, if necessary, initializes the
demux. When the demux is no longer needed, the function close should be called. It
should be possible for multiple clients to access the demux at the same time. Thus, the
function implementation should increment the demux usage count when open is called
and decrement it when close is called. The demux function parameter contains a pointer
to the demux API and instance data. It returns: 0 on success; -EUSERS, if maximum usage
count was reached; -EINVAL, on bad parameter.

close This function reserves the demux for use by the caller and, if necessary, initializes the
demux. When the demux is no longer needed, the function close should be called. It
should be possible for multiple clients to access the demux at the same time. Thus, the
function implementation should increment the demux usage count when open is called
and decrement it when close is called. The demux function parameter contains a pointer
to the demux API and instance data. It returns: 0 on success; -ENODEV, if demux was not
in use (e. g. no users); -EINVAL, on bad parameter.

write This function provides the demux driver with a memory buffer containing TS packets.
Instead of receiving TS packets from the DVB front-end, the demux driver software will
read packets from memory. Any clients of this demux with active TS, PES or Section filters
will receive filtered data via the Demux callback API (see 0). The function returns when all
the data in the buffer has been consumed by the demux. Demux hardware typically cannot
read TS from memory. If this is the case, memory-based filtering has to be implemented
entirely in software. The demux function parameter contains a pointer to the demux
API and instance data. The buf function parameter contains a pointer to the TS data in
kernel-space memory. The count function parameter contains the length of the TS data. It
returns: 0 on success; -ERESTARTSYS, if mutex lock was interrupted; -EINTR, if a signal
handling is pending; -ENODEV, if demux was removed; -EINVAL, on bad parameter.

allocate_ts_feed Allocates a new TS feed, which is used to filter the TS packets carrying
a certain PID. The TS feed normally corresponds to a hardware PID filter on the demux
chip. The demux function parameter contains a pointer to the demux API and instance
data. The feed function parameter contains a pointer to the TS feed API and instance
data. The callback function parameter contains a pointer to the callback function for
passing received TS packet. It returns: 0 on success; -ERESTARTSYS, if mutex lock was
interrupted; -EBUSY, if no more TS feeds is available; -EINVAL, on bad parameter.

release_ts_feed Releases the resources allocated with allocate_ts_feed. Any filtering in
progress on the TS feed should be stopped before calling this function. The demux func-
tion parameter contains a pointer to the demux API and instance data. The feed function
parameter contains a pointer to the TS feed API and instance data. It returns: 0 on success;
-EINVAL on bad parameter.

allocate_section_feed Allocates a new section feed, i.e. a demux resource for filtering and
receiving sections. On platforms with hardware support for section filtering, a section feed

2.3. Digital TV (DVB) devices 483

Linux Media Documentation

is directly mapped to the demux HW. On other platforms, TS packets are first PID filtered
in hardware and a hardware section filter then emulated in software. The caller obtains
an API pointer of type dmx_section_feed_t as an out parameter. Using this API the caller
can set filtering parameters and start receiving sections. The demux function parameter
contains a pointer to the demux API and instance data. The feed function parameter
contains a pointer to the TS feed API and instance data. The callback function parameter
contains a pointer to the callback function for passing received TS packet. It returns: 0
on success; -EBUSY, if no more TS feeds is available; -EINVAL, on bad parameter.

release_section_feed Releases the resources allocated with allocate_section_feed, includ-
ing allocated filters. Any filtering in progress on the section feed should be stopped before
calling this function. The demux function parameter contains a pointer to the demux API
and instance data. The feed function parameter contains a pointer to the TS feed API and
instance data. It returns: 0 on success; -EINVAL, on bad parameter.

add_frontend Registers a connectivity between a demux and a front-end, i.e., indicates that
the demux can be connected via a call to connect_frontend to use the given front-end
as a TS source. The client of this function has to allocate dynamic or static memory for
the frontend structure and initialize its fields before calling this function. This function
is normally called during the driver initialization. The caller must not free the memory
of the frontend struct before successfully calling remove_frontend. The demux function
parameter contains a pointer to the demux API and instance data. The frontend function
parameter contains a pointer to the front-end instance data. It returns: 0 on success;
-EINVAL, on bad parameter.

remove_frontend Indicates that the given front-end, registered by a call to add_frontend, can
no longer be connected as a TS source by this demux. The function should be called when
a front-end driver or a demux driver is removed from the system. If the front-end is in use,
the function fails with the return value of -EBUSY. After successfully calling this function,
the caller can free the memory of the frontend struct if it was dynamically allocated before
the add_frontend operation. The demux function parameter contains a pointer to the
demux API and instance data. The frontend function parameter contains a pointer to the
front-end instance data. It returns: 0 on success; -ENODEV, if the front-end was not found,
-EINVAL, on bad parameter.

get_frontends Provides the APIs of the front-ends that have been registered for this de-
mux. Any of the front-ends obtained with this call can be used as a parameter for con-
nect_frontend. The include file demux.h contains the macro DMX_FE_ENTRY() for convert-
ing an element of the generic type struct list_head * to the type struct dmx_frontend .
The caller must not free the memory of any of the elements obtained via this function call.
The **demux* function parameter contains a pointer to the demux API and instance data.
It returns a struct list_head pointer to the list of front-end interfaces, or NULL in the case
of an empty list.

connect_frontend Connects the TS output of the front-end to the input of the demux. A
demux can only be connected to a front-end registered to the demux with the function
add_frontend. It may or may not be possible to connect multiple demuxes to the same
front-end, depending on the capabilities of the HW platform. When not used, the front-
end should be released by calling disconnect_frontend. The demux function parameter
contains a pointer to the demux API and instance data. The frontend function parameter
contains a pointer to the front-end instance data. It returns: 0 on success; -EINVAL, on
bad parameter.

disconnect_frontend Disconnects the demux and a front-end previously connected by a con-

484 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

nect_frontend call. The demux function parameter contains a pointer to the demux API
and instance data. It returns: 0 on success; -EINVAL on bad parameter.

get_pes_pids Get the PIDs for DMX_PES_AUDIO0, DMX_PES_VIDEO0,
DMX_PES_TELETEXT0, DMX_PES_SUBTITLE0 and DMX_PES_PCR0. The demux
function parameter contains a pointer to the demux API and instance data. The pids
function parameter contains an array with five u16 elements where the PIDs will be
stored. It returns: 0 on success; -EINVAL on bad parameter.

2.3.4 Digital TV Conditional Access kABI

struct dvb_ca_en50221
Structure describing a CA interface

Definition

struct dvb_ca_en50221 {
struct module *owner;
int (*read_attribute_mem)(struct dvb_ca_en50221 *ca, int slot, int address);
int (*write_attribute_mem)(struct dvb_ca_en50221 *ca, int slot, int address, u8␣

↪→value);
int (*read_cam_control)(struct dvb_ca_en50221 *ca, int slot, u8 address);
int (*write_cam_control)(struct dvb_ca_en50221 *ca, int slot, u8 address, u8 value);
int (*read_data)(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount);
int (*write_data)(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount);
int (*slot_reset)(struct dvb_ca_en50221 *ca, int slot);
int (*slot_shutdown)(struct dvb_ca_en50221 *ca, int slot);
int (*slot_ts_enable)(struct dvb_ca_en50221 *ca, int slot);
int (*poll_slot_status)(struct dvb_ca_en50221 *ca, int slot, int open);
void *data;
void *private;

};

Members
owner the module owning this structure

read_attribute_mem function for reading attribute memory on the CAM

write_attribute_mem function for writing attribute memory on the CAM

read_cam_control function for reading the control interface on the CAM

write_cam_control function for reading the control interface on the CAM

read_data function for reading data (block mode)

write_data function for writing data (block mode)

slot_reset function to reset the CAM slot

slot_shutdown function to shutdown a CAM slot

slot_ts_enable function to enable the Transport Stream on a CAM slot

poll_slot_status function to poll slot status. Only necessary if
DVB_CA_FLAG_EN50221_IRQ_CAMCHANGE is not set.

data private data, used by caller.

2.3. Digital TV (DVB) devices 485

Linux Media Documentation

private Opaque data used by the dvb_ca core. Do not modify!

NOTE
the read_*, write_* and poll_slot_status functions will be called for different slots concurrently
and need to use locks where and if appropriate. There will be no concurrent access to one slot.

void dvb_ca_en50221_camchange_irq(struct dvb_ca_en50221 *pubca, int slot,
int change_type)

A CAMCHANGE IRQ has occurred.

Parameters
struct dvb_ca_en50221 *pubca CA instance.

int slot Slot concerned.

int change_type One of the DVB_CA_CAMCHANGE_* values

void dvb_ca_en50221_camready_irq(struct dvb_ca_en50221 *pubca, int slot)
A CAMREADY IRQ has occurred.

Parameters
struct dvb_ca_en50221 *pubca CA instance.

int slot Slot concerned.

void dvb_ca_en50221_frda_irq(struct dvb_ca_en50221 *ca, int slot)
An FR or a DA IRQ has occurred.

Parameters
struct dvb_ca_en50221 *ca CA instance.

int slot Slot concerned.

int dvb_ca_en50221_init(struct dvb_adapter *dvb_adapter, struct dvb_ca_en50221 *ca,
int flags, int slot_count)

Initialise a new DVB CA device.

Parameters
struct dvb_adapter *dvb_adapter DVB adapter to attach the new CA device to.

struct dvb_ca_en50221 *ca The dvb_ca instance.

int flags Flags describing the CA device (DVB_CA_EN50221_FLAG_*).

int slot_count Number of slots supported.

Description
return 0 on success, nonzero on failure
void dvb_ca_en50221_release(struct dvb_ca_en50221 *ca)

Release a DVB CA device.

Parameters
struct dvb_ca_en50221 *ca The associated dvb_ca instance.

486 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

2.3.5 Digital TV Network kABI

struct dvb_net
describes a DVB network interface

Definition

struct dvb_net {
struct dvb_device *dvbdev;
struct net_device *device[DVB_NET_DEVICES_MAX];
int state[DVB_NET_DEVICES_MAX];
unsigned int exit:1;
struct dmx_demux *demux;
struct mutex ioctl_mutex;

};

Members
dvbdev pointer to struct dvb_device.

device array of pointers to struct net_device.

state array of integers to each net device. A value different than zero means that the interface
is in usage.

exit flag to indicate when the device is being removed.

demux pointer to struct dmx_demux.

ioctl_mutex protect access to this struct.

Description
Currently, the core supports up to DVB_NET_DEVICES_MAX (10) network devices.

int dvb_net_init(struct dvb_adapter *adap, struct dvb_net *dvbnet, struct
dmx_demux *dmxdemux)

nitializes a digital TV network device and registers it.

Parameters
struct dvb_adapter *adap pointer to struct dvb_adapter.

struct dvb_net *dvbnet pointer to struct dvb_net.

struct dmx_demux *dmxdemux pointer to struct dmx_demux.

void dvb_net_release(struct dvb_net *dvbnet)
releases a digital TV network device and unregisters it.

Parameters
struct dvb_net *dvbnet pointer to struct dvb_net.

2.3. Digital TV (DVB) devices 487

Linux Media Documentation

2.4 Remote Controller devices

2.4.1 Remote Controller core

The remote controller core implements infrastructure to receive and send remote controller
keyboard keystrokes and mouse events.

Every time a key is pressed on a remote controller, a scan code is produced. Also, on most
hardware, keeping a key pressed for more than a few dozens of milliseconds produce a repeat
key event. That’s somewhat similar to what a normal keyboard or mouse is handled internally
on Linux1. So, the remote controller core is implemented on the top of the linux input/evdev
interface.

However, most of the remote controllers use infrared (IR) to transmit signals. As there are
several protocols used to modulate infrared signals, one important part of the core is dedicated
to adjust the driver and the core system to support the infrared protocol used by the emitter.

The infrared transmission is done by blinking a infrared emitter using a carrier. The carrier
can be switched on or off by the IR transmitter hardware. When the carrier is switched on, it
is called PULSE. When the carrier is switched off, it is called SPACE.

In other words, a typical IR transmission can be viewed as a sequence of PULSE and SPACE
events, each with a given duration.

The carrier parameters (frequency, duty cycle) and the intervals for PULSE and SPACE events
depend on the protocol. For example, the NEC protocol uses a carrier of 38kHz, and transmis-
sions start with a 9ms PULSE and a 4.5ms SPACE. It then transmits 16 bits of scan code, being
8 bits for address (usually it is a fixed number for a given remote controller), followed by 8 bits
of code. A bit “1” is modulated with 560µs PULSE followed by 1690µs SPACE and a bit “0” is
modulated with 560µs PULSE followed by 560µs SPACE.

At receiver, a simple low-pass filter can be used to convert the received signal in a sequence
of PULSE/SPACE events, filtering out the carrier frequency. Due to that, the receiver doesn’t
care about the carrier’s actual frequency parameters: all it has to do is to measure the amount
of time it receives PULSE/SPACE events. So, a simple IR receiver hardware will just provide a
sequence of timings for those events to the Kernel. The drivers for hardware with such kind of
receivers are identified by RC_DRIVER_IR_RAW, as defined by rc_driver_type2. Other hardware
come with a microcontroller that decode the PULSE/SPACE sequence and return scan codes to
the Kernel. Such kind of receivers are identified by RC_DRIVER_SCANCODE.

When the RC core receives events produced by RC_DRIVER_IR_RAW IR receivers, it needs to
decode the IR protocol, in order to obtain the corresponding scan code. The protocols supported
by the RC core are defined at enum rc_proto.

When the RC code receives a scan code (either directly, by a driver of the type
RC_DRIVER_SCANCODE, or via its IR decoders), it needs to convert into a Linux input event code.
This is done via a mapping table.

The Kernel has support for mapping tables available on most media devices. It also supports
loading a table in runtime, via some sysfs nodes. See the RC userspace API for more details.

1 The main difference is that, on keyboard events, the keyboard controller produces one event for a key press and
another one for key release. On infrared-based remote controllers, there’s no key release event. Instead, an extra
code is produced to indicate key repeats.

2 The RC core also supports devices that have just IR emitters, without any receivers. Right now, all such devices
work only in raw TX mode. Such kind of hardware is identified as RC_DRIVER_IR_RAW_TX.

488 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

2.4.1.1 Remote controller data structures and functions

enum rc_driver_type
type of the RC driver.

Constants
RC_DRIVER_SCANCODE Driver or hardware generates a scancode.

RC_DRIVER_IR_RAW Driver or hardware generates pulse/space sequences. It needs a Infra-Red
pulse/space decoder

RC_DRIVER_IR_RAW_TX Device transmitter only, driver requires pulse/space data sequence.

struct rc_scancode_filter
Filter scan codes.

Definition

struct rc_scancode_filter {
u32 data;
u32 mask;

};

Members
data Scancode data to match.

mask Mask of bits of scancode to compare.

enum rc_filter_type
Filter type constants.

Constants
RC_FILTER_NORMAL Filter for normal operation.

RC_FILTER_WAKEUP Filter for waking from suspend.

RC_FILTER_MAX Number of filter types.

struct lirc_fh
represents an open lirc file

Definition

struct lirc_fh {
struct list_head list;
struct rc_dev *rc;
int carrier_low;
bool send_timeout_reports;
unsigned int *rawir;
struct lirc_scancode *scancodes;
wait_queue_head_t wait_poll;
u8 send_mode;
u8 rec_mode;

};

Members
list list of open file handles

2.4. Remote Controller devices 489

Linux Media Documentation

rc rcdev for this lirc chardev

carrier_low when setting the carrier range, first the low end must be set with an ioctl and
then the high end with another ioctl

send_timeout_reports report timeouts in lirc raw IR.

rawir queue for incoming raw IR

scancodes queue for incoming decoded scancodes

wait_poll poll struct for lirc device

send_mode lirc mode for sending, either LIRC_MODE_SCANCODE or LIRC_MODE_PULSE

rec_mode lirc mode for receiving, either LIRC_MODE_SCANCODE or LIRC_MODE_MODE2

struct rc_dev
represents a remote control device

Definition

struct rc_dev {
struct device dev;
bool managed_alloc;
const struct attribute_group *sysfs_groups[5];
const char *device_name;
const char *input_phys;
struct input_id input_id;
const char *driver_name;
const char *map_name;
struct rc_map rc_map;
struct mutex lock;
unsigned int minor;
struct ir_raw_event_ctrl *raw;
struct input_dev *input_dev;
enum rc_driver_type driver_type;
bool idle;
bool encode_wakeup;
u64 allowed_protocols;
u64 enabled_protocols;
u64 allowed_wakeup_protocols;
enum rc_proto wakeup_protocol;
struct rc_scancode_filter scancode_filter;
struct rc_scancode_filter scancode_wakeup_filter;
u32 scancode_mask;
u32 users;
void *priv;
spinlock_t keylock;
bool keypressed;
unsigned long keyup_jiffies;
struct timer_list timer_keyup;
struct timer_list timer_repeat;
u32 last_keycode;
enum rc_proto last_protocol;
u64 last_scancode;
u8 last_toggle;
u32 timeout;
u32 min_timeout;
u32 max_timeout;

490 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

u32 rx_resolution;
u32 tx_resolution;

#ifdef CONFIG_LIRC;
struct device lirc_dev;
struct cdev lirc_cdev;
ktime_t gap_start;
u64 gap_duration;
bool gap;
spinlock_t lirc_fh_lock;
struct list_head lirc_fh;

#endif;
bool registered;
int (*change_protocol)(struct rc_dev *dev, u64 *rc_proto);
int (*open)(struct rc_dev *dev);
void (*close)(struct rc_dev *dev);
int (*s_tx_mask)(struct rc_dev *dev, u32 mask);
int (*s_tx_carrier)(struct rc_dev *dev, u32 carrier);
int (*s_tx_duty_cycle)(struct rc_dev *dev, u32 duty_cycle);
int (*s_rx_carrier_range)(struct rc_dev *dev, u32 min, u32 max);
int (*tx_ir)(struct rc_dev *dev, unsigned *txbuf, unsigned n);
void (*s_idle)(struct rc_dev *dev, bool enable);
int (*s_wideband_receiver)(struct rc_dev *dev, int enable);
int (*s_carrier_report) (struct rc_dev *dev, int enable);
int (*s_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
int (*s_wakeup_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
int (*s_timeout)(struct rc_dev *dev, unsigned int timeout);

};

Members
dev driver model’s view of this device

managed_alloc devm_rc_allocate_device was used to create rc_dev

sysfs_groups sysfs attribute groups

device_name name of the rc child device

input_phys physical path to the input child device

input_id id of the input child device (struct input_id)

driver_name name of the hardware driver which registered this device

map_name name of the default keymap

rc_map current scan/key table

lock used to ensure we’ve filled in all protocol details before anyone can call show_protocols
or store_protocols

minor unique minor remote control device number

raw additional data for raw pulse/space devices

input_dev the input child device used to communicate events to userspace

driver_type specifies if protocol decoding is done in hardware or software

idle used to keep track of RX state

2.4. Remote Controller devices 491

Linux Media Documentation

encode_wakeup wakeup filtering uses IR encode API, therefore the allowed wakeup protocols
is the set of all raw encoders

allowed_protocols bitmask with the supported RC_PROTO_BIT_* protocols

enabled_protocols bitmask with the enabled RC_PROTO_BIT_* protocols

allowed_wakeup_protocols bitmask with the supported RC_PROTO_BIT_* wakeup protocols

wakeup_protocol the enabled RC_PROTO_* wakeup protocol or RC_PROTO_UNKNOWN if dis-
abled.

scancode_filter scancode filter

scancode_wakeup_filter scancode wakeup filters

scancode_mask some hardware decoders are not capable of providing the full scancode to the
application. As this is a hardware limit, we can’t do anything with it. Yet, as the same
keycode table can be used with other devices, a mask is provided to allow its usage. Drivers
should generally leave this field in blank

users number of current users of the device

priv driver-specific data

keylock protects the remaining members of the struct

keypressed whether a key is currently pressed

keyup_jiffies time (in jiffies) when the current keypress should be released

timer_keyup timer for releasing a keypress

timer_repeat timer for autorepeat events. This is needed for CEC, which has non-standard
repeats.

last_keycode keycode of last keypress

last_protocol protocol of last keypress

last_scancode scancode of last keypress

last_toggle toggle value of last command

timeout optional time after which device stops sending data

min_timeout minimum timeout supported by device

max_timeout maximum timeout supported by device

rx_resolution resolution (in us) of input sampler

tx_resolution resolution (in us) of output sampler

lirc_dev lirc device

lirc_cdev lirc char cdev

gap_start time when gap starts

gap_duration duration of initial gap

gap true if we’re in a gap

lirc_fh_lock protects lirc_fh list

492 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

lirc_fh list of open files

registered set to true by rc_register_device(), false by rc_unregister_device

change_protocol allow changing the protocol used on hardware decoders

open callback to allow drivers to enable polling/irq when IR input device is opened.

close callback to allow drivers to disable polling/irq when IR input device is opened.

s_tx_mask set transmitter mask (for devices with multiple tx outputs)

s_tx_carrier set transmit carrier frequency

s_tx_duty_cycle set transmit duty cycle (0% - 100%)

s_rx_carrier_range inform driver about carrier it is expected to handle

tx_ir transmit IR

s_idle enable/disable hardware idle mode, upon which, device doesn’t interrupt host until it
sees IR pulses

s_wideband_receiver enable wide band receiver used for learning

s_carrier_report enable carrier reports

s_filter set the scancode filter

s_wakeup_filter set the wakeup scancode filter. If the mask is zero then wakeup should be
disabled. wakeup_protocol will be set to a valid protocol if mask is nonzero.

s_timeout set hardware timeout in us

struct rc_dev * rc_allocate_device(enum rc_driver_type)
Allocates a RC device

Parameters
enum rc_driver_type specifies the type of the RC output to be allocated returns a pointer to

struct rc_dev.

struct rc_dev * devm_rc_allocate_device(struct device *dev, enum rc_driver_type)
Managed RC device allocation

Parameters
struct device *dev pointer to struct device

enum rc_driver_type specifies the type of the RC output to be allocated returns a pointer to
struct rc_dev.

void rc_free_device(struct rc_dev *dev)
Frees a RC device

Parameters
struct rc_dev *dev pointer to struct rc_dev.

int rc_register_device(struct rc_dev *dev)
Registers a RC device

Parameters
struct rc_dev *dev pointer to struct rc_dev.

2.4. Remote Controller devices 493

Linux Media Documentation

int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
Manageded registering of a RC device

Parameters
struct device *parent pointer to struct device.

struct rc_dev *dev pointer to struct rc_dev.

void rc_unregister_device(struct rc_dev *dev)
Unregisters a RC device

Parameters
struct rc_dev *dev pointer to struct rc_dev.

struct rc_map_table
represents a scancode/keycode pair

Definition

struct rc_map_table {
u64 scancode;
u32 keycode;

};

Members
scancode scan code (u64)

keycode Linux input keycode

struct rc_map
represents a keycode map table

Definition

struct rc_map {
struct rc_map_table *scan;
unsigned int size;
unsigned int len;
unsigned int alloc;
enum rc_proto rc_proto;
const char *name;
spinlock_t lock;

};

Members
scan pointer to struct rc_map_table

size Max number of entries

len Number of entries that are in use

alloc size of *scan, in bytes

rc_proto type of the remote controller protocol, as defined at enum rc_proto

name name of the key map table

lock lock to protect access to this structure

494 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct rc_map_list
list of the registered rc_map maps

Definition

struct rc_map_list {
struct list_head list;
struct rc_map map;

};

Members
list pointer to struct list_head

map pointer to struct rc_map

int rc_map_register(struct rc_map_list *map)
Registers a Remote Controller scancode map

Parameters
struct rc_map_list *map pointer to struct rc_map_list

void rc_map_unregister(struct rc_map_list *map)
Unregisters a Remote Controller scancode map

Parameters
struct rc_map_list *map pointer to struct rc_map_list

struct rc_map * rc_map_get(const char *name)
gets an RC map from its name

Parameters
const char *name name of the RC scancode map

2.5 Media Controller devices

2.5.1 Media Controller

The media controller userspace API is documented in the Media Controller uAPI book. This
document focus on the kernel-side implementation of the media framework.

2.5.1.1 Abstract media device model

Discovering a device internal topology, and configuring it at runtime, is one of the goals of the
media framework. To achieve this, hardware devices are modelled as an oriented graph of
building blocks called entities connected through pads.

An entity is a basic media hardware building block. It can correspond to a large variety of
logical blocks such as physical hardware devices (CMOS sensor for instance), logical hardware
devices (a building block in a System-on-Chip image processing pipeline), DMA channels or
physical connectors.

2.5. Media Controller devices 495

Linux Media Documentation

A pad is a connection endpoint through which an entity can interact with other entities. Data
(not restricted to video) produced by an entity flows from the entity’s output to one or more
entity inputs. Pads should not be confused with physical pins at chip boundaries.

A link is a point-to-point oriented connection between two pads, either on the same entity or on
different entities. Data flows from a source pad to a sink pad.

2.5.1.2 Media device

A media device is represented by a struct media_device instance, defined in include/media/
media-device.h. Allocation of the structure is handled by the media device driver, usually by
embedding the media_device instance in a larger driver-specific structure.

Drivers register media device instances by calling __media_device_register() via the macro
media_device_register() and unregistered by calling media_device_unregister().

2.5.1.3 Entities

Entities are represented by a struct media_entity instance, defined in include/media/
media-entity.h. The structure is usually embedded into a higher-level structure, such as
v4l2_subdev or video_device instances, although drivers can allocate entities directly.

Drivers initialize entity pads by calling media_entity_pads_init().

Drivers register entities with a media device by calling media_device_register_entity() and
unregistered by calling media_device_unregister_entity().

2.5.1.4 Interfaces

Interfaces are represented by a struct media_interface instance, defined in include/media/
media-entity.h. Currently, only one type of interface is defined: a device node. Such inter-
faces are represented by a struct media_intf_devnode.

Drivers initialize and create device node interfaces by calling media_devnode_create() and
remove them by calling: media_devnode_remove().

2.5.1.5 Pads

Pads are represented by a struct media_pad instance, defined in include/media/
media-entity.h. Each entity stores its pads in a pads array managed by the entity driver.
Drivers usually embed the array in a driver-specific structure.

Pads are identified by their entity and their 0-based index in the pads array.

Both information are stored in the struct media_pad, making the struct media_pad pointer
the canonical way to store and pass link references.

Pads have flags that describe the pad capabilities and state.

MEDIA_PAD_FL_SINK indicates that the pad supports sinking data. MEDIA_PAD_FL_SOURCE indi-
cates that the pad supports sourcing data.

496 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Note: One and only one of MEDIA_PAD_FL_SINK or MEDIA_PAD_FL_SOURCEmust be set for each
pad.

2.5.1.6 Links

Links are represented by a struct media_link instance, defined in include/media/
media-entity.h. There are two types of links:

1. pad to pad links:
Associate two entities via their PADs. Each entity has a list that points to all links originating
at or targeting any of its pads. A given link is thus stored twice, once in the source entity and
once in the target entity.

Drivers create pad to pad links by calling: media_create_pad_link() and remove with
media_entity_remove_links().

2. interface to entity links:
Associate one interface to a Link.

Drivers create interface to entity links by calling: media_create_intf_link() and remove with
media_remove_intf_links().

Note: Links can only be created after having both ends already created.

Links have flags that describe the link capabilities and state. The valid values are described at
media_create_pad_link() and media_create_intf_link().

2.5.1.7 Graph traversal

The media framework provides APIs to iterate over entities in a graph.

To iterate over all entities belonging to a media device, drivers can use the me-
dia_device_for_each_entity macro, defined in include/media/media-device.h.

struct media_entity *entity;

media_device_for_each_entity(entity, mdev) {
// entity will point to each entity in turn
...
}

Drivers might also need to iterate over all entities in a graph that can be reached only through
enabled links starting at a given entity. The media framework provides a depth-first graph
traversal API for that purpose.

Note: Graphs with cycles (whether directed or undirected) are NOT supported by the graph
traversal API. To prevent infinite loops, the graph traversal code limits the maximum depth to
MEDIA_ENTITY_ENUM_MAX_DEPTH, currently defined as 16.

2.5. Media Controller devices 497

Linux Media Documentation

Drivers initiate a graph traversal by calling media_graph_walk_start()

The graph structure, provided by the caller, is initialized to start graph traversal at the given
entity.

Drivers can then retrieve the next entity by calling media_graph_walk_next()

When the graph traversal is complete the function will return NULL.

Graph traversal can be interrupted at any moment. No cleanup function call is required and
the graph structure can be freed normally.

Helper functions can be used to find a link between two given pads, or a pad
connected to another pad through an enabled link media_entity_find_link() and
media_entity_remote_pad().

2.5.1.8 Use count and power handling

Due to the wide differences between drivers regarding power management needs, the media
controller does not implement power management. However, the struct media_entity in-
cludes a use_count field that media drivers can use to track the number of users of every entity
for power management needs.

The media_entity.use_count field is owned by media drivers and must not be touched by entity
drivers. Access to the field must be protected by the media_device.graph_mutex lock.

2.5.1.9 Links setup

Link properties can be modified at runtime by calling media_entity_setup_link().

2.5.1.10 Pipelines and media streams

When starting streaming, drivers must notify all entities in the pipeline to prevent link states
from being modified during streaming by calling media_pipeline_start().

The function will mark all entities connected to the given entity through enabled links, either
directly or indirectly, as streaming.

The struct media_pipeline instance pointed to by the pipe argument will be stored in ev-
ery entity in the pipeline. Drivers should embed the struct media_pipeline in higher-level
pipeline structures and can then access the pipeline through the struct media_entity pipe
field.

Calls to media_pipeline_start() can be nested. The pipeline pointer must be identical for all
nested calls to the function.

media_pipeline_start() may return an error. In that case, it will clean up any of the changes
it did by itself.

When stopping the stream, drivers must notify the entities with media_pipeline_stop().

If multiple calls to media_pipeline_start() have been made the same number of
media_pipeline_stop() calls are required to stop streaming. The media_entity.pipe field
is reset to NULL on the last nested stop call.

498 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Link configuration will fail with -EBUSY by default if either end of the link is a streaming entity.
Links that can be modified while streaming must be marked with the MEDIA_LNK_FL_DYNAMIC
flag.

If other operations need to be disallowed on streaming entities (such as changing entities con-
figuration parameters) drivers can explicitly check the media_entity stream_count field to find
out if an entity is streaming. This operation must be done with the media_device graph_mutex
held.

2.5.1.11 Link validation

Link validation is performed by media_pipeline_start() for any entity which has sink pads
in the pipeline. The media_entity.link_validate() callback is used for that purpose. In
link_validate() callback, entity driver should check that the properties of the source pad
of the connected entity and its own sink pad match. It is up to the type of the entity (and in the
end, the properties of the hardware) what matching actually means.

Subsystems should facilitate link validation by providing subsystem specific helper functions
to provide easy access for commonly needed information, and in the end provide a way to use
driver-specific callbacks.

2.5.1.12 Media Controller Device Allocator API

When the media device belongs to more than one driver, the shared media device is allocated
with the shared struct device as the key for look ups.

The shared media device should stay in registered state until the last driver unregisters it.
In addition, the media device should be released when all the references are released. Each
driver gets a reference to the media device during probe, when it allocates the media device.
If media device is already allocated, the allocate API bumps up the refcount and returns the
existing media device. The driver puts the reference back in its disconnect routine when it
calls media_device_delete().

The media device is unregistered and cleaned up from the kref put handler to ensure that the
media device stays in registered state until the last driver unregisters the media device.

Driver Usage
Drivers should use the appropriate media-core routines to manage the shared media device
life-time handling the two states: 1. allocate -> register -> delete 2. get reference to already
registered device -> delete

call media_device_delete() routine to make sure the shared media device delete is handled
correctly.

driver probe: Call media_device_usb_allocate() to allocate or get a reference Call
media_device_register(), if media devnode isn’t registered

driver disconnect: Call media_device_delete() to free the media_device. Freeing is handled
by the kref put handler.

2.5. Media Controller devices 499

Linux Media Documentation

2.5.1.13 API Definitions

struct media_entity_notify
Media Entity Notify

Definition

struct media_entity_notify {
struct list_head list;
void *notify_data;
void (*notify)(struct media_entity *entity, void *notify_data);

};

Members
list List head

notify_data Input data to invoke the callback

notify Callback function pointer

Description
Drivers may register a callback to take action when new entities get registered with the media
device. This handler is intended for creating links between existing entities and should not
create entities and register them.

struct media_device_ops
Media device operations

Definition

struct media_device_ops {
int (*link_notify)(struct media_link *link, u32 flags, unsigned int notification);
struct media_request *(*req_alloc)(struct media_device *mdev);
void (*req_free)(struct media_request *req);
int (*req_validate)(struct media_request *req);
void (*req_queue)(struct media_request *req);

};

Members
link_notify Link state change notification callback. This callback is called with the

graph_mutex held.

req_alloc Allocate a request. Set this if you need to allocate a struct larger then struct
media_request. req_alloc and req_free must either both be set or both be NULL.

req_free Free a request. Set this if req_alloc was set as well, leave to NULL otherwise.
req_validate Validate a request, but do not queue yet. The req_queue_mutex lock is held

when this op is called.

req_queue Queue a validated request, cannot fail. If something goes wrong when queueing this
request then it should be marked as such internally in the driver and any related buffers
must eventually return to vb2 with state VB2_BUF_STATE_ERROR. The req_queue_mutex
lock is held when this op is called. It is important that vb2 buffer objects are queued last
after all other object types are queued: queueing a buffer kickstarts the request process-
ing, so all other objects related to the request (and thus the buffer) must be available to

500 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

the driver. And once a buffer is queued, then the driver can complete or delete objects
from the request before req_queue exits.

struct media_device
Media device

Definition

struct media_device {
struct device *dev;
struct media_devnode *devnode;
char model[32];
char driver_name[32];
char serial[40];
char bus_info[32];
u32 hw_revision;
u64 topology_version;
u32 id;
struct ida entity_internal_idx;
int entity_internal_idx_max;
struct list_head entities;
struct list_head interfaces;
struct list_head pads;
struct list_head links;
struct list_head entity_notify;
struct mutex graph_mutex;
struct media_graph pm_count_walk;
void *source_priv;
int (*enable_source)(struct media_entity *entity, struct media_pipeline *pipe);
void (*disable_source)(struct media_entity *entity);
const struct media_device_ops *ops;
struct mutex req_queue_mutex;
atomic_t request_id;

};

Members
dev Parent device

devnode Media device node

model Device model name

driver_name Optional device driver name. If not set, calls to MEDIA_IOC_DEVICE_INFO will
return dev->driver->name. This is needed for USB drivers for example, as otherwise
they’ll all appear as if the driver name was “usb”.

serial Device serial number (optional)

bus_info Unique and stable device location identifier

hw_revision Hardware device revision

topology_version Monotonic counter for storing the version of the graph topology. Should be
incremented each time the topology changes.

id Unique ID used on the last registered graph object

entity_internal_idx Unique internal entity ID used by the graph traversal algorithms

entity_internal_idx_max Allocated internal entity indices

2.5. Media Controller devices 501

Linux Media Documentation

entities List of registered entities

interfaces List of registered interfaces

pads List of registered pads

links List of registered links

entity_notify List of registered entity_notify callbacks

graph_mutex Protects access to struct media_device data

pm_count_walk Graph walk for power state walk. Access serialised using graph_mutex.

source_priv Driver Private data for enable/disable source handlers

enable_source Enable Source Handler function pointer

disable_source Disable Source Handler function pointer

ops Operation handler callbacks

req_queue_mutex Serialise the MEDIA_REQUEST_IOC_QUEUE ioctl w.r.t. other operations
that stop or start streaming.

request_id Used to generate unique request IDs

Description
This structure represents an abstract high-level media device. It allows easy access to enti-
ties and provides basic media device-level support. The structure can be allocated directly or
embedded in a larger structure.

The parent dev is a physical device. It must be set before registering the media device.
model is a descriptive model name exported through sysfs. It doesn’t have to be unique.
enable_source is a handler to find source entity for the sink entity and activate the link between
them if source entity is free. Drivers should call this handler before accessing the source.

disable_source is a handler to find source entity for the sink entity and deactivate the link
between them. Drivers should call this handler to release the source.

Use-case: find tuner entity connected to the decoder entity and check if it is available, and
activate the link between them from enable_source and deactivate from disable_source.

Note: Bridge driver is expected to implement and set the handler when media_device is
registered or when bridge driver finds the media_device during probe. Bridge driver sets
source_priv with information necessary to run enable_source and disable_source handlers.
Callers should hold graph_mutex to access and call enable_source and disable_source han-
dlers.

int media_entity_enum_init(struct media_entity_enum *ent_enum, struct me-
dia_device *mdev)

Initialise an entity enumeration

Parameters
struct media_entity_enum *ent_enum Entity enumeration to be initialised

struct media_device *mdev The related media device

502 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Return
zero on success or a negative error code.

void media_device_init(struct media_device *mdev)
Initializes a media device element

Parameters
struct media_device *mdev pointer to struct media_device

Description
This function initializes themedia device prior to its registration. Themedia device initialization
and registration is split in two functions to avoid race conditions and make the media device
available to user-space before the media graph has been completed.

So drivers need to first initialize the media device, register any entity within the me-
dia device, create pad to pad links and then finally register the media device by calling
media_device_register() as a final step.

void media_device_cleanup(struct media_device *mdev)
Cleanups a media device element

Parameters
struct media_device *mdev pointer to struct media_device

Description
This function that will destroy the graph_mutex that is initialized in media_device_init().

int __media_device_register(struct media_device *mdev, struct module *owner)
Registers a media device element

Parameters
struct media_device *mdev pointer to struct media_device

struct module *owner should be filled with THIS_MODULE

Description
Users, should, instead, call the media_device_register() macro.

The caller is responsible for initializing the media_device structure before registration. The
following fields of media_device must be set:

• media_entity.dev must point to the parent device (usually a pci_dev, usb_interface or
platform_device instance).

• media_entity.modelmust be filled with the device model name as a NUL-terminated UTF-
8 string. The device/model revision must not be stored in this field.

The following fields are optional:

• media_entity.serial is a unique serial number stored as a NUL-terminated ASCII string.
The field is big enough to store a GUID in text form. If the hardware doesn’t provide a
unique serial number this field must be left empty.

• media_entity.bus_info represents the location of the device in the system as a NUL-
terminated ASCII string. For PCI/PCIe devices media_entity.bus_info must be set
to “PCI:” (or “PCIe:”) followed by the value of pci_name(). For USB devices,the

2.5. Media Controller devices 503

Linux Media Documentation

usb_make_path() function must be used. This field is used by applications to distinguish
between otherwise identical devices that don’t provide a serial number.

• media_entity.hw_revision is the hardware device revision in a driver-specific format.
When possible the revision should be formatted with the KERNEL_VERSION() macro.

Note:
1) Upon successful registration a character device named media[0-9]+ is created. The device
major and minor numbers are dynamic. The model name is exported as a sysfs attribute.

2) Unregistering a media device that hasn’t been registered is NOT safe.

Return
returns zero on success or a negative error code.

media_device_register(mdev)
Registers a media device element

Parameters
mdev pointer to struct media_device

Description
This macro calls __media_device_register() passing THIS_MODULE as the
__media_device_register() second argument (owner).
void media_device_unregister(struct media_device *mdev)

Unregisters a media device element

Parameters
struct media_device *mdev pointer to struct media_device

Description
It is safe to call this function on an unregistered (but initialised) media device.

int media_device_register_entity(struct media_device *mdev, struct me-
dia_entity *entity)

registers a media entity inside a previously registered media device.

Parameters
struct media_device *mdev pointer to struct media_device

struct media_entity *entity pointer to struct media_entity to be registered

Description
Entities are identified by a unique positive integer ID. The media controller framework will such
ID automatically. IDs are not guaranteed to be contiguous, and the ID number can change on
newer Kernel versions. So, neither the driver nor userspace should hardcode ID numbers to
refer to the entities, but, instead, use the framework to find the ID, when needed.

The media_entity name, type and flags fields should be initialized before calling
media_device_register_entity(). Entities embedded in higher-level standard structures can
have some of those fields set by the higher-level framework.

504 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

If the device has pads, media_entity_pads_init() should be called before this function. Oth-
erwise, the media_entity.pad and media_entity.num_pads should be zeroed before calling
this function.

Entities have flags that describe the entity capabilities and state:

MEDIA_ENT_FL_DEFAULT indicates the default entity for a given type. This can be used to report
the default audio and video devices or the default camera sensor.

Note: Drivers should set the entity function before calling this function. Please notice that
the values MEDIA_ENT_F_V4L2_SUBDEV_UNKNOWN and MEDIA_ENT_F_UNKNOWN should not be used
by the drivers.

void media_device_unregister_entity(struct media_entity *entity)
unregisters a media entity.

Parameters
struct media_entity *entity pointer to struct media_entity to be unregistered

Description
All links associated with the entity and all PADs are automatically unregistered from the me-
dia_device when this function is called.

Unregistering an entity will not change the IDs of the other entities and the previoully used ID
will never be reused for a newly registered entities.

When a media device is unregistered, all its entities are unregistered automatically. No manual
entities unregistration is then required.

Note: The media_entity instance itself must be freed explicitly by the driver if required.

int media_device_register_entity_notify(struct media_device *mdev, struct me-
dia_entity_notify *nptr)

Registers a media entity_notify callback

Parameters
struct media_device *mdev The media device

struct media_entity_notify *nptr The media_entity_notify

Description

Note: When a new entity is registered, all the registered media_entity_notify callbacks are
invoked.

void media_device_unregister_entity_notify(struct media_device *mdev, struct me-
dia_entity_notify *nptr)

Unregister a media entity notify callback

Parameters
struct media_device *mdev The media device

2.5. Media Controller devices 505

Linux Media Documentation

struct media_entity_notify *nptr The media_entity_notify

void media_device_pci_init(struct media_device *mdev, struct pci_dev *pci_dev, const
char *name)

create and initialize a struct media_device from a PCI device.

Parameters
struct media_device *mdev pointer to struct media_device

struct pci_dev *pci_dev pointer to struct pci_dev

const char *name media device name. If NULL, the routine will use the default name for the
pci device, given by pci_name() macro.

void __media_device_usb_init(struct media_device *mdev, struct usb_device *udev,
const char *board_name, const char *driver_name)

create and initialize a struct media_device from a PCI device.

Parameters
struct media_device *mdev pointer to struct media_device

struct usb_device *udev pointer to struct usb_device

const char *board_name media device name. If NULL, the routine will use the usb product
name, if available.

const char *driver_name name of the driver. if NULL, the routine will use the name given by
udev->dev->driver->name, with is usually the wrong thing to do.

Description

Note: It is better to call media_device_usb_init() instead, as such macro fills driver_name
with KBUILD_MODNAME.

media_device_usb_init(mdev, udev, name)
create and initialize a struct media_device from a PCI device.

Parameters
mdev pointer to struct media_device

udev pointer to struct usb_device

name media device name. If NULL, the routine will use the usb product name, if available.

Description
This macro calls media_device_usb_init() passing the media_device_usb_init()
driver_name parameter filled with KBUILD_MODNAME.

struct media_file_operations
Media device file operations

Definition

struct media_file_operations {
struct module *owner;
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);

506 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

__poll_t (*poll) (struct file *, struct poll_table_struct *);
long (*ioctl) (struct file *, unsigned int, unsigned long);
long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
int (*open) (struct file *);
int (*release) (struct file *);

};

Members
owner should be filled with THIS_MODULE

read pointer to the function that implements read() syscall

write pointer to the function that implements write() syscall

poll pointer to the function that implements poll() syscall

ioctl pointer to the function that implements ioctl() syscall

compat_ioctl pointer to the function that will handle 32 bits userspace calls to the ioctl()
syscall on a Kernel compiled with 64 bits.

open pointer to the function that implements open() syscall

release pointer to the function that will release the resources allocated by the open function.
struct media_devnode

Media device node

Definition

struct media_devnode {
struct media_device *media_dev;
const struct media_file_operations *fops;
struct device dev;
struct cdev cdev;
struct device *parent;
int minor;
unsigned long flags;
void (*release)(struct media_devnode *devnode);

};

Members
media_dev pointer to struct media_device

fops pointer to struct media_file_operations with media device ops

dev pointer to struct device containing the media controller device

cdev struct cdev pointer character device

parent parent device

minor device node minor number

flags flags, combination of the MEDIA_FLAG_* constants

release release callback called at the end of media_devnode_release() routine at media-
device.c.

2.5. Media Controller devices 507

Linux Media Documentation

Description
This structure represents a media-related device node.

The parent is a physical device. It must be set by core or device drivers before registering the
node.

int media_devnode_register(struct media_device *mdev, struct me-
dia_devnode *devnode, struct module *owner)

register a media device node

Parameters
struct media_device *mdev struct media_device we want to register a device node

struct media_devnode *devnode media device node structure we want to register

struct module *owner should be filled with THIS_MODULE

Description
The registration code assigns minor numbers and registers the new device node with the kernel.
An error is returned if no free minor number can be found, or if the registration of the device
node fails.

Zero is returned on success.

Note that if the media_devnode_register call fails, the release() callback of the media_devnode
structure is not called, so the caller is responsible for freeing any data.

void media_devnode_unregister_prepare(struct media_devnode *devnode)
clear the media device node register bit

Parameters
struct media_devnode *devnode the device node to prepare for unregister

Description
This clears the passed device register bit. Future open calls will be met with errors. Should
be called before media_devnode_unregister() to avoid races with unregister and device file
open calls.

This function can safely be called if the device node has never been registered or has already
been unregistered.

void media_devnode_unregister(struct media_devnode *devnode)
unregister a media device node

Parameters
struct media_devnode *devnode the device node to unregister

Description
This unregisters the passed device. Future open calls will be met with errors.

Should be called after media_devnode_unregister_prepare()

struct media_devnode * media_devnode_data(struct file *filp)
returns a pointer to the media_devnode

Parameters

508 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct file *filp pointer to struct file

int media_devnode_is_registered(struct media_devnode *devnode)
returns true if media_devnode is registered; false otherwise.

Parameters
struct media_devnode *devnode pointer to struct media_devnode.

Note
If mdev is NULL, it also returns false.

enum media_gobj_type
type of a graph object

Constants
MEDIA_GRAPH_ENTITY Identify a media entity

MEDIA_GRAPH_PAD Identify a media pad

MEDIA_GRAPH_LINK Identify a media link

MEDIA_GRAPH_INTF_DEVNODE Identify a media Kernel API interface via a device node

struct media_gobj
Define a graph object.

Definition

struct media_gobj {
struct media_device *mdev;
u32 id;
struct list_head list;

};

Members
mdev Pointer to the struct media_device that owns the object

id Non-zero object ID identifier. The ID should be unique inside a media_device, as it is com-
posed by MEDIA_BITS_PER_TYPE to store the type plus MEDIA_BITS_PER_ID to store the
ID

list List entry stored in one of the per-type mdev object lists

Description
All objects on the media graph should have this struct embedded

struct media_entity_enum
An enumeration of media entities.

Definition

struct media_entity_enum {
unsigned long *bmap;
int idx_max;

};

Members

2.5. Media Controller devices 509

Linux Media Documentation

bmap Bit map in which each bit represents one entity at struct media_entity->internal_idx.

idx_max Number of bits in bmap

struct media_graph
Media graph traversal state

Definition

struct media_graph {
struct {
struct media_entity *entity;
struct list_head *link;

} stack[MEDIA_ENTITY_ENUM_MAX_DEPTH];
struct media_entity_enum ent_enum;
int top;

};

Members
stack Graph traversal stack; the stack contains information on the path the media entities to

be walked and the links through which they were reached.

stack.entity pointer to struct media_entity at the graph.

stack.link pointer to struct list_head.

ent_enum Visited entities

top The top of the stack

struct media_pipeline
Media pipeline related information

Definition

struct media_pipeline {
int streaming_count;
struct media_graph graph;

};

Members
streaming_count Streaming start count - streaming stop count

graph Media graph walk during pipeline start / stop

struct media_link
A link object part of a media graph.

Definition

struct media_link {
struct media_gobj graph_obj;
struct list_head list;
union {
struct media_gobj *gobj0;
struct media_pad *source;
struct media_interface *intf;

};
union {

510 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct media_gobj *gobj1;
struct media_pad *sink;
struct media_entity *entity;

};
struct media_link *reverse;
unsigned long flags;
bool is_backlink;

};

Members
graph_obj Embedded structure containing the media object common data

list Linked list associated with an entity or an interface that owns the link.

{unnamed_union} anonymous

gobj0 Part of a union. Used to get the pointer for the first graph_object of the link.

source Part of a union. Used only if the first object (gobj0) is a pad. In that case, it represents
the source pad.

intf Part of a union. Used only if the first object (gobj0) is an interface.

{unnamed_union} anonymous

gobj1 Part of a union. Used to get the pointer for the second graph_object of the link.

sink Part of a union. Used only if the second object (gobj1) is a pad. In that case, it represents
the sink pad.

entity Part of a union. Used only if the second object (gobj1) is an entity.

reverse Pointer to the link for the reverse direction of a pad to pad link.

flags Link flags, as defined in uapi/media.h (MEDIA_LNK_FL_*)

is_backlink Indicate if the link is a backlink.

enum media_pad_signal_type
type of the signal inside a media pad

Constants
PAD_SIGNAL_DEFAULT

Default signal. Use this when all inputs or all outputs are uniquely identified by the
pad number.

PAD_SIGNAL_ANALOG

The pad contains an analog signal. It can be Radio Frequency, Intermediate Fre-
quency, a baseband signal or sub-carriers. Tuner inputs, IF-PLL demodulators, com-
posite and s-video signals should use it.

PAD_SIGNAL_DV

Contains a digital video signal, with can be a bitstream of samples taken from an
analog TV video source. On such case, it usually contains the VBI data on it.

PAD_SIGNAL_AUDIO

2.5. Media Controller devices 511

Linux Media Documentation

Contains an Intermediate Frequency analog signal from an audio sub-carrier or an
audio bitstream. IF signals are provided by tuners and consumed by audio AM/FM
decoders. Bitstream audio is provided by an audio decoder.

struct media_pad
A media pad graph object.

Definition

struct media_pad {
struct media_gobj graph_obj;
struct media_entity *entity;
u16 index;
enum media_pad_signal_type sig_type;
unsigned long flags;

};

Members
graph_obj Embedded structure containing the media object common data

entity Entity this pad belongs to

index Pad index in the entity pads array, numbered from 0 to n

sig_type Type of the signal inside a media pad

flags Pad flags, as defined in include/uapi/linux/media.h (seek for MEDIA_PAD_FL_*)

struct media_entity_operations
Media entity operations

Definition

struct media_entity_operations {
int (*get_fwnode_pad)(struct media_entity *entity, struct fwnode_endpoint *endpoint);
int (*link_setup)(struct media_entity *entity,const struct media_pad *local, const␣

↪→struct media_pad *remote, u32 flags);
int (*link_validate)(struct media_link *link);

};

Members
get_fwnode_pad Return the pad number based on a fwnode endpoint or a negative value on

error. This operation can be used to map a fwnode to a media pad number. Optional.

link_setup Notify the entity of link changes. The operation can return an error, in which case
link setup will be cancelled. Optional.

link_validate Return whether a link is valid from the entity point of view. The
media_pipeline_start() function validates all links by calling this operation. Optional.

Description

Note: Those these callbacks are called with struct media_device.graph_mutex mutex held.

enum media_entity_type
Media entity type

512 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Constants
MEDIA_ENTITY_TYPE_BASE

The entity isn’t embedded in another subsystem structure.

MEDIA_ENTITY_TYPE_VIDEO_DEVICE

The entity is embedded in a struct video_device instance.

MEDIA_ENTITY_TYPE_V4L2_SUBDEV

The entity is embedded in a struct v4l2_subdev instance.

Description
Media entity objects are often not instantiated directly, but the media entity structure is in-
herited by (through embedding) other subsystem-specific structures. The media entity type
identifies the type of the subclass structure that implements a media entity instance.

This allows runtime type identification of media entities and safe casting to the correct ob-
ject type. For instance, a media entity structure instance embedded in a v4l2_subdev struc-
ture instance will have the type MEDIA_ENTITY_TYPE_V4L2_SUBDEV and can safely be cast to a
v4l2_subdev structure using the container_of() macro.

struct media_entity
A media entity graph object.

Definition

struct media_entity {
struct media_gobj graph_obj;
const char *name;
enum media_entity_type obj_type;
u32 function;
unsigned long flags;
u16 num_pads;
u16 num_links;
u16 num_backlinks;
int internal_idx;
struct media_pad *pads;
struct list_head links;
const struct media_entity_operations *ops;
int stream_count;
int use_count;
struct media_pipeline *pipe;
union {
struct {
u32 major;
u32 minor;

} dev;
} info;

};

Members
graph_obj Embedded structure containing the media object common data.

name Entity name.

obj_type Type of the object that implements the media_entity.

2.5. Media Controller devices 513

Linux Media Documentation

function Entity main function, as defined in include/uapi/linux/media.h (seek for
MEDIA_ENT_F_*)

flags Entity flags, as defined in include/uapi/linux/media.h (seek for MEDIA_ENT_FL_*)

num_pads Number of sink and source pads.

num_links Total number of links, forward and back, enabled and disabled.

num_backlinks Number of backlinks

internal_idx An unique internal entity specific number. The numbers are re-used if entities
are unregistered or registered again.

pads Pads array with the size defined by num_pads.
links List of data links.

ops Entity operations.

stream_count Stream count for the entity.

use_count Use count for the entity.

pipe Pipeline this entity belongs to.

info Union with devnode information. Kept just for backward compatibility.

info.dev Contains device major and minor info.

info.dev.major device node major, if the device is a devnode.

info.dev.minor device node minor, if the device is a devnode.

Description

Note: stream_count and use_count reference counts must never be negative, but are signed
integers on purpose: a simple WARN_ON(<0) check can be used to detect reference count bugs
that would make them negative.

struct media_interface
A media interface graph object.

Definition

struct media_interface {
struct media_gobj graph_obj;
struct list_head links;
u32 type;
u32 flags;

};

Members
graph_obj embedded graph object

links List of links pointing to graph entities

type Type of the interface as defined in include/uapi/linux/media.h (seek for MEDIA_INTF_T_*)

flags Interface flags as defined in include/uapi/linux/media.h (seek for MEDIA_INTF_FL_*)

514 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description

Note: Currently, no flags for media_interface is defined.

struct media_intf_devnode
A media interface via a device node.

Definition

struct media_intf_devnode {
struct media_interface intf;
u32 major;
u32 minor;

};

Members
intf embedded interface object

major Major number of a device node

minor Minor number of a device node

u32 media_entity_id(struct media_entity *entity)
return the media entity graph object id

Parameters
struct media_entity *entity pointer to media_entity

enum media_gobj_type media_type(struct media_gobj *gobj)
return the media object type

Parameters
struct media_gobj *gobj Pointer to the struct media_gobj graph object

u32 media_id(struct media_gobj *gobj)
return the media object ID

Parameters
struct media_gobj *gobj Pointer to the struct media_gobj graph object

u32 media_gobj_gen_id(enum media_gobj_type type, u64 local_id)
encapsulates type and ID on at the object ID

Parameters
enum media_gobj_type type object type as define at enum media_gobj_type.

u64 local_id next ID, from struct media_device.id.

bool is_media_entity_v4l2_video_device(struct media_entity *entity)
Check if the entity is a video_device

Parameters
struct media_entity *entity pointer to entity

2.5. Media Controller devices 515

Linux Media Documentation

Return
true if the entity is an instance of a video_device object and can safely be cast to a struct
video_device using the container_of() macro, or false otherwise.

bool is_media_entity_v4l2_subdev(struct media_entity *entity)
Check if the entity is a v4l2_subdev

Parameters
struct media_entity *entity pointer to entity

Return
true if the entity is an instance of a v4l2_subdev object and can safely be cast to a struct
v4l2_subdev using the container_of() macro, or false otherwise.

int __media_entity_enum_init(struct media_entity_enum *ent_enum, int idx_max)
Initialise an entity enumeration

Parameters
struct media_entity_enum *ent_enum Entity enumeration to be initialised

int idx_max Maximum number of entities in the enumeration

Return
Returns zero on success or a negative error code.

void media_entity_enum_cleanup(struct media_entity_enum *ent_enum)
Release resources of an entity enumeration

Parameters
struct media_entity_enum *ent_enum Entity enumeration to be released

void media_entity_enum_zero(struct media_entity_enum *ent_enum)
Clear the entire enum

Parameters
struct media_entity_enum *ent_enum Entity enumeration to be cleared

void media_entity_enum_set(struct media_entity_enum *ent_enum, struct me-
dia_entity *entity)

Mark a single entity in the enum

Parameters
struct media_entity_enum *ent_enum Entity enumeration

struct media_entity *entity Entity to be marked

void media_entity_enum_clear(struct media_entity_enum *ent_enum, struct me-
dia_entity *entity)

Unmark a single entity in the enum

Parameters
struct media_entity_enum *ent_enum Entity enumeration

struct media_entity *entity Entity to be unmarked

516 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

bool media_entity_enum_test(struct media_entity_enum *ent_enum, struct me-
dia_entity *entity)

Test whether the entity is marked

Parameters
struct media_entity_enum *ent_enum Entity enumeration

struct media_entity *entity Entity to be tested

Description
Returns true if the entity was marked.

bool media_entity_enum_test_and_set(struct media_entity_enum *ent_enum, struct
media_entity *entity)

Test whether the entity is marked, and mark it

Parameters
struct media_entity_enum *ent_enum Entity enumeration

struct media_entity *entity Entity to be tested

Description
Returns true if the entity was marked, and mark it before doing so.

bool media_entity_enum_empty(struct media_entity_enum *ent_enum)
Test whether the entire enum is empty

Parameters
struct media_entity_enum *ent_enum Entity enumeration

Return
true if the entity was empty.

bool media_entity_enum_intersects(struct media_entity_enum *ent_enum1, struct me-
dia_entity_enum *ent_enum2)

Test whether two enums intersect

Parameters
struct media_entity_enum *ent_enum1 First entity enumeration

struct media_entity_enum *ent_enum2 Second entity enumeration

Return
true if entity enumerations ent_enum1 and ent_enum2 intersect, otherwise false.
gobj_to_entity(gobj)

returns the struct media_entity pointer from the gobj contained on it.
Parameters
gobj Pointer to the struct media_gobj graph object

gobj_to_pad(gobj)
returns the struct media_pad pointer from the gobj contained on it.

Parameters
gobj Pointer to the struct media_gobj graph object

2.5. Media Controller devices 517

Linux Media Documentation

gobj_to_link(gobj)
returns the struct media_link pointer from the gobj contained on it.

Parameters
gobj Pointer to the struct media_gobj graph object

gobj_to_intf(gobj)
returns the struct media_interface pointer from the gobj contained on it.

Parameters
gobj Pointer to the struct media_gobj graph object

intf_to_devnode(intf)
returns the struct media_intf_devnode pointer from the intf contained on it.

Parameters
intf Pointer to struct media_intf_devnode

void media_gobj_create(struct media_device *mdev, enum media_gobj_type type, struct
media_gobj *gobj)

Initialize a graph object

Parameters
struct media_device *mdev Pointer to the media_device that contains the object

enum media_gobj_type type Type of the object

struct media_gobj *gobj Pointer to the struct media_gobj graph object

Description
This routine initializes the embedded struct media_gobj inside a media graph object. It is
called automatically if media_*_create function calls are used. However, if the object (entity,
link, pad, interface) is embedded on some other object, this function should be called before
registering the object at the media controller.

void media_gobj_destroy(struct media_gobj *gobj)
Stop using a graph object on a media device

Parameters
struct media_gobj *gobj Pointer to the struct media_gobj graph object

Description
This should be called by all routines like media_device_unregister() that remove/destroy
media graph objects.

int media_entity_pads_init(struct media_entity *entity, u16 num_pads, struct me-
dia_pad *pads)

Initialize the entity pads

Parameters
struct media_entity *entity entity where the pads belong

u16 num_pads total number of sink and source pads

struct media_pad *pads Array of num_pads pads.

518 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description
The pads array is managed by the entity driver and passed to media_entity_pads_init()
where its pointer will be stored in the media_entity structure.

If no pads are needed, drivers could either directly fill media_entity->num_pads with 0 and
media_entity->pads with NULL or call this function that will do the same.

As the number of pads is known in advance, the pads array is not allocated dynamically but
is managed by the entity driver. Most drivers will embed the pads array in a driver-specific
structure, avoiding dynamic allocation.

Drivers must set the direction of every pad in the pads array before calling
media_entity_pads_init(). The function will initialize the other pads fields.

void media_entity_cleanup(struct media_entity *entity)
free resources associated with an entity

Parameters
struct media_entity *entity entity where the pads belong

Description
This function must be called during the cleanup phase after unregistering the entity (currently,
it does nothing).

int media_get_pad_index(struct media_entity *entity, bool is_sink, enum me-
dia_pad_signal_type sig_type)

retrieves a pad index from an entity

Parameters
struct media_entity *entity entity where the pads belong

bool is_sink true if the pad is a sink, false if it is a source

enum media_pad_signal_type sig_type type of signal of the pad to be search

Description
This helper function finds the first pad index inside an entity that satisfies both is_sink and
sig_type conditions.
On success, return the pad number. If the pad was not found or the media entity is a NULL
pointer, return -EINVAL.

Return
int media_create_pad_link(struct media_entity *source, u16 source_pad, struct me-

dia_entity *sink, u16 sink_pad, u32 flags)
creates a link between two entities.

Parameters
struct media_entity *source pointer to media_entity of the source pad.

u16 source_pad number of the source pad in the pads array

struct media_entity *sink pointer to media_entity of the sink pad.

u16 sink_pad number of the sink pad in the pads array.

u32 flags Link flags, as defined in include/uapi/linux/media.h (seek for MEDIA_LNK_FL_*)

2.5. Media Controller devices 519

Linux Media Documentation

Description
Valid values for flags:

MEDIA_LNK_FL_ENABLED Indicates that the link is enabled and can be used to transfer media
data. When two or more links target a sink pad, only one of them can be enabled at a time.

MEDIA_LNK_FL_IMMUTABLE Indicates that the link enabled state can’t be modified at runtime. If
MEDIA_LNK_FL_IMMUTABLE is set, then MEDIA_LNK_FL_ENABLED must also be set, since an
immutable link is always enabled.

Note: Before calling this function, media_entity_pads_init() and
media_device_register_entity() should be called previously for both ends.

int media_create_pad_links(const struct media_device *mdev, const
u32 source_function, struct media_entity *source, const
u16 source_pad, const u32 sink_function, struct me-
dia_entity *sink, const u16 sink_pad, u32 flags, const
bool allow_both_undefined)

creates a link between two entities.

Parameters
const struct media_device *mdev Pointer to the media_device that contains the object

const u32 source_function Function of the source entities. Used only if source is NULL.
struct media_entity *source pointer to media_entity of the source pad. If NULL, it will

use all entities that matches the sink_function.
const u16 source_pad number of the source pad in the pads array

const u32 sink_function Function of the sink entities. Used only if sink is NULL.
struct media_entity *sink pointer to media_entity of the sink pad. If NULL, it will use all

entities that matches the sink_function.
const u16 sink_pad number of the sink pad in the pads array.

u32 flags Link flags, as defined in include/uapi/linux/media.h.

const bool allow_both_undefined if true, then both source and sink can be NULL. In such
case, it will create a crossbar between all entities that matches source_function to all
entities that matches sink_function. If false, it will return 0 and won’t create any link if
both source and sink are NULL.

Description
Valid values for flags:

A MEDIA_LNK_FL_ENABLED flag indicates that the link is enabled and can be used to
transfer media data. If multiple links are created and this flag is passed as an argument,
only the first created link will have this flag.

A MEDIA_LNK_FL_IMMUTABLE flag indicates that the link enabled state can’t be modified
at runtime. If MEDIA_LNK_FL_IMMUTABLE is set, then MEDIA_LNK_FL_ENABLED must also be
set since an immutable link is always enabled.

520 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

It is common for some devices to have multiple source and/or sink entities of the same type that
should be linked. While media_create_pad_link() creates link by link, this function is meant
to allow 1:n, n:1 and even cross-bar (n:n) links.

Note: Before calling this function, media_entity_pads_init() and
media_device_register_entity() should be called previously for the entities to be linked.

void media_entity_remove_links(struct media_entity *entity)
remove all links associated with an entity

Parameters
struct media_entity *entity pointer to media_entity

Description

Note: This is called automatically when an entity is unregistered via
media_device_register_entity().

int __media_entity_setup_link(struct media_link *link, u32 flags)
Configure a media link without locking

Parameters
struct media_link *link The link being configured

u32 flags Link configuration flags

Description
The bulk of link setup is handled by the two entities connected through the link. This function
notifies both entities of the link configuration change.

If the link is immutable or if the current and new configuration are identical, return immediately.

The user is expected to hold link->source->parent->mutex. If not,
media_entity_setup_link() should be used instead.

int media_entity_setup_link(struct media_link *link, u32 flags)
changes the link flags properties in runtime

Parameters
struct media_link *link pointer to media_link

u32 flags the requested new link flags

Description
The only configurable property is the MEDIA_LNK_FL_ENABLED link flag to enable/disable a link.
Links marked with the MEDIA_LNK_FL_IMMUTABLE link flag can not be enabled or disabled.

When a link is enabled or disabled, the media framework calls the link_setup operation for the
two entities at the source and sink of the link, in that order. If the second link_setup call fails,
another link_setup call is made on the first entity to restore the original link flags.

2.5. Media Controller devices 521

Linux Media Documentation

Media device drivers can be notified of link setup operations by setting the media_device.
link_notify pointer to a callback function. If provided, the notification callback will be called
before enabling and after disabling links.

Entity drivers must implement the link_setup operation if any of their links is non-immutable.
The operation must either configure the hardware or store the configuration information to be
applied later.

Link configuration must not have any side effect on other links. If an enabled link at a sink
pad prevents another link at the same pad from being enabled, the link_setup operation must
return -EBUSY and can’t implicitly disable the first enabled link.

Note: The valid values of the flags for the link is the same as described
on media_create_pad_link(), for pad to pad links or the same as described on
media_create_intf_link(), for interface to entity links.

struct media_link * media_entity_find_link(struct media_pad *source, struct me-
dia_pad *sink)

Find a link between two pads

Parameters
struct media_pad *source Source pad

struct media_pad *sink Sink pad

Return
returns a pointer to the link between the two entities. If no such link exists, return NULL.

struct media_pad * media_entity_remote_pad(const struct media_pad *pad)
Find the pad at the remote end of a link

Parameters
const struct media_pad *pad Pad at the local end of the link

Description
Search for a remote pad connected to the given pad by iterating over all links originating or
terminating at that pad until an enabled link is found.

Return
returns a pointer to the pad at the remote end of the first found enabled link, or NULL if no
enabled link has been found.

int media_entity_get_fwnode_pad(struct media_entity *entity, struct fwn-
ode_handle *fwnode, unsigned long direction_flags)

Get pad number from fwnode

Parameters
struct media_entity *entity The entity

struct fwnode_handle *fwnode Pointer to the fwnode_handle which should be used to find
the pad

unsigned long direction_flags Expected direction of the pad, as defined in in-
clude/uapi/linux/media.h (seek for MEDIA_PAD_FL_*)

522 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description
This function can be used to resolve the media pad number from a fwnode. This is useful for
devices which use more complex mappings of media pads.

If the entity does not implement the get_fwnode_pad() operation then this function searches
the entity for the first pad that matches the direction_flags.
Return
returns the pad number on success or a negative error code.

int media_graph_walk_init(struct media_graph *graph, struct media_device *mdev)
Allocate resources used by graph walk.

Parameters
struct media_graph *graph Media graph structure that will be used to walk the graph

struct media_device *mdev Pointer to the media_device that contains the object

Description
The caller is required to hold the media_device graph_mutex during the graph walk until the
graph state is released.

Returns zero on success or a negative error code otherwise.

void media_graph_walk_cleanup(struct media_graph *graph)
Release resources used by graph walk.

Parameters
struct media_graph *graph Media graph structure that will be used to walk the graph

void media_graph_walk_start(struct media_graph *graph, struct media_entity *entity)
Start walking the media graph at a given entity

Parameters
struct media_graph *graph Media graph structure that will be used to walk the graph

struct media_entity *entity Starting entity

Description
Before using this function, media_graph_walk_init() must be used to allocate resources used
for walking the graph. This function initializes the graph traversal structure to walk the en-
tities graph starting at the given entity. The traversal structure must not be modified by the
caller during graph traversal. After the graph walk, the resources must be released using
media_graph_walk_cleanup().

struct media_entity * media_graph_walk_next(struct media_graph *graph)
Get the next entity in the graph

Parameters
struct media_graph *graph Media graph structure

Description
Perform a depth-first traversal of the given media entities graph.

2.5. Media Controller devices 523

Linux Media Documentation

The graph structure must have been previously initialized with a call to
media_graph_walk_start().

Return
returns the next entity in the graph or NULL if the whole graph have been traversed.

int media_pipeline_start(struct media_entity *entity, struct media_pipeline *pipe)
Mark a pipeline as streaming

Parameters
struct media_entity *entity Starting entity

struct media_pipeline *pipe Media pipeline to be assigned to all entities in the pipeline.

Description
Mark all entities connected to a given entity through enabled links, either directly or indirectly,
as streaming. The given pipeline object is assigned to every entity in the pipeline and stored in
the media_entity pipe field.

Calls to this function can be nested, in which case the same number of media_pipeline_stop()
calls will be required to stop streaming. The pipeline pointer must be identical for all nested
calls to media_pipeline_start().

int __media_pipeline_start(struct media_entity *entity, struct media_pipeline *pipe)
Mark a pipeline as streaming

Parameters
struct media_entity *entity Starting entity

struct media_pipeline *pipe Media pipeline to be assigned to all entities in the pipeline.

Description
..note:: This is the non-locking version of media_pipeline_start()

void media_pipeline_stop(struct media_entity *entity)
Mark a pipeline as not streaming

Parameters
struct media_entity *entity Starting entity

Description
Mark all entities connected to a given entity through enabled links, either directly or indirectly,
as not streaming. The media_entity pipe field is reset to NULL.

If multiple calls to media_pipeline_start() have been made, the same number of calls to this
function are required to mark the pipeline as not streaming.

void __media_pipeline_stop(struct media_entity *entity)
Mark a pipeline as not streaming

Parameters
struct media_entity *entity Starting entity

Description

524 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Note: This is the non-locking version of media_pipeline_stop()

struct media_intf_devnode * media_devnode_create(struct media_device *mdev,
u32 type, u32 flags, u32 major,
u32 minor)

creates and initializes a device node interface

Parameters
struct media_device *mdev pointer to struct media_device

u32 type type of the interface, as given by include/uapi/linux/media.h (seek for
MEDIA_INTF_T_*) macros.

u32 flags Interface flags, as defined in include/uapi/linux/media.h (seek for
MEDIA_INTF_FL_*)

u32 major Device node major number.

u32 minor Device node minor number.

Return
if succeeded, returns a pointer to the newly allocated media_intf_devnode pointer.

Description

Note: Currently, no flags for media_interface is defined.

void media_devnode_remove(struct media_intf_devnode *devnode)
removes a device node interface

Parameters
struct media_intf_devnode *devnode pointer to media_intf_devnode to be freed.

Description
When a device node interface is removed, all links to it are automatically removed.

media_create_intf_link(struct media_entity *entity, struct media_interface *intf,
u32 flags)

creates a link between an entity and an interface

Parameters
struct media_entity *entity pointer to media_entity

struct media_interface *intf pointer to media_interface

u32 flags Link flags, as defined in include/uapi/linux/media.h (seek for MEDIA_LNK_FL_*)

Description
Valid values for flags:

MEDIA_LNK_FL_ENABLED Indicates that the interface is connected to the entity hardware. That’s
the default value for interfaces. An interface may be disabled if the hardware is busy due
to the usage of some other interface that it is currently controlling the hardware.

2.5. Media Controller devices 525

Linux Media Documentation

A typical example is an hybrid TV device that handle only one type of stream on a given
time. So, when the digital TV is streaming, the V4L2 interfaces won’t be enabled, as such
device is not able to also stream analog TV or radio.

Note: Before calling this function, media_devnode_create() should be called for the interface
and media_device_register_entity() should be called for the interface that will be part of
the link.

void __media_remove_intf_link(struct media_link *link)
remove a single interface link

Parameters
struct media_link *link pointer to media_link.

Description

Note: This is an unlocked version of media_remove_intf_link()

void media_remove_intf_link(struct media_link *link)
remove a single interface link

Parameters
struct media_link *link pointer to media_link.

Description

Note: Prefer to use this one, instead of __media_remove_intf_link()

void __media_remove_intf_links(struct media_interface *intf)
remove all links associated with an interface

Parameters
struct media_interface *intf pointer to media_interface

Description

Note: This is an unlocked version of media_remove_intf_links().

void media_remove_intf_links(struct media_interface *intf)
remove all links associated with an interface

Parameters
struct media_interface *intf pointer to media_interface

Description

Note:

526 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

1) This is called automatically when an entity is unregistered via
media_device_register_entity() and by media_devnode_remove().

2) Prefer to use this one, instead of __media_remove_intf_links().

media_entity_call(entity, operation, args…)
Calls a struct media_entity_operations operation on an entity

Parameters
entity entity where the operation will be called
operation type of the operation. Should be the name of a member of struct

media_entity_operations.

args... variable arguments

Description
This helper function will check if operation is not NULL. On such case, it will issue a call to
operation(entity, args).
enum media_request_state

media request state

Constants
MEDIA_REQUEST_STATE_IDLE Idle

MEDIA_REQUEST_STATE_VALIDATING Validating the request, no state changes allowed

MEDIA_REQUEST_STATE_QUEUED Queued

MEDIA_REQUEST_STATE_COMPLETE Completed, the request is done

MEDIA_REQUEST_STATE_CLEANING Cleaning, the request is being re-inited

MEDIA_REQUEST_STATE_UPDATING The request is being updated, i.e. request objects are being
added, modified or removed

NR_OF_MEDIA_REQUEST_STATE The number of media request states, used internally for sanity
check purposes

struct media_request
Media device request

Definition

struct media_request {
struct media_device *mdev;
struct kref kref;
char debug_str[TASK_COMM_LEN + 11];
enum media_request_state state;
unsigned int updating_count;
unsigned int access_count;
struct list_head objects;
unsigned int num_incomplete_objects;
wait_queue_head_t poll_wait;
spinlock_t lock;

};

2.5. Media Controller devices 527

Linux Media Documentation

Members
mdev Media device this request belongs to

kref Reference count

debug_str Prefix for debug messages (process name:fd)

state The state of the request

updating_count count the number of request updates that are in progress

access_count count the number of request accesses that are in progress

objects List of struct media_request_object request objects
num_incomplete_objects The number of incomplete objects in the request

poll_wait Wait queue for poll

lock Serializes access to this struct

int media_request_lock_for_access(struct media_request *req)
Lock the request to access its objects

Parameters
struct media_request *req The media request

Description
Use before accessing a completed request. A reference to the request must be held dur-
ing the access. This usually takes place automatically through a file handle. Use me-
dia_request_unlock_for_access when done.
void media_request_unlock_for_access(struct media_request *req)

Unlock a request previously locked for access

Parameters
struct media_request *req The media request

Description
Unlock a request that has previously been locked using media_request_lock_for_access.
int media_request_lock_for_update(struct media_request *req)

Lock the request for updating its objects

Parameters
struct media_request *req The media request

Description
Use before updating a request, i.e. adding, modifying or removing a request object in it. A
reference to the request must be held during the update. This usually takes place automatically
through a file handle. Use media_request_unlock_for_update when done.
void media_request_unlock_for_update(struct media_request *req)

Unlock a request previously locked for update

Parameters
struct media_request *req The media request

528 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description
Unlock a request that has previously been locked using media_request_lock_for_update.
void media_request_get(struct media_request *req)

Get the media request

Parameters
struct media_request *req The media request

Description
Get the media request.

void media_request_put(struct media_request *req)
Put the media request

Parameters
struct media_request *req The media request

Description
Put the media request. The media request will be released when the refcount reaches 0.

struct media_request * media_request_get_by_fd(struct media_device *mdev,
int request_fd)

Get a media request by fd

Parameters
struct media_device *mdev Media device this request belongs to

int request_fd The file descriptor of the request

Description
Get the request represented by request_fd that is owned by the media device.
Return a -EBADR error pointer if requests are not supported by this driver. Return -EINVAL if
the request was not found. Return the pointer to the request if found: the caller will have to
call media_request_put when it finished using the request.
int media_request_alloc(struct media_device *mdev, int *alloc_fd)

Allocate the media request

Parameters
struct media_device *mdev Media device this request belongs to

int *alloc_fd Store the request’s file descriptor in this int

Description
Allocated the media request and put the fd in alloc_fd.
struct media_request_object_ops

Media request object operations

Definition

2.5. Media Controller devices 529

Linux Media Documentation

struct media_request_object_ops {
int (*prepare)(struct media_request_object *object);
void (*unprepare)(struct media_request_object *object);
void (*queue)(struct media_request_object *object);
void (*unbind)(struct media_request_object *object);
void (*release)(struct media_request_object *object);

};

Members
prepare Validate and prepare the request object, optional.

unprepare Unprepare the request object, optional.

queue Queue the request object, optional.

unbind Unbind the request object, optional.

release Release the request object, required.

struct media_request_object
An opaque object that belongs to a media request

Definition

struct media_request_object {
const struct media_request_object_ops *ops;
void *priv;
struct media_request *req;
struct list_head list;
struct kref kref;
bool completed;

};

Members
ops object’s operations

priv object’s priv pointer

req the request this object belongs to (can be NULL)

list List entry of the object for struct media_request
kref Reference count of the object, acquire before releasing req->lock

completed If true, then this object was completed.

Description
An object related to the request. This struct is always embedded in another struct that contains
the actual data for this request object.

void media_request_object_get(struct media_request_object *obj)
Get a media request object

Parameters
struct media_request_object *obj The object

Description
Get a media request object.

530 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

void media_request_object_put(struct media_request_object *obj)
Put a media request object

Parameters
struct media_request_object *obj The object

Description
Put a media request object. Once all references are gone, the object’s memory is released.

struct media_request_object * media_request_object_find(struct media_request *req,
const struct me-
dia_request_object_ops *ops,
void *priv)

Find an object in a request

Parameters
struct media_request *req The media request

const struct media_request_object_ops *ops Find an object with this ops value

void *priv Find an object with this priv value

Description
Both ops and priv must be non-NULL.
Returns the object pointer or NULL if not found. The caller must call
media_request_object_put() once it finished using the object.

Since this function needs to walk the list of objects it takes the req->lock spin lock to make
this safe.

void media_request_object_init(struct media_request_object *obj)
Initialise a media request object

Parameters
struct media_request_object *obj The object

Description
Initialise a media request object. The object will be released using the release callback of the
ops once it has no references (this function initialises references to one).

int media_request_object_bind(struct media_request *req, const struct me-
dia_request_object_ops *ops, void *priv, bool is_buffer,
struct media_request_object *obj)

Bind a media request object to a request

Parameters
struct media_request *req The media request

const struct media_request_object_ops *ops The object ops for this object

void *priv A driver-specific priv pointer associated with this object

bool is_buffer Set to true if the object a buffer object.

struct media_request_object *obj The object

2.5. Media Controller devices 531

Linux Media Documentation

Description
Bind this object to the request and set the ops and priv values of the object so it can be found
later with media_request_object_find().

Every bound object must be unbound or completed by the kernel at some point in time, other-
wise the request will never complete. When the request is released all completed objects will
be unbound by the request core code.

Buffer objects will be added to the end of the request’s object list, non-buffer objects will be
added to the front of the list. This ensures that all buffer objects are at the end of the list and
that all non-buffer objects that they depend on are processed first.

void media_request_object_unbind(struct media_request_object *obj)
Unbind a media request object

Parameters
struct media_request_object *obj The object

Description
Unbind the media request object from the request.

void media_request_object_complete(struct media_request_object *obj)
Mark the media request object as complete

Parameters
struct media_request_object *obj The object

Description
Mark the media request object as complete. Only bound objects can be completed.

struct media_device * media_device_usb_allocate(struct usb_device *udev, const
char *module_name, struct mod-
ule *owner)

Allocate and return struct media device

Parameters
struct usb_device *udev struct usb_device pointer

const char *module_name should be filled with KBUILD_MODNAME

struct module *owner struct module pointer THIS_MODULE for the driver. THIS_MODULE is null
for a built-in driver. It is safe even when THIS_MODULE is null.

Description
This interface should be called to allocate a Media Device when multiple drivers share
usb_device and the media device. This interface allocates media_device structure and calls
media_device_usb_init() to initialize it.

void media_device_delete(structmedia_device *mdev, const char *module_name, struct
module *owner)

Release media device. Calls kref_put().

Parameters
struct media_device *mdev struct media_device pointer

const char *module_name should be filled with KBUILD_MODNAME

532 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct module *owner struct module pointer THIS_MODULE for the driver. THIS_MODULE is null
for a built-in driver. It is safe even when THIS_MODULE is null.

Description
This interface should be called to put Media Device Instance kref.

2.6 CEC Kernel Support

The CEC framework provides a unified kernel interface for use with HDMI CEC hardware. It
is designed to handle a multiple types of hardware (receivers, transmitters, USB dongles). The
framework also gives the option to decide what to do in the kernel driver and what should be
handled by userspace applications. In addition it integrates the remote control passthrough
feature into the kernel’s remote control framework.

2.6.1 The CEC Protocol

The CEC protocol enables consumer electronic devices to communicate with each other through
the HDMI connection. The protocol uses logical addresses in the communication. The logical
address is strictly connected with the functionality provided by the device. The TV acting as
the communication hub is always assigned address 0. The physical address is determined by
the physical connection between devices.

The CEC framework described here is up to date with the CEC 2.0 specification. It is doc-
umented in the HDMI 1.4 specification with the new 2.0 bits documented in the HDMI 2.0
specification. But for most of the features the freely available HDMI 1.3a specification is suffi-
cient:

https://www.hdmi.org/spec/index

2.6.2 CEC Adapter Interface

The struct cec_adapter represents the CEC adapter hardware. It is created by calling
cec_allocate_adapter() and deleted by calling cec_delete_adapter():

struct cec_adapter *cec_allocate_adapter(const struct cec_adap_ops *ops, void *priv, const char *name, u32 caps, u8 available_las);

void cec_delete_adapter(struct cec_adapter *adap);

To create an adapter you need to pass the following information:

ops: adapter operations which are called by the CEC framework and that you have to imple-
ment.

priv: will be stored in adap->priv and can be used by the adapter ops. Use
cec_get_drvdata(adap) to get the priv pointer.

name: the name of the CEC adapter. Note: this name will be copied.
caps: capabilities of the CEC adapter. These capabilities determine the capabilities of the

hardware and which parts are to be handled by userspace and which parts are handled by
kernelspace. The capabilities are returned by CEC_ADAP_G_CAPS.

available_las: the number of simultaneous logical addresses that this adapter can handle.
Must be 1 <= available_las <= CEC_MAX_LOG_ADDRS.

2.6. CEC Kernel Support 533

https://www.hdmi.org/spec/index

Linux Media Documentation

To obtain the priv pointer use this helper function:

void *cec_get_drvdata(const struct cec_adapter *adap);

To register the /dev/cecX device node and the remote control device (if CEC_CAP_RC is set) you
call:

int cec_register_adapter(struct cec_adapter *adap, struct device *parent);

where parent is the parent device.

To unregister the devices call:

void cec_unregister_adapter(struct cec_adapter *adap);

Note: if cec_register_adapter() fails, then call cec_delete_adapter() to clean up. But if
cec_register_adapter() succeeded, then only call cec_unregister_adapter() to clean up, never
cec_delete_adapter(). The unregister function will delete the adapter automatically once the
last user of that /dev/cecX device has closed its file handle.

2.6.3 Implementing the Low-Level CEC Adapter

The following low-level adapter operations have to be implemented in your driver:

cec_adap_ops

struct cec_adap_ops
{

/* Low-level callbacks */
int (*adap_enable)(struct cec_adapter *adap, bool enable);
int (*adap_monitor_all_enable)(struct cec_adapter *adap, bool enable);
int (*adap_monitor_pin_enable)(struct cec_adapter *adap, bool enable);
int (*adap_log_addr)(struct cec_adapter *adap, u8 logical_addr);
int (*adap_transmit)(struct cec_adapter *adap, u8 attempts,

u32 signal_free_time, struct cec_msg *msg);
void (*adap_status)(struct cec_adapter *adap, struct seq_file *file);
void (*adap_free)(struct cec_adapter *adap);

/* Error injection callbacks */
...

/* High-level callbacks */
...

};

The seven low-level ops deal with various aspects of controlling the CEC adapter hardware:

To enable/disable the hardware:

int (*adap_enable)(struct cec_adapter *adap, bool enable);

This callback enables or disables the CEC hardware. Enabling the CEC hardware means power-
ing it up in a state where no logical addresses are claimed. The physical address will always be
valid if CEC_CAP_NEEDS_HPD is set. If that capability is not set, then the physical address can
change while the CEC hardware is enabled. CEC drivers should not set CEC_CAP_NEEDS_HPD
unless the hardware design requires that as this will make it impossible to wake up displays
that pull the HPD low when in standby mode. The initial state of the CEC adapter after calling
cec_allocate_adapter() is disabled.

534 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Note that adap_enable must return 0 if enable is false.

To enable/disable the ‘monitor all’ mode:

int (*adap_monitor_all_enable)(struct cec_adapter *adap, bool enable);

If enabled, then the adapter should be put in amode to alsomonitormessages that are not for us.
Not all hardware supports this and this function is only called if the CEC_CAP_MONITOR_ALL
capability is set. This callback is optional (some hardware may always be in ‘monitor all’ mode).

Note that adap_monitor_all_enable must return 0 if enable is false.

To enable/disable the ‘monitor pin’ mode:

int (*adap_monitor_pin_enable)(struct cec_adapter *adap, bool enable);

If enabled, then the adapter should be put in a mode to also monitor CEC pin changes. Not all
hardware supports this and this function is only called if the CEC_CAP_MONITOR_PIN capa-
bility is set. This callback is optional (some hardware may always be in ‘monitor pin’ mode).

Note that adap_monitor_pin_enable must return 0 if enable is false.

To program a new logical address:

int (*adap_log_addr)(struct cec_adapter *adap, u8 logical_addr);

If logical_addr == CEC_LOG_ADDR_INVALID then all programmed logical addresses are to be
erased. Otherwise the given logical address should be programmed. If the maximum number
of available logical addresses is exceeded, then it should return -ENXIO. Once a logical address
is programmed the CEC hardware can receive directed messages to that address.

Note that adap_log_addr must return 0 if logical_addr is CEC_LOG_ADDR_INVALID.

To transmit a new message:

int (*adap_transmit)(struct cec_adapter *adap, u8 attempts,
u32 signal_free_time, struct cec_msg *msg);

This transmits a new message. The attempts argument is the suggested number of attempts
for the transmit.

The signal_free_time is the number of data bit periods that the adapter should wait when the
line is free before attempting to send a message. This value depends on whether this transmit is
a retry, a message from a new initiator or a new message for the same initiator. Most hardware
will handle this automatically, but in some cases this information is needed.

The CEC_FREE_TIME_TO_USEC macro can be used to convert signal_free_time to microsec-
onds (one data bit period is 2.4 ms).

To log the current CEC hardware status:

void (*adap_status)(struct cec_adapter *adap, struct seq_file *file);

This optional callback can be used to show the status of the CEC hardware. The status is
available through debugfs: cat /sys/kernel/debug/cec/cecX/status

To free any resources when the adapter is deleted:

2.6. CEC Kernel Support 535

Linux Media Documentation

void (*adap_free)(struct cec_adapter *adap);

This optional callback can be used to free any resources that might have been allocated by the
driver. It’s called from cec_delete_adapter.

Your adapter driver will also have to react to events (typically interrupt driven) by calling into
the framework in the following situations:

When a transmit finished (successfully or otherwise):

void cec_transmit_done(struct cec_adapter *adap, u8 status,
u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
u8 error_cnt);

or:

void cec_transmit_attempt_done(struct cec_adapter *adap, u8 status);

The status can be one of:

CEC_TX_STATUS_OK: the transmit was successful.
CEC_TX_STATUS_ARB_LOST: arbitration was lost: another CEC initiator took control of the

CEC line and you lost the arbitration.

CEC_TX_STATUS_NACK: the message was nacked (for a directed message) or acked (for a
broadcast message). A retransmission is needed.

CEC_TX_STATUS_LOW_DRIVE: low drive was detected on the CEC bus. This indicates that
a follower detected an error on the bus and requested a retransmission.

CEC_TX_STATUS_ERROR: some unspecified error occurred: this can be one of ARB_LOST
or LOW_DRIVE if the hardware cannot differentiate or something else entirely. Some
hardware only supports OK and FAIL as the result of a transmit, i.e. there is no
way to differentiate between the different possible errors. In that case map FAIL to
CEC_TX_STATUS_NACK and not to CEC_TX_STATUS_ERROR.

CEC_TX_STATUS_MAX_RETRIES: could not transmit the message after trying multiple
times. Should only be set by the driver if it has hardware support for retrying messages. If
set, then the framework assumes that it doesn’t have to make another attempt to transmit
the message since the hardware did that already.

The hardware must be able to differentiate between OK, NACK and ‘something else’.

The *_cnt arguments are the number of error conditions that were seen. This may be 0 if no
information is available. Drivers that do not support hardware retry can just set the counter
corresponding to the transmit error to 1, if the hardware does support retry then either set
these counters to 0 if the hardware provides no feedback of which errors occurred and how
many times, or fill in the correct values as reported by the hardware.

Be aware that calling these functions can immediately start a new transmit if there is one
pending in the queue. So make sure that the hardware is in a state where new transmits can
be started before calling these functions.

The cec_transmit_attempt_done() function is a helper for cases where the hardware never re-
tries, so the transmit is always for just a single attempt. It will call cec_transmit_done() in turn,
filling in 1 for the count argument corresponding to the status. Or all 0 if the status was OK.

536 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

When a CEC message was received:

void cec_received_msg(struct cec_adapter *adap, struct cec_msg *msg);

Speaks for itself.

2.6.4 Implementing the interrupt handler

Typically the CEC hardware provides interrupts that signal when a transmit finished and
whether it was successful or not, and it provides and interrupt when a CEC message was re-
ceived.

The CEC driver should always process the transmit interrupts first before handling the
receive interrupt. The framework expects to see the cec_transmit_done call before the
cec_received_msg call, otherwise it can get confused if the received message was in reply to
the transmitted message.

2.6.5 Optional: Implementing Error Injection Support

If the CEC adapter supports Error Injection functionality, then that can be exposed through the
Error Injection callbacks:

struct cec_adap_ops {
/* Low-level callbacks */
...

/* Error injection callbacks */
int (*error_inj_show)(struct cec_adapter *adap, struct seq_file *sf);
bool (*error_inj_parse_line)(struct cec_adapter *adap, char *line);

/* High-level CEC message callback */
...

};

If both callbacks are set, then an error-inj file will appear in debugfs. The basic syntax is as
follows:

Leading spaces/tabs are ignored. If the next character is a # or the end of the line was reached,
then the whole line is ignored. Otherwise a command is expected.

This basic parsing is done in the CEC Framework. It is up to the driver to decide what commands
to implement. The only requirement is that the command clear without any arguments must
be implemented and that it will remove all current error injection commands.

This ensures that you can always do echo clear >error-inj to clear any error injections with-
out having to know the details of the driver-specific commands.

Note that the output of error-inj shall be valid as input to error-inj. So this must work:

$ cat error-inj >einj.txt
$ cat einj.txt >error-inj

The first callback is called when this file is read and it should show the current error injection
state:

2.6. CEC Kernel Support 537

Linux Media Documentation

int (*error_inj_show)(struct cec_adapter *adap, struct seq_file *sf);

It is recommended that it starts with a comment block with basic usage information. It returns
0 for success and an error otherwise.

The second callback will parse commands written to the error-inj file:

bool (*error_inj_parse_line)(struct cec_adapter *adap, char *line);

The line argument points to the start of the command. Any leading spaces or tabs have already
been skipped. It is a single line only (so there are no embedded newlines) and it is 0-terminated.
The callback is free to modify the contents of the buffer. It is only called for lines containing a
command, so this callback is never called for empty lines or comment lines.

Return true if the command was valid or false if there were syntax errors.

2.6.6 Implementing the High-Level CEC Adapter

The low-level operations drive the hardware, the high-level operations are CEC protocol driven.
The following high-level callbacks are available:

struct cec_adap_ops {
/* Low-level callbacks */
...

/* Error injection callbacks */
...

/* High-level CEC message callback */
int (*received)(struct cec_adapter *adap, struct cec_msg *msg);

};

The received() callback allows the driver to optionally handle a newly received CEC message:

int (*received)(struct cec_adapter *adap, struct cec_msg *msg);

If the driver wants to process a CEC message, then it can implement this callback. If it doesn’t
want to handle this message, then it should return -ENOMSG, otherwise the CEC framework
assumes it processed this message and it will not do anything with it.

2.6.7 CEC framework functions

CEC Adapter drivers can call the following CEC framework functions:

int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg, bool block);

Transmit a CEC message. If block is true, then wait until the message has been transmitted,
otherwise just queue it and return.

void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block);

Change the physical address. This function will set adap->phys_addr and send an event if it has
changed. If cec_s_log_addrs() has been called and the physical address has become valid, then
the CEC framework will start claiming the logical addresses. If block is true, then this function
won’t return until this process has finished.

538 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

When the physical address is set to a valid value the CEC adapter will be enabled (see the
adap_enable op). When it is set to CEC_PHYS_ADDR_INVALID, then the CEC adapter will be
disabled. If you change a valid physical address to another valid physical address, then this
function will first set the address to CEC_PHYS_ADDR_INVALID before enabling the new phys-
ical address.

void cec_s_phys_addr_from_edid(struct cec_adapter *adap, const struct edid *edid);

A helper function that extracts the physical address from the edid struct and calls
cec_s_phys_addr() with that address, or CEC_PHYS_ADDR_INVALID if the EDID did not con-
tain a physical address or edid was a NULL pointer.

int cec_s_log_addrs(struct cec_adapter *adap, struct cec_log_addrs *log_addrs, bool block);

Claim the CEC logical addresses. Should never be called if CEC_CAP_LOG_ADDRS is set. If
block is true, then wait until the logical addresses have been claimed, otherwise just queue it
and return. To unconfigure all logical addresses call this function with log_addrs set to NULL
or with log_addrs->num_log_addrs set to 0. The block argument is ignored when unconfigur-
ing. This function will just return if the physical address is invalid. Once the physical address
becomes valid, then the framework will attempt to claim these logical addresses.

2.6.8 CEC Pin framework

Most CEC hardware operates on full CEC messages where the software provides the message
and the hardware handles the low-level CEC protocol. But some hardware only drives the CEC
pin and software has to handle the low-level CEC protocol. The CEC pin framework was created
to handle such devices.

Note that due to the close-to-realtime requirements it can never be guaranteed to work 100%.
This framework uses highres timers internally, but if a timer goes off too late by more than 300
microseconds wrong results can occur. In reality it appears to be fairly reliable.

One advantage of this low-level implementation is that it can be used as a cheap CEC analyser,
especially if interrupts can be used to detect CEC pin transitions from low to high or vice versa.

struct cec_pin_ops
low-level CEC pin operations

Definition

struct cec_pin_ops {
int (*read)(struct cec_adapter *adap);
void (*low)(struct cec_adapter *adap);
void (*high)(struct cec_adapter *adap);
bool (*enable_irq)(struct cec_adapter *adap);
void (*disable_irq)(struct cec_adapter *adap);
void (*free)(struct cec_adapter *adap);
void (*status)(struct cec_adapter *adap, struct seq_file *file);
int (*read_hpd)(struct cec_adapter *adap);
int (*read_5v)(struct cec_adapter *adap);
int (*received)(struct cec_adapter *adap, struct cec_msg *msg);

};

Members
read read the CEC pin. Returns > 0 if high, 0 if low, or an error if negative.

2.6. CEC Kernel Support 539

Linux Media Documentation

low drive the CEC pin low.

high stop driving the CEC pin. The pull-up will drive the pin high, unless someone else is
driving the pin low.

enable_irq optional, enable the interrupt to detect pin voltage changes.

disable_irq optional, disable the interrupt.

free optional. Free any allocated resources. Called when the adapter is deleted.

status optional, log status information.

read_hpd optional. Read the HPD pin. Returns > 0 if high, 0 if low or an error if negative.

read_5v optional. Read the 5V pin. Returns > 0 if high, 0 if low or an error if negative.

received optional. High-level CEC message callback. Allows the driver to process CEC mes-
sages.

Description
These operations (except for the received op) are used by the cec pin framework to manipulate
the CEC pin.

void cec_pin_changed(struct cec_adapter *adap, bool value)
update pin state from interrupt

Parameters
struct cec_adapter *adap pointer to the cec adapter

bool value when true the pin is high, otherwise it is low

Description
If changes of the CEC voltage are detected via an interrupt, then cec_pin_changed is called
from the interrupt with the new value.

struct cec_adapter * cec_pin_allocate_adapter(const struct cec_pin_ops *pin_ops,
void *priv, const char *name,
u32 caps)

allocate a pin-based cec adapter

Parameters
const struct cec_pin_ops *pin_ops low-level pin operations

void *priv will be stored in adap->priv and can be used by the adapter ops. Use
cec_get_drvdata(adap) to get the priv pointer.

const char *name the name of the CEC adapter. Note: this name will be copied.

u32 caps capabilities of the CEC adapter. This will be ORed with CEC_CAP_MONITOR_ALL
and CEC_CAP_MONITOR_PIN.

Description
Allocate a cec adapter using the cec pin framework.

Return
a pointer to the cec adapter or an error pointer

540 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

2.6.9 CEC Notifier framework

Most drm HDMI implementations have an integrated CEC implementation and no notifier sup-
port is needed. But some have independent CEC implementations that have their own driver.
This could be an IP block for an SoC or a completely separate chip that deals with the CEC pin.
For those cases a drm driver can install a notifier and use the notifier to inform the CEC driver
about changes in the physical address.

struct cec_notifier * cec_notifier_conn_register(struct device *hdmi_dev, const
char *port_name, const struct
cec_connector_info *conn_info)

find or create a new cec_notifier for the given HDMI device and connector tuple.

Parameters
struct device *hdmi_dev HDMI device that sends the events.

const char *port_name the connector name from which the event occurs. May be NULL if
there is always only one HDMI connector created by the HDMI device.

const struct cec_connector_info *conn_info the connector info from which the event oc-
curs (may be NULL)

Description
If a notifier for device dev and connector port_name already exists, then increase the refcount
and return that notifier.

If it doesn’t exist, then allocate a new notifier struct and return a pointer to that new struct.

Return NULL if the memory could not be allocated.

void cec_notifier_conn_unregister(struct cec_notifier *n)
decrease refcount and delete when the refcount reaches 0.

Parameters
struct cec_notifier *n notifier. If NULL, then this function does nothing.

struct cec_notifier * cec_notifier_cec_adap_register(struct device *hdmi_dev,
const char *port_name, struct
cec_adapter *adap)

find or create a new cec_notifier for the given device.

Parameters
struct device *hdmi_dev HDMI device that sends the events.

const char *port_name the connector name from which the event occurs. May be NULL if
there is always only one HDMI connector created by the HDMI device.

struct cec_adapter *adap the cec adapter that registered this notifier.

Description
If a notifier for device dev and connector port_name already exists, then increase the refcount
and return that notifier.

If it doesn’t exist, then allocate a new notifier struct and return a pointer to that new struct.

Return NULL if the memory could not be allocated.

2.6. CEC Kernel Support 541

Linux Media Documentation

void cec_notifier_cec_adap_unregister(struct cec_notifier *n, struct
cec_adapter *adap)

decrease refcount and delete when the refcount reaches 0.

Parameters
struct cec_notifier *n notifier. If NULL, then this function does nothing.

struct cec_adapter *adap the cec adapter that registered this notifier.

void cec_notifier_set_phys_addr(struct cec_notifier *n, u16 pa)
set a new physical address.

Parameters
struct cec_notifier *n the CEC notifier

u16 pa the CEC physical address

Description
Set a new CEC physical address. Does nothing if n == NULL.
void cec_notifier_set_phys_addr_from_edid(struct cec_notifier *n, const struct

edid *edid)
set parse the PA from the EDID.

Parameters
struct cec_notifier *n the CEC notifier

const struct edid *edid the struct edid pointer

Description
Parses the EDID to obtain the new CEC physical address and set it. Does nothing if n==NULL.

struct device * cec_notifier_parse_hdmi_phandle(struct device *dev)
find the hdmi device from “hdmi-phandle”

Parameters
struct device *dev the device with the “hdmi-phandle” device tree property

Description
Returns the device pointer referenced by the “hdmi-phandle” property. Note that the refcount
of the returned device is not incremented. This device pointer is only used as a key value in the
notifier list, but it is never accessed by the CEC driver.

void cec_notifier_phys_addr_invalidate(struct cec_notifier *n)
set the physical address to INVALID

Parameters
struct cec_notifier *n the CEC notifier

Description
This is a simple helper function to invalidate the physical address. Does nothing if n == NULL.

542 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

2.7 Pixel data transmitter and receiver drivers

V4L2 supports various devices that transmit and receive pixel data. Examples of these devices
include a camera sensor, a TV tuner and a parallel or a CSI-2 receiver in an SoC.

2.7.1 Bus types

The following busses are the most common. This section discusses these two only.

2.7.1.1 MIPI CSI-2

CSI-2 is a data bus intended for transferring images from cameras to the host SoC. It is defined
by the MIPI alliance.

2.7.1.2 Parallel

BT.601 and BT.656 are the most common parallel busses.

2.7.2 Transmitter drivers

Transmitter drivers generally need to provide the receiver drivers with the configuration of
the transmitter. What is required depends on the type of the bus. These are common for both
busses.

2.7.2.1 Media bus pixel code

See Media Bus Pixel Codes.

2.7.2.2 Link frequency

The V4L2_CID_LINK_FREQ control is used to tell the receiver the frequency of the bus (i.e. it
is not the same as the symbol rate).

2.7.2.3 .s_stream() callback

The struct struct v4l2_subdev_video_ops->s_stream() callback is used by the receiver driver to
control the transmitter driver’s streaming state.

2.7. Pixel data transmitter and receiver drivers 543

https://www.mipi.org/
https://en.wikipedia.org/wiki/Rec._601
https://en.wikipedia.org/wiki/ITU-R_BT.656

Linux Media Documentation

2.7.3 CSI-2 transmitter drivers

2.7.3.1 Pixel rate

The pixel rate on the bus is calculated as follows:

pixel_rate = link_freq * 2 * nr_of_lanes * 16 / k / bits_per_sample

where

Table 1: variables in pixel rate calculation
variable or constant description
link_freq The value of the V4L2_CID_LINK_FREQ integer64 menu item.
nr_of_lanes Number of data lanes used on the CSI-2 link. This can be obtained

from the OF endpoint configuration.
2 Data is transferred on both rising and falling edge of the signal.
bits_per_sample Number of bits per sample.
k 16 for D-PHY and 7 for C-PHY

Note: The pixel rate calculated this way is not the same thing as the pixel rate on the camera
sensor’s pixel array which is indicated by the V4L2_CID_PIXEL_RATE control.

2.7.3.2 LP-11 and LP-111 modes

As part of transitioning to high speed mode, a CSI-2 transmitter typically briefly sets the bus
to LP-11 or LP-111 state, depending on the PHY. This period may be as short as 100 µs, during
which the receiver observes this state and proceeds its own part of high speed mode transition.

Most receivers are capable of autonomously handling this once the software has configured
them to do so, but there are receivers which require software involvement in observing LP-11
or LP-111 state. 100 µs is a brief period to hit in software, especially when there is no interrupt
telling something is happening.

One way to address this is to configure the transmitter side explicitly to LP-11 or LP-111 mode,
which requires support from the transmitter hardware. This is not universally available. Many
devices return to this state once streaming is stopped while the state after power-on is LP-00
or LP-000.

The .pre_streamon() callbackmay be used to prepare a transmitter for transitioning to stream-
ing state, but not yet start streaming. Similarly, the .post_streamoff() callback is used to
undo what was done by the .pre_streamon() callback. The caller of .pre_streamon() is thus
required to call .post_streamoff() for each successful call of .pre_streamon().

In the context of CSI-2, the .pre_streamon() callback is used to transition the transmitter to
the LP-11 or LP-111 mode. This also requires powering on the device, so this should be only
done when it is needed.

Receiver drivers that do not need explicit LP-11 or LP-111 mode setup are waived from calling
the two callbacks.

544 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

2.7.3.3 Stopping the transmitter

A transmitter stops sending the stream of images as a result of calling the .s_stream() call-
back. Some transmitters may stop the stream at a frame boundary whereas others stop imme-
diately, effectively leaving the current frame unfinished. The receiver driver should not make
assumptions either way, but function properly in both cases.

2.8 Writing camera sensor drivers

2.8.1 CSI-2 and parallel (BT.601 and BT.656) busses

Please see Pixel data transmitter and receiver drivers.

2.8.2 Handling clocks

Camera sensors have an internal clock tree including a PLL and a number of divisors. The clock
tree is generally configured by the driver based on a few input parameters that are specific
to the hardware:: the external clock frequency and the link frequency. The two parameters
generally are obtained from system firmware. No other frequencies should be used in any
circumstances.
The reason why the clock frequencies are so important is that the clock signals come out of
the SoC, and in many cases a specific frequency is designed to be used in the system. Using
another frequency may cause harmful effects elsewhere. Therefore only the pre-determined
frequencies are configurable by the user.

2.8.2.1 ACPI

Read the clock-frequency _DSD property to denote the frequency. The driver can rely on this
frequency being used.

2.8.2.2 Devicetree

The currently preferred way to achieve this is using assigned-clocks,
assigned-clock-parents and assigned-clock-rates properties. See Documentation/
devicetree/bindings/clock/clock-bindings.txt for more information. The driver then
gets the frequency using clk_get_rate().

This approach has the drawback that there’s no guarantee that the frequency hasn’t been mod-
ified directly or indirectly by another driver, or supported by the board’s clock tree to begin
with. Changes to the Common Clock Framework API are required to ensure reliability.

2.8. Writing camera sensor drivers 545

Linux Media Documentation

2.8.3 Frame size

There are two distinct ways to configure the frame size produced by camera sensors.

2.8.3.1 Freely configurable camera sensor drivers

Freely configurable camera sensor drivers expose the device’s internal processing pipeline as
one or more sub-devices with different cropping and scaling configurations. The output size of
the device is the result of a series of cropping and scaling operations from the device’s pixel
array’s size.

An example of such a driver is the CCS driver (see drivers/media/i2c/ccs).

2.8.3.2 Register list based drivers

Register list based drivers generally, instead of able to configure the device they control based
on user requests, are limited to a number of preset configurations that combine a number of
different parameters that on hardware level are independent. How a driver picks such config-
uration is based on the format set on a source pad at the end of the device’s internal pipeline.

Most sensor drivers are implemented this way, see e.g. drivers/media/i2c/imx319.c for an
example.

2.8.4 Frame interval configuration

There are two different methods for obtaining possibilities for different frame intervals as well
as configuring the frame interval. Which one to implement depends on the type of the device.

2.8.4.1 Raw camera sensors

Instead of a high level parameter such as frame interval, the frame interval is a result of the
configuration of a number of camera sensor implementation specific parameters. Luckily, these
parameters tend to be the same for more or less all modern raw camera sensors.

The frame interval is calculated using the following equation:

frame interval = (analogue crop width + horizontal blanking) *
(analogue crop height + vertical blanking) / pixel rate

The formula is bus independent and is applicable for raw timing parameters on large variety of
devices beyond camera sensors. Devices that have no analogue crop, use the full source image
size, i.e. pixel array size.

Horizontal and vertical blanking are specified by V4L2_CID_HBLANK and V4L2_CID_VBLANK,
respectively. The unit of the V4L2_CID_HBLANK control is pixels and the unit of the
V4L2_CID_VBLANK is lines. The pixel rate in the sensor’s pixel array is specified by
V4L2_CID_PIXEL_RATE in the same sub-device. The unit of that control is pixels per second.

Register list based drivers need to implement read-only sub-device nodes for the purpose. De-
vices that are not register list based need these to configure the device’s internal processing
pipeline.

546 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

The first entity in the linear pipeline is the pixel array. The pixel array may be followed by other
entities that are there to allow configuring binning, skipping, scaling or digital crop Selections:
cropping, scaling and composition.

2.8.4.2 USB cameras etc. devices

USB video class hardware, as well as many cameras offering a similar higher level interface
natively, generally use the concept of frame interval (or frame rate) on device level in firmware
or hardware. This means lower level controls implemented by raw cameras may not be used
on uAPI (or even kAPI) to control the frame interval on these devices.

2.8.5 Power management

Always use runtime PM to manage the power states of your device. Camera sensor drivers are
in no way special in this respect: they are responsible for controlling the power state of the
device they otherwise control as well. In general, the device must be powered on at least when
its registers are being accessed and when it is streaming.

Existing camera sensor drivers may rely on the old struct v4l2_subdev_core_ops->s_power()
callback for bridge or ISP drivers to manage their power state. This is however deprecated.
If you feel you need to begin calling an s_power from an ISP or a bridge driver, instead please
add runtime PM support to the sensor driver you are using. Likewise, new drivers should not
use s_power.

Please see examples in e.g. drivers/media/i2c/ov8856.c and drivers/media/i2c/ccs/
ccs-core.c. The two drivers work in both ACPI and DT based systems.

2.8.5.1 Control framework

v4l2_ctrl_handler_setup() function may not be used in the device’s runtime PM
runtime_resume callback, as it has no way to figure out the power state of the device. This
is because the power state of the device is only changed after the power state transition has
taken place. The s_ctrl callback can be used to obtain device’s power state after the power
state transition:

int pm_runtime_get_if_in_use(struct device *dev);

The function returns a non-zero value if it succeeded getting the power count or runtime PM
was disabled, in either of which cases the driver may proceed to access the device.

2.9 Media driver-specific documentation

2.9.1 Video4Linux (V4L) drivers

2.9.1.1 The bttv driver

2.9. Media driver-specific documentation 547

Linux Media Documentation

bttv and sound mini howto

There are a lot of different bt848/849/878/879 based boards available. Making video work often
is not a big deal, because this is handled completely by the bt8xx chip, which is common on all
boards. But sound is handled in slightly different ways on each board.

To handle the grabber boards correctly, there is a array tvcards[] in bttv-cards.c, which holds
the information required for each board. Sound will work only, if the correct entry is used (for
video it often makes no difference). The bttv driver prints a line to the kernel log, telling which
card type is used. Like this one:

bttv0: model: BT848(Hauppauge old) [autodetected]

You should verify this is correct. If it isn’t, you have to pass the correct board type as insmod
argument, insmod bttv card=2 for example. The file Documentation/admin-guide/media/bttv-
cardlist.rst has a list of valid arguments for card.

If your card isn’t listed there, you might check the source code for new entries which are not
listed yet. If there isn’t one for your card, you can check if one of the existing entries does work
for you (just trial and error…).

Some boards have an extra processor for sound to do stereo decoding and other nice features.
The msp34xx chips are used by Hauppauge for example. If your board has one, you might have
to load a helper module like msp3400 to make sound work. If there isn’t one for the chip used on
your board: Bad luck. Start writing a new one. Well, you might want to check the video4linux
mailing list archive first…

Of course you need a correctly installed soundcard unless you have the speakers connected
directly to the grabber board. Hint: check the mixer settings too. ALSA for example has every-
thing muted by default.

How sound works in detail

Still doesn’t work? Looks like some driver hacking is required. Below is a do-it-yourself de-
scription for you.

The bt8xx chips have 32 general purpose pins, and registers to control these pins. One register
is the output enable register (BT848_GPIO_OUT_EN), it says which pins are actively driven by
the bt848 chip. Another one is the data register (BT848_GPIO_DATA), where you can get/set the
status if these pins. They can be used for input and output.

Most grabber board vendors use these pins to control an external chip which does the sound
routing. But every board is a little different. These pins are also used by some companies to
drive remote control receiver chips. Some boards use the i2c bus instead of the gpio pins to
connect the mux chip.

As mentioned above, there is a array which holds the required information for each known
board. You basically have to create a new line for your board. The important fields are these
two:

struct tvcard
{

[...]
u32 gpiomask;

548 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

u32 audiomux[6]; /* Tuner, Radio, external, internal, mute, stereo */
};

gpiomask specifies which pins are used to control the audio mux chip. The corresponding bits
in the output enable register (BT848_GPIO_OUT_EN) will be set as these pins must be driven by
the bt848 chip.

The audiomux[] array holds the data values for the different inputs (i.e. which pins must be
high/low for tuner/mute/…). This will be written to the data register (BT848_GPIO_DATA) to
switch the audio mux.

What you have to do is figure out the correct values for gpiomask and the audiomux array.
If you have Windows and the drivers four your card installed, you might to check out if you
can read these registers values used by the windows driver. A tool to do this is available from
http://btwincap.sourceforge.net/download.html.

You might also dig around in the *.ini files of the Windows applications. You can have a look
at the board to see which of the gpio pins are connected at all and then start trial-and-error …

Starting with release 0.7.41 bttv has a number of insmod options to make the gpio debugging
easier:

bttv_gpio=0/1 enable/disable gpio debug messages
gpiomask=n set the gpiomask value
audiomux=i,j,… set the values of the audiomux array
audioall=a set the values of the audiomux array (one value for all array ele-

ments, useful to check out which effect the particular value has).

The messages printed with bttv_gpio=1 look like this:

bttv0: gpio: en=00000027, out=00000024 in=00ffffd8 [audio: off]

en = output _en_able register (BT848_GPIO_OUT_EN)
out = _out_put bits of the data register (BT848_GPIO_DATA),

i.e. BT848_GPIO_DATA & BT848_GPIO_OUT_EN
in = _in_put bits of the data register,

i.e. BT848_GPIO_DATA & ~BT848_GPIO_OUT_EN

2.9. Media driver-specific documentation 549

http://btwincap.sourceforge.net/download.html

Linux Media Documentation

2.9.1.2 The cpia2 driver

Authors: Peter Pregler <Peter_Pregler@email.com>, Scott J. Bertin <scot-
tbertin@yahoo.com>, and Jarl Totland <Jarl.Totland@bdc.no> for the original cpia driver,
which this one was modelled from.

Notes to developers

• This is a driver version stripped of the 2.4 back compatibility and old MJPEG ioctl API. See
cpia2.sf.net for 2.4 support.

Programmer’s overview of cpia2 driver

Cpia2 is the second generation video coprocessor from VLSI Vision Ltd (now a division of ST
Microelectronics). There are two versions. The first is the STV0672, which is capable of up to
30 frames per second (fps) in frame sizes up to CIF, and 15 fps for VGA frames. The STV0676 is
an improved version, which can handle up to 30 fps VGA. Both coprocessors can be attached to
two CMOS sensors - the vvl6410 CIF sensor and the vvl6500 VGA sensor. These will be referred
to as the 410 and the 500 sensors, or the CIF and VGA sensors.

The two chipsets operate almost identically. The core is an 8051 processor, running two dif-
ferent versions of firmware. The 672 runs the VP4 video processor code, the 676 runs VP5.
There are a few differences in register mappings for the two chips. In these cases, the symbols
defined in the header files are marked with VP4 or VP5 as part of the symbol name.

The cameras appear externally as three sets of registers. Setting register values is the only
way to control the camera. Some settings are interdependant, such as the sequence required
to power up the camera. I will try to make note of all of these cases.

The register sets are called blocks. Block 0 is the system block. This section is always powered
on when the camera is plugged in. It contains registers that control housekeeping functions
such as powering up the video processor. The video processor is the VP block. These registers
control how the video from the sensor is processed. Examples are timing registers, user mode
(vga, qvga), scaling, cropping, framerates, and so on. The last block is the video compressor
(VC). The video stream sent from the camera is compressed as Motion JPEG (JPEGA). The VC
controls all of the compression parameters. Looking at the file cpia2_registers.h, you can get a
full view of these registers and the possible values for most of them.

One or more registers can be set or read by sending a usb control message to the camera. There
are three modes for this. Block mode requests a number of contiguous registers. Randommode
reads or writes random registers with a tuple structure containing address/value pairs. The
repeat mode is only used by VP4 to load a firmware patch. It contains a starting address and a
sequence of bytes to be written into a gpio port.

550 Chapter 2. Media subsystem kernel internal API

mailto:Peter_Pregler@email.com
mailto:scottbertin@yahoo.com
mailto:scottbertin@yahoo.com
mailto:Jarl.Totland@bdc.no

Linux Media Documentation

2.9.1.3 The cx2341x driver

Memory at cx2341x chips

This section describes the cx2341x memory map and documents some of the register space.

Note: the memory long words are little-endian (‘intel format’).

Warning: This information was figured out from searching through the memory and regis-
ters, this information may not be correct and is certainly not complete, and was not derived
from anything more than searching through the memory space with commands like:
ivtvctl -O min=0x02000000,max=0x020000ff

So take this as is, I’m always searching for more stuff, it’s a large register space :-).

Memory Map

The cx2341x exposes its entire 64M memory space to the PCI host via the PCI BAR0 (Base
Address Register 0). The addresses here are offsets relative to the address held in BAR0.

0x00000000-0x00ffffff Encoder memory space
0x00000000-0x0003ffff Encode.rom
???-??? MPEG buffer(s)
???-??? Raw video capture buffer(s)
???-??? Raw audio capture buffer(s)
???-??? Display buffers (6 or 9)

0x01000000-0x01ffffff Decoder memory space
0x01000000-0x0103ffff Decode.rom
???-??? MPEG buffers(s)
0x0114b000-0x0115afff Audio.rom (deprecated?)

0x02000000-0x0200ffff Register Space

Registers

The registers occupy the 64k space starting at the 0x02000000 offset from BAR0. All of these
registers are 32 bits wide.

DMA Registers 0x000-0xff:

0x00 - Control:
0=reset/cancel, 1=read, 2=write, 4=stop

0x04 - DMA status:
1=read busy, 2=write busy, 4=read error, 8=write error, 16=link list error

0x08 - pci DMA pointer for read link list
0x0c - pci DMA pointer for write link list
0x10 - read/write DMA enable:

2.9. Media driver-specific documentation 551

Linux Media Documentation

1=read enable, 2=write enable
0x14 - always 0xffffffff, if set any lower instability occurs, 0x00 crashes
0x18 - ??
0x1c - always 0x20 or 32, smaller values slow down DMA transactions
0x20 - always value of 0x780a010a
0x24-0x3c - usually just random values???
0x40 - Interrupt status
0x44 - Write a bit here and shows up in Interrupt status 0x40
0x48 - Interrupt Mask
0x4C - always value of 0xfffdffff,

if changed to 0xffffffff DMA write interrupts break.
0x50 - always 0xffffffff
0x54 - always 0xffffffff (0x4c, 0x50, 0x54 seem like interrupt masks, are

3 processors on chip, Java ones, VPU, SPU, APU, maybe these are the
interrupt masks???).

0x60-0x7C - random values
0x80 - first write linked list reg, for Encoder Memory addr
0x84 - first write linked list reg, for pci memory addr
0x88 - first write linked list reg, for length of buffer in memory addr

(|0x80000000 or this for last link)
0x8c-0xdc - rest of write linked list reg, 8 sets of 3 total, DMA goes here

from linked list addr in reg 0x0c, firmware must push through or
something.

0xe0 - first (and only) read linked list reg, for pci memory addr
0xe4 - first (and only) read linked list reg, for Decoder memory addr
0xe8 - first (and only) read linked list reg, for length of buffer
0xec-0xff - Nothing seems to be in these registers, 0xec-f4 are 0x00000000.

Memory locations for Encoder Buffers 0x700-0x7ff:

These registers show offsets of memory locations pertaining to each buffer area used for en-
coding, have to shift them by <<1 first.

• 0x07F8: Encoder SDRAM refresh

• 0x07FC: Encoder SDRAM pre-charge

Memory locations for Decoder Buffers 0x800-0x8ff:

These registers show offsets of memory locations pertaining to each buffer area used for de-
coding, have to shift them by <<1 first.

• 0x08F8: Decoder SDRAM refresh

• 0x08FC: Decoder SDRAM pre-charge

Other memory locations:

• 0x2800: Video Display Module control

• 0x2D00: AO (audio output?) control

• 0x2D24: Bytes Flushed

• 0x7000: LSB I2C write clock bit (inverted)

• 0x7004: LSB I2C write data bit (inverted)

• 0x7008: LSB I2C read clock bit

• 0x700c: LSB I2C read data bit

552 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

• 0x9008: GPIO get input state

• 0x900c: GPIO set output state

• 0x9020: GPIO direction (Bit7 (GPIO 0..7) - 0:input, 1:output)

• 0x9050: SPU control

• 0x9054: Reset HW blocks

• 0x9058: VPU control

• 0xA018: Bit6: interrupt pending?

• 0xA064: APU command

Interrupt Status Register

The definition of the bits in the interrupt status register 0x0040, and the interrupt mask 0x0048.
If a bit is cleared in the mask, then we want our ISR to execute.

• bit 31 Encoder Start Capture

• bit 30 Encoder EOS

• bit 29 Encoder VBI capture

• bit 28 Encoder Video Input Module reset event

• bit 27 Encoder DMA complete

• bit 24 Decoder audio mode change detection event (through event notification)

• bit 22 Decoder data request

• bit 20 Decoder DMA complete

• bit 19 Decoder VBI re-insertion

• bit 18 Decoder DMA err (linked-list bad)

Missing documentation

• Encoder API post(?)

• Decoder API post(?)

• Decoder VTRACE event

The cx2341x firmware upload

This document describes how to upload the cx2341x firmware to the card.

2.9. Media driver-specific documentation 553

Linux Media Documentation

How to find

See the web pages of the various projects that uses this chip for information on how to obtain
the firmware.

The firmware stored in a Windows driver can be detected as follows:

• Each firmware image is 256k bytes.

• The 1st 32-bit word of the Encoder image is 0x0000da7

• The 1st 32-bit word of the Decoder image is 0x00003a7

• The 2nd 32-bit word of both images is 0xaa55bb66

How to load

• Issue the FWapi command to stop the encoder if it is running. Wait for the command to
complete.

• Issue the FWapi command to stop the decoder if it is running. Wait for the command to
complete.

• Issue the I2C command to the digitizer to stop emitting VSYNC events.

• Issue the FWapi command to halt the encoder’s firmware.

• Sleep for 10ms.

• Issue the FWapi command to halt the decoder’s firmware.

• Sleep for 10ms.

• Write 0x00000000 to register 0x2800 to stop the Video Display Module.

• Write 0x00000005 to register 0x2D00 to stop the AO (audio output?).

• Write 0x00000000 to register 0xA064 to ping? the APU.

• Write 0xFFFFFFFE to register 0x9058 to stop the VPU.

• Write 0xFFFFFFFF to register 0x9054 to reset the HW blocks.

• Write 0x00000001 to register 0x9050 to stop the SPU.

• Sleep for 10ms.

• Write 0x0000001A to register 0x07FC to init the Encoder SDRAM’s pre-charge.

• Write 0x80000640 to register 0x07F8 to init the Encoder SDRAM’s refresh to 1us.

• Write 0x0000001A to register 0x08FC to init the Decoder SDRAM’s pre-charge.

• Write 0x80000640 to register 0x08F8 to init the Decoder SDRAM’s refresh to 1us.

• Sleep for 512ms. (600ms is recommended)

• Transfer the encoder’s firmware image to offset 0 in Encoder memory space.

• Transfer the decoder’s firmware image to offset 0 in Decoder memory space.

• Use a read-modify-write operation to Clear bit 0 of register 0x9050 to re-enable the SPU.

554 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

• Sleep for 1 second.

• Use a read-modify-write operation to Clear bits 3 and 0 of register 0x9058 to re-enable the
VPU.

• Sleep for 1 second.

• Issue status API commands to both firmware images to verify.

How to call the firmware API

The preferred calling convention is known as the firmware mailbox. The mailboxes are basically
a fixed length array that serves as the call-stack.

Firmware mailboxes can be located by searching the encoder and decoder memory for a 16
byte signature. That signature will be located on a 256-byte boundary.

Signature:

0x78, 0x56, 0x34, 0x12, 0x12, 0x78, 0x56, 0x34,
0x34, 0x12, 0x78, 0x56, 0x56, 0x34, 0x12, 0x78

The firmware implements 20 mailboxes of 20 32-bit words. The first 10 are reserved for API
calls. The second 10 are used by the firmware for event notification.

Index Name
0 Flags
1 Command
2 Return value
3 Timeout
4-19 Parameter/Result

The flags are defined in the following table. The direction is from the perspective of the
firmware.

Bit Direction Purpose
2 O Firmware has processed the command.
1 I Driver has finished setting the parameters.
0 I Driver is using this mailbox.

The command is a 32-bit enumerator. The API specifics may be found in this chapter.

The return value is a 32-bit enumerator. Only two values are currently defined:

• 0=success

• -1=command undefined.

There are 16 parameters/results 32-bit fields. The driver populates these fields with values for
all the parameters required by the call. The driver overwrites these fields with result values
returned by the call.

The timeout value protects the card from a hung driver thread. If the driver doesn’t handle the
completed call within the timeout specified, the firmware will reset that mailbox.

2.9. Media driver-specific documentation 555

Linux Media Documentation

To make an API call, the driver iterates over each mailbox looking for the first one available
(bit 0 has been cleared). The driver sets that bit, fills in the command enumerator, the timeout
value and any required parameters. The driver then sets the parameter ready bit (bit 1). The
firmware scans the mailboxes for pending commands, processes them, sets the result code,
populates the result value array with that call’s return values and sets the call complete bit (bit
2). Once bit 2 is set, the driver should retrieve the results and clear all the flags. If the driver
does not perform this task within the time set in the timeout register, the firmware will reset
that mailbox.

Event notifications are sent from the firmware to the host. The host tells the firmware which
events it is interested in via an API call. That call tells the firmware which notification mailbox
to use. The firmware signals the host via an interrupt. Only the 16 Results fields are used, the
Flags, Command, Return value and Timeout words are not used.

OSD firmware API description

Note: this API is part of the decoder firmware, so it’s cx23415 only.

CX2341X_OSD_GET_FRAMEBUFFER

Enum: 65/0x41

Description

Return base and length of contiguous OSD memory.

Result[0]

OSD base address

Result[1]

OSD length

CX2341X_OSD_GET_PIXEL_FORMAT

Enum: 66/0x42

556 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description

Query OSD format

Result[0]

0=8bit index 1=16bit RGB 5:6:5 2=16bit ARGB 1:5:5:5 3=16bit ARGB 1:4:4:4 4=32bit ARGB
8:8:8:8

CX2341X_OSD_SET_PIXEL_FORMAT

Enum: 67/0x43

Description

Assign pixel format

Param[0]

• 0=8bit index

• 1=16bit RGB 5:6:5

• 2=16bit ARGB 1:5:5:5

• 3=16bit ARGB 1:4:4:4

• 4=32bit ARGB 8:8:8:8

CX2341X_OSD_GET_STATE

Enum: 68/0x44

Description

Query OSD state

Result[0]

• Bit 0 0=off, 1=on

• Bits 1:2 alpha control

• Bits 3:5 pixel format

2.9. Media driver-specific documentation 557

Linux Media Documentation

CX2341X_OSD_SET_STATE

Enum: 69/0x45

Description

OSD switch

Param[0]

0=off, 1=on

CX2341X_OSD_GET_OSD_COORDS

Enum: 70/0x46

Description

Retrieve coordinates of OSD area blended with video

Result[0]

OSD buffer address

Result[1]

Stride in pixels

Result[2]

Lines in OSD buffer

Result[3]

Horizontal offset in buffer

558 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Result[4]

Vertical offset in buffer

CX2341X_OSD_SET_OSD_COORDS

Enum: 71/0x47

Description

Assign the coordinates of the OSD area to blend with video

Param[0]

buffer address

Param[1]

buffer stride in pixels

Param[2]

lines in buffer

Param[3]

horizontal offset

Param[4]

vertical offset

CX2341X_OSD_GET_SCREEN_COORDS

Enum: 72/0x48

2.9. Media driver-specific documentation 559

Linux Media Documentation

Description

Retrieve OSD screen area coordinates

Result[0]

top left horizontal offset

Result[1]

top left vertical offset

Result[2]

bottom right horizontal offset

Result[3]

bottom right vertical offset

CX2341X_OSD_SET_SCREEN_COORDS

Enum: 73/0x49

Description

Assign the coordinates of the screen area to blend with video

Param[0]

top left horizontal offset

Param[1]

top left vertical offset

560 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Param[2]

bottom left horizontal offset

Param[3]

bottom left vertical offset

CX2341X_OSD_GET_GLOBAL_ALPHA

Enum: 74/0x4A

Description

Retrieve OSD global alpha

Result[0]

global alpha: 0=off, 1=on

Result[1]

bits 0:7 global alpha

CX2341X_OSD_SET_GLOBAL_ALPHA

Enum: 75/0x4B

Description

Update global alpha

Param[0]

global alpha: 0=off, 1=on

2.9. Media driver-specific documentation 561

Linux Media Documentation

Param[1]

global alpha (8 bits)

Param[2]

local alpha: 0=on, 1=off

CX2341X_OSD_SET_BLEND_COORDS

Enum: 78/0x4C

Description

Move start of blending area within display buffer

Param[0]

horizontal offset in buffer

Param[1]

vertical offset in buffer

CX2341X_OSD_GET_FLICKER_STATE

Enum: 79/0x4F

Description

Retrieve flicker reduction module state

Result[0]

flicker state: 0=off, 1=on

562 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

CX2341X_OSD_SET_FLICKER_STATE

Enum: 80/0x50

Description

Set flicker reduction module state

Param[0]

State: 0=off, 1=on

CX2341X_OSD_BLT_COPY

Enum: 82/0x52

Description

BLT copy

Param[0]

'0000' zero
'0001' ~destination AND ~source
'0010' ~destination AND source
'0011' ~destination
'0100' destination AND ~source
'0101' ~source
'0110' destination XOR source
'0111' ~destination OR ~source
'1000' ~destination AND ~source
'1001' destination XNOR source
'1010' source
'1011' ~destination OR source
'1100' destination
'1101' destination OR ~source
'1110' destination OR source
'1111' one

2.9. Media driver-specific documentation 563

Linux Media Documentation

Param[1]

Resulting alpha blending

• ‘01’ source_alpha

• ‘10’ destination_alpha

• ‘11’ source_alpha*destination_alpha+1 (zero if both source and destination alpha are zero)

Param[2]

'00' output_pixel = source_pixel

'01' if source_alpha=0:
output_pixel = destination_pixel

if 256 > source_alpha > 1:
output_pixel = ((source_alpha + 1)*source_pixel +

(255 - source_alpha)*destination_pixel)/256

'10' if destination_alpha=0:
output_pixel = source_pixel

if 255 > destination_alpha > 0:
output_pixel = ((255 - destination_alpha)*source_pixel +

(destination_alpha + 1)*destination_pixel)/256

'11' if source_alpha=0:
source_temp = 0

if source_alpha=255:
source_temp = source_pixel*256

if 255 > source_alpha > 0:
source_temp = source_pixel*(source_alpha + 1)

if destination_alpha=0:
destination_temp = 0

if destination_alpha=255:
destination_temp = destination_pixel*256

if 255 > destination_alpha > 0:
destination_temp = destination_pixel*(destination_alpha + 1)

output_pixel = (source_temp + destination_temp)/256

564 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Param[3]

width

Param[4]

height

Param[5]

destination pixel mask

Param[6]

destination rectangle start address

Param[7]

destination stride in dwords

Param[8]

source stride in dwords

Param[9]

source rectangle start address

CX2341X_OSD_BLT_FILL

Enum: 83/0x53

Description

BLT fill color

2.9. Media driver-specific documentation 565

Linux Media Documentation

Param[0]

Same as Param[0] on API 0x52

Param[1]

Same as Param[1] on API 0x52

Param[2]

Same as Param[2] on API 0x52

Param[3]

width

Param[4]

height

Param[5]

destination pixel mask

Param[6]

destination rectangle start address

Param[7]

destination stride in dwords

Param[8]

color fill value

566 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

CX2341X_OSD_BLT_TEXT

Enum: 84/0x54

Description

BLT for 8 bit alpha text source

Param[0]

Same as Param[0] on API 0x52

Param[1]

Same as Param[1] on API 0x52

Param[2]

Same as Param[2] on API 0x52

Param[3]

width

Param[4]

height

Param[5]

destination pixel mask

Param[6]

destination rectangle start address

2.9. Media driver-specific documentation 567

Linux Media Documentation

Param[7]

destination stride in dwords

Param[8]

source stride in dwords

Param[9]

source rectangle start address

Param[10]

color fill value

CX2341X_OSD_SET_FRAMEBUFFER_WINDOW

Enum: 86/0x56

Description

Positions the main output window on the screen. The coordinates must be such that the entire
window fits on the screen.

Param[0]

window width

Param[1]

window height

Param[2]

top left window corner horizontal offset

568 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Param[3]

top left window corner vertical offset

CX2341X_OSD_SET_CHROMA_KEY

Enum: 96/0x60

Description

Chroma key switch and color

Param[0]

state: 0=off, 1=on

Param[1]

color

CX2341X_OSD_GET_ALPHA_CONTENT_INDEX

Enum: 97/0x61

Description

Retrieve alpha content index

Result[0]

alpha content index, Range 0:15

CX2341X_OSD_SET_ALPHA_CONTENT_INDEX

Enum: 98/0x62

2.9. Media driver-specific documentation 569

Linux Media Documentation

Description

Assign alpha content index

Param[0]

alpha content index, range 0:15

Encoder firmware API description

CX2341X_ENC_PING_FW

Enum: 128/0x80

Description

Does nothing. Can be used to check if the firmware is responding.

CX2341X_ENC_START_CAPTURE

Enum: 129/0x81

Description

Commences the capture of video, audio and/or VBI data. All encoding parameters must be
initialized prior to this API call. Captures frames continuously or until a predefined number of
frames have been captured.

Param[0]

Capture stream type:

• 0=MPEG

• 1=Raw

• 2=Raw passthrough

• 3=VBI

570 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Param[1]

Bitmask:

• Bit 0 when set, captures YUV

• Bit 1 when set, captures PCM audio

• Bit 2 when set, captures VBI (same as param[0]=3)

• Bit 3 when set, the capture destination is the decoder (same as param[0]=2)

• Bit 4 when set, the capture destination is the host

Note: this parameter is only meaningful for RAW capture type.

CX2341X_ENC_STOP_CAPTURE

Enum: 130/0x82

Description

Ends a capture in progress

Param[0]

• 0=stop at end of GOP (generates IRQ)

• 1=stop immediate (no IRQ)

Param[1]

Stream type to stop, see param[0] of API 0x81

Param[2]

Subtype, see param[1] of API 0x81

CX2341X_ENC_SET_AUDIO_ID

Enum: 137/0x89

2.9. Media driver-specific documentation 571

Linux Media Documentation

Description

Assigns the transport stream ID of the encoded audio stream

Param[0]

Audio Stream ID

CX2341X_ENC_SET_VIDEO_ID

Enum: 139/0x8B

Description

Set video transport stream ID

Param[0]

Video stream ID

CX2341X_ENC_SET_PCR_ID

Enum: 141/0x8D

Description

Assigns the transport stream ID for PCR packets

Param[0]

PCR Stream ID

CX2341X_ENC_SET_FRAME_RATE

Enum: 143/0x8F

572 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description

Set video frames per second. Change occurs at start of new GOP.

Param[0]

• 0=30fps

• 1=25fps

CX2341X_ENC_SET_FRAME_SIZE

Enum: 145/0x91

Description

Select video stream encoding resolution.

Param[0]

Height in lines. Default 480

Param[1]

Width in pixels. Default 720

CX2341X_ENC_SET_BIT_RATE

Enum: 149/0x95

Description

Assign average video stream bitrate.

Param[0]

0=variable bitrate, 1=constant bitrate

2.9. Media driver-specific documentation 573

Linux Media Documentation

Param[1]

bitrate in bits per second

Param[2]

peak bitrate in bits per second, divided by 400

Param[3]

Mux bitrate in bits per second, divided by 400. May be 0 (default).

Param[4]

Rate Control VBR Padding

Param[5]

VBV Buffer used by encoder

Note:
1) Param[3] and Param[4] seem to be always 0

2) Param[5] doesn’t seem to be used.

CX2341X_ENC_SET_GOP_PROPERTIES

Enum: 151/0x97

Description

Setup the GOP structure

Param[0]

GOP size (maximum is 34)

574 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Param[1]

Number of B frames between the I and P frame, plus 1. For example: IBBPBBPBBPBB –> GOP
size: 12, number of B frames: 2+1 = 3

Note: GOP size must be a multiple of (B-frames + 1).

CX2341X_ENC_SET_ASPECT_RATIO

Enum: 153/0x99

Description

Sets the encoding aspect ratio. Changes in the aspect ratio take effect at the start of the next
GOP.

Param[0]

• ‘0000’ forbidden

• ‘0001’ 1:1 square

• ‘0010’ 4:3

• ‘0011’ 16:9

• ‘0100’ 2.21:1

• ‘0101’ to ‘1111’ reserved

CX2341X_ENC_SET_DNR_FILTER_MODE

Enum: 155/0x9B

Description

Assign Dynamic Noise Reduction operating mode

2.9. Media driver-specific documentation 575

Linux Media Documentation

Param[0]

Bit0: Spatial filter, set=auto, clear=manual Bit1: Temporal filter, set=auto, clear=manual

Param[1]

Median filter:

• 0=Disabled

• 1=Horizontal

• 2=Vertical

• 3=Horiz/Vert

• 4=Diagonal

CX2341X_ENC_SET_DNR_FILTER_PROPS

Enum: 157/0x9D

Description

These Dynamic Noise Reduction filter values are only meaningful when the respective filter is
set to “manual” (See API 0x9B)

Param[0]

Spatial filter: default 0, range 0:15

Param[1]

Temporal filter: default 0, range 0:31

CX2341X_ENC_SET_CORING_LEVELS

Enum: 159/0x9F

576 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description

Assign Dynamic Noise Reduction median filter properties.

Param[0]

Threshold above which the luminance median filter is enabled. Default: 0, range 0:255

Param[1]

Threshold below which the luminance median filter is enabled. Default: 255, range 0:255

Param[2]

Threshold above which the chrominance median filter is enabled. Default: 0, range 0:255

Param[3]

Threshold below which the chrominance median filter is enabled. Default: 255, range 0:255

CX2341X_ENC_SET_SPATIAL_FILTER_TYPE

Enum: 161/0xA1

Description

Assign spatial prefilter parameters

Param[0]

Luminance filter

• 0=Off

• 1=1D Horizontal

• 2=1D Vertical

• 3=2D H/V Separable (default)

• 4=2D Symmetric non-separable

2.9. Media driver-specific documentation 577

Linux Media Documentation

Param[1]

Chrominance filter

• 0=Off

• 1=1D Horizontal (default)

CX2341X_ENC_SET_VBI_LINE

Enum: 183/0xB7

Description

Selects VBI line number.

Param[0]

• Bits 0:4 line number

• Bit 31 0=top_field, 1=bottom_field

• Bits 0:31 all set specifies “all lines”

Param[1]

VBI line information features: 0=disabled, 1=enabled

Param[2]

Slicing: 0=None, 1=Closed Caption Almost certainly not implemented. Set to 0.

Param[3]

Luminance samples in this line. Almost certainly not implemented. Set to 0.

Param[4]

Chrominance samples in this line Almost certainly not implemented. Set to 0.

578 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

CX2341X_ENC_SET_STREAM_TYPE

Enum: 185/0xB9

Description

Assign stream type

Note: Transport stream is not working in recent firmwares. And in older firmwares the times-
tamps in the TS seem to be unreliable.

Param[0]

• 0=Program stream

• 1=Transport stream

• 2=MPEG1 stream

• 3=PES A/V stream

• 5=PES Video stream

• 7=PES Audio stream

• 10=DVD stream

• 11=VCD stream

• 12=SVCD stream

• 13=DVD_S1 stream

• 14=DVD_S2 stream

CX2341X_ENC_SET_OUTPUT_PORT

Enum: 187/0xBB

Description

Assign stream output port. Normally 0 when the data is copied through the PCI bus (DMA),
and 1 when the data is streamed to another chip (pvrusb and cx88-blackbird).

2.9. Media driver-specific documentation 579

Linux Media Documentation

Param[0]

• 0=Memory (default)

• 1=Streaming

• 2=Serial

Param[1]

Unknown, but leaving this to 0 seems to work best. Indications are that this might have to do
with USB support, although passing anything but 0 only breaks things.

CX2341X_ENC_SET_AUDIO_PROPERTIES

Enum: 189/0xBD

Description

Set audio stream properties, may be called while encoding is in progress.

Note: All bitfields are consistent with ISO11172 documentation except bits 2:3 which ISO
docs define as:

• ‘11’ Layer I

• ‘10’ Layer II

• ‘01’ Layer III

• ‘00’ Undefined

This discrepancy may indicate a possible error in the documentation. Testing indicated that
only Layer II is actually working, and that the minimum bitrate should be 192 kbps.

Param[0]

Bitmask:

0:1 '00' 44.1Khz
'01' 48Khz
'10' 32Khz
'11' reserved

2:3 '01'=Layer I
'10'=Layer II

4:7 Bitrate:
Index | Layer I | Layer II
------+-------------+------------

'0000' | free format | free format

580 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

'0001' | 32 kbit/s | 32 kbit/s
'0010' | 64 kbit/s | 48 kbit/s
'0011' | 96 kbit/s | 56 kbit/s
'0100' | 128 kbit/s | 64 kbit/s
'0101' | 160 kbit/s | 80 kbit/s
'0110' | 192 kbit/s | 96 kbit/s
'0111' | 224 kbit/s | 112 kbit/s
'1000' | 256 kbit/s | 128 kbit/s
'1001' | 288 kbit/s | 160 kbit/s
'1010' | 320 kbit/s | 192 kbit/s
'1011' | 352 kbit/s | 224 kbit/s
'1100' | 384 kbit/s | 256 kbit/s
'1101' | 416 kbit/s | 320 kbit/s
'1110' | 448 kbit/s | 384 kbit/s

.. note::

For Layer II, not all combinations of total bitrate
and mode are allowed. See ISO11172-3 3-Annex B,
Table 3-B.2

8:9 '00'=Stereo
'01'=JointStereo
'10'=Dual
'11'=Mono

.. note::

The cx23415 cannot decode Joint Stereo properly.

10:11 Mode Extension used in joint_stereo mode.
In Layer I and II they indicate which subbands are in
intensity_stereo. All other subbands are coded in stereo.

'00' subbands 4-31 in intensity_stereo, bound==4
'01' subbands 8-31 in intensity_stereo, bound==8
'10' subbands 12-31 in intensity_stereo, bound==12
'11' subbands 16-31 in intensity_stereo, bound==16

12:13 Emphasis:
'00' None
'01' 50/15uS
'10' reserved
'11' CCITT J.17

14 CRC:
'0' off
'1' on

15 Copyright:
'0' off
'1' on

16 Generation:
'0' copy
'1' original

2.9. Media driver-specific documentation 581

Linux Media Documentation

CX2341X_ENC_HALT_FW

Enum: 195/0xC3

Description

The firmware is halted and no further API calls are serviced until the firmware is uploaded
again.

CX2341X_ENC_GET_VERSION

Enum: 196/0xC4

Description

Returns the version of the encoder firmware.

Result[0]

Version bitmask: - Bits 0:15 build - Bits 16:23 minor - Bits 24:31 major

CX2341X_ENC_SET_GOP_CLOSURE

Enum: 197/0xC5

Description

Assigns the GOP open/close property.

Param[0]

• 0=Open

• 1=Closed

CX2341X_ENC_GET_SEQ_END

Enum: 198/0xC6

582 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description

Obtains the sequence end code of the encoder’s buffer. When a capture is started a number of
interrupts are still generated, the last of which will have Result[0] set to 1 and Result[1] will
contain the size of the buffer.

Result[0]

State of the transfer (1 if last buffer)

Result[1]

If Result[0] is 1, this contains the size of the last buffer, undefined otherwise.

CX2341X_ENC_SET_PGM_INDEX_INFO

Enum: 199/0xC7

Description

Sets the Program Index Information. The information is stored as follows:

struct info {
u32 length; // Length of this frame
u32 offset_low; // Offset in the file of the
u32 offset_high; // start of this frame
u32 mask1; // Bits 0-2 are the type mask:

// 1=I, 2=P, 4=B
// 0=End of Program Index, other fields
// are invalid.

u32 pts; // The PTS of the frame
u32 mask2; // Bit 0 is bit 32 of the pts.

};
u32 table_ptr;
struct info index[400];

The table_ptr is the encoder memory address in the table were new entries will be written.

Note: This is a ringbuffer, so the table_ptr will wraparound.

2.9. Media driver-specific documentation 583

Linux Media Documentation

Param[0]

Picture Mask: - 0=No index capture - 1=I frames - 3=I,P frames - 7=I,P,B frames

(Seems to be ignored, it always indexes I, P and B frames)

Param[1]

Elements requested (up to 400)

Result[0]

Offset in the encoder memory of the start of the table.

Result[1]

Number of allocated elements up to a maximum of Param[1]

CX2341X_ENC_SET_VBI_CONFIG

Enum: 200/0xC8

Description

Configure VBI settings

Param[0]

Bitmap:

0 Mode '0' Sliced, '1' Raw
1:3 Insertion:

'000' insert in extension & user data
'001' insert in private packets
'010' separate stream and user data
'111' separate stream and private data

8:15 Stream ID (normally 0xBD)

584 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Param[1]

Frames per interrupt (max 8). Only valid in raw mode.

Param[2]

Total raw VBI frames. Only valid in raw mode.

Param[3]

Start codes

Param[4]

Stop codes

Param[5]

Lines per frame

Param[6]

Byte per line

Result[0]

Observed frames per interrupt in raw mode only. Rage 1 to Param[1]

Result[1]

Observed number of frames in raw mode. Range 1 to Param[2]

Result[2]

Memory offset to start or raw VBI data

2.9. Media driver-specific documentation 585

Linux Media Documentation

CX2341X_ENC_SET_DMA_BLOCK_SIZE

Enum: 201/0xC9

Description

Set DMA transfer block size

Param[0]

DMA transfer block size in bytes or frames. When unit is bytes, supported block sizes are 2^7,
2^8 and 2^9 bytes.

Param[1]

Unit: 0=bytes, 1=frames

CX2341X_ENC_GET_PREV_DMA_INFO_MB_10

Enum: 202/0xCA

Description

Returns information on the previous DMA transfer in conjunction with bit 27 of the interrupt
mask. Uses mailbox 10.

Result[0]

Type of stream

Result[1]

Address Offset

Result[2]

Maximum size of transfer

586 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

CX2341X_ENC_GET_PREV_DMA_INFO_MB_9

Enum: 203/0xCB

Description

Returns information on the previous DMA transfer in conjunction with bit 27 or 18 of the inter-
rupt mask. Uses mailbox 9.

Result[0]

Status bits: - 0 read completed - 1 write completed - 2 DMA read error - 3 DMA write error - 4
Scatter-Gather array error

Result[1]

DMA type

Result[2]

Presentation Time Stamp bits 0..31

Result[3]

Presentation Time Stamp bit 32

CX2341X_ENC_SCHED_DMA_TO_HOST

Enum: 204/0xCC

Description

Setup DMA to host operation

Param[0]

Memory address of link list

2.9. Media driver-specific documentation 587

Linux Media Documentation

Param[1]

Length of link list (wtf: what units ???)

Param[2]

DMA type (0=MPEG)

CX2341X_ENC_INITIALIZE_INPUT

Enum: 205/0xCD

Description

Initializes the video input

CX2341X_ENC_SET_FRAME_DROP_RATE

Enum: 208/0xD0

Description

For each frame captured, skip specified number of frames.

Param[0]

Number of frames to skip

CX2341X_ENC_PAUSE_ENCODER

Enum: 210/0xD2

Description

During a pause condition, all frames are dropped instead of being encoded.

588 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Param[0]

• 0=Pause encoding

• 1=Continue encoding

CX2341X_ENC_REFRESH_INPUT

Enum: 211/0xD3

Description

Refreshes the video input

CX2341X_ENC_SET_COPYRIGHT

Enum: 212/0xD4

Description

Sets stream copyright property

Param[0]

• 0=Stream is not copyrighted

• 1=Stream is copyrighted

CX2341X_ENC_SET_EVENT_NOTIFICATION

Enum: 213/0xD5

Description

Setup firmware to notify the host about a particular event. Host must unmask the interrupt bit.

2.9. Media driver-specific documentation 589

Linux Media Documentation

Param[0]

Event (0=refresh encoder input)

Param[1]

Notification 0=disabled 1=enabled

Param[2]

Interrupt bit

Param[3]

Mailbox slot, -1 if no mailbox required.

CX2341X_ENC_SET_NUM_VSYNC_LINES

Enum: 214/0xD6

Description

Depending on the analog video decoder used, this assigns the number of lines for field 1 and 2.

Param[0]

Field 1 number of lines: - 0x00EF for SAA7114 - 0x00F0 for SAA7115 - 0x0105 for Micronas

Param[1]

Field 2 number of lines: - 0x00EF for SAA7114 - 0x00F0 for SAA7115 - 0x0106 for Micronas

CX2341X_ENC_SET_PLACEHOLDER

Enum: 215/0xD7

590 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description

Provides a mechanism of inserting custom user data in the MPEG stream.

Param[0]

• 0=extension & user data

• 1=private packet with stream ID 0xBD

Param[1]

Rate at which to insert data, in units of frames (for private packet) or GOPs (for ext. & user
data)

Param[2]

Number of data DWORDs (below) to insert

Param[3]

Custom data 0

Param[4]

Custom data 1

Param[5]

Custom data 2

Param[6]

Custom data 3

Param[7]

Custom data 4

2.9. Media driver-specific documentation 591

Linux Media Documentation

Param[8]

Custom data 5

Param[9]

Custom data 6

Param[10]

Custom data 7

Param[11]

Custom data 8

CX2341X_ENC_MUTE_VIDEO

Enum: 217/0xD9

Description

Video muting

Param[0]

Bit usage:

0 '0'=video not muted
'1'=video muted, creates frames with the YUV color defined below

1:7 Unused
8:15 V chrominance information

16:23 U chrominance information
24:31 Y luminance information

CX2341X_ENC_MUTE_AUDIO

Enum: 218/0xDA

592 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description

Audio muting

Param[0]

• 0=audio not muted

• 1=audio muted (produces silent mpeg audio stream)

CX2341X_ENC_SET_VERT_CROP_LINE

Enum: 219/0xDB

Description

Something to do with ‘Vertical Crop Line’

Param[0]

If saa7114 and raw VBI capture and 60 Hz, then set to 10001. Else 0.

CX2341X_ENC_MISC

Enum: 220/0xDC

Description

Miscellaneous actions. Not known for 100% what it does. It’s really a sort of ioctl call. The first
parameter is a command number, the second the value.

Param[0]

Command number:

1=set initial SCR value when starting encoding (works).
2=set quality mode (apparently some test setting).
3=setup advanced VIM protection handling.
Always 1 for the cx23416 and 0 for cx23415.

4=generate DVD compatible PTS timestamps
5=USB flush mode
6=something to do with the quantization matrix
7=set navigation pack insertion for DVD: adds 0xbf (private stream 2)
packets to the MPEG. The size of these packets is 2048 bytes (including
the header of 6 bytes: 0x000001bf + length). The payload is zeroed and
it is up to the application to fill them in. These packets are apparently

2.9. Media driver-specific documentation 593

Linux Media Documentation

inserted every four frames.
8=enable scene change detection (seems to be a failure)
9=set history parameters of the video input module

10=set input field order of VIM
11=set quantization matrix
12=reset audio interface after channel change or input switch (has no argument).

Needed for the cx2584x, not needed for the mspx4xx, but it doesn't seem to
do any harm calling it regardless.

13=set audio volume delay
14=set audio delay

Param[1]

Command value.

Decoder firmware API description

Note: this API is part of the decoder firmware, so it’s cx23415 only.

CX2341X_DEC_PING_FW

Enum: 0/0x00

Description

This API call does nothing. It may be used to check if the firmware is responding.

CX2341X_DEC_START_PLAYBACK

Enum: 1/0x01

Description

Begin or resume playback.

594 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Param[0]

0 based frame number in GOP to begin playback from.

Param[1]

Specifies the number of muted audio frames to play before normal audio resumes. (This is not
implemented in the firmware, leave at 0)

CX2341X_DEC_STOP_PLAYBACK

Enum: 2/0x02

Description

Ends playback and clears all decoder buffers. If PTS is not zero, playback stops at specified
PTS.

Param[0]

Display 0=last frame, 1=black

Note: this takes effect immediately, so if you want to wait for a PTS, then use ‘0’, otherwise
the screen goes to black at once. You can call this later (even if there is no playback) with a 1
value to set the screen to black.

Param[1]

PTS low

Param[2]

PTS high

CX2341X_DEC_SET_PLAYBACK_SPEED

Enum: 3/0x03

2.9. Media driver-specific documentation 595

Linux Media Documentation

Description

Playback stream at speed other than normal. There are two modes of operation:

• Smooth: host transfers entire stream and firmware drops unused frames.

• Coarse: host drops frames based on indexing as required to achieve desired speed.

Param[0]

Bitmap:
0:7 0 normal

1 fast only "1.5 times"
n nX fast, 1/nX slow

30 Framedrop:
'0' during 1.5 times play, every other B frame is dropped
'1' during 1.5 times play, stream is unchanged (bitrate

must not exceed 8mbps)
31 Speed:

'0' slow
'1' fast

Note: n is limited to 2. Anything higher does not result in faster playback. Instead the host
should start dropping frames.

Param[1]

Direction: 0=forward, 1=reverse

Note: to make reverse playback work you have to write full GOPs in reverse order.

Param[2]

Picture mask:
1=I frames
3=I, P frames
7=I, P, B frames

596 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Param[3]

B frames per GOP (for reverse play only)

Note: for reverse playback the Picture Mask should be set to I or I, P. Adding B frames to the
mask will result in corrupt video. This field has to be set to the correct value in order to keep
the timing correct.

Param[4]

Mute audio: 0=disable, 1=enable

Param[5]

Display 0=frame, 1=field

Param[6]

Specifies the number of muted audio frames to play before normal audio resumes. (Not imple-
mented in the firmware, leave at 0)

CX2341X_DEC_STEP_VIDEO

Enum: 5/0x05

Description

Each call to this API steps the playback to the next unit defined below in the current playback
direction.

Param[0]

0=frame, 1=top field, 2=bottom field

CX2341X_DEC_SET_DMA_BLOCK_SIZE

Enum: 8/0x08

2.9. Media driver-specific documentation 597

Linux Media Documentation

Description

Set DMA transfer block size. Counterpart to API 0xC9

Param[0]

DMA transfer block size in bytes. A different size may be specified when issuing the DMA
transfer command.

CX2341X_DEC_GET_XFER_INFO

Enum: 9/0x09

Description

This API call may be used to detect an end of stream condition.

Result[0]

Stream type

Result[1]

Address offset

Result[2]

Maximum bytes to transfer

Result[3]

Buffer fullness

CX2341X_DEC_GET_DMA_STATUS

Enum: 10/0x0A

598 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description

Status of the last DMA transfer

Result[0]

Bit 1 set means transfer complete Bit 2 set means DMA error Bit 3 set means linked list error

Result[1]

DMA type: 0=MPEG, 1=OSD, 2=YUV

CX2341X_DEC_SCHED_DMA_FROM_HOST

Enum: 11/0x0B

Description

Setup DMA from host operation. Counterpart to API 0xCC

Param[0]

Memory address of link list

Param[1]

Total # of bytes to transfer

Param[2]

DMA type (0=MPEG, 1=OSD, 2=YUV)

CX2341X_DEC_PAUSE_PLAYBACK

Enum: 13/0x0D

2.9. Media driver-specific documentation 599

Linux Media Documentation

Description

Freeze playback immediately. In this mode, when internal buffers are full, no more data will be
accepted and data request IRQs will be masked.

Param[0]

Display: 0=last frame, 1=black

CX2341X_DEC_HALT_FW

Enum: 14/0x0E

Description

The firmware is halted and no further API calls are serviced until the firmware is uploaded
again.

CX2341X_DEC_SET_STANDARD

Enum: 16/0x10

Description

Selects display standard

Param[0]

0=NTSC, 1=PAL

CX2341X_DEC_GET_VERSION

Enum: 17/0x11

Description

Returns decoder firmware version information

600 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Result[0]

Version bitmask:
• Bits 0:15 build

• Bits 16:23 minor

• Bits 24:31 major

CX2341X_DEC_SET_STREAM_INPUT

Enum: 20/0x14

Description

Select decoder stream input port

Param[0]

0=memory (default), 1=streaming

CX2341X_DEC_GET_TIMING_INFO

Enum: 21/0x15

Description

Returns timing information from start of playback

Result[0]

Frame count by decode order

Result[1]

Video PTS bits 0:31 by display order

2.9. Media driver-specific documentation 601

Linux Media Documentation

Result[2]

Video PTS bit 32 by display order

Result[3]

SCR bits 0:31 by display order

Result[4]

SCR bit 32 by display order

CX2341X_DEC_SET_AUDIO_MODE

Enum: 22/0x16

Description

Select audio mode

Param[0]

Dual mono mode action 0=Stereo, 1=Left, 2=Right, 3=Mono, 4=Swap, -1=Unchanged

Param[1]

Stereo mode action: 0=Stereo, 1=Left, 2=Right, 3=Mono, 4=Swap, -1=Unchanged

CX2341X_DEC_SET_EVENT_NOTIFICATION

Enum: 23/0x17

Description

Setup firmware to notify the host about a particular event. Counterpart to API 0xD5

602 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Param[0]

Event:
• 0=Audio mode change between mono, (joint) stereo and dual channel.

• 3=Decoder started

• 4=Unknown: goes off 10-15 times per second while decoding.

• 5=Some sync event: goes off once per frame.

Param[1]

Notification 0=disabled, 1=enabled

Param[2]

Interrupt bit

Param[3]

Mailbox slot, -1 if no mailbox required.

CX2341X_DEC_SET_DISPLAY_BUFFERS

Enum: 24/0x18

Description

Number of display buffers. To decode all frames in reverse playback you must use nine buffers.

Param[0]

0=six buffers, 1=nine buffers

CX2341X_DEC_EXTRACT_VBI

Enum: 25/0x19

2.9. Media driver-specific documentation 603

Linux Media Documentation

Description

Extracts VBI data

Param[0]

0=extract from extension & user data, 1=extract from private packets

Result[0]

VBI table location

Result[1]

VBI table size

CX2341X_DEC_SET_DECODER_SOURCE

Enum: 26/0x1A

Description

Selects decoder source. Ensure that the parameters passed to this API match the encoder
settings.

Param[0]

Mode: 0=MPEG from host, 1=YUV from encoder, 2=YUV from host

Param[1]

YUV picture width

Param[2]

YUV picture height

604 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Param[3]

Bitmap: see Param[0] of API 0xBD

CX2341X_DEC_SET_PREBUFFERING

Enum: 30/0x1E

Description

Decoder prebuffering, when enabled up to 128KB are buffered for streams <8mpbs or 640KB
for streams >8mbps

Param[0]

0=off, 1=on

PVR350 Video decoder registers 0x02002800 -> 0x02002B00

Author: Ian Armstrong <ian@iarmst.demon.co.uk>

Version: v0.4

Date: 12 March 2007

This list has been worked out through trial and error. There will be mistakes and omissions.
Some registers have no obvious effect so it’s hard to say what they do, while others interact
with each other, or require a certain load sequence. Horizontal filter setup is one example, with
six registers working in unison and requiring a certain load sequence to correctly configure.
The indexed colour palette is much easier to set at just two registers, but again it requires a
certain load sequence.

Some registers are fussy about what they are set to. Load in a bad value & the decoder will fail.
A firmware reload will often recover, but sometimes a reset is required. For registers containing
size information, setting them to 0 is generally a bad idea. For other control registers i.e. 2878,
you’ll only find out what values are bad when it hangs.

--
2800
bit 0

Decoder enable
0 = disable
1 = enable

--
2804
bits 0:31

Decoder horizontal Y alias register 1

2808
bits 0:31

Decoder horizontal Y alias register 2

2.9. Media driver-specific documentation 605

mailto:ian@iarmst.demon.co.uk

Linux Media Documentation

280C
bits 0:31

Decoder horizontal Y alias register 3

2810
bits 0:31

Decoder horizontal Y alias register 4

2814
bits 0:31

Decoder horizontal Y alias register 5

2818
bits 0:31

Decoder horizontal Y alias trigger

These six registers control the horizontal aliasing filter for the Y plane.
The first five registers must all be loaded before accessing the trigger
(2818), as this register actually clocks the data through for the first
five.

To correctly program set the filter, this whole procedure must be done 16
times. The actual register contents are copied from a lookup-table in the
firmware which contains 4 different filter settings.

--
281C
bits 0:31

Decoder horizontal UV alias register 1

2820
bits 0:31

Decoder horizontal UV alias register 2

2824
bits 0:31

Decoder horizontal UV alias register 3

2828
bits 0:31

Decoder horizontal UV alias register 4

282C
bits 0:31

Decoder horizontal UV alias register 5

2830
bits 0:31

Decoder horizontal UV alias trigger

These six registers control the horizontal aliasing for the UV plane.
Operation is the same as the Y filter, with 2830 being the trigger
register.

--
2834

606 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

bits 0:15
Decoder Y source width in pixels

bits 16:31
Decoder Y destination width in pixels

2838
bits 0:15

Decoder UV source width in pixels

bits 16:31
Decoder UV destination width in pixels

NOTE: For both registers, the resulting image must be fully visible on
screen. If the image exceeds the right edge both the source and destination
size must be adjusted to reflect the visible portion. For the source width,
you must take into account the scaling when calculating the new value.
--

283C
bits 0:31

Decoder Y horizontal scaling
Normally = Reg 2854 >> 2

2840
bits 0:31

Decoder ?? unknown - horizontal scaling
Usually 0x00080514

2844
bits 0:31

Decoder UV horizontal scaling
Normally = Reg 2854 >> 2

2848
bits 0:31

Decoder ?? unknown - horizontal scaling
Usually 0x00100514

284C
bits 0:31

Decoder ?? unknown - Y plane
Usually 0x00200020

2850
bits 0:31

Decoder ?? unknown - UV plane
Usually 0x00200020

2854
bits 0:31

Decoder 'master' value for horizontal scaling

2858
bits 0:31

Decoder ?? unknown
Usually 0

2.9. Media driver-specific documentation 607

Linux Media Documentation

285C
bits 0:31

Decoder ?? unknown
Normally = Reg 2854 >> 1

2860
bits 0:31

Decoder ?? unknown
Usually 0

2864
bits 0:31

Decoder ?? unknown
Normally = Reg 2854 >> 1

2868
bits 0:31

Decoder ?? unknown
Usually 0

Most of these registers either control horizontal scaling, or appear linked
to it in some way. Register 2854 contains the 'master' value & the other
registers can be calculated from that one. You must also remember to
correctly set the divider in Reg 2874.

To enlarge:
Reg 2854 = (source_width * 0x00200000) / destination_width
Reg 2874 = No divide

To reduce from full size down to half size:
Reg 2854 = (source_width/2 * 0x00200000) / destination width
Reg 2874 = Divide by 2

To reduce from half size down to quarter size:
Reg 2854 = (source_width/4 * 0x00200000) / destination width
Reg 2874 = Divide by 4

The result is always rounded up.

--
286C
bits 0:15

Decoder horizontal Y buffer offset

bits 15:31
Decoder horizontal UV buffer offset

Offset into the video image buffer. If the offset is gradually incremented,
the on screen image will move left & wrap around higher up on the right.

--
2870
bits 0:15

Decoder horizontal Y output offset

bits 16:31

608 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Decoder horizontal UV output offset

Offsets the actual video output. Controls output alignment of the Y & UV
planes. The higher the value, the greater the shift to the left. Use
reg 2890 to move the image right.

--
2874
bits 0:1

Decoder horizontal Y output size divider
00 = No divide
01 = Divide by 2
10 = Divide by 3

bits 4:5
Decoder horizontal UV output size divider
00 = No divide
01 = Divide by 2
10 = Divide by 3

bit 8
Decoder ?? unknown
0 = Normal
1 = Affects video output levels

bit 16
Decoder ?? unknown
0 = Normal
1 = Disable horizontal filter

--
2878
bit 0

?? unknown

bit 1
osd on/off
0 = osd off
1 = osd on

bit 2
Decoder + osd video timing
0 = NTSC
1 = PAL

bits 3:4
?? unknown

bit 5
Decoder + osd
Swaps upper & lower fields

--
287C
bits 0:10

Decoder & osd ?? unknown
Moves entire screen horizontally. Starts at 0x005 with the screen

2.9. Media driver-specific documentation 609

Linux Media Documentation

shifted heavily to the right. Incrementing in steps of 0x004 will
gradually shift the screen to the left.

bits 11:31
?? unknown

Normally contents are 0x00101111 (NTSC) or 0x1010111d (PAL)

--
2880 -------- ?? unknown
2884 -------- ?? unknown
--
2888
bit 0

Decoder + osd ?? unknown
0 = Normal
1 = Misaligned fields (Correctable through 289C & 28A4)

bit 4
?? unknown

bit 8
?? unknown

Warning: Bad values will require a firmware reload to recover.
Known to be bad are 0x000,0x011,0x100,0x111

--
288C
bits 0:15

osd ?? unknown
Appears to affect the osd position stability. The higher the value the
more unstable it becomes. Decoder output remains stable.

bits 16:31
osd ?? unknown
Same as bits 0:15

--
2890
bits 0:11

Decoder output horizontal offset.

Horizontal offset moves the video image right. A small left shift is
possible, but it's better to use reg 2870 for that due to its greater
range.

NOTE: Video corruption will occur if video window is shifted off the right
edge. To avoid this read the notes for 2834 & 2838.
--
2894
bits 0:23

Decoder output video surround colour.

Contains the colour (in yuv) used to fill the screen when the video is
running in a window.
--
2898

610 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

bits 0:23
Decoder video window colour
Contains the colour (in yuv) used to fill the video window when the
video is turned off.

bit 24
Decoder video output
0 = Video on
1 = Video off

bit 28
Decoder plane order
0 = Y,UV
1 = UV,Y

bit 29
Decoder second plane byte order
0 = Normal (UV)
1 = Swapped (VU)

In normal usage, the first plane is Y & the second plane is UV. Though the
order of the planes can be swapped, only the byte order of the second plane
can be swapped. This isn't much use for the Y plane, but can be useful for
the UV plane.

--
289C
bits 0:15

Decoder vertical field offset 1

bits 16:31
Decoder vertical field offset 2

Controls field output vertical alignment. The higher the number, the lower
the image on screen. Known starting values are 0x011E0017 (NTSC) &
0x01500017 (PAL)
--
28A0
bits 0:15

Decoder & osd width in pixels

bits 16:31
Decoder & osd height in pixels

All output from the decoder & osd are disabled beyond this area. Decoder
output will simply go black outside of this region. If the osd tries to
exceed this area it will become corrupt.
--
28A4
bits 0:11

osd left shift.

Has a range of 0x770->0x7FF. With the exception of 0, any value outside of
this range corrupts the osd.
--
28A8
bits 0:15

2.9. Media driver-specific documentation 611

Linux Media Documentation

osd vertical field offset 1

bits 16:31
osd vertical field offset 2

Controls field output vertical alignment. The higher the number, the lower
the image on screen. Known starting values are 0x011E0017 (NTSC) &
0x01500017 (PAL)
--
28AC -------- ?? unknown
|
V
28BC -------- ?? unknown
--
28C0
bit 0

Current output field
0 = first field
1 = second field

bits 16:31
Current scanline
The scanline counts from the top line of the first field
through to the last line of the second field.

--
28C4 -------- ?? unknown
|
V
28F8 -------- ?? unknown
--
28FC
bit 0

?? unknown
0 = Normal
1 = Breaks decoder & osd output

--
2900
bits 0:31

Decoder vertical Y alias register 1

2904
bits 0:31

Decoder vertical Y alias register 2

2908
bits 0:31

Decoder vertical Y alias trigger

These three registers control the vertical aliasing filter for the Y plane.
Operation is similar to the horizontal Y filter (2804). The only real
difference is that there are only two registers to set before accessing
the trigger register (2908). As for the horizontal filter, the values are
taken from a lookup table in the firmware, and the procedure must be
repeated 16 times to fully program the filter.
--
290C
bits 0:31

612 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Decoder vertical UV alias register 1

2910
bits 0:31

Decoder vertical UV alias register 2

2914
bits 0:31

Decoder vertical UV alias trigger

These three registers control the vertical aliasing filter for the UV
plane. Operation is the same as the Y filter, with 2914 being the trigger.
--
2918
bits 0:15

Decoder Y source height in pixels

bits 16:31
Decoder Y destination height in pixels

291C
bits 0:15

Decoder UV source height in pixels divided by 2

bits 16:31
Decoder UV destination height in pixels

NOTE: For both registers, the resulting image must be fully visible on
screen. If the image exceeds the bottom edge both the source and
destination size must be adjusted to reflect the visible portion. For the
source height, you must take into account the scaling when calculating the
new value.
--
2920
bits 0:31

Decoder Y vertical scaling
Normally = Reg 2930 >> 2

2924
bits 0:31

Decoder Y vertical scaling
Normally = Reg 2920 + 0x514

2928
bits 0:31

Decoder UV vertical scaling
When enlarging = Reg 2930 >> 2
When reducing = Reg 2930 >> 3

292C
bits 0:31

Decoder UV vertical scaling
Normally = Reg 2928 + 0x514

2930
bits 0:31

Decoder 'master' value for vertical scaling

2.9. Media driver-specific documentation 613

Linux Media Documentation

2934
bits 0:31

Decoder ?? unknown - Y vertical scaling

2938
bits 0:31

Decoder Y vertical scaling
Normally = Reg 2930

293C
bits 0:31

Decoder ?? unknown - Y vertical scaling

2940
bits 0:31

Decoder UV vertical scaling
When enlarging = Reg 2930 >> 1
When reducing = Reg 2930

2944
bits 0:31

Decoder ?? unknown - UV vertical scaling

2948
bits 0:31

Decoder UV vertical scaling
Normally = Reg 2940

294C
bits 0:31

Decoder ?? unknown - UV vertical scaling

Most of these registers either control vertical scaling, or appear linked
to it in some way. Register 2930 contains the 'master' value & all other
registers can be calculated from that one. You must also remember to
correctly set the divider in Reg 296C

To enlarge:
Reg 2930 = (source_height * 0x00200000) / destination_height
Reg 296C = No divide

To reduce from full size down to half size:
Reg 2930 = (source_height/2 * 0x00200000) / destination height
Reg 296C = Divide by 2

To reduce from half down to quarter.
Reg 2930 = (source_height/4 * 0x00200000) / destination height
Reg 296C = Divide by 4

--
2950
bits 0:15

Decoder Y line index into display buffer, first field

bits 16:31
Decoder Y vertical line skip, first field

614 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

--
2954
bits 0:15

Decoder Y line index into display buffer, second field

bits 16:31
Decoder Y vertical line skip, second field

--
2958
bits 0:15

Decoder UV line index into display buffer, first field

bits 16:31
Decoder UV vertical line skip, first field

--
295C
bits 0:15

Decoder UV line index into display buffer, second field

bits 16:31
Decoder UV vertical line skip, second field

--
2960
bits 0:15

Decoder destination height minus 1

bits 16:31
Decoder destination height divided by 2

--
2964
bits 0:15

Decoder Y vertical offset, second field

bits 16:31
Decoder Y vertical offset, first field

These two registers shift the Y plane up. The higher the number, the
greater the shift.
--
2968
bits 0:15

Decoder UV vertical offset, second field

bits 16:31
Decoder UV vertical offset, first field

These two registers shift the UV plane up. The higher the number, the
greater the shift.
--
296C
bits 0:1

Decoder vertical Y output size divider
00 = No divide
01 = Divide by 2
10 = Divide by 4

bits 8:9

2.9. Media driver-specific documentation 615

Linux Media Documentation

Decoder vertical UV output size divider
00 = No divide
01 = Divide by 2
10 = Divide by 4

--
2970
bit 0

Decoder ?? unknown
0 = Normal
1 = Affect video output levels

bit 16
Decoder ?? unknown
0 = Normal
1 = Disable vertical filter

--
2974 -------- ?? unknown
|
V
29EF -------- ?? unknown
--
2A00
bits 0:2

osd colour mode
000 = 8 bit indexed
001 = 16 bit (565)
010 = 15 bit (555)
011 = 12 bit (444)
100 = 32 bit (8888)

bits 4:5
osd display bpp
01 = 8 bit
10 = 16 bit
11 = 32 bit

bit 8
osd global alpha
0 = Off
1 = On

bit 9
osd local alpha
0 = Off
1 = On

bit 10
osd colour key
0 = Off
1 = On

bit 11
osd ?? unknown
Must be 1

bit 13

616 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

osd colour space
0 = ARGB
1 = AYVU

bits 16:31
osd ?? unknown
Must be 0x001B (some kind of buffer pointer ?)

When the bits-per-pixel is set to 8, the colour mode is ignored and
assumed to be 8 bit indexed. For 16 & 32 bits-per-pixel the colour depth
is honoured, and when using a colour depth that requires fewer bytes than
allocated the extra bytes are used as padding. So for a 32 bpp with 8 bit
index colour, there are 3 padding bytes per pixel. It's also possible to
select 16bpp with a 32 bit colour mode. This results in the pixel width
being doubled, but the color key will not work as expected in this mode.

Colour key is as it suggests. You designate a colour which will become
completely transparent. When using 565, 555 or 444 colour modes, the
colour key is always 16 bits wide. The colour to key on is set in Reg 2A18.

Local alpha works differently depending on the colour mode. For 32bpp & 8
bit indexed, local alpha is a per-pixel 256 step transparency, with 0 being
transparent and 255 being solid. For the 16bpp modes 555 & 444, the unused
bit(s) act as a simple transparency switch, with 0 being solid & 1 being
fully transparent. There is no local alpha support for 16bit 565.

Global alpha is a 256 step transparency that applies to the entire osd,
with 0 being transparent & 255 being solid.

It's possible to combine colour key, local alpha & global alpha.
--
2A04
bits 0:15

osd x coord for left edge

bits 16:31
osd y coord for top edge

2A08
bits 0:15

osd x coord for right edge

bits 16:31
osd y coord for bottom edge

For both registers, (0,0) = top left corner of the display area. These
registers do not control the osd size, only where it's positioned & how
much is visible. The visible osd area cannot exceed the right edge of the
display, otherwise the osd will become corrupt. See reg 2A10 for
setting osd width.
--
2A0C
bits 0:31

osd buffer index

An index into the osd buffer. Slowly incrementing this moves the osd left,
wrapping around onto the right edge

2.9. Media driver-specific documentation 617

Linux Media Documentation

--
2A10
bits 0:11

osd buffer 32 bit word width

Contains the width of the osd measured in 32 bit words. This means that all
colour modes are restricted to a byte width which is divisible by 4.
--
2A14
bits 0:15

osd height in pixels

bits 16:32
osd line index into buffer
osd will start displaying from this line.

--
2A18
bits 0:31

osd colour key

Contains the colour value which will be transparent.
--
2A1C
bits 0:7

osd global alpha

Contains the global alpha value (equiv ivtvfbctl --alpha XX)
--
2A20 -------- ?? unknown
|
V
2A2C -------- ?? unknown
--
2A30
bits 0:7

osd colour to change in indexed palette

2A34
bits 0:31

osd colour for indexed palette

To set the new palette, first load the index of the colour to change into
2A30, then load the new colour into 2A34. The full palette is 256 colours,
so the index range is 0x00-0xFF
--
2A38 -------- ?? unknown
2A3C -------- ?? unknown
--
2A40
bits 0:31

osd ?? unknown

Affects overall brightness, wrapping around to black
--
2A44
bits 0:31

osd ?? unknown

618 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Green tint
--
2A48
bits 0:31

osd ?? unknown

Red tint
--
2A4C
bits 0:31

osd ?? unknown

Affects overall brightness, wrapping around to black
--
2A50
bits 0:31

osd ?? unknown

Colour shift
--
2A54
bits 0:31

osd ?? unknown

Colour shift
--
2A58 -------- ?? unknown
|
V
2AFC -------- ?? unknown
--
2B00
bit 0

osd filter control
0 = filter off
1 = filter on

bits 1:4
osd ?? unknown

--

The cx231xx DMA engine

This page describes the structures and procedures used by the cx2341x DMA engine.

2.9. Media driver-specific documentation 619

Linux Media Documentation

Introduction

The cx2341x PCI interface is busmaster capable. This means it has a DMA engine to efficiently
transfer large volumes of data between the card and main memory without requiring help from
a CPU. Like most hardware, it must operate on contiguous physical memory. This is difficult to
come by in large quantities on virtual memory machines.

Therefore, it also supports a technique called “scatter-gather”. The card can transfer multi-
ple buffers in one operation. Instead of allocating one large contiguous buffer, the driver can
allocate several smaller buffers.

In practice, I’ve seen the average transfer to be roughly 80K, but transfers above 128K were not
uncommon, particularly at startup. The 128K figure is important, because that is the largest
block that the kernel can normally allocate. Even still, 128K blocks are hard to come by, so the
driver writer is urged to choose a smaller block size and learn the scatter-gather technique.

Mailbox #10 is reserved for DMA transfer information.

Note: the hardware expects little-endian data (‘intel format’).

Flow

This section describes, in general, the order of events when handling DMA transfers. Detailed
information follows this section.

• The card raises the Encoder interrupt.

• The driver reads the transfer type, offset and size from Mailbox #10.

• The driver constructs the scatter-gather array from enough free dma buffers to cover the
size.

• The driver schedules the DMA transfer via the ScheduleDMAtoHost API call.

• The card raises the DMA Complete interrupt.

• The driver checks the DMA status register for any errors.

• The driver post-processes the newly transferred buffers.

NOTE! It is possible that the Encoder and DMA Complete interrupts get raised simultaneously.
(End of the last, start of the next, etc.)

Mailbox #10

The Flags, Command, Return Value and Timeout fields are ignored.

• Name: Mailbox #10

• Results[0]: Type: 0: MPEG.

• Results[1]: Offset: The position relative to the card’s memory space.

• Results[2]: Size: The exact number of bytes to transfer.

My speculation is that since the StartCapture API has a capture type of “RAW” available, that
the type field will have other values that correspond to YUV and PCM data.

620 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Scatter-Gather Array

The scatter-gather array is a contiguously allocated block of memory that tells the card the
source and destination of each data-block to transfer. Card “addresses” are derived from the
offset supplied by Mailbox #10. Host addresses are the physical memory location of the target
DMA buffer.

Each S-G array element is a struct of three 32-bit words. The first word is the source address,
the second is the destination address. Both take up the entire 32 bits. The lowest 18 bits of
the third word is the transfer byte count. The high-bit of the third word is the “last” flag. The
last-flag tells the card to raise the DMA_DONE interrupt. From hard personal experience, if
you forget to set this bit, the card will still “work” but the stream will most likely get corrupted.

The transfer count must be a multiple of 256. Therefore, the driver will need to track how much
data in the target buffer is valid and deal with it accordingly.

Array Element:

• 32-bit Source Address

• 32-bit Destination Address

• 14-bit reserved (high bit is the last flag)

• 18-bit byte count

DMA Transfer Status

Register 0x0004 holds the DMA Transfer Status:

• bit 0: read completed

• bit 1: write completed

• bit 2: DMA read error

• bit 3: DMA write error

• bit 4: Scatter-Gather array error

2.9.1.4 The cx88 driver

Author: Gerd Hoffmann

Documentation missing at the cx88 datasheet

MO_OUTPUT_FORMAT (0x310164)

Previous default from DScaler: 0x1c1f0008
Digit 8: 31-28
28: PREVREMOD = 1

Digit 7: 27-24 (0xc = 12 = b1100)
27: COMBALT = 1
26: PAL_INV_PHASE

2.9. Media driver-specific documentation 621

Linux Media Documentation

(DScaler apparently set this to 1, resulted in sucky picture)

Digits 6,5: 23-16
25-16: COMB_RANGE = 0x1f [default] (9 bits -> max 512)

Digit 4: 15-12
15: DISIFX = 0
14: INVCBF = 0
13: DISADAPT = 0
12: NARROWADAPT = 0

Digit 3: 11-8
11: FORCE2H
10: FORCEREMD
9: NCHROMAEN
8: NREMODEN

Digit 2: 7-4
7-6: YCORE
5-4: CCORE

Digit 1: 3-0
3: RANGE = 1
2: HACTEXT
1: HSFMT

0x47 is the sync byte for MPEG-2 transport stream packets. Datasheet incorrectly states to use
47 decimal. 188 is the length. All DVB compliant frontends output packets with this start code.

Hauppauge WinTV cx88 IR information

The controls for the mux are GPIO [0,1] for source, and GPIO 2 for muting.

GPIO0 GPIO1
0 0 TV Audio
1 0 FM radio
0 1 Line-In
1 1 Mono tuner bypass or CD passthru (tuner specific)

GPIO 16(I believe) is tied to the IR port (if present).

From the data sheet:

• Register 24’h20004 PCI Interrupt Status

• bit [18] IR_SMP_INT Set when 32 input samples have been collected over

• gpio[16] pin into GP_SAMPLE register.

What’s missing from the data sheet:

• Setup 4KHz sampling rate (roughly 2x oversampled; good enough for our RC5 compat
remote)

• set register 0x35C050 to 0xa80a80

622 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

• enable sampling

• set register 0x35C054 to 0x5

• enable the IRQ bit 18 in the interrupt mask register (and provide for a handler)

GP_SAMPLE register is at 0x35C058

Bits are then right shifted into the GP_SAMPLE register at the specified rate; you get an in-
terrupt when a full DWORD is received. You need to recover the actual RC5 bits out of the
(oversampled) IR sensor bits. (Hint: look for the 0/1and 1/0 crossings of the RC5 bi-phase data)
An actual raw RC5 code will span 2-3 DWORDS, depending on the actual alignment.

I’m pretty sure when no IR signal is present the receiver is always in a marking state(1); but
stray light, etc can cause intermittent noise values as well. Remember, this is a free running
sample of the IR receiver state over time, so don’t assume any sample starts at any particular
place.

Additional info

This data sheet (google search) seems to have a lovely description of the RC5 basics: http:
//www.atmel.com/dyn/resources/prod_documents/doc2817.pdf

This document has more data: http://www.nenya.be/beor/electronics/rc5.htm

This document has a how to decode a bi-phase data stream:
http://www.ee.washington.edu/circuit_archive/text/ir_decode.txt

This document has still more info: http://www.xs4all.nl/~sbp/knowledge/ir/rc5.htm

2.9.1.5 The VPBE V4L2 driver design

File partitioning

V4L2 display device driver drivers/media/platform/davinci/vpbe_display.c
drivers/media/platform/davinci/vpbe_display.h

VPBE display controller drivers/media/platform/davinci/vpbe.c
drivers/media/platform/davinci/vpbe.h

VPBE venc sub device driver drivers/media/platform/davinci/vpbe_venc.c
drivers/media/platform/davinci/vpbe_venc.h drivers/media/platform/davinci/vpbe_venc_regs.h

VPBE osd driver drivers/media/platform/davinci/vpbe_osd.c
drivers/media/platform/davinci/vpbe_osd.h drivers/media/platform/davinci/vpbe_osd_regs.h

2.9. Media driver-specific documentation 623

http://www.atmel.com/dyn/resources/prod_documents/doc2817.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2817.pdf
http://www.nenya.be/beor/electronics/rc5.htm
http://www.ee.washington.edu/circuit_archive/text/ir_decode.txt
http://www.xs4all.nl/~sbp/knowledge/ir/rc5.htm

Linux Media Documentation

To be done

vpbe display controller
• Add support for external encoders.

• add support for selecting external encoder as default at probe time.

vpbe venc sub device
• add timings for supporting ths8200

• add support for LogicPD LCD.

FB drivers
• Add support for fbdev drivers.- Ready and part of subsequent patches.

2.9.1.6 The Samsung S5P/EXYNOS4 FIMC driver

Copyright © 2012 - 2013 Samsung Electronics Co., Ltd.

Files partitioning

• media device driver

drivers/media/platform/exynos4-is/media-dev.[ch]

• camera capture video device driver

drivers/media/platform/exynos4-is/fimc-capture.c

• MIPI-CSI2 receiver subdev

drivers/media/platform/exynos4-is/mipi-csis.[ch]

• video post-processor (mem-to-mem)

drivers/media/platform/exynos4-is/fimc-core.c

• common files

drivers/media/platform/exynos4-is/fimc-core.h drivers/media/platform/exynos4-is/fimc-
reg.h drivers/media/platform/exynos4-is/regs-fimc.h

2.9.1.7 The pvrusb2 driver

Author: Mike Isely <isely@pobox.com>

624 Chapter 2. Media subsystem kernel internal API

mailto:isely@pobox.com

Linux Media Documentation

Background

This driver is intended for the “Hauppauge WinTV PVR USB 2.0”, which is a USB 2.0 hosted TV
Tuner. This driver is a work in progress. Its history started with the reverse-engineering effort
by Björn Danielsson <pvrusb2@dax.nu> whose web page can be found here: http://pvrusb2.
dax.nu/

From there Aurelien Alleaume <slts@free.fr> began an effort to create a video4linux compati-
ble driver. I began with Aurelien’s last known snapshot and evolved the driver to the state it is
in here.

More information on this driver can be found at: https://www.isely.net/pvrusb2.html

This driver has a strong separation of layers. They are very roughly:

1. Low level wire-protocol implementation with the device.

2. I2C adaptor implementation and corresponding I2C client drivers implemented elsewhere
in V4L.

3. High level hardware driver implementation which coordinates all activities that ensure
correct operation of the device.

4. A “context” layer which manages instancing of driver, setup, tear-down, arbitration, and
interaction with high level interfaces appropriately as devices are hotplugged in the sys-
tem.

5. High level interfaces which glue the driver to various published Linux APIs (V4L, sysfs,
maybe DVB in the future).

The most important shearing layer is between the top 2 layers. A lot of work went into the driver
to ensure that any kind of conceivable API can be laid on top of the core driver. (Yes, the driver
internally leverages V4L to do its work but that really has nothing to do with the API published
by the driver to the outside world.) The architecture allows for different APIs to simultaneously
access the driver. I have a strong sense of fairness about APIs and also feel that it is a good
design principle to keep implementation and interface isolated from each other. Thus while
right now the V4L high level interface is the most complete, the sysfs high level interface will
work equally well for similar functions, and there’s no reason I see right now why it shouldn’t
be possible to produce a DVB high level interface that can sit right alongside V4L.

Building

To build these modules essentially amounts to just running “Make”, but you need the kernel
source tree nearby and you will likely also want to set a few controlling environment variables
first in order to link things up with that source tree. Please see the Makefile here for comments
that explain how to do that.

2.9. Media driver-specific documentation 625

mailto:pvrusb2@dax.nu
http://pvrusb2.dax.nu/
http://pvrusb2.dax.nu/
mailto:slts@free.fr
https://www.isely.net/pvrusb2.html

Linux Media Documentation

Source file list / functional overview

(Note: The term “module” used below generally refers to loosely defined functional units within
the pvrusb2 driver and bears no relation to the Linux kernel’s concept of a loadable module.)

pvrusb2-audio.[ch] - This is glue logic that resides between this driver and the
msp3400.ko I2C client driver (which is found elsewhere in V4L).

pvrusb2-context.[ch] - This module implements the context for an instance of the
driver. Everything else eventually ties back to or is otherwise instanced within the data
structures implemented here. Hotplugging is ultimately coordinated here. All high level
interfaces tie into the driver through this module. This module helps arbitrate each
interface’s access to the actual driver core, and is designed to allow concurrent access
through multiple instances of multiple interfaces (thus you can for example change the
tuner’s frequency through sysfs while simultaneously streaming video through V4L out to
an instance of mplayer).

pvrusb2-debug.h - This header defines a printk() wrapper and a mask of debugging bit
definitions for the various kinds of debug messages that can be enabled within the driver.

pvrusb2-debugifc.[ch] - This module implements a crude command line oriented de-
bug interface into the driver. Aside from being part of the process for implementing
manual firmware extraction (see the pvrusb2 web site mentioned earlier), probably I’m
the only one who has ever used this. It is mainly a debugging aid.

pvrusb2-eeprom.[ch] - This is glue logic that resides between this driver the tveep-
rom.ko module, which is itself implemented elsewhere in V4L.

pvrusb2-encoder.[ch] - This module implements all protocol needed to interact with
the Conexant mpeg2 encoder chip within the pvrusb2 device. It is a crude echo of
corresponding logic in ivtv, however the design goals (strict isolation) and physical layer
(proxy through USB instead of PCI) are enough different that this implementation had to
be completely different.

pvrusb2-hdw-internal.h - This header defines the core data structure in the driver used
to track ALL internal state related to control of the hardware. Nobody outside of the
core hardware-handling modules should have any business using this header. All external
access to the driver should be through one of the high level interfaces (e.g. V4L, sysfs, etc),
and in fact even those high level interfaces are restricted to the API defined in pvrusb2-
hdw.h and NOT this header.

pvrusb2-hdw.h - This header defines the full internal API for controlling the hardware.
High level interfaces (e.g. V4L, sysfs) will work through here.

pvrusb2-hdw.c - This module implements all the various bits of logic that handle over-
all control of a specific pvrusb2 device. (Policy, instantiation, and arbitration of pvrusb2
devices fall within the jurisdiction of pvrusb-context not here).

pvrusb2-i2c-chips-*.c - These modules implement the glue logic to tie together and
configure various I2C modules as they attach to the I2C bus. There are two versions
of this file. The “v4l2” version is intended to be used in-tree alongside V4L, where
we implement just the logic that makes sense for a pure V4L environment. The “all”
version is intended for use outside of V4L, where we might encounter other possibly
“challenging” modules from ivtv or older kernel snapshots (or even the support modules
in the standalone snapshot).

626 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

pvrusb2-i2c-cmd-v4l1.[ch] - This module implements generic V4L1 compatible com-
mands to the I2C modules. It is here where state changes inside the pvrusb2 driver are
translated into V4L1 commands that are in turn send to the various I2C modules.

pvrusb2-i2c-cmd-v4l2.[ch] - This module implements generic V4L2 compatible com-
mands to the I2C modules. It is here where state changes inside the pvrusb2 driver are
translated into V4L2 commands that are in turn send to the various I2C modules.

pvrusb2-i2c-core.[ch] - This module provides an implementation of a kernel-friendly
I2C adaptor driver, through which other external I2C client drivers (e.g. msp3400,
tuner, lirc) may connect and operate corresponding chips within the pvrusb2 device. It is
through here that other V4L modules can reach into this driver to operate specific pieces
(and those modules are in turn driven by glue logic which is coordinated by pvrusb2-hdw,
doled out by pvrusb2-context, and then ultimately made available to users through one of
the high level interfaces).

pvrusb2-io.[ch] - This module implements a very low level ring of transfer buffers, re-
quired in order to stream data from the device. This module is very low level. It only
operates the buffers and makes no attempt to define any policy or mechanism for how
such buffers might be used.

pvrusb2-ioread.[ch] - This module layers on top of pvrusb2-io.[ch] to provide a stream-
ing API usable by a read() system call style of I/O. Right now this is the only layer on top
of pvrusb2-io.[ch], however the underlying architecture here was intended to allow for
other styles of I/O to be implemented with additional modules, like mmap()’ed buffers or
something even more exotic.

pvrusb2-main.c - This is the top level of the driver. Module level and USB core entry
points are here. This is our “main”.

pvrusb2-sysfs.[ch] - This is the high level interface which ties the pvrusb2 driver into
sysfs. Through this interface you can do everything with the driver except actually stream
data.

pvrusb2-tuner.[ch] - This is glue logic that resides between this driver and the tuner.ko
I2C client driver (which is found elsewhere in V4L).

pvrusb2-util.h - This header defines some common macros used throughout the driver.
These macros are not really specific to the driver, but they had to go somewhere.

pvrusb2-v4l2.[ch] - This is the high level interface which ties the pvrusb2 driver into
video4linux. It is through here that V4L applications can open and operate the driver
in the usual V4L ways. Note that ALL V4L functionality is published only through here
and nowhere else.

pvrusb2-video-*.[ch] - This is glue logic that resides between this driver and the
saa711x.ko I2C client driver (which is found elsewhere in V4L). Note that saa711x.ko
used to be known as saa7115.ko in ivtv. There are two versions of this; one is selected
depending on the particular saa711[5x].ko that is found.

pvrusb2.h - This header contains compile time tunable parameters (and at the moment
the driver has very little that needs to be tuned).

2.9. Media driver-specific documentation 627

Linux Media Documentation

2.9.1.8 PXA-Camera Host Driver

Author: Robert Jarzmik <robert.jarzmik@free.fr>

Constraints

a) Image size for YUV422P format All YUV422P images are enforced to have width x height
% 16 = 0. This is due to DMA constraints, which transfers only planes of 8 byte multiples.

Global video workflow

a) QCI stopped Initially, the QCI interface is stopped. When a buffer is queued
(pxa_videobuf_ops->buf_queue), the QCI starts.

b) QCI started More buffers can be queued while the QCI is started without halting the cap-
ture. The new buffers are “appended” at the tail of the DMA chain, and smoothly captured
one frame after the other.

Once a buffer is filled in the QCI interface, it is marked as “DONE” and removed from the
active buffers list. It can be then requeud or dequeued by userland application.

Once the last buffer is filled in, the QCI interface stops.

c) Capture global finite state machine schema

+----+ +---+ +----+
| DQ | | Q | | DQ |
| v | v | v
+-----------+ +------------------------+
| STOP | | Wait for capture start |
+-----------+ Q +------------------------+
+-> | QCI: stop | ------------------> | QCI: run | <------------+
| | DMA: stop | | DMA: stop | |
| +-----------+ +-----> +------------------------+ |
/					
/ +---+ +----+					
capture list empty /	Q		DQ		QCI Irq EOF
/	v	v v			
+--------------------+ +----------------------+					
	DMA hotlink missed		Capture running		
+--------------------+ +----------------------+					
	QCI: run	+----->	QCI: run	<-+	
	DMA: stop	/	DMA: run		
+--------------------+ / +----------------------+	Other				
^ /DMA still		channels			
	capture list / running	DMA Irq End	not		
	not empty /		finished		
	/ v	yet			
+----------------------+ +----------------------+					
	Videobuf released		Channel completed		
+----------------------+ +----------------------+					
+--	QCI: run		QCI: run	--+	
DMA: run		DMA: run			
+----------------------+ +----------------------+ |

^ / | |

628 Chapter 2. Media subsystem kernel internal API

mailto:robert.jarzmik@free.fr

Linux Media Documentation

| no overrun / | overrun |
| / v |

+--------------------+ / +----------------------+ |
| Frame completed | / | Frame overran | |
+--------------------+ <-----+ +----------------------+ restart frame |
| QCI: run | | QCI: stop | --------------+
| DMA: run | | DMA: stop |
+--------------------+ +----------------------+

Legend: - each box is a FSM state
- each arrow is the condition to transition to another state
- an arrow with a comment is a mandatory transition (no condition)
- arrow "Q" means : a buffer was enqueued
- arrow "DQ" means : a buffer was dequeued
- "QCI: stop" means the QCI interface is not enabled
- "DMA: stop" means all 3 DMA channels are stopped
- "DMA: run" means at least 1 DMA channel is still running

DMA usage

a) DMA flow
• first buffer queued for capture Once a first buffer is queued for capture, the QCI
is started, but data transfer is not started. On “End Of Frame” interrupt, the irq
handler starts the DMA chain.

• capture of one videobuffer The DMA chain starts transferring data into videobuffer
RAM pages. When all pages are transferred, the DMA irq is raised on “ENDINTR”
status

• finishing one videobuffer The DMA irq handler marks the videobuffer as “done”,
and removes it from the active running queue Meanwhile, the next videobuffer (if
there is one), is transferred by DMA

• finishing the last videobuffer On the DMA irq of the last videobuffer, the QCI is
stopped.

b) DMA prepared buffer will have this structure

+------------+-----+---------------+-----------------+
| desc-sg[0] | ... | desc-sg[last] | finisher/linker |
+------------+-----+---------------+-----------------+

This structure is pointed by dma->sg_cpu. The descriptors are used as follows:

• desc-sg[i]: i-th descriptor, transferring the i-th sg element to the video buffer scatter gather

• finisher: has ddadr=DADDR_STOP, dcmd=ENDIRQEN

• linker: has ddadr= desc-sg[0] of next video buffer, dcmd=0

For the next schema, let’s assume d0=desc-sg[0] .. dN=desc-sg[N], “f” stands for finisher and
“l” for linker. A typical running chain is :

Videobuffer 1 Videobuffer 2
+---------+----+---+ +----+----+----+---+
| d0 | .. | dN | l | | d0 | .. | dN | f |

2.9. Media driver-specific documentation 629

Linux Media Documentation

+---------+----+-|-+ ^----+----+----+---+
| |
+----+

After the chaining is finished, the chain looks like :

Videobuffer 1 Videobuffer 2 Videobuffer 3
+---------+----+---+ +----+----+----+---+ +----+----+----+---+
| d0 | .. | dN | l | | d0 | .. | dN | l | | d0 | .. | dN | f |
+---------+----+-|-+ ^----+----+----+-|-+ ^----+----+----+---+

| | | |
+----+ +----+

new_link

c) DMA hot chaining timeslice issue

As DMA chaining is done while DMA _is_ running, the linking may be done while the DMA
jumps from one Videobuffer to another. On the schema, that would be a problem if the following
sequence is encountered :

• DMA chain is Videobuffer1 + Videobuffer2

• pxa_videobuf_queue() is called to queue Videobuffer3

• DMA controller finishes Videobuffer2, and DMA stops

=>
Videobuffer 1 Videobuffer 2

+---------+----+---+ +----+----+----+---+
| d0 | .. | dN | l | | d0 | .. | dN | f |
+---------+----+-|-+ ^----+----+----+-^-+

| | |
+----+ +-- DMA DDADR loads DDADR_STOP

• pxa_dma_add_tail_buf() is called, the Videobuffer2 “finisher” is replaced by a “linker” to
Videobuffer3 (creation of new_link)

• pxa_videobuf_queue() finishes

• the DMA irq handler is called, which terminates Videobuffer2

• Videobuffer3 capture is not scheduled on DMA chain (as it stopped !!!)

Videobuffer 1 Videobuffer 2 Videobuffer 3
+---------+----+---+ +----+----+----+---+ +----+----+----+---+
| d0 | .. | dN | l | | d0 | .. | dN | l | | d0 | .. | dN | f |
+---------+----+-|-+ ^----+----+----+-|-+ ^----+----+----+---+

| | | |
+----+ +----+

new_link
DMA DDADR still is DDADR_STOP

• pxa_camera_check_link_miss() is called This checks if the DMA is finished and a buffer
is still on the pcdev->capture list. If that’s the case, the capture will be restarted, and
Videobuffer3 is scheduled on DMA chain.

• the DMA irq handler finishes

630 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Note: If DMA stops just after pxa_camera_check_link_miss() reads DDADR() value, we have
the guarantee that the DMA irq handler will be called back when the DMA will finish the buffer,
and pxa_camera_check_link_miss() will be called again, to reschedule Videobuffer3.

2.9.1.9 The Radiotrack radio driver

Author: Stephen M. Benoit <benoits@servicepro.com>

Date: Dec 14, 1996

ACKNOWLEDGMENTS

This document was made based on ‘C’ code for Linux from Gideon le Grange
(legrang@active.co.za or legrang@cs.sun.ac.za) in 1994, and elaborations fromFrans Brinkman
(brinkman@esd.nl) in 1996. The results reported here are from experiments that the author
performed on his own setup, so your mileage may vary… I make no guarantees, claims or war-
ranties to the suitability or validity of this information. No other documentation on the AIMS
Lab (http://www.aimslab.com/) RadioTrack card was made available to the author. This docu-
ment is offered in the hopes that it might help users who want to use the RadioTrack card in
an environment other than MS Windows.

WHY THIS DOCUMENT?

I have a RadioTrack card from back when I ran an MS-Windows platform. After converting to
Linux, I found Gideon le Grange’s command-line software for running the card, and found that
it was good! Frans Brinkman made a comfortable X-windows interface, and added a scanning
feature. For hack value, I wanted to see if the tuner could be tuned beyond the usual FM
radio broadcast band, so I could pick up the audio carriers from North American broadcast
TV channels, situated just below and above the 87.0-109.0 MHz range. I did not get much
success, but I learned about programming ioports under Linux and gained some insights about
the hardware design used for the card.

So, without further delay, here are the details.

PHYSICAL DESCRIPTION

The RadioTrack card is an ISA 8-bit FM radio card. The radio frequency (RF) input is simply an
antenna lead, and the output is a power audio signal available through a miniature phone plug.
Its RF frequencies of operation are more or less limited from 87.0 to 109.0 MHz (the commer-
cial FM broadcast band). Although the registers can be programmed to request frequencies
beyond these limits, experiments did not give promising results. The variable frequency oscil-
lator (VFO) that demodulates the intermediate frequency (IF) signal probably has a small range
of useful frequencies, and wraps around or gets clipped beyond the limits mentioned above.

2.9. Media driver-specific documentation 631

mailto:benoits@servicepro.com
mailto:legrang@active.co.za
mailto:legrang@cs.sun.ac.za
mailto:brinkman@esd.nl
http://www.aimslab.com/

Linux Media Documentation

CONTROLLING THE CARD WITH IOPORT

The RadioTrack (base) ioport is configurable for 0x30c or 0x20c. Only one ioport seems to
be involved. The ioport decoding circuitry must be pretty simple, as individual ioport bits are
directly matched to specific functions (or blocks) of the radio card. This way, many functions
can be changed in parallel with one write to the ioport. The only feedback available through
the ioports appears to be the “Stereo Detect” bit.

The bits of the ioport are arranged as follows:

MSb LSb
+------+------+------+--------+--------+-------+---------+--------+
VolA	VolB	????	Stereo	Radio	TuneA	TuneB	Tune
(+)	(-)		Detect	Audio	(bit)	(latch)	Update
			Enable	Enable			Enable
+------+------+------+--------+--------+-------+---------+--------+

VolA VolB Description
0 0 audio mute
0 1 volume + (some delay required)
1 0 volume - (some delay required)
1 1 stay at present volume

Stereo Detect Enable Description
0 No Detect
1 Detect

Results available by reading ioport >60 msec after last port write.

0xff ==> no stereo detected, 0xfd ==> stereo detected.

Radio to Audio (path) Enable Description
0 Disable path (silence)
1 Enable path (audio produced)

TuneA TuneB Description
0 0 “zero” bit phase 1
0 1 “zero” bit phase 2
1 0 “one” bit phase 1
1 1 “one” bit phase 2

24-bit code, where bits = (freq*40) + 10486188. The Most Significant 11 bits must be 1010
xxxx 0x0 to be valid. The bits are shifted in LSb first.

Tune Update Enable Description
0 Tuner held constant
1 Tuner updating in progress

632 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

PROGRAMMING EXAMPLES

Default: BASE <-- 0xc8 (current volume, no stereo detect,
radio enable, tuner adjust disable)

Card Off: BASE <-- 0x00 (audio mute, no stereo detect,
radio disable, tuner adjust disable)

Card On: BASE <-- 0x00 (see "Card Off", clears any unfinished business)
BASE <-- 0xc8 (see "Default")

Volume Down: BASE <-- 0x48 (volume down, no stereo detect,
radio enable, tuner adjust disable)

wait 10 msec
BASE <-- 0xc8 (see "Default")

Volume Up: BASE <-- 0x88 (volume up, no stereo detect,
radio enable, tuner adjust disable)

wait 10 msec
BASE <-- 0xc8 (see "Default")

Check Stereo: BASE <-- 0xd8 (current volume, stereo detect,
radio enable, tuner adjust disable)

wait 100 msec
x <-- BASE (read ioport)
BASE <-- 0xc8 (see "Default")

x=0xff ==> "not stereo", x=0xfd ==> "stereo detected"

Set Frequency: code = (freq*40) + 10486188
foreach of the 24 bits in code,
(from Least to Most Significant):
to write a "zero" bit,
BASE <-- 0x01 (audio mute, no stereo detect, radio

disable, "zero" bit phase 1, tuner adjust)
BASE <-- 0x03 (audio mute, no stereo detect, radio

disable, "zero" bit phase 2, tuner adjust)
to write a "one" bit,
BASE <-- 0x05 (audio mute, no stereo detect, radio

disable, "one" bit phase 1, tuner adjust)
BASE <-- 0x07 (audio mute, no stereo detect, radio

disable, "one" bit phase 2, tuner adjust)

2.9.1.10 The Rockchip Image Signal Processor Driver (rkisp1)

Versions and their differences

The rkisp1 block underwent some changes between SoC implementations. The vendor desig-
nates them as:

• V10: used at least in rk3288 and rk3399

• V11: declared in the original vendor code, but not used

• V12: used at least in rk3326 and px30

2.9. Media driver-specific documentation 633

Linux Media Documentation

• V13: used at least in rk1808

• V20: used in rk3568 and beyond

Right now the kernel supports rkisp1 implementations based on V10 and V12 variants. V11
does not seem to be actually used and V13 will need some more additions but isn’t researched
yet, especially as it seems to be limited to the rk1808which hasn’t reachedmuchmarket spread.

V20 on the other hand will probably be used in future SoCs and has seen really big changes in
the vendor kernel, so will need quite a bit of research.

Changes from V10 to V12

• V12 supports a new CSI-host implementation but can still also use the same implementa-
tion from V10

• The module for lens shading correction got changed from 12bit to 13bit width

• The AWB and AEC modules got replaced to support finer grained data collection

Changes from V12 to V13

The list for V13 is incomplete and needs further investigation.

• V13 does not support the old CSI-host implementation anymore

2.9.1.11 The saa7134 driver

Author Gerd Hoffmann

Card Variations:

Cards can use either of these two crystals (xtal):

• 32.11 MHz -> .audio_clock=0x187de7

• 24.576MHz -> .audio_clock=0x200000 (xtal * .audio_clock = 51539600)

Some details about 30/34/35:

• saa7130 - low-price chip, doesn’t have mute, that is why all those cards should have .mute
field defined in their tuner structure.

• saa7134 - usual chip

• saa7133/35 - saa7135 is probably a marketing decision, since all those chips identifies
itself as 33 on pci.

634 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

LifeView GPIOs

This section was authored by: Peter Missel <peter.missel@onlinehome.de>

• LifeView FlyTV Platinum FM (LR214WF)

– GP27 MDT2005 PB4 pin 10
– GP26 MDT2005 PB3 pin 9
– GP25 MDT2005 PB2 pin 8
– GP23 MDT2005 PB1 pin 7
– GP22 MDT2005 PB0 pin 6
– GP21 MDT2005 PB5 pin 11
– GP20 MDT2005 PB6 pin 12
– GP19 MDT2005 PB7 pin 13
– nc MDT2005 PA3 pin 2
– Remote MDT2005 PA2 pin 1
– GP18 MDT2005 PA1 pin 18
– nc MDT2005 PA0 pin 17 strap low
– GP17 Strap “GP7”=High
– GP16 Strap “GP6”=High

∗ 0=Radio 1=TV

∗ Drives SA630D ENCH1 and HEF4052 A1 pinsto do FM radio through SIF input

– GP15 nc
– GP14 nc
– GP13 nc
– GP12 Strap “GP5” = High
– GP11 Strap “GP4” = High
– GP10 Strap “GP3” = High
– GP09 Strap “GP2” = Low
– GP08 Strap “GP1” = Low
– GP07.00 nc

2.9. Media driver-specific documentation 635

mailto:peter.missel@onlinehome.de

Linux Media Documentation

Credits

andrew.stevens@philips.com + werner.leeb@philips.com for providing saa7134 hardware
specs and sample board.

2.9.1.12 Cropping and Scaling algorithm, used in the sh_mobile_ceu_camera driver

Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>

Terminology

sensor scales: horizontal and vertical scales, configured by the sensor driver host scales: -“-
host driver combined scales: sensor_scale * host_scale

Generic scaling / cropping scheme

-1--
|
-2-- -\
| --\
| --\
+-5-- . -- -3-- -\
| `... -\
| `... -4-- . - -7..
| `.
| `. .6--
|
| . .6'-
| .´
| ... -4'- .´
| ...´ - -7'.
+-5'- .´ -/
| -- -3'- -/
| --/
| --/
-2'- -/
|
|
-1'-

In the above chart minuses and slashes represent “real” data amounts, points and accents rep-
resent “useful” data, basically, CEU scaled and cropped output, mapped back onto the client’s
source plane.

Such a configuration can be produced by user requests:

S_CROP(left / top = (5) - (1), width / height = (5’) - (5)) S_FMT(width / height = (6’) - (6))

Here:

(1) to (1’) - whole max width or height (1) to (2) - sensor cropped left or top (2) to (2’) - sensor
cropped width or height (3) to (3’) - sensor scale (3) to (4) - CEU cropped left or top (4) to (4’)
- CEU cropped width or height (5) to (5’) - reverse sensor scale applied to CEU cropped width

636 Chapter 2. Media subsystem kernel internal API

mailto:andrew.stevens@philips.com
mailto:werner.leeb@philips.com
mailto:g.liakhovetski@gmx.de

Linux Media Documentation

or height (2) to (5) - reverse sensor scale applied to CEU cropped left or top (6) to (6’) - CEU
scale - user window

S_FMT

Do not touch input rectangle - it is already optimal.

1. Calculate current sensor scales:

scale_s = ((2’) - (2)) / ((3’) - (3))

2. Calculate “effective” input crop (sensor subwindow) - CEU crop scaled back at current sensor
scales onto input window - this is user S_CROP:

width_u = (5’) - (5) = ((4’) - (4)) * scale_s

3. Calculate new combined scales from “effective” input window to requested user window:

scale_comb = width_u / ((6’) - (6))

4. Calculate sensor output window by applying combined scales to real input window:

width_s_out = ((7’) - (7)) = ((2’) - (2)) / scale_comb

5. Apply iterative sensor S_FMT for sensor output window.

subdev->video_ops->s_fmt(.width = width_s_out)

6. Retrieve sensor output window (g_fmt)

7. Calculate new sensor scales:

scale_s_new = ((3’)_new - (3)_new) / ((2’) - (2))

8. Calculate new CEU crop - apply sensor scales to previously calculated “effective” crop:

width_ceu = (4’)_new - (4)_new = width_u / scale_s_new left_ceu = (4)_new - (3)_new
= ((5) - (2)) / scale_s_new

9. Use CEU cropping to crop to the new window:

ceu_crop(.width = width_ceu, .left = left_ceu)

10. Use CEU scaling to scale to the requested user window:

scale_ceu = width_ceu / width

S_CROP

The V4L2 crop API says:

“…specification does not define an origin or units. However by convention drivers should hori-
zontally count unscaled samples relative to 0H.”

We choose to follow the advise and interpret cropping units as client input pixels.

Cropping is performed in the following 6 steps:

1. Request exactly user rectangle from the sensor.

2.9. Media driver-specific documentation 637

Linux Media Documentation

2. If smaller - iterate until a larger one is obtained. Result: sensor cropped to 2 : 2’, target
crop 5 : 5’, current output format 6’ - 6.

3. In the previous step the sensor has tried to preserve its output frame as good as possible,
but it could have changed. Retrieve it again.

4. Sensor scaled to 3 : 3’. Sensor’s scale is (2’ - 2) / (3’ - 3). Calculate intermediate window:
4’ - 4 = (5’ - 5) * (3’ - 3) / (2’ - 2)

5. Calculate and apply host scale = (6’ - 6) / (4’ - 4)

6. Calculate and apply host crop: 6 - 7 = (5 - 2) * (6’ - 6) / (5’ - 5)

2.9.1.13 Tuner drivers

Simple tuner Programming

There are some flavors of Tuner programming APIs. These differ mainly by the bandswitch
byte.

• L= LG_API (VHF_LO=0x01, VHF_HI=0x02, UHF=0x08, radio=0x04)

• P= PHILIPS_API (VHF_LO=0xA0, VHF_HI=0x90, UHF=0x30, radio=0x04)

• T= TEMIC_API (VHF_LO=0x02, VHF_HI=0x04, UHF=0x01)

• A= ALPS_API (VHF_LO=0x14, VHF_HI=0x12, UHF=0x11)

• M= PHILIPS_MK3 (VHF_LO=0x01, VHF_HI=0x02, UHF=0x04, radio=0x19)

Tuner Manufacturers

• Samsung Tuner identification: (e.g. TCPM9091PD27)

TCP [ABCJLMNQ] 90[89][125] [DP] [ACD] 27 [ABCD]
[ABCJLMNQ]:

A= BG+DK
B= BG
C= I+DK
J= NTSC-Japan
L= Secam LL
M= BG+I+DK
N= NTSC
Q= BG+I+DK+LL

[89]: ?
[125]:

2: No FM
5: With FM

[DP]:
D= NTSC
P= PAL

[ACD]:
A= F-connector
C= Phono connector
D= Din Jack

[ABCD]:
3-wire/I2C tuning, 2-band/3-band

638 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

These Tuners are PHILIPS_API compatible.

Philips Tuner identification: (e.g. FM1216MF)

F[IRMQ]12[1345]6{MF|ME|MP}
F[IRMQ]:
FI12x6: Tuner Series
FR12x6: Tuner + Radio IF
FM12x6: Tuner + FM
FQ12x6: special
FMR12x6: special
TD15xx: Digital Tuner ATSC

12[1345]6:
1216: PAL BG
1236: NTSC
1246: PAL I
1256: Pal DK

{MF|ME|MP}
MF: BG LL w/ Secam (Multi France)
ME: BG DK I LL (Multi Europe)
MP: BG DK I (Multi PAL)
MR: BG DK M (?)
MG: BG DKI M (?)

MK2 series PHILIPS_API, most tuners are compatible to this one !
MK3 series introduced in 2002 w/ PHILIPS_MK3_API

Temic Tuner identification: (.e.g 4006FH5)

4[01][0136][269]F[HYNR]5
40x2: Tuner (5V/33V), TEMIC_API.
40x6: Tuner 5V
41xx: Tuner compact
40x9: Tuner+FM compact

[0136]
xx0x: PAL BG
xx1x: Pal DK, Secam LL
xx3x: NTSC
xx6x: PAL I

F[HYNR]5
FH5: Pal BG
FY5: others
FN5: multistandard
FR5: w/ FM radio

3X xxxx: order number with specific connector
Note: Only 40x2 series has TEMIC_API, all newer tuners have PHILIPS_API.

LG Innotek Tuner:

• TPI8NSR11 : NTSC J/M (TPI8NSR01 w/FM) (P,210/497)

• TPI8PSB11 : PAL B/G (TPI8PSB01 w/FM) (P,170/450)

• TAPC-I701 : PAL I (TAPC-I001 w/FM) (P,170/450)

• TPI8PSB12 : PAL D/K+B/G (TPI8PSB02 w/FM) (P,170/450)

• TAPC-H701P: NTSC_JP (TAPC-H001P w/FM) (L,170/450)

2.9. Media driver-specific documentation 639

Linux Media Documentation

• TAPC-G701P: PAL B/G (TAPC-G001P w/FM) (L,170/450)

• TAPC-W701P: PAL I (TAPC-W001P w/FM) (L,170/450)

• TAPC-Q703P: PAL D/K (TAPC-Q001P w/FM) (L,170/450)

• TAPC-Q704P: PAL D/K+I (L,170/450)

• TAPC-G702P: PAL D/K+B/G (L,170/450)

• TADC-H002F: NTSC (L,175/410?; 2-B, C-W+11, W+12-69)

• TADC-M201D: PAL D/K+B/G+I (L,143/425) (sound control at I2C address 0xc8)

• TADC-T003F: NTSC Taiwan (L,175/410?; 2-B, C-W+11, W+12-69)

Suffix:
• P= Standard phono female socket

• D= IEC female socket

• F= F-connector

Other Tuners:

• TCL2002MB-1 : PAL BG + DK =TUNER_LG_PAL_NEW_TAPC

• TCL2002MB-1F: PAL BG + DK w/FM =PHILIPS_PAL

• TCL2002MI-2 : PAL I = ??

ALPS Tuners:

• Most are LG_API compatible

• TSCH6 has ALPS_API (TSCH5 ?)

• TSBE1 has extra API 05,02,08 Control_byte=0xCB Source:1

2.9.1.14 The Virtual Media Controller Driver (vimc)

Source code documentation

vimc-streamer

struct vimc_stream
struct that represents a stream in the pipeline

Definition

struct vimc_stream {
struct media_pipeline pipe;
struct vimc_ent_device *ved_pipeline[VIMC_STREAMER_PIPELINE_MAX_SIZE];
unsigned int pipe_size;
struct task_struct *kthread;

};

Members
1 conexant100029b-PCI-Decoder-ApplicationNote.pdf

640 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

pipe the media pipeline object associated with this stream

ved_pipeline array containing all the entities participating in the stream. The order is from a
video device (usually a capture device) where stream_on was called, to the entity gener-
ating the first base image to be processed in the pipeline.

pipe_size size of ved_pipeline
kthread thread that generates the frames of the stream.

Description
When the user call stream_on in a video device, struct vimc_stream is used to keep track of
all entities and subdevices that generates and process frames for the stream.

struct media_entity * vimc_get_source_entity(struct media_entity *ent)
get the entity connected with the first sink pad

Parameters
struct media_entity *ent reference media_entity

Description
Helper function that returns the media entity containing the source pad linked with the first
sink pad from the given media entity pad list.

Return
The source pad or NULL, if it wasn’t found.

void vimc_streamer_pipeline_terminate(struct vimc_stream *stream)
Disable stream in all ved in stream

Parameters
struct vimc_stream *stream the pointer to the stream structure with the pipeline to be dis-

abled.

Description
Calls s_stream to disable the stream in each entity of the pipeline

int vimc_streamer_pipeline_init(struct vimc_stream *stream, struct
vimc_ent_device *ved)

Initializes the stream structure

Parameters
struct vimc_stream *stream the pointer to the stream structure to be initialized

struct vimc_ent_device *ved the pointer to the vimc entity initializing the stream

Description
Initializes the stream structure. Walks through the entity graph to construct the pipeline used
later on the streamer thread. Calls vimc_streamer_s_stream() to enable stream in all entities
of the pipeline.

Return
0 if success, error code otherwise.

2.9. Media driver-specific documentation 641

Linux Media Documentation

int vimc_streamer_thread(void *data)
Process frames through the pipeline

Parameters
void *data vimc_stream struct of the current stream

Description
From the source to the sink, gets a frame from each subdevice and send to the next one of the
pipeline at a fixed framerate.

Return
Always zero (created as int instead of void to comply with kthread API).

int vimc_streamer_s_stream(struct vimc_stream *stream, struct vimc_ent_device *ved,
int enable)

Start/stop the streaming on the media pipeline

Parameters
struct vimc_stream *stream the pointer to the stream structure of the current stream

struct vimc_ent_device *ved pointer to the vimc entity of the entity of the stream

int enable flag to determine if stream should start/stop

Description
When starting, check if there is no stream->kthread allocated. This should indicate that a
stream is already running. Then, it initializes the pipeline, creates and runs a kthread to con-
sume buffers through the pipeline. When stopping, analogously check if there is a stream
running, stop the thread and terminates the pipeline.

Return
0 if success, error code otherwise.

2.9.1.15 The Zoran driver

unified zoran driver (zr360x7, zoran, buz, dc10(+), dc30(+), lml33)

website: http://mjpeg.sourceforge.net/driver-zoran/

Frequently Asked Questions

What cards are supported

Iomega Buz, Linux Media Labs LML33/LML33R10, Pinnacle/Miro DC10/DC10+/DC30/DC30+
and related boards (available under various names).

642 Chapter 2. Media subsystem kernel internal API

http://mjpeg.sourceforge.net/driver-zoran/

Linux Media Documentation

Iomega Buz

• Zoran zr36067 PCI controller

• Zoran zr36060 MJPEG codec

• Philips saa7111 TV decoder

• Philips saa7185 TV encoder

Drivers to use: videodev, i2c-core, i2c-algo-bit, videocodec, saa7111, saa7185, zr36060,
zr36067

Inputs/outputs: Composite and S-video

Norms: PAL, SECAM (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps)

Card number: 7

AverMedia 6 Eyes AVS6EYES

• Zoran zr36067 PCI controller

• Zoran zr36060 MJPEG codec

• Samsung ks0127 TV decoder

• Conexant bt866 TV encoder

Drivers to use: videodev, i2c-core, i2c-algo-bit, videocodec, ks0127, bt866, zr36060, zr36067

Inputs/outputs: Six physical inputs. 1-6 are composite, 1-2, 3-4, 5-6 doubles as S-video, 1-3
triples as component. One composite output.

Norms: PAL, SECAM (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps)

Card number: 8

Note: Not autodetected, card=8 is necessary.

Linux Media Labs LML33

• Zoran zr36067 PCI controller

• Zoran zr36060 MJPEG codec

• Brooktree bt819 TV decoder

• Brooktree bt856 TV encoder

Drivers to use: videodev, i2c-core, i2c-algo-bit, videocodec, bt819, bt856, zr36060, zr36067

Inputs/outputs: Composite and S-video

Norms: PAL (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps)

Card number: 5

2.9. Media driver-specific documentation 643

Linux Media Documentation

Linux Media Labs LML33R10

• Zoran zr36067 PCI controller

• Zoran zr36060 MJPEG codec

• Philips saa7114 TV decoder

• Analog Devices adv7170 TV encoder

Drivers to use: videodev, i2c-core, i2c-algo-bit, videocodec, saa7114, adv7170, zr36060,
zr36067

Inputs/outputs: Composite and S-video

Norms: PAL (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps)

Card number: 6

Pinnacle/Miro DC10(new)

• Zoran zr36057 PCI controller

• Zoran zr36060 MJPEG codec

• Philips saa7110a TV decoder

• Analog Devices adv7176 TV encoder

Drivers to use: videodev, i2c-core, i2c-algo-bit, videocodec, saa7110, adv7175, zr36060,
zr36067

Inputs/outputs: Composite, S-video and Internal

Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)

Card number: 1

Pinnacle/Miro DC10+

• Zoran zr36067 PCI controller

• Zoran zr36060 MJPEG codec

• Philips saa7110a TV decoder

• Analog Devices adv7176 TV encoder

Drivers to use: videodev, i2c-core, i2c-algo-bit, videocodec, saa7110, adv7175, zr36060,
zr36067

Inputs/outputs: Composite, S-video and Internal

Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)

Card number: 2

644 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Pinnacle/Miro DC10(old)

• Zoran zr36057 PCI controller

• Zoran zr36050 MJPEG codec

• Zoran zr36016 Video Front End or Fuji md0211 Video Front End (clone?)

• Micronas vpx3220a TV decoder

• mse3000 TV encoder or Analog Devices adv7176 TV encoder

Drivers to use: videodev, i2c-core, i2c-algo-bit, videocodec, vpx3220, mse3000/adv7175,
zr36050, zr36016, zr36067

Inputs/outputs: Composite, S-video and Internal

Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)

Card number: 0

Pinnacle/Miro DC30

• Zoran zr36057 PCI controller

• Zoran zr36050 MJPEG codec

• Zoran zr36016 Video Front End

• Micronas vpx3225d/vpx3220a/vpx3216b TV decoder

• Analog Devices adv7176 TV encoder

Drivers to use: videodev, i2c-core, i2c-algo-bit, videocodec, vpx3220/vpx3224, adv7175,
zr36050, zr36016, zr36067

Inputs/outputs: Composite, S-video and Internal

Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)

Card number: 3

Pinnacle/Miro DC30+

• Zoran zr36067 PCI controller

• Zoran zr36050 MJPEG codec

• Zoran zr36016 Video Front End

• Micronas vpx3225d/vpx3220a/vpx3216b TV decoder

• Analog Devices adv7176 TV encoder

Drivers to use: videodev, i2c-core, i2c-algo-bit, videocodec, vpx3220/vpx3224, adv7175,
zr36050, zr36015, zr36067

Inputs/outputs: Composite, S-video and Internal

Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)

2.9. Media driver-specific documentation 645

Linux Media Documentation

Card number: 4

Note:
1) No module for the mse3000 is available yet

2) No module for the vpx3224 is available yet

1.1 What the TV decoder can do an what not

The best know TV standards are NTSC/PAL/SECAM. but for decoding a frame that information
is not enough. There are several formats of the TV standards. And not every TV decoder is
able to handle every format. Also the every combination is supported by the driver. There are
currently 11 different tv broadcast formats all aver the world.

The CCIR defines parameters needed for broadcasting the signal. The CCIR has defined differ-
ent standards: A,B,D,E,F,G,D,H,I,K,K1,L,M,N,… The CCIR says not much about the colorsystem
used !!! And talking about a colorsystem says not to much about how it is broadcast.

The CCIR standards A,E,F are not used any more.

When you speak about NTSC, you usually mean the standard: CCIR - M using the NTSC col-
orsystem which is used in the USA, Japan, Mexico, Canada and a few others.

When you talk about PAL, you usually mean: CCIR - B/G using the PAL colorsystem which is
used in many Countries.

When you talk about SECAM, you mean: CCIR - L using the SECAM Colorsystem which is used
in France, and a few others.

There the other version of SECAM, CCIR - D/K is used in Bulgaria, China, Slovakai, Hungary,
Korea (Rep.), Poland, Rumania and a others.

The CCIR - H uses the PAL colorsystem (sometimes SECAM) and is used in Egypt, Libya, Sri
Lanka, Syrain Arab. Rep.

The CCIR - I uses the PAL colorsystem, and is used in Great Britain, Hong Kong, Ireland, Nigeria,
South Africa.

The CCIR - N uses the PAL colorsystem and PAL frame size but the NTSC framerate, and is used
in Argentinia, Uruguay, an a few others

We do not talk about how the audio is broadcast !

A rather good sites about the TV standards are: http://www.sony.jp/support/ http://info.
electronicwerkstatt.de/bereiche/fernsehtechnik/frequenzen_und_normen/Fernsehnormen/ and
http://www.cabl.com/restaurant/channel.html

Other weird things around: NTSC 4.43 is a modificated NTSC, which is mainly used in PAL
VCR’s that are able to play back NTSC. PAL 60 seems to be the same as NTSC 4.43 . The
Datasheets also talk about NTSC 44, It seems as if it would be the same as NTSC 4.43. NTSC
Combs seems to be a decoder mode where the decoder uses a comb filter to split coma and
luma instead of a Delay line.

But I did not defiantly find out what NTSC Comb is.

646 Chapter 2. Media subsystem kernel internal API

http://www.sony.jp/support/
http://info.electronicwerkstatt.de/bereiche/fernsehtechnik/frequenzen_und_normen/Fernsehnormen/
http://info.electronicwerkstatt.de/bereiche/fernsehtechnik/frequenzen_und_normen/Fernsehnormen/
http://www.cabl.com/restaurant/channel.html

Linux Media Documentation

Philips saa7111 TV decoder

• was introduced in 1997, is used in the BUZ and

• can handle: PAL B/G/H/I, PAL N, PAL M, NTSC M, NTSC N, NTSC 4.43 and SECAM

Philips saa7110a TV decoder

• was introduced in 1995, is used in the Pinnacle/Miro DC10(new), DC10+ and

• can handle: PAL B/G, NTSC M and SECAM

Philips saa7114 TV decoder

• was introduced in 2000, is used in the LML33R10 and

• can handle: PAL B/G/D/H/I/N, PAL N, PAL M, NTSC M, NTSC 4.43 and SECAM

Brooktree bt819 TV decoder

• was introduced in 1996, and is used in the LML33 and

• can handle: PAL B/D/G/H/I, NTSC M

Micronas vpx3220a TV decoder

• was introduced in 1996, is used in the DC30 and DC30+ and

• can handle: PAL B/G/H/I, PAL N, PAL M, NTSC M, NTSC 44, PAL 60, SECAM,NTSC Comb

Samsung ks0127 TV decoder

• is used in the AVS6EYES card and

• can handle: NTSC-M/N/44, PAL-M/N/B/G/H/I/D/K/L and SECAM

What the TV encoder can do an what not

The TV encoder is doing the “same” as the decoder, but in the other direction. You feed them
digital data and the generate a Composite or SVHS signal. For information about the colorsys-
tems and TV norm take a look in the TV decoder section.

2.9. Media driver-specific documentation 647

Linux Media Documentation

Philips saa7185 TV Encoder

• was introduced in 1996, is used in the BUZ

• can generate: PAL B/G, NTSC M

Brooktree bt856 TV Encoder

• was introduced in 1994, is used in the LML33

• can generate: PAL B/D/G/H/I/N, PAL M, NTSC M, PAL-N (Argentina)

Analog Devices adv7170 TV Encoder

• was introduced in 2000, is used in the LML300R10

• can generate: PAL B/D/G/H/I/N, PAL M, NTSC M, PAL 60

Analog Devices adv7175 TV Encoder

• was introduced in 1996, is used in the DC10, DC10+, DC10 old, DC30, DC30+

• can generate: PAL B/D/G/H/I/N, PAL M, NTSC M

ITT mse3000 TV encoder

• was introduced in 1991, is used in the DC10 old

• can generate: PAL , NTSC , SECAM

Conexant bt866 TV encoder

• is used in AVS6EYES, and

• can generate: NTSC/PAL, PAL-M, PAL-N

The adv717x, should be able to produce PAL N. But you find nothing PAL N specific in the
registers. Seem that you have to reuse a other standard to generate PAL N, maybe it would
work if you use the PAL M settings.

How do I get this damn thing to work

Load zr36067.o. If it can’t autodetect your card, use the card=X insmod option with X be-
ing the card number as given in the previous section. To have more than one card, use
card=X1[,X2[,X3,[X4[..]]]]

To automate this, add the following to your /etc/modprobe.d/zoran.conf:

options zr36067 card=X1[,X2[,X3[,X4[..]]]] alias char-major-81-0 zr36067

648 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

One thing to keep in mind is that this doesn’t load zr36067.o itself yet. It just automates loading.
If you start using xawtv, the device won’t load on some systems, since you’re trying to load
modules as a user, which is not allowed (“permission denied”). A quick workaround is to add
‘Load “v4l”’ to XF86Config-4 when you use X by default, or to run ‘v4l-conf -c <device>’ in one
of your startup scripts (normally rc.local) if you don’t use X. Both make sure that the modules
are loaded on startup, under the root account.

What mainboard should I use (or why doesn’t my card work)

<insert lousy disclaimer here>. In short: good=SiS/Intel, bad=VIA.

Experience tells us that people with a Buz, on average, have more problems than users with
a DC10+/LML33. Also, it tells us that people owning a VIA- based mainboard (ktXXX, MVP3)
have more problems than users with a mainboard based on a different chipset. Here’s some
notes from Andrew Stevens:

Here’s my experience of using LML33 and Buz on various motherboards:

• VIA MVP3
– Forget it. Pointless. Doesn’t work.

• Intel 430FX (Pentium 200)
– LML33 perfect, Buz tolerable (3 or 4 frames dropped per movie)

• Intel 440BX (early stepping)
– LML33 tolerable. Buz starting to get annoying (6-10 frames/hour)

• Intel 440BX (late stepping)
– Buz tolerable, LML3 almost perfect (occasional single frame drops)

• SiS735
– LML33 perfect, Buz tolerable.

• VIA KT133(*)
– LML33 starting to get annoying, Buz poor enough that I have up.

• Both 440BX boards were dual CPU versions.

Bernhard Praschinger later added:

• AMD 751
– Buz perfect-tolerable

• AMD 760
– Buz perfect-tolerable

In general, people on the user mailinglist won’t give you much of a chance if you have a VIA-
based motherboard. They may be cheap, but sometimes, you’d rather want to spend some
more money on better boards. In general, VIA mainboard’s IDE/PCI performance will also suck
badly compared to others. You’ll noticed the DC10+/DC30+ aren’t mentioned anywhere in the
overview. Basically, you can assume that if the Buz works, the LML33 will work too. If the
LML33 works, the DC10+/DC30+ will work too. They’re most tolerant to different mainboard
chipsets from all of the supported cards.

2.9. Media driver-specific documentation 649

Linux Media Documentation

If you experience timeouts during capture, buy a better mainboard or lower the qual-
ity/buffersize during capture (see ‘Concerning buffer sizes, quality, output size etc.’). If it
hangs, there’s little we can do as of now. Check your IRQs and make sure the card has its
own interrupts.

Programming interface

This driver conforms to video4linux2. Support for V4L1 and for the custom zoran ioctls has
been removed in kernel 2.6.38.

For programming example, please, look at lavrec.c and lavplay.c code in the MJPEG-tools (http:
//mjpeg.sf.net/).

Additional notes for software developers:

The driver returns maxwidth and maxheight parameters according to the current TV
standard (norm). Therefore, the software which communicates with the driver and
“asks” for these parameters should first set the correct norm. Well, it seems logically
correct: TV standard is “more constant” for current country than geometry settings
of a variety of TV capture cards which may work in ITU or square pixel format.

Applications

Applications known to work with this driver:

TV viewing:

• xawtv

• kwintv

• probably any TV application that supports video4linux or video4linux2.

MJPEG capture/playback:

• mjpegtools/lavtools (or Linux Video Studio)

• gstreamer

• mplayer

General raw capture:

• xawtv

• gstreamer

• probably any application that supports video4linux or video4linux2

Video editing:

• Cinelerra

• MainActor

• mjpegtools (or Linux Video Studio)

650 Chapter 2. Media subsystem kernel internal API

http://mjpeg.sf.net/
http://mjpeg.sf.net/

Linux Media Documentation

Concerning buffer sizes, quality, output size etc.

The zr36060 can do 1:2 JPEG compression. This is really the theoretical maximum that the
chipset can reach. The driver can, however, limit compression to a maximum (size) of 1:4. The
reason for this is that some cards (e.g. Buz) can’t handle 1:2 compression without stopping cap-
ture after only a few minutes. With 1:4, it’ll mostly work. If you have a Buz, use ‘low_bitrate=1’
to go into 1:4 max. compression mode.

100% JPEG quality is thus 1:2 compression in practice. So for a full PAL frame (size 720x576).
The JPEG fields are stored in YUY2 format, so the size of the fields are 720x288x16/2 bits/field (2
fields/frame) = 207360 bytes/field x 2 = 414720 bytes/frame (add some more bytes for headers
and DHT (huffman)/DQT (quantization) tables, and you’ll get to something like 512kB per frame
for 1:2 compression. For 1:4 compression, you’d have frames of half this size.

Some additional explanation by Martin Samuelsson, which also explains the importance of
buffer sizes: – > Hmm, I do not think it is really that way. With the current (downloaded >
at 18:00 Monday) driver I get that output sizes for 10 sec: > -q 50 -b 128 : 24.283.332 Bytes >
-q 50 -b 256 : 48.442.368 > -q 25 -b 128 : 24.655.992 > -q 25 -b 256 : 25.859.820

I woke up, and can’t go to sleep again. I’ll kill some time explaining why this doesn’t look
strange to me.

Let’s do some math using a width of 704 pixels. I’m not sure whether the Buz actually use that
number or not, but that’s not too important right now.

704x288 pixels, one field, is 202752 pixels. Divided by 64 pixels per block; 3168 blocks per
field. Each pixel consist of two bytes; 128 bytes per block; 1024 bits per block. 100% in the
new driver mean 1:2 compression; the maximum output becomes 512 bits per block. Actually
510, but 512 is simpler to use for calculations.

Let’s say that we specify d1q50. We thus want 256 bits per block; times 3168 becomes 811008
bits; 101376 bytes per field. We’re talking raw bits and bytes here, so we don’t need to do any
fancy corrections for bits-per-pixel or such things. 101376 bytes per field.

d1 video contains two fields per frame. Those sum up to 202752 bytes per frame, and one of
those frames goes into each buffer.

But wait a second! -b128 gives 128kB buffers! It’s not possible to cram 202752 bytes of JPEG
data into 128kB!

This is what the driver notice and automatically compensate for in your examples. Let’s do
some math using this information:

128kB is 131072 bytes. In this buffer, we want to store two fields, which leaves 65536 bytes for
each field. Using 3168 blocks per field, we get 20.68686868… available bytes per block; 165
bits. We can’t allow the request for 256 bits per block when there’s only 165 bits available! The
-q50 option is silently overridden, and the -b128 option takes precedence, leaving us with the
equivalence of -q32.

This gives us a data rate of 165 bits per block, which, times 3168, sums up to 65340 bytes per
field, out of the allowed 65536. The current driver has another level of rate limiting; it won’t
accept -q values that fill more than 6/8 of the specified buffers. (I’m not sure why. “Playing it
safe” seem to be a safe bet. Personally, I think I would have lowered requested-bits-per-block
by one, or something like that.) We can’t use 165 bits per block, but have to lower it again, to
6/8 of the available buffer space: We end up with 124 bits per block, the equivalence of -q24.
With 128kB buffers, you can’t use greater than -q24 at -d1. (And PAL, and 704 pixels width…)

2.9. Media driver-specific documentation 651

Linux Media Documentation

The third example is limited to -q24 through the same process. The second example, using very
similar calculations, is limited to -q48. The only example that actually grab at the specified -q
value is the last one, which is clearly visible, looking at the file size. –

Conclusion: the quality of the resulting movie depends on buffer size, quality, whether or not
you use ‘low_bitrate=1’ as insmod option for the zr36060.c module to do 1:4 instead of 1:2
compression, etc.

If you experience timeouts, lowering the quality/buffersize or using ‘low_bitrate=1 as insmod
option for zr36060.o might actually help, as is proven by the Buz.

It hangs/crashes/fails/whatevers! Help!

Make sure that the card has its own interrupts (see /proc/interrupts), check the output of dmesg
at high verbosity (load zr36067.o with debug=2, load all other modules with debug=1). Check
that your mainboard is favorable (see question 2) and if not, test the card in another computer.
Also see the notes given in question 3 and try lowering quality/buffersize/capturesize if record-
ing fails after a period of time.

If all this doesn’t help, give a clear description of the problem including detailed hardware infor-
mation (memory+brand, mainboard+chipset+brand, which MJPEG card, processor, other PCI
cards that might be of interest), give the system PnP information (/proc/interrupts, /proc/dma,
/proc/devices), and give the kernel version, driver version, glibc version, gcc version and any
other information that might possibly be of interest. Also provide the dmesg output at high
verbosity. See ‘Contacting’ on how to contact the developers.

Maintainers/Contacting

Previous maintainers/developers of this driver are - Laurent Pinchart <lau-
rent.pinchart@skynet.be> - Ronald Bultje rbultje@ronald.bitfreak.net - Serguei Miri-
donov <mirsev@cicese.mx> - Wolfgang Scherr <scherr@net4you.net> - Dave Perks
<dperks@ibm.net> - Rainer Johanni <Rainer@Johanni.de>

Driver’s License

This driver is distributed under the terms of the General Public License.

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNUGeneral Public License for more details.

See http://www.gnu.org/ for more information.

652 Chapter 2. Media subsystem kernel internal API

mailto:laurent.pinchart@skynet.be
mailto:laurent.pinchart@skynet.be
mailto:rbultje@ronald.bitfreak.net
mailto:mirsev@cicese.mx
mailto:scherr@net4you.net
mailto:dperks@ibm.net
mailto:Rainer@Johanni.de
http://www.gnu.org/

Linux Media Documentation

2.9.1.16 MIPI CCS camera sensor driver

The MIPI CCS camera sensor driver is a generic driver for MIPI CCS compliant camera sensors.
It exposes three sub-devices representing the pixel array, the binner and the scaler.

As the capabilities of individual devices vary, the driver exposes interfaces based on the capa-
bilities that exist in hardware.

Pixel Array sub-device

The pixel array sub-device represents the camera sensor’s pixel matrix, as well as analogue
crop functionality present in many compliant devices. The analogue crop is configured using
the V4L2_SEL_TGT_CROP on the source pad (0) of the entity. The size of the pixel matrix can be
obtained by getting the V4L2_SEL_TGT_NATIVE_SIZE target.

Binner

The binner sub-device represents the binning functionality on the sensor. For that purpose,
selection target V4L2_SEL_TGT_COMPOSE is supported on the sink pad (0).

Additionally, if a device has no scaler or digital crop functionality, the source pad (1) expses
another digital crop selection rectangle that can only crop at the end of the lines and frames.

Scaler

The scaler sub-device represents the digital crop and scaling functionality of the sensor.
The V4L2 selection target V4L2_SEL_TGT_CROP is used to configure the digital crop on the
sink pad (0) when digital crop is supported. Scaling is configured using selection target
V4L2_SEL_TGT_COMPOSE on the sink pad (0) as well.

Additionally, if the scaler sub-device exists, its source pad (1) exposes another digital crop
selection rectangle that can only crop at the end of the lines and frames.

Digital and analogue crop

Digital crop functionality is referred to as cropping that effectively works by dropping some
data on the floor. Analogue crop, on the other hand, means that the cropped information is
never retrieved. In case of camera sensors, the analogue data is never read from the pixel
matrix that are outside the configured selection rectangle that designates crop. The difference
has an effect in device timing and likely also in power consumption.

2.9. Media driver-specific documentation 653

https://www.mipi.org/specifications/camera-command-set

Linux Media Documentation

Register definition generator

The ccs-regs.asc file contains MIPI CCS register definitions that are used to produce C source
code files for definitions that can be better used by programs written in C language. As there
are many dependencies between the produced files, please do not modify them manually as it’s
error-prone and in vain, but instead change the script producing them.

Usage

Conventionally the script is called this way to update the CCS driver definitions:

$ Documentation/driver-api/media/drivers/ccs/mk-ccs-regs -k \
-e drivers/media/i2c/ccs/ccs-regs.h \
-L drivers/media/i2c/ccs/ccs-limits.h \
-l drivers/media/i2c/ccs/ccs-limits.c \
-c Documentation/driver-api/media/drivers/ccs/ccs-regs.asc

2.9.1.17 CCS PLL calculator

The CCS PLL calculator is used to compute the PLL configuration, given sensor’s capabilities
as well as board configuration and user specified configuration. As the configuration space that
encompasses all these configurations is vast, the PLL calculator isn’t entirely trivial. Yet it is
relatively simple to use for a driver.

The PLL model implemented by the PLL calculator corresponds to MIPI CCS 1.1.

struct ccs_pll_branch_fr
CCS PLL configuration (front)

Definition

struct ccs_pll_branch_fr {
u16 pre_pll_clk_div;
u16 pll_multiplier;
u32 pll_ip_clk_freq_hz;
u32 pll_op_clk_freq_hz;

};

Members
pre_pll_clk_div Pre-PLL clock divisor

pll_multiplier PLL multiplier

pll_ip_clk_freq_hz PLL input clock frequency

pll_op_clk_freq_hz PLL output clock frequency

Description
A single branch front-end of the CCS PLL tree.

struct ccs_pll_branch_bk
CCS PLL configuration (back)

Definition

654 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct ccs_pll_branch_bk {
u16 sys_clk_div;
u16 pix_clk_div;
u32 sys_clk_freq_hz;
u32 pix_clk_freq_hz;

};

Members
sys_clk_div System clock divider

pix_clk_div Pixel clock divider

sys_clk_freq_hz System clock frequency

pix_clk_freq_hz Pixel clock frequency

Description
A single branch back-end of the CCS PLL tree.

struct ccs_pll
Full CCS PLL configuration

Definition

struct ccs_pll {
u8 bus_type;
u8 op_lanes;
u8 vt_lanes;
struct {
u8 lanes;

} csi2;
u8 binning_horizontal;
u8 binning_vertical;
u8 scale_m;
u8 scale_n;
u8 bits_per_pixel;
u8 op_bits_per_lane;
u16 flags;
u32 link_freq;
u32 ext_clk_freq_hz;
struct ccs_pll_branch_fr vt_fr;
struct ccs_pll_branch_bk vt_bk;
struct ccs_pll_branch_fr op_fr;
struct ccs_pll_branch_bk op_bk;
u32 pixel_rate_csi;
u32 pixel_rate_pixel_array;

};

Members
bus_type Type of the data bus, CCS_PLL_BUS_TYPE_* (input)

op_lanes Number of operational lanes (input)

vt_lanes Number of video timing lanes (input)

csi2 CSI-2 related parameters

csi2.lanes The number of the CSI-2 data lanes (input)

2.9. Media driver-specific documentation 655

Linux Media Documentation

binning_horizontal Horizontal binning factor (input)

binning_vertical Vertical binning factor (input)

scale_m Downscaling factor, M component, [16, max] (input)

scale_n Downscaling factor, N component, typically 16 (input)

bits_per_pixel Bits per pixel on the output data bus (input)

op_bits_per_lane Number of bits per OP lane (input)

flags CCS_PLL_FLAG_* (input)

link_freq Chosen link frequency (input)

ext_clk_freq_hz External clock frequency, i.e. the sensor’s input clock (input)

vt_fr Video timing front-end configuration (output)

vt_bk Video timing back-end configuration (output)

op_fr Operational timing front-end configuration (output)

op_bk Operational timing back-end configuration (output)

pixel_rate_csi Pixel rate on the output data bus (output)

pixel_rate_pixel_array Nominal pixel rate in the sensor’s pixel array (output)

Description
All information required to calculate CCS PLL configuration.

struct ccs_pll_branch_limits_fr
CCS PLL front-end limits

Definition

struct ccs_pll_branch_limits_fr {
u16 min_pre_pll_clk_div;
u16 max_pre_pll_clk_div;
u32 min_pll_ip_clk_freq_hz;
u32 max_pll_ip_clk_freq_hz;
u16 min_pll_multiplier;
u16 max_pll_multiplier;
u32 min_pll_op_clk_freq_hz;
u32 max_pll_op_clk_freq_hz;

};

Members
min_pre_pll_clk_div Minimum pre-PLL clock divider

max_pre_pll_clk_div Maximum pre-PLL clock divider

min_pll_ip_clk_freq_hz Minimum PLL input clock frequency

max_pll_ip_clk_freq_hz Maximum PLL input clock frequency

min_pll_multiplier Minimum PLL multiplier

max_pll_multiplier Maximum PLL multiplier

min_pll_op_clk_freq_hz Minimum PLL output clock frequency

656 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

max_pll_op_clk_freq_hz Maximum PLL output clock frequency

struct ccs_pll_branch_limits_bk
CCS PLL back-end limits

Definition

struct ccs_pll_branch_limits_bk {
u16 min_sys_clk_div;
u16 max_sys_clk_div;
u32 min_sys_clk_freq_hz;
u32 max_sys_clk_freq_hz;
u16 min_pix_clk_div;
u16 max_pix_clk_div;
u32 min_pix_clk_freq_hz;
u32 max_pix_clk_freq_hz;

};

Members
min_sys_clk_div Minimum system clock divider

max_sys_clk_div Maximum system clock divider

min_sys_clk_freq_hz Minimum system clock frequency

max_sys_clk_freq_hz Maximum system clock frequency

min_pix_clk_div Minimum pixel clock divider

max_pix_clk_div Maximum pixel clock divider

min_pix_clk_freq_hz Minimum pixel clock frequency

max_pix_clk_freq_hz Maximum pixel clock frequency

struct ccs_pll_limits
CCS PLL limits

Definition

struct ccs_pll_limits {
u32 min_ext_clk_freq_hz;
u32 max_ext_clk_freq_hz;
struct ccs_pll_branch_limits_fr vt_fr;
struct ccs_pll_branch_limits_bk vt_bk;
struct ccs_pll_branch_limits_fr op_fr;
struct ccs_pll_branch_limits_bk op_bk;
u32 min_line_length_pck_bin;
u32 min_line_length_pck;

};

Members
min_ext_clk_freq_hz Minimum external clock frequency

max_ext_clk_freq_hz Maximum external clock frequency

vt_fr Video timing front-end limits

vt_bk Video timing back-end limits

op_fr Operational timing front-end limits

2.9. Media driver-specific documentation 657

Linux Media Documentation

op_bk Operational timing back-end limits

min_line_length_pck_bin Minimum line length in pixels, with binning

min_line_length_pck Minimum line length in pixels without binning

int ccs_pll_calculate(struct device *dev, const struct ccs_pll_limits *limits, struct
ccs_pll *pll)

Calculate CCS PLL configuration based on input parameters

Parameters
struct device *dev Device pointer, used for printing messages

const struct ccs_pll_limits *limits Limits specific to the sensor

struct ccs_pll *pll Given PLL configuration

Description
Calculate the CCS PLL configuration based on the limits as well as given device specific, system
specific or user configured input data.

Copyright © 2020 Intel Corporation

2.9.2 Digital TV drivers

2.9.2.1 Idea behind the dvb-usb-framework

Note:
1) This documentation is outdated. Please check at the DVB wiki at https://linuxtv.org/wiki
for more updated info.

2) deprecated: Newer DVB USB drivers should use the dvb-usb-v2 framework.

In March 2005 I got the new Twinhan USB2.0 DVB-T device. They provided specs and a
firmware.

Quite keen I wanted to put the driver (with some quirks of course) into dibusb. After read-
ing some specs and doing some USB snooping, it realized, that the dibusb-driver would be a
complete mess afterwards. So I decided to do it in a different way: With the help of a dvb-usb-
framework.

The framework provides generic functions (mostly kernel API calls), such as:

• Transport StreamURB handling in conjunction with dvb-demux-feed-control (bulk and isoc
are supported)

• registering the device for the DVB-API

• registering an I2C-adapter if applicable

• remote-control/input-device handling

• firmware requesting and loading (currently just for the Cypress USB controllers)

• other functions/methods which can be shared by several drivers (such as functions for
bulk-control-commands)

658 Chapter 2. Media subsystem kernel internal API

https://linuxtv.org/wiki

Linux Media Documentation

• TODO: a I2C-chunker. It creates device-specific chunks of register-accesses depending on
length of a register and the number of values that can be multi-written and multi-read.

The source code of the particular DVB USB devices does just the communication with the device
via the bus. The connection between the DVB-API-functionality is done via callbacks, assigned
in a static device-description (struct dvb_usb_device) each device-driver has to have.

For an example have a look in drivers/media/usb/dvb-usb/vp7045*.

Objective is to migrate all the usb-devices (dibusb, cinergyT2, maybe the ttusb; flexcop-usb
already benefits from the generic flexcop-device) to use the dvb-usb-lib.

TODO: dynamic enabling and disabling of the pid-filter in regard to number of feeds requested.

Supported devices

See the LinuxTV DVB Wiki at https://linuxtv.org for a complete list of cards/drivers/firmwares:
https://linuxtv.org/wiki/index.php/DVB_USB

0. History & News:

2005-06-30

• added support for WideView WT-220U (Thanks to Steve Chang)

2005-05-30

• added basic isochronous support to the dvb-usb-framework

• added support for Conexant Hybrid reference design and Nebula DigiTV
USB

2005-04-17

• all dibusb devices ported to make use of the dvb-usb-framework

2005-04-02

• re-enabled and improved remote control code.

2005-03-31

• ported the Yakumo/Hama/Typhoon DVB-T USB2.0 device to dvb-usb.

2005-03-30

• first commit of the dvb-usb-module based on the dibusb-source. First device is a
new driver for the TwinhanDTV Alpha / MagicBox II USB2.0-only DVB-T device.

• (change from dvb-dibusb to dvb-usb)

2005-03-28

• added support for the AVerMedia AverTV DVB-T USB2.0 device (Thanks to Glen
Harris and Jiun-Kuei Jung, AVerMedia)

2005-03-14

• added support for the Typhoon/Yakumo/HAMA DVB-T mobile USB2.0

2005-02-11

2.9. Media driver-specific documentation 659

https://linuxtv.org
https://linuxtv.org/wiki/index.php/DVB_USB

Linux Media Documentation

• added support for the KWorld/ADSTech Instant DVB-T USB2.0. Thanks a lot to
Joachim von Caron

2005-02-02 - added support for the Hauppauge Win-TV Nova-T USB2

2005-01-31 - distorted streaming is gone for USB1.1 devices

2005-01-13

• moved the mirrored pid_filter_table back to dvb-dibusb first almost working ver-
sion for HanfTek UMT-010 found out, that Yakumo/HAMA/Typhoon are predeces-
sors of the HanfTek UMT-010

2005-01-10

• refactoring completed, now everything is very delightful

• tuner quirks for some weird devices (Artec T1 AN2235 device has sometimes a
Panasonic Tuner assembled). Tunerprobing implemented. Thanks a lot to Gun-
nar Wittich.

2004-12-29

• after several days of struggling around bug of no returning URBs fixed.

2004-12-26

• refactored the dibusb-driver, split into separate files

• i2c-probing enabled

2004-12-06

• possibility for demod i2c-address probing

• new usb IDs (Compro, Artec)

2004-11-23

• merged changes from DiB3000MC_ver2.1

• revised the debugging

• possibility to deliver the complete TS for USB2.0

2004-11-21

• first working version of the dib3000mc/p frontend driver.

2004-11-12

• added additional remote control keys. Thanks to Uwe Hanke.

2004-11-07

• added remote control support. Thanks to David Matthews.

2004-11-05

• added support for a new devices (Grandtec/Avermedia/Artec)

• merged my changes (for dib3000mb/dibusb) to the FE_REFACTORING, because
it became HEAD

• moved transfer control (pid filter, fifo control) from usb driver to frontend, it
seems better settled there (added xfer_ops-struct)

660 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

• created a common files for frontends (mc/p/mb)

2004-09-28

• added support for a new device (Unknown, vendor ID is Hyper-Paltek)

2004-09-20

• added support for a new device (Compro DVB-U2000), thanks to Amaury Demol
for reporting

• changed usb TS transfer method (several urbs, stopping transfer before setting
a new pid)

2004-09-13

• added support for a new device (Artec T1 USB TVBOX), thanks to Christian
Motschke for reporting

2004-09-05

• released the dibusb device and dib3000mb-frontend driver (old news for
vp7041.c)

2004-07-15

• found out, by accident, that the device has a TUA6010XS for PLL

2004-07-12

• figured out, that the driver should also work with the CTS Portable (Chinese
Television System)

2004-07-08

• firmware-extraction-2.422-problem solved, driver is now working properly with
firmware extracted from 2.422

• #if for 2.6.4 (dvb), compile issue

• changed firmware handling, see vp7041.txt sec 1.1

2004-07-02

• some tuner modifications, v0.1, cleanups, first public

2004-06-28

• now using the dvb_dmx_swfilter_packets, everything runs fine now

2004-06-27

• able to watch and switching channels (pre-alpha)

• no section filtering yet

2004-06-06

• first TS received, but kernel oops :/

2004-05-14

• firmware loader is working

2004-05-11

2.9. Media driver-specific documentation 661

Linux Media Documentation

• start writing the driver

How to use?

Firmware

Most of the USB drivers need to download a firmware to the device before start working.

Have a look at the Wikipage for the DVB-USB-drivers to find out, which firmware you need for
your device:

https://linuxtv.org/wiki/index.php/DVB_USB

Compiling

Since the driver is in the linux kernel, activating the driver in your favorite config-environment
should sufficient. I recommend to compile the driver as module. Hotplug does the rest.

If you use dvb-kernel enter the build-2.6 directory run ‘make’ and ‘insmod.sh load’ afterwards.

Loading the drivers

Hotplug is able to load the driver, when it is needed (because you plugged in the device).

If you want to enable debug output, you have to load the driver manually and from within the
dvb-kernel cvs repository.

first have a look, which debug level are available:

modinfo dvb-usb
modinfo dvb-usb-vp7045

etc.

modprobe dvb-usb debug=<level>
modprobe dvb-usb-vp7045 debug=<level>
etc.

should do the trick.

When the driver is loaded successfully, the firmware file was in the right place and the device
is connected, the “Power”-LED should be turned on.

At this point you should be able to start a dvb-capable application. I’m use (t|s)zap, mplayer
and dvbscan to test the basics. VDR-xine provides the long-term test scenario.

662 Chapter 2. Media subsystem kernel internal API

https://linuxtv.org/wiki/index.php/DVB_USB

Linux Media Documentation

Known problems and bugs

• Don’t remove the USB device while running an DVB application, your system will go crazy
or die most likely.

Adding support for devices

TODO

USB1.1 Bandwidth limitation

A lot of the currently supported devices are USB1.1 and thus they have a maximum bandwidth
of about 5-6 MBit/s when connected to a USB2.0 hub. This is not enough for receiving the
complete transport stream of a DVB-T channel (which is about 16 MBit/s). Normally this is not
a problem, if you only want to watch TV (this does not apply for HDTV), but watching a channel
while recording another channel on the same frequency simply does not work very well. This
applies to all USB1.1 DVB-T devices, not just the dvb-usb-devices)

The bug, where the TS is distorted by a heavy usage of the device is gone definitely. All dvb-
usb-devices I was using (Twinhan, Kworld, DiBcom) are working like charm now with VDR.
Sometimes I even was able to record a channel and watch another one.

Comments

Patches, comments and suggestions are very very welcome.

3. Acknowledgements

Amaury Demol (Amaury.Demol@parrot.com) and Francois Kanounnikoff from DiB-
com for providing specs, code and help, on which the dvb-dibusb, dib3000mb and
dib3000mc are based.

David Matthews for identifying a new device type (Artec T1 with AN2235) and for
extending dibusb with remote control event handling. Thank you.

Alex Woods for frequently answering question about usb and dvb stuff, a big thank
you.

Bernd Wagner for helping with huge bug reports and discussions.

GunnarWittich and Joachim von Caron for their trust for providing root-shells on their
machines to implement support for new devices.

Allan Third and Michael Hutchinson for their help to write the Nebula digitv-driver.

Glen Harris for bringing up, that there is a new dibusb-device and Jiun-Kuei Jung from
AVerMedia who kindly provided a special firmware to get the device up and running
in Linux.

Jennifer Chen, Jeff and Jack from Twinhan for kindly supporting bywriting the vp7045-
driver.

2.9. Media driver-specific documentation 663

mailto:Amaury.Demol@parrot.com

Linux Media Documentation

Steve Chang from WideView for providing information for new devices and firmware
files.

Michael Paxton for submitting remote control keymaps.

Some guys on the linux-dvb mailing list for encouraging me.

Peter Schildmann >peter.schildmann-nospam-at-web.de< for his user-level firmware
loader, which saves a lot of time (when writing the vp7041 driver)

Ulf Hermenau for helping me out with traditional chinese.

André Smoktun and Christian Frömmel for supporting me with hardware and listen-
ing to my problems very patiently.

2.9.2.2 Frontend drivers

Frontend attach headers

struct a8293_platform_data
Platform data for the a8293 driver

Definition

struct a8293_platform_data {
struct dvb_frontend *dvb_frontend;

};

Members
dvb_frontend DVB frontend.

struct af9013_platform_data
Platform data for the af9013 driver

Definition

struct af9013_platform_data {
u32 clk;

#define AF9013_TUNER_MXL5003D 3 ;
#define AF9013_TUNER_MXL5005D 13 ;
#define AF9013_TUNER_MXL5005R 30 ;
#define AF9013_TUNER_ENV77H11D5 129 ;
#define AF9013_TUNER_MT2060 130 ;
#define AF9013_TUNER_MC44S803 133 ;
#define AF9013_TUNER_QT1010 134 ;
#define AF9013_TUNER_UNKNOWN 140 ;
#define AF9013_TUNER_MT2060_2 147 ;
#define AF9013_TUNER_TDA18271 156 ;
#define AF9013_TUNER_QT1010A 162 ;
#define AF9013_TUNER_MXL5007T 177 ;
#define AF9013_TUNER_TDA18218 179 ;

u8 tuner;
u32 if_frequency;

#define AF9013_TS_MODE_USB 0;
#define AF9013_TS_MODE_PARALLEL 1;
#define AF9013_TS_MODE_SERIAL 2;

u8 ts_mode;

664 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

u8 ts_output_pin;
bool spec_inv;
u8 api_version[4];

#define AF9013_GPIO_ON (1 << 0);
#define AF9013_GPIO_EN (1 << 1);
#define AF9013_GPIO_O (1 << 2);
#define AF9013_GPIO_I (1 << 3);
#define AF9013_GPIO_LO (AF9013_GPIO_ON|AF9013_GPIO_EN);
#define AF9013_GPIO_HI (AF9013_GPIO_ON|AF9013_GPIO_EN|AF9013_GPIO_O);
#define AF9013_GPIO_TUNER_ON (AF9013_GPIO_ON|AF9013_GPIO_EN);
#define AF9013_GPIO_TUNER_OFF (AF9013_GPIO_ON|AF9013_GPIO_EN|AF9013_GPIO_O);

u8 gpio[4];
struct dvb_frontend* (*get_dvb_frontend)(struct i2c_client *);
struct i2c_adapter* (*get_i2c_adapter)(struct i2c_client *);
int (*pid_filter_ctrl)(struct dvb_frontend *, int);
int (*pid_filter)(struct dvb_frontend *, u8, u16, int);

};

Members
clk Clock frequency.

tuner Used tuner model.

if_frequency IF frequency.

ts_mode TS mode.

ts_output_pin TS output pin.

spec_inv Input spectrum inverted.

api_version Firmware API version.

gpio GPIOs.

get_dvb_frontend Get DVB frontend callback.

get_i2c_adapter Get I2C adapter.

pid_filter_ctrl Control PID filter.

pid_filter Set PID to PID filter.

struct ascot2e_config
the configuration of Ascot2E tuner driver

Definition

struct ascot2e_config {
u8 i2c_address;
u8 xtal_freq_mhz;
void *set_tuner_priv;
int (*set_tuner_callback)(void *, int);

};

Members
i2c_address I2C address of the tuner

xtal_freq_mhz Oscillator frequency, MHz

2.9. Media driver-specific documentation 665

Linux Media Documentation

set_tuner_priv Callback function private context

set_tuner_callback Callback function that notifies the parent driver which tuner is active
now

struct dvb_frontend * ascot2e_attach(struct dvb_frontend *fe, const struct as-
cot2e_config *config, struct i2c_adapter *i2c)

Attach an ascot2e tuner

Parameters
struct dvb_frontend *fe frontend to be attached

const struct ascot2e_config *config pointer to struct ascot2e_config with tuner con-
figuration.

struct i2c_adapter *i2c i2c adapter to use.

Return
FE pointer on success, NULL on failure.

struct cxd2820r_platform_data
Platform data for the cxd2820r driver

Definition

struct cxd2820r_platform_data {
u8 ts_mode;
bool ts_clk_inv;
bool if_agc_polarity;
bool spec_inv;
int **gpio_chip_base;
struct dvb_frontend* (*get_dvb_frontend)(struct i2c_client *);

};

Members
ts_mode TS mode.

ts_clk_inv TS clock inverted.

if_agc_polarity IF AGC polarity.

spec_inv Input spectrum inverted.

gpio_chip_base GPIO.

get_dvb_frontend Get DVB frontend.

struct cxd2820r_config
configuration for cxd2020r demod

Definition

struct cxd2820r_config {
u8 i2c_address;
u8 ts_mode;
bool ts_clock_inv;
bool if_agc_polarity;
bool spec_inv;

};

666 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Members
i2c_address Demodulator I2C address. Driver determines DVB-C slave I2C address automat-

ically from master address. Default: none, must set. Values: 0x6c, 0x6d.

ts_mode TS output mode. Default: none, must set. Values: FIXME?

ts_clock_inv TS clock inverted. Default: 0. Values: 0, 1.

if_agc_polarity Default: 0. Values: 0, 1

spec_inv Spectrum inversion. Default: 0. Values: 0, 1.

struct dvb_frontend * cxd2820r_attach(const struct cxd2820r_config *config, struct
i2c_adapter *i2c, int *gpio_chip_base)

Attach a cxd2820r demod

Parameters
const struct cxd2820r_config *config pointer to struct cxd2820r_config with demod

configuration.

struct i2c_adapter *i2c i2c adapter to use.

int *gpio_chip_base if zero, disables GPIO setting. Otherwise, if CONFIG_GPIOLIB is set
dynamically allocate gpio base; if is not set, use its value to setup the GPIO pins.

Return
FE pointer on success, NULL on failure.

struct drxk_config
Configure the initial parameters for DRX-K

Definition

struct drxk_config {
u8 adr;
bool single_master;
bool no_i2c_bridge;
bool parallel_ts;
bool dynamic_clk;
bool enable_merr_cfg;
bool antenna_dvbt;
u16 antenna_gpio;
u8 mpeg_out_clk_strength;
int chunk_size;
const char *microcode_name;
int qam_demod_parameter_count;

};

Members
adr I2C address of the DRX-K

single_master Device is on the single master mode

no_i2c_bridge Don’t switch the I2C bridge to talk with tuner

parallel_ts True means that the device uses parallel TS, Serial otherwise.

dynamic_clk True means that the clock will be dynamically adjusted. Static clock otherwise.

2.9. Media driver-specific documentation 667

Linux Media Documentation

enable_merr_cfg Enable SIO_PDR_PERR_CFG/SIO_PDR_MVAL_CFG.

antenna_dvbt GPIO bit for changing antenna to DVB-C. A value of 1 means that 1=DVBC, 0 =
DVBT. Zero means the opposite.

antenna_gpio GPIO bit used to control the antenna

mpeg_out_clk_strength DRXK Mpeg output clock drive strength.

chunk_size maximum size for I2C messages

microcode_name Name of the firmware file with the microcode

qam_demod_parameter_count The number of parameters used for the command to set the de-
modulator parameters. All firmwares are using the 2-parameter command. An exception
is the drxk_a3.mc firmware, which uses the 4-parameter command. A value of 0 (default)
or lower indicates that the correct number of parameters will be automatically detected.

Description
On the *_gpio vars, bit 0 is UIO-1, bit 1 is UIO-2 and bit 2 is UIO-3.

struct dvb_frontend * drxk_attach(const struct drxk_config *config, struct
i2c_adapter *i2c)

Attach a drxk demod

Parameters
const struct drxk_config *config pointer to struct drxk_config with demod configura-

tion.

struct i2c_adapter *i2c i2c adapter to use.

Return
FE pointer on success, NULL on failure.

struct dvb_frontend * dvb_pll_attach(struct dvb_frontend *fe, int pll_addr, struct
i2c_adapter *i2c, unsigned int pll_desc_id)

Attach a dvb-pll to the supplied frontend structure.

Parameters
struct dvb_frontend *fe Frontend to attach to.

int pll_addr i2c address of the PLL (if used).

struct i2c_adapter *i2c i2c adapter to use (set to NULL if not used).

unsigned int pll_desc_id dvb_pll_desc to use.

Return
Frontend pointer on success, NULL on failure

struct helene_config
the configuration of ‘Helene’ tuner driver

Definition

struct helene_config {
u8 i2c_address;
u8 xtal_freq_mhz;
void *set_tuner_priv;

668 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

int (*set_tuner_callback)(void *, int);
enum helene_xtal xtal;
struct dvb_frontend *fe;

};

Members
i2c_address I2C address of the tuner

xtal_freq_mhz Oscillator frequency, MHz

set_tuner_priv Callback function private context

set_tuner_callback Callback function that notifies the parent driver which tuner is active
now

xtal Cristal frequency as described by enum helene_xtal

fe Frontend for which connects this tuner

struct dvb_frontend * helene_attach(struct dvb_frontend *fe, const struct he-
lene_config *config, struct i2c_adapter *i2c)

Attach a helene tuner (terrestrial and cable standards)

Parameters
struct dvb_frontend *fe frontend to be attached

const struct helene_config *config pointer to struct helene_config with tuner config-
uration.

struct i2c_adapter *i2c i2c adapter to use.

Return
FE pointer on success, NULL on failure.

struct dvb_frontend * helene_attach_s(struct dvb_frontend *fe, const struct he-
lene_config *config, struct i2c_adapter *i2c)

Attach a helene tuner (satellite standards)

Parameters
struct dvb_frontend *fe frontend to be attached

const struct helene_config *config pointer to struct helene_config with tuner config-
uration.

struct i2c_adapter *i2c i2c adapter to use.

Return
FE pointer on success, NULL on failure.

struct horus3a_config
the configuration of Horus3A tuner driver

Definition

struct horus3a_config {
u8 i2c_address;
u8 xtal_freq_mhz;
void *set_tuner_priv;

2.9. Media driver-specific documentation 669

Linux Media Documentation

int (*set_tuner_callback)(void *, int);
};

Members
i2c_address I2C address of the tuner

xtal_freq_mhz Oscillator frequency, MHz

set_tuner_priv Callback function private context

set_tuner_callback Callback function that notifies the parent driver which tuner is active
now

struct dvb_frontend * horus3a_attach(struct dvb_frontend *fe, const struct ho-
rus3a_config *config, struct i2c_adapter *i2c)

Attach a horus3a tuner

Parameters
struct dvb_frontend *fe frontend to be attached

const struct horus3a_config *config pointer to struct helene_configwith tuner config-
uration.

struct i2c_adapter *i2c i2c adapter to use.

Return
FE pointer on success, NULL on failure.

struct ix2505v_config
ix2505 attachment configuration

Definition

struct ix2505v_config {
u8 tuner_address;
u8 tuner_gain;
u8 tuner_chargepump;
int min_delay_ms;
u8 tuner_write_only;

};

Members
tuner_address tuner address

tuner_gain Baseband AMP gain control 0/1=0dB(default) 2=-2bB 3=-4dB

tuner_chargepump Charge pump output +/- 0=120 1=260 2=555 3=1200(default)

min_delay_ms delay after tune

tuner_write_only disables reads

struct dvb_frontend * ix2505v_attach(struct dvb_frontend *fe, const struct
ix2505v_config *config, struct i2c_adapter *i2c)

Attach a ix2505v tuner to the supplied frontend structure.

Parameters
struct dvb_frontend *fe Frontend to attach to.

670 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

const struct ix2505v_config *config pointer to struct ix2505v_config

struct i2c_adapter *i2c pointer to struct i2c_adapter.

Return
FE pointer on success, NULL on failure.

enum m88ds3103_ts_mode
TS connection mode

Constants
M88DS3103_TS_SERIAL TS output pin D0, normal

M88DS3103_TS_SERIAL_D7 TS output pin D7

M88DS3103_TS_PARALLEL TS Parallel mode

M88DS3103_TS_CI TS CI Mode

enum m88ds3103_clock_out

Constants
M88DS3103_CLOCK_OUT_DISABLED Clock output is disabled

M88DS3103_CLOCK_OUT_ENABLED Clock output is enabled with crystal clock.

M88DS3103_CLOCK_OUT_ENABLED_DIV2 Clock output is enabled with half crystal clock.

struct m88ds3103_platform_data
Platform data for the m88ds3103 driver

Definition

struct m88ds3103_platform_data {
u32 clk;
u16 i2c_wr_max;
enum m88ds3103_ts_mode ts_mode;
u32 ts_clk;
enum m88ds3103_clock_out clk_out;
u8 ts_clk_pol:1;
u8 spec_inv:1;
u8 agc;
u8 agc_inv:1;
u8 envelope_mode:1;
u8 lnb_hv_pol:1;
u8 lnb_en_pol:1;
struct dvb_frontend* (*get_dvb_frontend)(struct i2c_client *);
struct i2c_adapter* (*get_i2c_adapter)(struct i2c_client *);

};

Members
clk Clock frequency.

i2c_wr_max Max bytes I2C adapter can write at once.

ts_mode TS mode.

ts_clk TS clock (KHz).

clk_out Clock output.

2.9. Media driver-specific documentation 671

Linux Media Documentation

ts_clk_pol TS clk polarity. 1-active at falling edge; 0-active at rising edge.

spec_inv Input spectrum inversion.

agc AGC configuration.

agc_inv AGC polarity.

envelope_mode DiSEqC envelope mode.

lnb_hv_pol LNB H/V pin polarity. 0: pin high set to VOLTAGE_18, pin low to set VOLTAGE_13.
1: pin high set to VOLTAGE_13, pin low to set VOLTAGE_18.

lnb_en_pol LNB enable pin polarity. 0: pin high to disable, pin low to enable. 1: pin high to
enable, pin low to disable.

get_dvb_frontend Get DVB frontend.

get_i2c_adapter Get I2C adapter.

struct m88ds3103_config
m88ds3102 configuration

Definition

struct m88ds3103_config {
u8 i2c_addr;
u32 clock;
u16 i2c_wr_max;
u8 ts_mode;
u32 ts_clk;
u8 ts_clk_pol:1;
u8 spec_inv:1;
u8 agc_inv:1;
u8 clock_out;
u8 envelope_mode:1;
u8 agc;
u8 lnb_hv_pol:1;
u8 lnb_en_pol:1;

};

Members
i2c_addr I2C address. Default: none, must set. Example: 0x68, …

clock Device’s clock. Default: none, must set. Example: 27000000

i2c_wr_max Max bytes I2C provider is asked to write at once. Default: none, must set. Exam-
ple: 33, 65, …

ts_mode TS output mode, as defined by enum m88ds3103_ts_mode. Default:
M88DS3103_TS_SERIAL.

ts_clk TS clk in KHz. Default: 0.

ts_clk_pol TS clk polarity.Default: 0. 1-active at falling edge; 0-active at rising edge.

spec_inv Spectrum inversion. Default: 0.

agc_inv AGC polarity. Default: 0.

clock_out Clock output, as defined by enum m88ds3103_clock_out. Default:
M88DS3103_CLOCK_OUT_DISABLED.

672 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

envelope_mode DiSEqC envelope mode. Default: 0.

agc AGC configuration. Default: none, must set.

lnb_hv_pol LNB H/V pin polarity. Default: 0. Values: 1: pin high set to VOLTAGE_13, pin low
to set VOLTAGE_18; 0: pin high set to VOLTAGE_18, pin low to set VOLTAGE_13.

lnb_en_pol LNB enable pin polarity. Default: 0. Values: 1: pin high to enable, pin low to
disable; 0: pin high to disable, pin low to enable.

struct dvb_frontend * m88ds3103_attach(const struct m88ds3103_config *config,
struct i2c_adapter *i2c, struct
i2c_adapter **tuner_i2c)

Attach a m88ds3103 demod

Parameters
const struct m88ds3103_config *config pointer to struct m88ds3103_configwith demod

configuration.

struct i2c_adapter *i2c i2c adapter to use.

struct i2c_adapter **tuner_i2c on success, returns the I2C adapter associated with
m88ds3103 tuner.

Return
FE pointer on success, NULL on failure.

Note
Do not add new m88ds3103_attach() users! Use I2C bindings instead.

struct mb86a20s_config
Define the per-device attributes of the frontend

Definition

struct mb86a20s_config {
u32 fclk;
u8 demod_address;
bool is_serial;

};

Members
fclk Clock frequency. If zero, assumes the default (32.57142 Mhz)

demod_address the demodulator’s i2c address

is_serial if true, TS is serial. Otherwise, TS is parallel

struct dvb_frontend * mb86a20s_attach(const struct mb86a20s_config *config, struct
i2c_adapter *i2c)

Attach a mb86a20s demod

Parameters
const struct mb86a20s_config *config pointer to struct mb86a20s_config with demod

configuration.

struct i2c_adapter *i2c i2c adapter to use.

2.9. Media driver-specific documentation 673

Linux Media Documentation

Return
FE pointer on success, NULL on failure.

struct mn88472_config
Platform data for the mn88472 driver

Definition

struct mn88472_config {
unsigned int xtal;

#define MN88472_TS_MODE_SERIAL 0;
#define MN88472_TS_MODE_PARALLEL 1;

int ts_mode;
#define MN88472_TS_CLK_FIXED 0;
#define MN88472_TS_CLK_VARIABLE 1;

int ts_clock;
u16 i2c_wr_max;
struct dvb_frontend **fe;
struct dvb_frontend* (*get_dvb_frontend)(struct i2c_client *);

};

Members
xtal Clock frequency.

ts_mode TS mode.

ts_clock TS clock config.

i2c_wr_max Max number of bytes driver writes to I2C at once.

fe pointer to a frontend pointer

get_dvb_frontend Get DVB frontend callback.

struct rtl2830_platform_data
Platform data for the rtl2830 driver

Definition

struct rtl2830_platform_data {
u32 clk;
bool spec_inv;
u8 vtop;
u8 krf;
u8 agc_targ_val;
struct dvb_frontend* (*get_dvb_frontend)(struct i2c_client *);
struct i2c_adapter* (*get_i2c_adapter)(struct i2c_client *);
int (*pid_filter)(struct dvb_frontend *, u8, u16, int);
int (*pid_filter_ctrl)(struct dvb_frontend *, int);

};

Members
clk Clock frequency (4000000, 16000000, 25000000, 28800000).

spec_inv Spectrum inversion.

vtop AGC take-over point.

krf AGC ratio.

674 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

agc_targ_val AGC.

get_dvb_frontend Get DVB frontend.

get_i2c_adapter Get I2C adapter.

pid_filter Set PID to PID filter.

pid_filter_ctrl Control PID filter.

struct rtl2832_platform_data
Platform data for the rtl2832 driver

Definition

struct rtl2832_platform_data {
u32 clk;

#define RTL2832_TUNER_FC2580 0x21;
#define RTL2832_TUNER_TUA9001 0x24;
#define RTL2832_TUNER_FC0012 0x26;
#define RTL2832_TUNER_E4000 0x27;
#define RTL2832_TUNER_FC0013 0x29;
#define RTL2832_TUNER_R820T 0x2a;
#define RTL2832_TUNER_R828D 0x2b;
#define RTL2832_TUNER_SI2157 0x2c;

u8 tuner;
struct dvb_frontend* (*get_dvb_frontend)(struct i2c_client *);
struct i2c_adapter* (*get_i2c_adapter)(struct i2c_client *);
int (*slave_ts_ctrl)(struct i2c_client *, bool);
int (*pid_filter)(struct dvb_frontend *, u8, u16, int);
int (*pid_filter_ctrl)(struct dvb_frontend *, int);

};

Members
clk Clock frequency (4000000, 16000000, 25000000, 28800000).

tuner Used tuner model.

get_dvb_frontend Get DVB frontend.

get_i2c_adapter Get I2C adapter.

slave_ts_ctrl Control slave TS interface.

pid_filter Set PID to PID filter.

pid_filter_ctrl Control PID filter.

struct rtl2832_sdr_platform_data
Platform data for the rtl2832_sdr driver

Definition

struct rtl2832_sdr_platform_data {
u32 clk;

#define RTL2832_SDR_TUNER_FC2580 0x21;
#define RTL2832_SDR_TUNER_TUA9001 0x24;
#define RTL2832_SDR_TUNER_FC0012 0x26;
#define RTL2832_SDR_TUNER_E4000 0x27;
#define RTL2832_SDR_TUNER_FC0013 0x29;
#define RTL2832_SDR_TUNER_R820T 0x2a;

2.9. Media driver-specific documentation 675

Linux Media Documentation

#define RTL2832_SDR_TUNER_R828D 0x2b;
u8 tuner;
struct regmap *regmap;
struct dvb_frontend *dvb_frontend;
struct v4l2_subdev *v4l2_subdev;
struct dvb_usb_device *dvb_usb_device;

};

Members
clk Clock frequency (4000000, 16000000, 25000000, 28800000).

tuner Used tuner model.

regmap pointer to struct regmap.

dvb_frontend rtl2832 DVB frontend.

v4l2_subdev Tuner v4l2 controls.

dvb_usb_device DVB USB interface for USB streaming.

struct dvb_frontend * stb6000_attach(struct dvb_frontend *fe, int addr, struct
i2c_adapter *i2c)

Attach a stb6000 tuner to the supplied frontend structure.

Parameters
struct dvb_frontend *fe Frontend to attach to.

int addr i2c address of the tuner.

struct i2c_adapter *i2c i2c adapter to use.

Return
FE pointer on success, NULL on failure.

struct tda10071_platform_data
Platform data for the tda10071 driver

Definition

struct tda10071_platform_data {
u32 clk;
u16 i2c_wr_max;

#define TDA10071_TS_SERIAL 0;
#define TDA10071_TS_PARALLEL 1;

u8 ts_mode;
bool spec_inv;
u8 pll_multiplier;
u8 tuner_i2c_addr;
struct dvb_frontend* (*get_dvb_frontend)(struct i2c_client *);

};

Members
clk Clock frequency.

i2c_wr_max Max bytes I2C adapter can write at once.

ts_mode TS mode.

676 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

spec_inv Input spectrum inversion.

pll_multiplier PLL multiplier.

tuner_i2c_addr CX24118A tuner I2C address (0x14, 0x54, …).

get_dvb_frontend Get DVB frontend.

struct dvb_frontend* tda826x_attach(struct dvb_frontend *fe, int addr, struct
i2c_adapter *i2c, int has_loopthrough)

Attach a tda826x tuner to the supplied frontend structure.

Parameters
struct dvb_frontend *fe Frontend to attach to.

int addr i2c address of the tuner.

struct i2c_adapter *i2c i2c adapter to use.

int has_loopthrough Set to 1 if the card has a loopthrough RF connector.

Return
FE pointer on success, NULL on failure.

struct zd1301_demod_platform_data
Platform data for the zd1301_demod driver

Definition

struct zd1301_demod_platform_data {
void *reg_priv;
int (*reg_read)(void *, u16, u8 *);
int (*reg_write)(void *, u16, u8);

};

Members
reg_priv First argument of reg_read and reg_write callbacks.

reg_read Register read callback.

reg_write Register write callback.

struct dvb_frontend * zd1301_demod_get_dvb_frontend(struct platform_device *pdev)
Get pointer to DVB frontend

Parameters
struct platform_device *pdev Pointer to platform device

Return
Pointer to DVB frontend which given platform device owns.

struct i2c_adapter * zd1301_demod_get_i2c_adapter(struct platform_device *pdev)
Get pointer to I2C adapter

Parameters
struct platform_device *pdev Pointer to platform device

2.9. Media driver-specific documentation 677

Linux Media Documentation

Return
Pointer to I2C adapter which given platform device owns.

struct dvb_frontend * zl10036_attach(struct dvb_frontend *fe, const struct
zl10036_config *config, struct i2c_adapter *i2c)

Attach a zl10036 tuner to the supplied frontend structure.

Parameters
struct dvb_frontend *fe Frontend to attach to.

const struct zl10036_config *config zl10036_config structure.

struct i2c_adapter *i2c pointer to struct i2c_adapter.

Return
FE pointer on success, NULL on failure.

2.9.2.3 vidtv: Virtual Digital TV driver

Author: Daniel W. S. Almeida <dwlsalmeida@gmail.com>, June 2020.

Background

Vidtv is a virtual DVB driver that aims to serve as a reference for driver writers by serving as
a template. It also validates the existing media DVB APIs, thus helping userspace application
writers.

Currently, it consists of:

• A fake tuner driver, which will report a bad signal quality if the chosen frequency is too
far away from a table of valid frequencies for a particular delivery system.

• A fake demod driver, which will constantly poll the fake signal quality returned by the
tuner, simulating a device that can lose/reacquire a lock on the signal depending on the
CNR levels.

• A fake bridge driver, which is the module responsible for modprobing the fake tuner and
demod modules and implementing the demux logic. This module takes parameters at ini-
tialization that will dictate how the simulation behaves.

• Code reponsible for encoding a valid MPEG Transport Stream, which is then passed to
the bridge driver. This fake stream contains some hardcoded content. For now, we have
a single, audio-only channel containing a single MPEG Elementary Stream, which in turn
contains a SMPTE 302m encoded sine-wave. Note that this particular encoder was chosen
because it is the easiest way to encode PCM audio data in a MPEG Transport Stream.

678 Chapter 2. Media subsystem kernel internal API

mailto:dwlsalmeida@gmail.com

Linux Media Documentation

Building vidtv

vidtv is a test driver and thus is not enabled by default when compiling the kernel.
In order to enable compilation of vidtv:

• Enable DVB_TEST_DRIVERS, then
• Enable DVB_VIDTV

When compiled as a module, expect the following .ko files:

• dvb_vidtv_tuner.ko

• dvb_vidtv_demod.ko

• dvb_vidtv_bridge.ko

Running vidtv

When compiled as a module, run:

modprobe vidtv

That’s it! The bridge driver will initialize the tuner and demod drivers as part of its own initial-
ization.

By default, it will accept the following frequencies:

• 474 MHz for DVB-T/T2/C;

• 11,362 GHz for DVB-S/S2.

For satellite systems, the driver simulates an universal extended LNBf, with frequencies at
Ku-Band, ranging from 10.7 GHz to 12.75 GHz.

You can optionally define some command-line arguments to vidtv.

Command-line arguments to vidtv

Below is a list of all arguments that can be supplied to vidtv:

drop_tslock_prob_on_low_snr Probability of losing the TS lock if the signal quality is bad.
This probability be used by the fake demodulator driver to eventually return a status of 0
when the signal quality is not good.

recover_tslock_prob_on_good_snr: Probability recovering the TS lock when the signal im-
proves. This probability be used by the fake demodulator driver to eventually return a
status of 0x1f when/if the signal quality improves.

mock_power_up_delay_msec Simulate a power up delay. Default: 0.
mock_tune_delay_msec Simulate a tune delay. Default 0.
vidtv_valid_dvb_t_freqs Valid DVB-T frequencies to simulate, in Hz.
vidtv_valid_dvb_c_freqs Valid DVB-C frequencies to simulate, in Hz.
vidtv_valid_dvb_s_freqs Valid DVB-S/S2 frequencies to simulate at Ku-Band, in kHz.

2.9. Media driver-specific documentation 679

Linux Media Documentation

max_frequency_shift_hz, Maximum shift in HZ allowed when tuning in a channel.

si_period_msec How often to send SI packets. Default: 40ms.
pcr_period_msec How often to send PCR packets. Default: 40ms.
mux_rate_kbytes_sec Attempt to maintain this bit rate by inserting TS null packets, if neces-

sary. Default: 4096.

pcr_pid, PCR PID for all channels. Default: 0x200.
mux_buf_sz_pkts, Size for the mux buffer in multiples of 188 bytes.

vidtv internal structure

The kernel modules are split in the following way:

vidtv_tuner.[ch] Implements a fake tuner DVB driver.
vidtv_demod.[ch] Implements a fake demodulator DVB driver.
vidtv_bridge.[ch] Implements a bridge driver.
The MPEG related code is split in the following way:

vidtv_ts.[ch] Code to work with MPEG TS packets, such as TS headers, adaptation fields, PCR
packets and NULL packets.

vidtv_psi.[ch] This is the PSI generator. PSI packets contain general information about a
MPEG Transport Stream. A PSI generator is needed so userspace apps can retrieve infor-
mation about the Transport Stream and eventually tune into a (dummy) channel.

Because the generator is implemented in a separate file, it can be reused elsewhere in the
media subsystem.

Currently vidtv supports working with 5 PSI tables: PAT, PMT, SDT, NIT and EIT.

The specification for PAT and PMT can be found in ISO 13818-1: Systems, while the spec-
ification for the SDT, NIT, EIT can be found in ETSI EN 300 468: Specification for Service
Information (SI) in DVB systems.

It isn’t strictly necessary, but using a real TS file helps when debugging PSI tables. Vidtv
currently tries to replicate the PSI structure found in this file: TS1Globo.ts.

A good way to visualize the structure of streams is by using DVBInspector.

vidtv_pes.[ch] Implements the PES logic to convert encoder data into MPEG TS packets.
These can then be fed into a TS multiplexer and eventually into userspace.

vidtv_encoder.h An interface for vidtv encoders. New encoders can be added to this driver by
implementing the calls in this file.

vidtv_s302m.[ch] Implements a S302M encoder to make it possible to insert PCM audio data
in the generated MPEG Transport Stream. The relevant specification is available online as
SMPTE 302M-2007: Television - Mapping of AES3 Data into MPEG-2 Transport Stream.

The resulting MPEG Elementary Stream is conveyed in a private stream with a S302M
registration descriptor attached.

680 Chapter 2. Media subsystem kernel internal API

https://tsduck.io/streams/brazil-isdb-tb/TS1globo.ts
https://sourceforge.net/projects/dvbinspector/

Linux Media Documentation

This shall enable passing an audio signal into userspace so it can be decoded and played by
media software. The corresponding decoder in ffmpeg is located in ‘libavcodec/s302m.c’
and is experimental.

vidtv_channel.[ch] Implements a ‘channel’ abstraction.
When vidtv boots, it will create some hardcoded channels:

1. Their services will be concatenated to populate the SDT.

2. Their programs will be concatenated to populate the PAT

3. Their events will be concatenated to populate the EIT

4. For each program in the PAT, a PMT section will be created

5. The PMT section for a channel will be assigned its streams.

6. Every stream will have its corresponding encoder polled in a loop to produce TS pack-
ets. These packets may be interleaved by the muxer and then delivered to the bridge.

vidtv_mux.[ch] Implements a MPEG TS mux, loosely based on the ffmpeg implementation in
“libavcodec/mpegtsenc.c”

The muxer runs a loop which is responsible for:

1. Keeping track of the amount of time elapsed since the last iteration.

2. Polling encoders in order to fetch ‘elapsed_time’ worth of data.

3. Inserting PSI and/or PCR packets, if needed.

4. Padding the resulting stream with NULL packets if necessary in order to maintain the
chosen bit rate.

5. Delivering the resulting TS packets to the bridge driver so it can pass them to the
demux.

Testing vidtv with v4l-utils

Using the tools in v4l-utils is a great way to test and inspect the output of vidtv. It is hosted
here: v4l-utils Documentation.

From its webpage:

The v4l-utils are a series of packages for handling media devices.

It is hosted at http://git.linuxtv.org/v4l-utils.git, and packaged
on most distributions.

It provides a series of libraries and utilities to be used to
control several aspect of the media boards.

Start by installing v4l-utils and then modprobing vidtv:

modprobe dvb_vidtv_bridge

If the driver is OK, it should load and its probing code will run. This will pull in the tuner and
demod drivers.

2.9. Media driver-specific documentation 681

https://linuxtv.org/wiki/index.php/V4l-utils

Linux Media Documentation

Using dvb-fe-tool

The first step to check whether the demod loaded successfully is to run:

$ dvb-fe-tool
Device Dummy demod for DVB-T/T2/C/S/S2 (/dev/dvb/adapter0/frontend0) capabilities:

CAN_FEC_1_2
CAN_FEC_2_3
CAN_FEC_3_4
CAN_FEC_4_5
CAN_FEC_5_6
CAN_FEC_6_7
CAN_FEC_7_8
CAN_FEC_8_9
CAN_FEC_AUTO
CAN_GUARD_INTERVAL_AUTO
CAN_HIERARCHY_AUTO
CAN_INVERSION_AUTO
CAN_QAM_16
CAN_QAM_32
CAN_QAM_64
CAN_QAM_128
CAN_QAM_256
CAN_QAM_AUTO
CAN_QPSK
CAN_TRANSMISSION_MODE_AUTO

DVB API Version 5.11, Current v5 delivery system: DVBC/ANNEX_A
Supported delivery systems:

DVBT
DVBT2
[DVBC/ANNEX_A]
DVBS
DVBS2

Frequency range for the current standard:
From: 51.0 MHz
To: 2.15 GHz
Step: 62.5 kHz
Tolerance: 29.5 MHz
Symbol rate ranges for the current standard:
From: 1.00 MBauds
To: 45.0 MBauds

This should return what is currently set up at the demod struct, i.e.:

static const struct dvb_frontend_ops vidtv_demod_ops = {
.delsys = {

SYS_DVBT,
SYS_DVBT2,
SYS_DVBC_ANNEX_A,
SYS_DVBS,
SYS_DVBS2,

},

.info = {
.name = "Dummy demod for DVB-T/T2/C/S/S2",
.frequency_min_hz = 51 * MHz,
.frequency_max_hz = 2150 * MHz,

682 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

.frequency_stepsize_hz = 62500,

.frequency_tolerance_hz = 29500 * kHz,

.symbol_rate_min = 1000000,

.symbol_rate_max = 45000000,

.caps = FE_CAN_FEC_1_2 |
FE_CAN_FEC_2_3 |
FE_CAN_FEC_3_4 |
FE_CAN_FEC_4_5 |
FE_CAN_FEC_5_6 |
FE_CAN_FEC_6_7 |
FE_CAN_FEC_7_8 |
FE_CAN_FEC_8_9 |
FE_CAN_QAM_16 |
FE_CAN_QAM_64 |
FE_CAN_QAM_32 |
FE_CAN_QAM_128 |
FE_CAN_QAM_256 |
FE_CAN_QAM_AUTO |
FE_CAN_QPSK |
FE_CAN_FEC_AUTO |
FE_CAN_INVERSION_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_HIERARCHY_AUTO,

}

....

For more information on dvb-fe-tools check its online documentation here: dvb-fe-tool Docu-
mentation.

Using dvb-scan

In order to tune into a channel and read the PSI tables, we can use dvb-scan.

For this, one should provide a configuration file known as a ‘scan file’, here’s an example:

[Channel]
FREQUENCY = 474000000
MODULATION = QAM/AUTO
SYMBOL_RATE = 6940000
INNER_FEC = AUTO
DELIVERY_SYSTEM = DVBC/ANNEX_A

Note: The parameters depend on the video standard you’re testing.

Note: Vidtv is a fake driver and does not validate much of the information in the scan file. Just
specifying ‘FREQUENCY’ and ‘DELIVERY_SYSTEM’ should be enough for DVB-T/DVB-T2. For
DVB-S/DVB-C however, you should also provide ‘SYMBOL_RATE’.

You can browse scan tables online here: dvb-scan-tables.

2.9. Media driver-specific documentation 683

https://www.linuxtv.org/wiki/index.php/Dvb-fe-tool
https://www.linuxtv.org/wiki/index.php/Dvb-fe-tool
https://git.linuxtv.org/dtv-scan-tables.git

Linux Media Documentation

Assuming this channel is named ‘channel.conf’, you can then run:

$ dvbv5-scan channel.conf
dvbv5-scan ~/vidtv.conf
ERROR command BANDWIDTH_HZ (5) not found during retrieve
Cannot calc frequency shift. Either bandwidth/symbol-rate is unavailable (yet).
Scanning frequency #1 330000000

(0x00) Signal= -68.00dBm
Scanning frequency #2 474000000
Lock (0x1f) Signal= -34.45dBm C/N= 33.74dB UCB= 0
Service Beethoven, provider LinuxTV.org: digital television

For more information on dvb-scan, check its documentation online here: dvb-scan Documenta-
tion.

Using dvb-zap

dvbv5-zap is a command line tool that can be used to record MPEG-TS to disk. The typical use
is to tune into a channel and put it into record mode. The example below - which is taken from
the documentation - illustrates that1:

$ dvbv5-zap -c dvb_channel.conf "beethoven" -o music.ts -P -t 10
using demux 'dvb0.demux0'
reading channels from file 'dvb_channel.conf'
tuning to 474000000 Hz
pass all PID's to TS
dvb_set_pesfilter 8192
dvb_dev_set_bufsize: buffer set to 6160384
Lock (0x1f) Quality= Good Signal= -34.66dBm C/N= 33.41dB UCB= 0 postBER= 0 preBER= 1.
↪→05x10^-3 PER= 0
Lock (0x1f) Quality= Good Signal= -34.57dBm C/N= 33.46dB UCB= 0 postBER= 0 preBER= 1.
↪→05x10^-3 PER= 0
Record to file 'music.ts' started
received 24587768 bytes (2401 Kbytes/sec)
Lock (0x1f) Quality= Good Signal= -34.42dBm C/N= 33.89dB UCB= 0 postBER= 0 preBER= 2.
↪→44x10^-3 PER= 0

The channel can be watched by playing the contents of the stream with some player that rec-
ognizes the MPEG-TS format, such as mplayer or vlc.

By playing the contents of the stream one can visually inspect the workings of vidtv, e.g., to
play a recorded TS file with:

$ mplayer music.ts

or, alternatively, running this command on one terminal:

$ dvbv5-zap -c dvb_channel.conf "beethoven" -P -r &

And, on a second terminal, playing the contents from DVR interface with:

$ mplayer /dev/dvb/adapter0/dvr0

1 In this example, it records 10 seconds with all program ID’s stored at the music.ts file.

684 Chapter 2. Media subsystem kernel internal API

https://www.linuxtv.org/wiki/index.php/Dvbscan
https://www.linuxtv.org/wiki/index.php/Dvbscan

Linux Media Documentation

For more information on dvb-zap check its online documentation here: dvb-zap Documentation.
See also: zap.

What can still be improved in vidtv

Add debugfs integration

Although frontend drivers provide DVBv5 statistics via the .read_status call, a nice addition
would be to make additional statistics available to userspace via debugfs, which is a simple-to-
use, RAM-based filesystem specifically designed for debug purposes.

The logic for this would be implemented on a separate file so as not to pollute the frontend
driver. These statistics are driver-specific and can be useful during tests.

The Siano driver is one example of a driver using debugfs to convey driver-specific statistics to
userspace and it can be used as a reference.

This should be further enabled and disabled via a Kconfig option for convenience.

Add a way to test video

Currently, vidtv can only encode PCMaudio. It would be great to implement a barebones version
of MPEG-2 video encoding so we can also test video. The first place to look into is ISO 13818-2:
Information technology — Generic coding of moving pictures and associated audio information
— Part 2: Video, which covers the encoding of compressed video in MPEG Transport Streams.

This might optionally use the Video4Linux2 Test Pattern Generator, v4l2-tpg, which resides at:

drivers/media/common/v4l2-tpg/

Add white noise simulation

The vidtv tuner already has code to identify whether the chosen frequency is too far away from
a table of valid frequencies. For now, this means that the demodulator can eventually lose the
lock on the signal, since the tuner will report a bad signal quality.

A nice addition is to simulate some noise when the signal quality is bad by:

• Randomly dropping some TS packets. This will trigger a continuity error if the continuity
counter is updated but the packet is not passed on to the demux.

• Updating the error statistics accordingly (e.g. BER, etc).

• Simulating some noise in the encoded data.

2.9. Media driver-specific documentation 685

https://www.linuxtv.org/wiki/index.php/Dvbv5-zap
https://www.linuxtv.org/wiki/index.php/Zap

Linux Media Documentation

Functions and structs used within vidtv

struct vidtv_dvb
Vidtv bridge state

Definition

struct vidtv_dvb {
struct platform_device *pdev;
struct dvb_frontend *fe[NUM_FE];
struct dvb_adapter adapter;
struct dvb_demux demux;
struct dmxdev dmx_dev;
struct dmx_frontend dmx_fe[NUM_FE];
struct i2c_adapter i2c_adapter;
struct i2c_client *i2c_client_demod[NUM_FE];
struct i2c_client *i2c_client_tuner[NUM_FE];
u32 nfeeds;
struct mutex feed_lock;
bool streaming;
struct vidtv_mux *mux;

#ifdef CONFIG_MEDIA_CONTROLLER_DVB;
struct media_device mdev;

#endif ;
};

Members
pdev The platform device. Obtained when the bridge is probed.

fe The frontends. Obtained when probing the demodulator modules.

adapter Represents a DTV adapter. See ‘dvb_register_adapter’.

demux The demux used by the dvb_dmx_swfilter_packets() call.

dmx_dev Represents a demux device.

dmx_fe The frontends associated with the demux.

i2c_adapter The i2c_adapter associated with the bridge driver.

i2c_client_demod The i2c_clients associated with the demodulator modules.

i2c_client_tuner The i2c_clients associated with the tuner modules.

nfeeds The number of feeds active.

feed_lock Protects access to the start/stop stream logic/data.

streaming Whether we are streaming now.

mux The abstraction responsible for delivering MPEG TS packets to the bridge.

mdev The media_device struct for media controller support.

struct vidtv_channel
A ‘channel’ abstraction

Definition

686 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct vidtv_channel {
char *name;
u16 transport_stream_id;
struct vidtv_psi_table_sdt_service *service;
u16 program_num;
struct vidtv_psi_table_pat_program *program;
struct vidtv_psi_table_pmt_stream *streams;
struct vidtv_encoder *encoders;
struct vidtv_psi_table_eit_event *events;
struct vidtv_channel *next;

};

Members
name name of the channel

transport_stream_id a number to identify the TS, chosen at will.

service A _single_ service. Will be concatenated into the SDT.

program_num The link between PAT, PMT and SDT.

program A _single_ program with one or more streams associated with it. Will be concatenated
into the PAT.

streams A stream loop used to populate the PMT section for ‘program’

encoders A encoder loop. There must be one encoder for each stream.

events Optional event information. This will feed into the EIT.

next Optionally chain this channel.

Description
When vidtv boots, it will create some hardcoded channels. Their services will be concatenated
to populate the SDT. Their programs will be concatenated to populate the PAT For each program
in the PAT, a PMT section will be created The PMT section for a channel will be assigned its
streams. Every stream will have its corresponding encoder polled to produce TS packets These
packets may be interleaved by the mux and then delivered to the bridge

int vidtv_channel_si_init(struct vidtv_mux *m)
Init the PSI tables from the channels in the mux

Parameters
struct vidtv_mux *m The mux containing the channels.

int vidtv_channels_init(struct vidtv_mux *m)
Init hardcoded, fake ‘channels’.

Parameters
struct vidtv_mux *m The mux to store the channels into.

struct vidtv_demod_cnr_to_qual_s
Map CNR values to a given combination of modulation and fec_inner

Definition

2.9. Media driver-specific documentation 687

Linux Media Documentation

struct vidtv_demod_cnr_to_qual_s {
u32 modulation;
u32 fec;
u32 cnr_ok;
u32 cnr_good;

};

Members
modulation see enum fe_modulation

fec see enum fe_fec_rate

cnr_ok S/N threshold to consider the signal as OK. Below that, there’s a chance of losing sync.

cnr_good S/N threshold to consider the signal strong.

Description
This struct matches values for ‘good’ and ‘ok’ CNRs given the combination of modulation and
fec_inner in use. We might simulate some noise if the signal quality is not too good.

The values were taken from libdvbv5.

struct vidtv_demod_config
Configuration used to init the demod

Definition

struct vidtv_demod_config {
u8 drop_tslock_prob_on_low_snr;
u8 recover_tslock_prob_on_good_snr;

};

Members
drop_tslock_prob_on_low_snr probability of losing the lock due to low snr

recover_tslock_prob_on_good_snr probability of recovering when the signal improves

Description
The configuration used to init the demodulator module, usually filled by a bridge driver. For
vidtv, this is filled by vidtv_bridge before the demodulator module is probed.

struct vidtv_demod_state
The demodulator state

Definition

struct vidtv_demod_state {
struct dvb_frontend frontend;
struct vidtv_demod_config config;
enum fe_status status;
u16 tuner_cnr;

};

Members
frontend The frontend structure allocated by the demod.

config The config used to init the demod.

688 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

status the demod status.

tuner_cnr current S/N ratio for the signal carrier

struct vidtv_encoder
A generic encoder type.

Definition

struct vidtv_encoder {
enum vidtv_encoder_id id;
char *name;
u8 *encoder_buf;
u32 encoder_buf_sz;
u32 encoder_buf_offset;
u64 sample_count;
struct vidtv_access_unit *access_units;
void *src_buf;
u32 src_buf_sz;
u32 src_buf_offset;
bool is_video_encoder;
void *ctx;
__be16 stream_id;
__be16 es_pid;
void *(*encode)(struct vidtv_encoder *e);
u32 (*clear)(struct vidtv_encoder *e);
struct vidtv_encoder *sync;
u32 sampling_rate_hz;
void (*last_sample_cb)(u32 sample_no);
void (*destroy)(struct vidtv_encoder *e);
struct vidtv_encoder *next;

};

Members
id So we can cast to a concrete implementation when needed.

name Usually the same as the stream name.

encoder_buf The encoder internal buffer for the access units.

encoder_buf_sz The encoder buffer size, in bytes

encoder_buf_offset Our byte position in the encoder buffer.

sample_count How many samples we have encoded in total.

access_units encoder payload units, used for clock references

src_buf The source of raw data to be encoded, encoder might set a default if null.

src_buf_sz size of src_buf.
src_buf_offset Our position in the source buffer.

is_video_encoder Whether this a video encoder (as opposed to audio)

ctx Encoder-specific state.

stream_id Examples: Audio streams (0xc0-0xdf), Video streams (0xe0-0xef).

es_pid The TS PID to use for the elementary stream in this encoder.

2.9. Media driver-specific documentation 689

Linux Media Documentation

encode Prepare enough AUs for the given amount of time.

clear Clear the encoder output.

sync Attempt to synchronize with this encoder.

sampling_rate_hz The sampling rate (or fps, if video) used.

last_sample_cb Called when the encoder runs out of data.This is so the source can read data
in a piecemeal fashion instead of having to provide it all at once.

destroy Destroy this encoder, freeing allocated resources.

next Next in the chain

struct vidtv_mux_timing
Timing related information

Definition

struct vidtv_mux_timing {
u64 start_jiffies;
u64 current_jiffies;
u64 past_jiffies;
u64 clk;
u64 pcr_period_usecs;
u64 si_period_usecs;

};

Members
start_jiffies The value of ‘jiffies’ when we started the mux thread.

current_jiffies The value of ‘jiffies’ for the current iteration.

past_jiffies The value of ‘jiffies’ for the past iteration.

clk A 27Mhz clock fromwhich wewill drive the PCR. Updated proportionally on every iteration.

pcr_period_usecs How often we should send PCR packets.

si_period_usecs How often we should send PSI packets.

Description
This is used to decide when PCR or PSI packets should be sent. This will also provide storage
for the clock, which is used to compute the value for the PCR.

struct vidtv_mux_si
Store the PSI context.

Definition

struct vidtv_mux_si {
struct vidtv_psi_table_pat *pat;
struct vidtv_psi_table_pmt **pmt_secs;
struct vidtv_psi_table_sdt *sdt;
struct vidtv_psi_table_nit *nit;
struct vidtv_psi_table_eit *eit;

};

Members

690 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

pat The PAT in use by the muxer.

pmt_secs The PMT sections in use by the muxer. One for each program in the PAT.

sdt The SDT in use by the muxer.

nit The NIT in use by the muxer.

eit the EIT in use by the muxer.

Description
This is used to store the PAT, PMT sections and SDT in use by the muxer.

The muxer acquire these by looking into the hardcoded channels in vidtv_channel and then
periodically sends the TS packets for them>

struct vidtv_mux_pid_ctx
Store the context for a given TS PID.

Definition

struct vidtv_mux_pid_ctx {
u16 pid;
u8 cc;
struct hlist_node h;

};

Members
pid The TS PID.

cc The continuity counter for this PID. It is incremented on every TS pack and it will wrap
around at 0xf0. If the decoder notices a sudden jump in this counter this will trigger a
discontinuity state.

h This is embedded in a hash table, mapping pid -> vidtv_mux_pid_ctx

struct vidtv_mux
A muxer abstraction loosely based in libavcodec/mpegtsenc.c

Definition

struct vidtv_mux {
struct dvb_frontend *fe;
struct device *dev;
struct vidtv_mux_timing timing;
u32 mux_rate_kbytes_sec;
unsigned long pid_ctx[1 << ((3) - 1)];
void (*on_new_packets_available_cb)(void *priv, u8 *buf, u32 npackets);
u8 *mux_buf;
u32 mux_buf_sz;
u32 mux_buf_offset;
struct vidtv_channel *channels;
struct vidtv_mux_si si;
u64 num_streamed_pcr;
u64 num_streamed_si;
struct work_struct mpeg_thread;
bool streaming;
u16 pcr_pid;
u16 transport_stream_id;

2.9. Media driver-specific documentation 691

Linux Media Documentation

u16 network_id;
char *network_name;
void *priv;

};

Members
fe The frontend structure allocated by the muxer.

dev pointer to struct device.

timing Keeps track of timing related information.

mux_rate_kbytes_sec The bit rate for the TS, in kbytes.

pid_ctx A hash table to keep track of per-PID metadata.

on_new_packets_available_cb A callback to inform of new TS packets ready.

mux_buf A pointer to a buffer for this muxer. TS packets are stored there and then passed on
to the bridge driver.

mux_buf_sz The size for ‘mux_buf’.

mux_buf_offset The current offset into ‘mux_buf’.

channels The channels associated with this muxer.

si Keeps track of the PSI context.

num_streamed_pcr Number of PCR packets streamed.

num_streamed_si The number of PSI packets streamed.

mpeg_thread Thread responsible for the muxer loop.

streaming whether ‘mpeg_thread’ is running.

pcr_pid The TS PID used for the PSI packets. All channels will share the same PCR.

transport_stream_id The transport stream ID

network_id The network ID

network_name The network name

priv Private data.

struct vidtv_mux_init_args
Arguments used to inix the muxer.

Definition

struct vidtv_mux_init_args {
u32 mux_rate_kbytes_sec;
void (*on_new_packets_available_cb)(void *priv, u8 *buf, u32 npackets);
u32 mux_buf_sz;
u64 pcr_period_usecs;
u64 si_period_usecs;
u16 pcr_pid;
u16 transport_stream_id;
struct vidtv_channel *channels;
u16 network_id;

692 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

char *network_name;
void *priv;

};

Members
mux_rate_kbytes_sec The bit rate for the TS, in kbytes.

on_new_packets_available_cb A callback to inform of new TS packets ready.

mux_buf_sz The size for ‘mux_buf’.

pcr_period_usecs How often we should send PCR packets.

si_period_usecs How often we should send PSI packets.

pcr_pid The TS PID used for the PSI packets. All channels will share the same PCR.

transport_stream_id The transport stream ID

channels an optional list of channels to use

network_id The network ID

network_name The network name

priv Private data.

struct pes_header_write_args
Arguments to write a PES header.

Definition

struct pes_header_write_args {
void *dest_buf;
u32 dest_offset;
u32 dest_buf_sz;
u32 encoder_id;
bool send_pts;
u64 pts;
bool send_dts;
u64 dts;
u16 stream_id;
u32 n_pes_h_s_bytes;
u32 access_unit_len;

};

Members
dest_buf The buffer to write into.

dest_offset where to start writing in the dest_buffer.

dest_buf_sz The size of the dest_buffer

encoder_id Encoder id (see vidtv_encoder.h)

send_pts Should we send PTS?

pts PTS value to send.

send_dts Should we send DTS?

2.9. Media driver-specific documentation 693

Linux Media Documentation

dts DTS value to send.

stream_id The stream id to use. Ex: Audio streams (0xc0-0xdf), Video streams (0xe0-0xef).

n_pes_h_s_bytes Padding bytes. Might be used by an encoder if needed, gets discarded by
the decoder.

access_unit_len The size of _one_ access unit (with any headers it might need)

struct pes_ts_header_write_args
Arguments to write a TS header.

Definition

struct pes_ts_header_write_args {
void *dest_buf;
u32 dest_offset;
u32 dest_buf_sz;
u16 pid;
u8 *continuity_counter;
bool wrote_pes_header;
u32 n_stuffing_bytes;
u64 pcr;

};

Members
dest_buf The buffer to write into.

dest_offset where to start writing in the dest_buffer.

dest_buf_sz The size of the dest_buffer

pid The PID to use for the TS packets.

continuity_counter Incremented on every new TS packet.

wrote_pes_header Flag to indicate that the PES header was written

n_stuffing_bytes Padding bytes. Might be used by an encoder if needed, gets discarded by
the decoder.

pcr counter driven by a 27Mhz clock.

struct pes_write_args
Arguments for the packetizer.

Definition

struct pes_write_args {
void *dest_buf;
void *from;
u32 access_unit_len;
u32 dest_offset;
u32 dest_buf_sz;
u16 pid;
u32 encoder_id;
u8 *continuity_counter;
u16 stream_id;
bool send_pts;
u64 pts;
bool send_dts;

694 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

u64 dts;
u32 n_pes_h_s_bytes;
u64 pcr;

};

Members
dest_buf The buffer to write into.

from A pointer to the encoder buffer containing one access unit.

access_unit_len The size of _one_ access unit (with any headers it might need)

dest_offset where to start writing in the dest_buffer.

dest_buf_sz The size of the dest_buffer

pid The PID to use for the TS packets.

encoder_id Encoder id (see vidtv_encoder.h)

continuity_counter Incremented on every new TS packet.

stream_id The stream id to use. Ex: Audio streams (0xc0-0xdf), Video streams (0xe0-0xef).

send_pts Should we send PTS?

pts PTS value to send.

send_dts Should we send DTS?

dts DTS value to send.

n_pes_h_s_bytes Padding bytes. Might be used by an encoder if needed, gets discarded by
the decoder.

pcr counter driven by a 27Mhz clock.

u32 vidtv_pes_write_into(struct pes_write_args *args)
Write a PES packet as MPEG-TS packets into a buffer.

Parameters
struct pes_write_args *args The args to use when writing

Description
This function translate the ES data for one access unit from an encoder into MPEG TS packets.
It does so by first encapsulating it with a PES header and then splitting it into TS packets.

The data is then written into the buffer pointed to by ‘args.buf’

Return
The number of bytes written into the buffer. This is usually NOT equal to the size of the access
unit, since we need space for PES headers, TS headers and padding bytes, if any.

struct psi_write_args
Arguments for the PSI packetizer.

Definition

2.9. Media driver-specific documentation 695

Linux Media Documentation

struct psi_write_args {
void *dest_buf;
void *from;
size_t len;
u32 dest_offset;
u16 pid;
bool new_psi_section;
u8 *continuity_counter;
bool is_crc;
u32 dest_buf_sz;
u32 *crc;

};

Members
dest_buf The buffer to write into.

from PSI data to be copied.

len How much to write.

dest_offset where to start writing in the dest_buffer.

pid TS packet ID.

new_psi_section Set when starting a table section.

continuity_counter Incremented on every new packet.

is_crc Set when writing the CRC at the end.

dest_buf_sz The size of the dest_buffer

crc a pointer to store the crc for this chunk

struct desc_write_args
Arguments in order to write a descriptor.

Definition

struct desc_write_args {
void *dest_buf;
u32 dest_offset;
struct vidtv_psi_desc *desc;
u16 pid;
u8 *continuity_counter;
u32 dest_buf_sz;
u32 *crc;

};

Members
dest_buf The buffer to write into.

dest_offset where to start writing in the dest_buffer.

desc A pointer to the descriptor

pid TS packet ID.

continuity_counter Incremented on every new packet.

696 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

dest_buf_sz The size of the dest_buffer

crc a pointer to store the crc for this chunk

struct crc32_write_args
Arguments in order to write the CRC at the end of the PSI tables.

Definition

struct crc32_write_args {
void *dest_buf;
u32 dest_offset;
__be32 crc;
u16 pid;
u8 *continuity_counter;
u32 dest_buf_sz;

};

Members
dest_buf The buffer to write into.

dest_offset where to start writing in the dest_buffer.

crc the CRC value to write

pid TS packet ID.

continuity_counter Incremented on every new packet.

dest_buf_sz The size of the dest_buffer

struct header_write_args
Arguments in order to write the common table header

Definition

struct header_write_args {
void *dest_buf;
u32 dest_offset;
struct vidtv_psi_table_header *h;
u16 pid;
u8 *continuity_counter;
u32 dest_buf_sz;
u32 *crc;

};

Members
dest_buf The buffer to write into.

dest_offset where to start writing in the dest_buffer.

h a pointer to the header.

pid TS packet ID.

continuity_counter Incremented on every new packet.

dest_buf_sz The size of the dest_buffer

crc a pointer to store the crc for this chunk

2.9. Media driver-specific documentation 697

Linux Media Documentation

void vidtv_psi_sdt_service_assign(struct vidtv_psi_table_sdt *sdt, struct
vidtv_psi_table_sdt_service *service)

Assigns the service loop to the SDT.

Parameters
struct vidtv_psi_table_sdt *sdt The SDT to assign to.

struct vidtv_psi_table_sdt_service *service The service loop (one or more services)

Description
This will free the previous service loop in the table. This will assign ownership of the service
loop to the table, i.e. the table will free this service loop when a call to its destroy function is
made.

void vidtv_psi_desc_assign(struct vidtv_psi_desc **to, struct vidtv_psi_desc *desc)
Assigns a descriptor loop at some point

Parameters
struct vidtv_psi_desc **to Where to assign this descriptor loop to

struct vidtv_psi_desc *desc The descriptor loop that will be assigned.

Description
This will free the loop in ‘to’, if any.

void vidtv_pmt_desc_assign(struct vidtv_psi_table_pmt *pmt, struct vidtv_psi_desc **to,
struct vidtv_psi_desc *desc)

Assigns a descriptor loop at some point in a PMT section.

Parameters
struct vidtv_psi_table_pmt *pmt The PMT section that will contain the descriptor loop

struct vidtv_psi_desc **to Where in the PMT to assign this descriptor loop to

struct vidtv_psi_desc *desc The descriptor loop that will be assigned.

Description
This will free the loop in ‘to’, if any. This will assign ownership of the loop to the table, i.e. the
table will free this loop when a call to its destroy function is made.

void vidtv_sdt_desc_assign(struct vidtv_psi_table_sdt *sdt, struct vidtv_psi_desc **to,
struct vidtv_psi_desc *desc)

Assigns a descriptor loop at some point in a SDT.

Parameters
struct vidtv_psi_table_sdt *sdt The SDT that will contain the descriptor loop

struct vidtv_psi_desc **to Where in the PMT to assign this descriptor loop to

struct vidtv_psi_desc *desc The descriptor loop that will be assigned.

Description
This will free the loop in ‘to’, if any. This will assign ownership of the loop to the table, i.e. the
table will free this loop when a call to its destroy function is made.

698 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

void vidtv_psi_pat_program_assign(struct vidtv_psi_table_pat *pat, struct
vidtv_psi_table_pat_program *p)

Assigns the program loop to the PAT.

Parameters
struct vidtv_psi_table_pat *pat The PAT to assign to.

struct vidtv_psi_table_pat_program *p The program loop (one or more programs)

Description
This will free the previous program loop in the table. This will assign ownership of the program
loop to the table, i.e. the table will free this program loop when a call to its destroy function is
made.

void vidtv_psi_pmt_stream_assign(struct vidtv_psi_table_pmt *pmt, struct
vidtv_psi_table_pmt_stream *s)

Assigns the stream loop to the PAT.

Parameters
struct vidtv_psi_table_pmt *pmt The PMT to assign to.

struct vidtv_psi_table_pmt_stream *s The stream loop (one or more streams)

Description
This will free the previous stream loop in the table. This will assign ownership of the stream
loop to the table, i.e. the table will free this stream loop when a call to its destroy function is
made.

struct vidtv_psi_table_pmt** vidtv_psi_pmt_create_sec_for_each_pat_entry(struct
vidtv_psi_table_pat *pat,
u16 pcr_pid)

Create a PMT section for each program found in the PAT

Parameters
struct vidtv_psi_table_pat *pat The PAT to look for programs.

u16 pcr_pid packet ID for the PCR to be used for the program described in this PMT section

u16 vidtv_psi_pmt_get_pid(struct vidtv_psi_table_pmt *section, struct
vidtv_psi_table_pat *pat)

Get the TS PID for a PMT section.

Parameters
struct vidtv_psi_table_pmt *section The PMT section whose PID we want to retrieve.

struct vidtv_psi_table_pat *pat The PAT table to look into.

Return
the TS PID for ‘section’

void vidtv_psi_pat_table_update_sec_len(struct vidtv_psi_table_pat *pat)
Recompute and update the PAT section length.

Parameters
struct vidtv_psi_table_pat *pat The PAT whose length is to be updated.

2.9. Media driver-specific documentation 699

Linux Media Documentation

Description
This will traverse the table and accumulate the length of its components, which is then used to
replace the ‘section_length’ field.

If section_length > MAX_SECTION_LEN, the operation fails.

void vidtv_psi_pmt_table_update_sec_len(struct vidtv_psi_table_pmt *pmt)
Recompute and update the PMT section length.

Parameters
struct vidtv_psi_table_pmt *pmt The PMT whose length is to be updated.

Description
This will traverse the table and accumulate the length of its components, which is then used to
replace the ‘section_length’ field.

If section_length > MAX_SECTION_LEN, the operation fails.

void vidtv_psi_sdt_table_update_sec_len(struct vidtv_psi_table_sdt *sdt)
Recompute and update the SDT section length.

Parameters
struct vidtv_psi_table_sdt *sdt The SDT whose length is to be updated.

Description
This will traverse the table and accumulate the length of its components, which is then used to
replace the ‘section_length’ field.

If section_length > MAX_SECTION_LEN, the operation fails.

struct vidtv_psi_pat_write_args
Arguments for writing a PAT table

Definition

struct vidtv_psi_pat_write_args {
char *buf;
u32 offset;
struct vidtv_psi_table_pat *pat;
u32 buf_sz;
u8 *continuity_counter;

};

Members
buf The destination buffer.

offset The offset into the destination buffer.

pat A pointer to the PAT.

buf_sz The size of the destination buffer.

continuity_counter A pointer to the CC. Incremented on every new packet.

u32 vidtv_psi_pat_write_into(struct vidtv_psi_pat_write_args *args)
Write PAT as MPEG-TS packets into a buffer.

Parameters

700 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct vidtv_psi_pat_write_args *args An instance of struct
vidtv_psi_pat_write_args

Description
This function writes the MPEG TS packets for a PAT table into a buffer. Calling code will usually
generate the PAT via a call to its init function and thus is responsible for freeing it.

Return
The number of bytes written into the buffer. This is NOT equal to the size of the PAT, since more
space is needed for TS headers during TS encapsulation.

struct vidtv_psi_sdt_write_args
Arguments for writing a SDT table

Definition

struct vidtv_psi_sdt_write_args {
char *buf;
u32 offset;
struct vidtv_psi_table_sdt *sdt;
u32 buf_sz;
u8 *continuity_counter;

};

Members
buf The destination buffer.

offset The offset into the destination buffer.

sdt A pointer to the SDT.

buf_sz The size of the destination buffer.

continuity_counter A pointer to the CC. Incremented on every new packet.

u32 vidtv_psi_sdt_write_into(struct vidtv_psi_sdt_write_args *args)
Write SDT as MPEG-TS packets into a buffer.

Parameters
struct vidtv_psi_sdt_write_args *args an instance of struct

vidtv_psi_sdt_write_args

Description
This function writes the MPEG TS packets for a SDT table into a buffer. Calling code will usually
generate the SDT via a call to its init function and thus is responsible for freeing it.

Return
The number of bytes written into the buffer. This is NOT equal to the size of the SDT, since
more space is needed for TS headers during TS encapsulation.

struct vidtv_psi_pmt_write_args
Arguments for writing a PMT section

Definition

2.9. Media driver-specific documentation 701

Linux Media Documentation

struct vidtv_psi_pmt_write_args {
char *buf;
u32 offset;
struct vidtv_psi_table_pmt *pmt;
u16 pid;
u32 buf_sz;
u8 *continuity_counter;
u16 pcr_pid;

};

Members
buf The destination buffer.

offset The offset into the destination buffer.

pmt A pointer to the PMT.

pid Program ID

buf_sz The size of the destination buffer.

continuity_counter A pointer to the CC. Incremented on every new packet.

pcr_pid The TS PID used for the PSI packets. All channels will share the same PCR.

u32 vidtv_psi_pmt_write_into(struct vidtv_psi_pmt_write_args *args)
Write PMT as MPEG-TS packets into a buffer.

Parameters
struct vidtv_psi_pmt_write_args *args an instance of struct

vidtv_psi_pmt_write_args

Description
This function writes the MPEG TS packets for a PMT section into a buffer. Calling code will
usually generate the PMT section via a call to its init function and thus is responsible for freeing
it.

Return
The number of bytes written into the buffer. This is NOT equal to the size of the PMT section,
since more space is needed for TS headers during TS encapsulation.

struct vidtv_psi_table_pmt * vidtv_psi_find_pmt_sec(struct vidtv_psi_table_pmt **pmt_sections,
u16 nsections,
u16 program_num)

Finds the PMT section for ‘program_num’

Parameters
struct vidtv_psi_table_pmt **pmt_sections The sections to look into.

u16 nsections The number of sections.

u16 program_num The ‘program_num’ from PAT pointing to a PMT section.

Return
A pointer to the PMT, if found, or NULL.

702 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

struct vidtv_psi_table_transport
A entry in the TS loop for the NIT and/or other tables. See ETSI 300 468 section 5.2.1

Definition

struct vidtv_psi_table_transport {
__be16 transport_id;
__be16 network_id;
__be16 bitfield;
struct vidtv_psi_desc *descriptor;
struct vidtv_psi_table_transport *next;

};

Members
transport_id The TS ID being described

network_id The network_id that contains the TS ID

bitfield Contains the descriptor loop length

descriptor A descriptor loop

next Pointer to the next entry

struct vidtv_psi_table_nit
A Network Information Table (NIT). See ETSI 300 468 section 5.2.1

Definition

struct vidtv_psi_table_nit {
struct vidtv_psi_table_header header;
__be16 bitfield;
struct vidtv_psi_desc *descriptor;
__be16 bitfield2;
struct vidtv_psi_table_transport *transport;

};

Members
header A PSI table header

bitfield Contains the network descriptor length

descriptor A descriptor loop describing the network

bitfield2 Contains the transport stream loop length

transport The transport stream loop

struct vidtv_psi_nit_write_args
Arguments for writing a NIT section

Definition

struct vidtv_psi_nit_write_args {
char *buf;
u32 offset;
struct vidtv_psi_table_nit *nit;
u32 buf_sz;
u8 *continuity_counter;

};

2.9. Media driver-specific documentation 703

Linux Media Documentation

Members
buf The destination buffer.

offset The offset into the destination buffer.

nit A pointer to the NIT

buf_sz The size of the destination buffer.

continuity_counter A pointer to the CC. Incremented on every new packet.

u32 vidtv_psi_nit_write_into(struct vidtv_psi_nit_write_args *args)
Write NIT as MPEG-TS packets into a buffer.

Parameters
struct vidtv_psi_nit_write_args *args an instance of struct

vidtv_psi_nit_write_args

Description
This function writes the MPEG TS packets for a NIT table into a buffer. Calling code will usually
generate the NIT via a call to its init function and thus is responsible for freeing it.

Return
The number of bytes written into the buffer. This is NOT equal to the size of the NIT, since more
space is needed for TS headers during TS encapsulation.

struct vidtv_psi_eit_write_args
Arguments for writing an EIT section

Definition

struct vidtv_psi_eit_write_args {
char *buf;
u32 offset;
struct vidtv_psi_table_eit *eit;
u32 buf_sz;
u8 *continuity_counter;

};

Members
buf The destination buffer.

offset The offset into the destination buffer.

eit A pointer to the EIT

buf_sz The size of the destination buffer.

continuity_counter A pointer to the CC. Incremented on every new packet.

u32 vidtv_psi_eit_write_into(struct vidtv_psi_eit_write_args *args)
Write EIT as MPEG-TS packets into a buffer.

Parameters
struct vidtv_psi_eit_write_args *args an instance of struct

vidtv_psi_nit_write_args

704 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Description
This function writes the MPEG TS packets for a EIT table into a buffer. Calling code will usually
generate the EIT via a call to its init function and thus is responsible for freeing it.

Return
The number of bytes written into the buffer. This is NOT equal to the size of the EIT, since more
space is needed for TS headers during TS encapsulation.

void vidtv_psi_eit_table_update_sec_len(struct vidtv_psi_table_eit *eit)
Recompute and update the EIT section length.

Parameters
struct vidtv_psi_table_eit *eit The EIT whose length is to be updated.

Description
This will traverse the table and accumulate the length of its components, which is then used to
replace the ‘section_length’ field.

If section_length > EIT_MAX_SECTION_LEN, the operation fails.

void vidtv_psi_eit_event_assign(struct vidtv_psi_table_eit *eit, struct
vidtv_psi_table_eit_event *e)

Assigns the event loop to the EIT.

Parameters
struct vidtv_psi_table_eit *eit The EIT to assign to.

struct vidtv_psi_table_eit_event *e The event loop

Description
This will free the previous event loop in the table. This will assign ownership of the stream loop
to the table, i.e. the table will free this stream loop when a call to its destroy function is made.

struct vidtv_s302m_ctx
s302m encoder context.

Definition

struct vidtv_s302m_ctx {
struct vidtv_encoder *enc;
u32 frame_index;
u32 au_count;
int last_duration;
unsigned int note_offset;
enum musical_notes last_tone;

};

Members
enc A pointer to the containing encoder structure.

frame_index The current frame in a block

au_count The total number of access units encoded up to now

last_duration Duration of the tone currently being played

note_offset Position at the music tone array

2.9. Media driver-specific documentation 705

Linux Media Documentation

last_tone Tone currently being played

struct vidtv_s302m_encoder_init_args
Args for the s302m encoder.

Definition

struct vidtv_s302m_encoder_init_args {
char *name;
void *src_buf;
u32 src_buf_sz;
u16 es_pid;
struct vidtv_encoder *sync;
void (*last_sample_cb)(u32 sample_no);
struct vidtv_encoder *head;

};

Members
name A name to identify this particular instance

src_buf The source buffer, encoder will default to a sine wave if this is NULL.

src_buf_sz The size of the source buffer.

es_pid The MPEG Elementary Stream PID to use.

sync Attempt to synchronize audio with this video encoder, if not NULL.

last_sample_cb A callback called when the encoder runs out of data.

head Add to this chain

struct pcr_write_args
Arguments for the pcr_write_into function.

Definition

struct pcr_write_args {
void *dest_buf;
u32 dest_offset;
u16 pid;
u32 buf_sz;
u8 *continuity_counter;
u64 pcr;

};

Members
dest_buf The buffer to write into.

dest_offset The byte offset into the buffer.

pid The TS PID for the PCR packets.

buf_sz The size of the buffer in bytes.

continuity_counter The TS continuity_counter.

pcr A sample from the system clock.

struct null_packet_write_args
Arguments for the null_write_into function

706 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

Definition

struct null_packet_write_args {
void *dest_buf;
u32 dest_offset;
u32 buf_sz;
u8 *continuity_counter;

};

Members
dest_buf The buffer to write into.

dest_offset The byte offset into the buffer.

buf_sz The size of the buffer in bytes.

continuity_counter The TS continuity_counter.

u32 vidtv_ts_null_write_into(struct null_packet_write_args args)
Write a TS null packet into a buffer.

Parameters
struct null_packet_write_args args the arguments to use when writing.

Description
This function will write a null packet into a buffer. This is usually used to pad TS streams.

Return
The number of bytes written into the buffer.

u32 vidtv_ts_pcr_write_into(struct pcr_write_args args)
Write a PCR packet into a buffer.

Parameters
struct pcr_write_args args the arguments to use when writing.

Description
This function will write a PCR packet into a buffer. This is used to synchronize the clocks
between encoders and decoders.

Return
The number of bytes written into the buffer.

struct vidtv_tuner_config
Configuration used to init the tuner.

Definition

struct vidtv_tuner_config {
struct dvb_frontend *fe;
u32 mock_power_up_delay_msec;
u32 mock_tune_delay_msec;
u32 vidtv_valid_dvb_t_freqs[NUM_VALID_TUNER_FREQS];
u32 vidtv_valid_dvb_c_freqs[NUM_VALID_TUNER_FREQS];
u32 vidtv_valid_dvb_s_freqs[NUM_VALID_TUNER_FREQS];

2.9. Media driver-specific documentation 707

Linux Media Documentation

u8 max_frequency_shift_hz;
};

Members
fe A pointer to the dvb_frontend structure allocated by vidtv_demod.

mock_power_up_delay_msec Simulate a power-up delay.

mock_tune_delay_msec Simulate a tune delay.

vidtv_valid_dvb_t_freqs The valid DVB-T frequencies to simulate.

vidtv_valid_dvb_c_freqs The valid DVB-C frequencies to simulate.

vidtv_valid_dvb_s_freqs The valid DVB-S frequencies to simulate.

max_frequency_shift_hz The maximum frequency shift in HZ allowed when tuning in a chan-
nel

Description
The configuration used to init the tuner module, usually filled by a bridge driver. For vidtv, this
is filled by vidtv_bridge before the tuner module is probed.

u32 vidtv_memcpy(void *to, size_t to_offset, size_t to_size, const void *from, size_t len)
wrapper routine to be used by MPEG-TS generator, in order to avoid going past the output
buffer.

Parameters
void *to Starting element to where a MPEG-TS packet will be copied.

size_t to_offset Starting position of the to buffer to be filled.
size_t to_size Size of the to buffer.
const void *from Starting element of the buffer to be copied.

size_t len Number of elements to be copy from from buffer into to**+ **to_offset buffer.
Note

Real digital TV demod drivers should not have memcpy wrappers. We use it here
because emulating MPEG-TS generation at kernelspace requires some extra care.

Return
Returns the number of bytes written

u32 vidtv_memset(void *to, size_t to_offset, size_t to_size, const int c, size_t len)
wrapper routine to be used by MPEG-TS generator, in order to avoid going past the output
buffer.

Parameters
void *to Starting element to set

size_t to_offset Starting position of the to buffer to be filled.
size_t to_size Size of the to buffer.
const int c The value to set the memory to.

708 Chapter 2. Media subsystem kernel internal API

Linux Media Documentation

size_t len Number of elements to be copy from from buffer into to**+ **to_offset buffer.
Note

Real digital TV demod drivers should not have memset wrappers. We use it here
because emulating MPEG-TS generation at kernelspace requires some extra care.

Return
Returns the number of bytes written

struct vidtv_tuner_hardware_state
Simulate the tuner hardware status

Definition

struct vidtv_tuner_hardware_state {
bool asleep;
u32 lock_status;
u32 if_frequency;
u32 tuned_frequency;
u32 bandwidth;

};

Members
asleep whether the tuner is asleep, i.e whether _sleep() or _suspend() was called.

lock_status Whether the tuner has managed to lock on the requested frequency.

if_frequency The tuner’s intermediate frequency. Hardcoded for the purposes of simulation.

tuned_frequency The actual tuned frequency.

bandwidth The actual bandwidth.

Description
This structure is meant to simulate the status of the tuner hardware, as if we had a physical
tuner hardware.

struct vidtv_tuner_dev
The tuner struct

Definition

struct vidtv_tuner_dev {
struct dvb_frontend *fe;
struct vidtv_tuner_hardware_state hw_state;
struct vidtv_tuner_config config;

};

Members
fe A pointer to the dvb_frontend structure allocated by vidtv_demod

hw_state A struct to simulate the tuner’s hardware state as if we had a physical tuner hard-
ware.

config The configuration used to start the tuner module, usually filled by a bridge driver. For
vidtv, this is filled by vidtv_bridge before the tuner module is probed.

2.9. Media driver-specific documentation 709

Linux Media Documentation

2.9.2.4 Contributors

Note: This documentation is outdated. There are several other DVB contributors that aren’t
listed below.

Thanks go to the following people for patches and contributions:

• Michael Hunold <m.hunold@gmx.de>

– for the initial saa7146 driver and its recent overhaul
• Christian Theiss

– for his work on the initial Linux DVB driver
• Marcus Metzler <mocm@metzlerbros.de> and Ralph Metzler <rjkm@metzlerbros.de>

– for their continuing work on the DVB driver
• Michael Holzt <kju@debian.org>

– for his contributions to the dvb-net driver
• Diego Picciani <d.picciani@novacomp.it>

– for CyberLogin for Linux which allows logging onto EON (in case you are wondering
where CyberLogin is, EON changed its login procedure and CyberLogin is no longer
used.)

• Martin Schaller <martin@smurf.franken.de>

– for patching the cable card decoder driver
• Klaus Schmidinger <Klaus.Schmidinger@cadsoft.de>

– for various fixes regarding tuning, OSD and CI stuff and his work on VDR
• Steve Brown <sbrown@cortland.com>

– for his AFC kernel thread
• Christoph Martin <martin@uni-mainz.de>

– for his LIRC infrared handler
• Andreas Oberritter <obi@linuxtv.org>, Dennis Noermann <den-
nis.noermann@noernet.de>, Felix Domke <tmbinc@elitedvb.net>, Florian
Schirmer <jolt@tuxbox.org>, Ronny Strutz <3des@elitedvb.de>, Wolfram Joost
<dbox2@frokaschwei.de> and all the other dbox2 people

– for many bugfixes in the generic DVB Core, frontend drivers and their work on the
dbox2 port of the DVB driver

• Oliver Endriss <o.endriss@gmx.de>

– for many bugfixes
• Andrew de Quincey <adq_dvb@lidskialf.net>

– for the tda1004x frontend driver, and various bugfixes
• Peter Schildmann <peter.schildmann@web.de>

710 Chapter 2. Media subsystem kernel internal API

mailto:m.hunold@gmx.de
mailto:mocm@metzlerbros.de
mailto:rjkm@metzlerbros.de
mailto:kju@debian.org
mailto:d.picciani@novacomp.it
mailto:martin@smurf.franken.de
mailto:Klaus.Schmidinger@cadsoft.de
mailto:sbrown@cortland.com
mailto:martin@uni-mainz.de
mailto:obi@linuxtv.org
mailto:dennis.noermann@noernet.de
mailto:dennis.noermann@noernet.de
mailto:tmbinc@elitedvb.net
mailto:jolt@tuxbox.org
mailto:3des@elitedvb.de
mailto:dbox2@frokaschwei.de
mailto:o.endriss@gmx.de
mailto:adq_dvb@lidskialf.net
mailto:peter.schildmann@web.de

Linux Media Documentation

– for the driver for the Technisat SkyStar2 PCI DVB card
• Vadim Catana <skystar@moldova.cc>, Roberto Ragusa <r.ragusa@libero.it> and Augusto
Cardoso <augusto@carhil.net>

– for all the work for the FlexCopII chipset by B2C2,Inc.
• Davor Emard <emard@softhome.net>

– for his work on the budget drivers, the demux code, the module unloading problems,
…

• Hans-Frieder Vogt <hfvogt@arcor.de>

– for his work on calculating and checking the crc’s for the TechnoTrend/Hauppauge
DEC driver firmware

• Michael Dreher <michael@5dot1.de> and Andreas ‘randy’ Weinberger

– for the support of the Fujitsu-Siemens Activy budget DVB-S
• Kenneth Aafløy <ke-aa@frisurf.no>

– for adding support for Typhoon DVB-S budget card
• Ernst Peinlich <e.peinlich@inode.at>

– for tuning/DiSEqC support for the DEC 3000-s
• Peter Beutner <p.beutner@gmx.net>

– for the IR code for the ttusb-dec driver
• Wilson Michaels <wilsonmichaels@earthlink.net>

– for the lgdt330x frontend driver, and various bugfixes
• Michael Krufky <mkrufky@linuxtv.org>

– for maintaining v4l/dvb inter-tree dependencies
• Taylor Jacob <rtjacob@earthlink.net>

– for the nxt2002 frontend driver
• Jean-Francois Thibert <jeanfrancois@sagetv.com>

– for the nxt2004 frontend driver
• Kirk Lapray <kirk.lapray@gmail.com>

– for the or51211 and or51132 frontend drivers, and for merging the nxt2002 and
nxt2004 modules into a single nxt200x frontend driver.

(If you think you should be in this list, but you are not, drop a line to the DVB mailing list)

Copyright © 2009-2020 : LinuxTV Developers

This documentation is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

2.9. Media driver-specific documentation 711

mailto:skystar@moldova.cc
mailto:r.ragusa@libero.it
mailto:augusto@carhil.net
mailto:emard@softhome.net
mailto:hfvogt@arcor.de
mailto:michael@5dot1.de
mailto:ke-aa@frisurf.no
mailto:e.peinlich@inode.at
mailto:p.beutner@gmx.net
mailto:wilsonmichaels@earthlink.net
mailto:mkrufky@linuxtv.org
mailto:rtjacob@earthlink.net
mailto:jeanfrancois@sagetv.com
mailto:kirk.lapray@gmail.com

Linux Media Documentation

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

For more details see the file COPYING in the source distribution of Linux.

712 Chapter 2. Media subsystem kernel internal API

CHAPTER

THREE

LINUX MEDIA INFRASTRUCTURE USERSPACE API

This section contains the driver development information and Kernel APIs used by media de-
vices.

Please see:

Documentation/admin-guide/media/index.rst

• for usage information about media subsystem and supported drivers;

Documentation/driver-api/media/index.rst

• for driver development information and Kernel APIs used by media devices;

3.1 Introduction

This document covers the Linux Kernel to Userspace API’s used by video and radio streaming
devices, including video cameras, analog and digital TV receiver cards, AM/FM receiver cards,
Software Defined Radio (SDR), streaming capture and output devices, codec devices and remote
controllers.

A typical media device hardware is shown at Typical Media Device.

The media infrastructure API was designed to control such devices. It is divided into five parts.

1. The first part covers radio, video capture and output, cameras, analog TV devices and
codecs.

2. The second part covers the API used for digital TV and Internet reception via one of the
several digital tv standards. While it is called as DVB API, in fact it covers several different
video standards including DVB-T/T2, DVB-S/S2, DVB-C, ATSC, ISDB-T, ISDB-S, DTMB, etc.
The complete list of supported standards can be found at fe_delivery_system.

3. The third part covers the Remote Controller API.

4. The fourth part covers the Media Controller API.

5. The fifth part covers the CEC (Consumer Electronics Control) API.

It should also be noted that a media device may also have audio components, like mixers, PCM
capture, PCM playback, etc, which are controlled via ALSA API. For additional information
and for the latest development code, see: https://linuxtv.org. For discussing improvements,
reporting troubles, sending new drivers, etc, please mail to: Linux Media Mailing List (LMML).

713

https://linuxtv.org
http://vger.kernel.org/vger-lists.html#linux-media

Linux Media Documentation

Fig. 1: Typical Media Device

714 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

3.2 Part I - Video for Linux API

This part describes the Video for Linux API version 2 (V4L2 API) specification.

Revision 4.5

3.2.1 Common API Elements

Programming a V4L2 device consists of these steps:

• Opening the device

• Changing device properties, selecting a video and audio input, video standard, picture
brightness a. o.

• Negotiating a data format

• Negotiating an input/output method

• The actual input/output loop

• Closing the device

In practice most steps are optional and can be executed out of order. It depends on the V4L2
device type, you can read about the details in Interfaces. In this chapter we will discuss the
basic concepts applicable to all devices.

3.2.1.1 Opening and Closing Devices

Controlling a hardware peripheral via V4L2

Hardware that is supported using the V4L2 uAPI often consists of multiple devices or periph-
erals, each of which have their own driver.

The bridge driver exposes one or more V4L2 device nodes (see V4L2 Device Node Naming).

There are other drivers providing support for other components of the hardware, which may
also expose device nodes, called V4L2 sub-devices.

When such V4L2 sub-devices are exposed, they allow controlling those other hardware compo-
nents - usually connected via a serial bus (like I2C, SMBus or SPI). Depending on the bridge
driver, those sub-devices can be controlled indirectly via the bridge driver or explicitly via the
Media Controller and via the V4L2 sub-devices.

The devices that require the use of the Media Controller are called MC-centric devices. The
devices that are fully controlled via V4L2 device nodes are called video-node-centric.
Userspace can check if a V4L2 hardware peripheral is MC-centric by calling ioctl VID-
IOC_QUERYCAP and checking the device_caps field.

If the device returns V4L2_CAP_IO_MC flag at device_caps, then it is MC-centric, otherwise, it
is video-node-centric.

It is required for MC-centric drivers to identify the V4L2 sub-devices and to configure the
pipelines via the media controller API before using the peripheral. Also, the sub-devices’ con-
figuration shall be controlled via the sub-device API.

3.2. Part I - Video for Linux API 715

Linux Media Documentation

Note:
A video-node-centric may still provide media-controller and sub-device interfaces as
well.

However, in that case the media-controller and the sub-device interfaces are read-only and just
provide information about the device. The actual configuration is done via the video nodes.

V4L2 Device Node Naming

V4L2 drivers are implemented as kernel modules, loaded manually by the system administrator
or automatically when a device is first discovered. The driver modules plug into the videodev
kernel module. It provides helper functions and a common application interface specified in
this document.

Each driver thus loaded registers one or more device nodes with major number 81. Minor
numbers are allocated dynamically unless the kernel is compiled with the kernel option CON-
FIG_VIDEO_FIXED_MINOR_RANGES. In that case minor numbers are allocated in ranges de-
pending on the device node type.

The device nodes supported by the Video4Linux subsystem are:

Default device node name Usage
/dev/videoX Video and metadata for capture/output devices
/dev/vbiX Vertical blank data (i.e. closed captions, teletext)
/dev/radioX Radio tuners and modulators
/dev/swradioX Software Defined Radio tuners and modulators
/dev/v4l-touchX Touch sensors
/dev/v4l-subdevX Video sub-devices (used by sensors and other components of the

hardware peripheral)1

Where X is a non-negative integer.

Note:
1. The actual device node name is system-dependent, as udev rules may apply.

2. There is no guarantee that X will remain the same for the same device, as the number
depends on the device driver’s probe order. If you need an unique name, udev default
rules produce /dev/v4l/by-id/ and /dev/v4l/by-path/ directories containing links that
can be used uniquely to identify a V4L2 device node:

$ tree /dev/v4l
/dev/v4l
├── by-id
│ └── usb-OmniVision._USB_Camera-B4.04.27.1-video-index0 -> ../../video0
└── by-path

└── pci-0000:00:14.0-usb-0:2:1.0-video-index0 -> ../../video0

1 V4L2 sub-device nodes (e. g. /dev/v4l-subdevX) use a different set of system calls, as covered at Sub-device
Interface.

716 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Many drivers support “video_nr”, “radio_nr” or “vbi_nr” module options to select specific
video/radio/vbi node numbers. This allows the user to request that the device node is named
e.g. /dev/video5 instead of leaving it to chance. When the driver supports multiple devices of
the same type more than one device node number can be assigned, separated by commas:

modprobe mydriver video_nr=0,1 radio_nr=0,1

In /etc/modules.conf this may be written as:

options mydriver video_nr=0,1 radio_nr=0,1

When no device node number is given as module option the driver supplies a default.

Normally udev will create the device nodes in /dev automatically for you. If udev is not installed,
then you need to enable the CONFIG_VIDEO_FIXED_MINOR_RANGES kernel option in order to
be able to correctly relate a minor number to a device node number. I.e., you need to be certain
that minor number 5 maps to device node name video5. With this kernel option different device
types have different minor number ranges. These ranges are listed in Interfaces.

The creation of character special files (with mknod) is a privileged operation and devices can-
not be opened by major and minor number. That means applications cannot reliably scan for
loaded or installed drivers. The user must enter a device name, or the application can try the
conventional device names.

Related Devices

Devices can support several functions. For example video capturing, VBI capturing and radio
support.

The V4L2 API creates different V4L2 device nodes for each of these functions.

The V4L2 API was designed with the idea that one device node could support all functions.
However, in practice this never worked: this ‘feature’ was never used by applications and many
drivers did not support it and if they did it was certainly never tested. In addition, switching a
device node between different functions only works when using the streaming I/O API, not with
the read()/write() API.

Today each V4L2 device node supports just one function.

Besides video input or output the hardware may also support audio sampling or playback. If so,
these functions are implemented as ALSA PCM devices with optional ALSA audio mixer devices.

One problem with all these devices is that the V4L2 API makes no provisions to find these
related V4L2 device nodes. Some really complex hardware use theMedia Controller (see Part IV
- Media Controller API) which can be used for this purpose. But several drivers do not use it, and
while some code exists that uses sysfs to discover related V4L2 device nodes (see libmedia_dev
in the v4l-utils git repository), there is no library yet that can provide a single API towards both
Media Controller-based devices and devices that do not use the Media Controller. If you want
to work on this please write to the linux-media mailing list: https://linuxtv.org/lists.php.

3.2. Part I - Video for Linux API 717

http://git.linuxtv.org/cgit.cgi/v4l-utils.git/
https://linuxtv.org/lists.php

Linux Media Documentation

Multiple Opens

V4L2 devices can be opened more than once.2 When this is supported by the driver, users
can for example start a “panel” application to change controls like brightness or audio volume,
while another application captures video and audio. In other words, panel applications are
comparable to an ALSA audio mixer application. Just opening a V4L2 device should not change
the state of the device.3

Once an application has allocated the memory buffers needed for streaming data (by calling
the ioctl VIDIOC_REQBUFS or ioctl VIDIOC_CREATE_BUFS ioctls, or implicitly by calling the
read() or write() functions) that application (filehandle) becomes the owner of the device.
It is no longer allowed to make changes that would affect the buffer sizes (e.g. by calling the
VIDIOC_S_FMT ioctl) and other applications are no longer allowed to allocate buffers or start
or stop streaming. The EBUSY error code will be returned instead.

Merely opening a V4L2 device does not grant exclusive access.4 Initiating data exchange how-
ever assigns the right to read or write the requested type of data, and to change related prop-
erties, to this file descriptor. Applications can request additional access privileges using the
priority mechanism described in Application Priority.

Shared Data Streams

V4L2 drivers should not support multiple applications reading or writing the same data stream
on a device by copying buffers, time multiplexing or similar means. This is better handled by a
proxy application in user space.

Functions

To open and close V4L2 devices applications use the open() and close() function, respectively.
Devices are programmed using the ioctl() function as explained in the following sections.

3.2.1.2 Querying Capabilities

Because V4L2 covers a wide variety of devices not all aspects of the API are equally applicable
to all types of devices. Furthermore devices of the same type have different capabilities and
this specification permits the omission of a few complicated and less important parts of the API.

The ioctl VIDIOC_QUERYCAP ioctl is available to check if the kernel device is compatible with
this specification, and to query the functions and I/O methods supported by the device.

Starting with kernel version 3.1, ioctl VIDIOC_QUERYCAP will return the V4L2 API version
used by the driver, with generally matches the Kernel version. There’s no need of using ioctl
VIDIOC_QUERYCAP to check if a specific ioctl is supported, the V4L2 core now returns ENOTTY
if a driver doesn’t provide support for an ioctl.

2 There are still some old and obscure drivers that have not been updated to allow for multiple opens. This implies
that for such drivers open() can return an EBUSY error code when the device is already in use.

3 Unfortunately, opening a radio device often switches the state of the device to radio mode in many drivers. This
behavior should be fixed eventually as it violates the V4L2 specification.

4 Drivers could recognize the O_EXCL open flag. Presently this is not required, so applications cannot know if it
really works.

718 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Other features can be queried by calling the respective ioctl, for example ioctl VID-
IOC_ENUMINPUT to learn about the number, types and names of video connectors on the
device. Although abstraction is a major objective of this API, the ioctl VIDIOC_QUERYCAP ioctl
also allows driver specific applications to reliably identify the driver.

All V4L2 drivers must support ioctl VIDIOC_QUERYCAP. Applications should always call this
ioctl after opening the device.

3.2.1.3 Application Priority

Whenmultiple applications share a device it may be desirable to assign them different priorities.
Contrary to the traditional “rm -rf /” school of thought, a video recording application could for
example block other applications from changing video controls or switching the current TV
channel. Another objective is to permit low priority applications working in background, which
can be preempted by user controlled applications and automatically regain control of the device
at a later time.

Since these features cannot be implemented entirely in user space V4L2 defines the VID-
IOC_G_PRIORITY and VIDIOC_S_PRIORITY ioctls to request and query the access priority as-
sociate with a file descriptor. Opening a device assigns a medium priority, compatible with
earlier versions of V4L2 and drivers not supporting these ioctls. Applications requiring a dif-
ferent priority will usually call VIDIOC_S_PRIORITY after verifying the device with the ioctl
VIDIOC_QUERYCAP ioctl.

Ioctls changing driver properties, such as VIDIOC_S_INPUT, return an EBUSY error code after
another application obtained higher priority.

3.2.1.4 Video Inputs and Outputs

Video inputs and outputs are physical connectors of a device. These can be for example: RF
connectors (antenna/cable), CVBS a.k.a. Composite Video, S-Video and RGB connectors. Cam-
era sensors are also considered to be a video input. Video and VBI capture devices have inputs.
Video and VBI output devices have outputs, at least one each. Radio devices have no video
inputs or outputs.

To learn about the number and attributes of the available inputs and outputs applications can
enumerate them with the ioctl VIDIOC_ENUMINPUT and ioctl VIDIOC_ENUMOUTPUT ioctl,
respectively. The struct v4l2_input returned by the ioctl VIDIOC_ENUMINPUT ioctl also con-
tains signal status information applicable when the current video input is queried.

The VIDIOC_G_INPUT and VIDIOC_G_OUTPUT ioctls return the index of the current video input
or output. To select a different input or output applications call the VIDIOC_S_INPUT and
VIDIOC_S_OUTPUT ioctls. Drivers must implement all the input ioctls when the device has one
or more inputs, all the output ioctls when the device has one or more outputs.

3.2. Part I - Video for Linux API 719

Linux Media Documentation

Example: Information about the current video input

struct v4l2_input input;
int index;

if (-1 == ioctl(fd, VIDIOC_G_INPUT, &index)) {
perror("VIDIOC_G_INPUT");
exit(EXIT_FAILURE);

}

memset(&input, 0, sizeof(input));
input.index = index;

if (-1 == ioctl(fd, VIDIOC_ENUMINPUT, &input)) {
perror("VIDIOC_ENUMINPUT");
exit(EXIT_FAILURE);

}

printf("Current input: %s\\n", input.name);

Example: Switching to the first video input

int index;

index = 0;

if (-1 == ioctl(fd, VIDIOC_S_INPUT, &index)) {
perror("VIDIOC_S_INPUT");
exit(EXIT_FAILURE);

}

3.2.1.5 Audio Inputs and Outputs

Audio inputs and outputs are physical connectors of a device. Video capture devices have
inputs, output devices have outputs, zero or more each. Radio devices have no audio inputs or
outputs. They have exactly one tuner which in fact is an audio source, but this API associates
tuners with video inputs or outputs only, and radio devices have none of these.1 A connector
on a TV card to loop back the received audio signal to a sound card is not considered an audio
output.

Audio and video inputs and outputs are associated. Selecting a video source also selects an
audio source. This is most evident when the video and audio source is a tuner. Further audio
connectors can combine with more than one video input or output. Assumed two composite
video inputs and two audio inputs exist, there may be up to four valid combinations. The re-
lation of video and audio connectors is defined in the audioset field of the respective struct
v4l2_input or struct v4l2_output, where each bit represents the index number, starting at
zero, of one audio input or output.

To learn about the number and attributes of the available inputs and outputs applications can
enumerate them with the ioctl VIDIOC_ENUMAUDIO and VIDIOC_ENUMAUDOUT ioctl, re-

1 Actually struct v4l2_audio ought to have a tuner field like struct v4l2_input, not only making the API more
consistent but also permitting radio devices with multiple tuners.

720 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

spectively. The struct v4l2_audio returned by the ioctl VIDIOC_ENUMAUDIO ioctl also con-
tains signal status information applicable when the current audio input is queried.

The VIDIOC_G_AUDIO and VIDIOC_G_AUDOUT ioctls report the current audio input and out-
put, respectively.

Note: Note that, unlike VIDIOC_G_INPUT and VIDIOC_G_OUTPUT these ioctls return a struc-
ture as ioctl VIDIOC_ENUMAUDIO and VIDIOC_ENUMAUDOUT do, not just an index.

To select an audio input and change its properties applications call the VIDIOC_S_AUDIO ioctl.
To select an audio output (which presently has no changeable properties) applications call the
VIDIOC_S_AUDOUT ioctl.

Drivers must implement all audio input ioctls when the device has multiple selectable audio
inputs, all audio output ioctls when the device has multiple selectable audio outputs. When
the device has any audio inputs or outputs the driver must set the V4L2_CAP_AUDIO flag in the
struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl.

Example: Information about the current audio input

struct v4l2_audio audio;

memset(&audio, 0, sizeof(audio));

if (-1 == ioctl(fd, VIDIOC_G_AUDIO, &audio)) {
perror("VIDIOC_G_AUDIO");
exit(EXIT_FAILURE);

}

printf("Current input: %s\\n", audio.name);

Example: Switching to the first audio input

struct v4l2_audio audio;

memset(&audio, 0, sizeof(audio)); /* clear audio.mode, audio.reserved */

audio.index = 0;

if (-1 == ioctl(fd, VIDIOC_S_AUDIO, &audio)) {
perror("VIDIOC_S_AUDIO");
exit(EXIT_FAILURE);

}

3.2. Part I - Video for Linux API 721

Linux Media Documentation

3.2.1.6 Tuners and Modulators

Tuners

Video input devices can have one or more tuners demodulating a RF signal. Each tuner is asso-
ciated with one or more video inputs, depending on the number of RF connectors on the tuner.
The type field of the respective struct v4l2_input returned by the ioctl VIDIOC_ENUMINPUT
ioctl is set to V4L2_INPUT_TYPE_TUNER and its tuner field contains the index number of the
tuner.

Radio input devices have exactly one tuner with index zero, no video inputs.

To query and change tuner properties applications use the VIDIOC_G_TUNER and VID-
IOC_S_TUNER ioctls, respectively. The struct v4l2_tuner returned by VIDIOC_G_TUNER also
contains signal status information applicable when the tuner of the current video or radio input
is queried.

Note: VIDIOC_S_TUNER does not switch the current tuner, when there is more than one.
The tuner is solely determined by the current video input. Drivers must support both ioctls
and set the V4L2_CAP_TUNER flag in the struct v4l2_capability returned by the ioctl VID-
IOC_QUERYCAP ioctl when the device has one or more tuners.

Modulators

Video output devices can have one or more modulators, that modulate a video signal for ra-
diation or connection to the antenna input of a TV set or video recorder. Each modulator is
associated with one or more video outputs, depending on the number of RF connectors on
the modulator. The type field of the respective struct v4l2_output returned by the ioctl VID-
IOC_ENUMOUTPUT ioctl is set to V4L2_OUTPUT_TYPE_MODULATOR and its modulator field con-
tains the index number of the modulator.

Radio output devices have exactly one modulator with index zero, no video outputs.

A video or radio device cannot support both a tuner and a modulator. Two separate de-
vice nodes will have to be used for such hardware, one that supports the tuner functionality
and one that supports the modulator functionality. The reason is a limitation with the VID-
IOC_S_FREQUENCY ioctl where you cannot specify whether the frequency is for a tuner or a
modulator.

To query and change modulator properties applications use the VIDIOC_G_MODULATOR and
VIDIOC_S_MODULATOR ioctl. Note that VIDIOC_S_MODULATOR does not switch the current
modulator, when there is more than one at all. The modulator is solely determined by the
current video output. Drivers must support both ioctls and set the V4L2_CAP_MODULATOR flag
in the struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl when the device
has one or more modulators.

722 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Radio Frequency

To get and set the tuner or modulator radio frequency applications use the VID-
IOC_G_FREQUENCY and VIDIOC_S_FREQUENCY ioctl which both take a pointer to a struct
v4l2_frequency. These ioctls are used for TV and radio devices alike. Drivers must support
both ioctls when the tuner or modulator ioctls are supported, or when the device is a radio
device.

3.2.1.7 Video Standards

Video devices typically support one or more different video standards or variations of stan-
dards. Each video input and output may support another set of standards. This set is re-
ported by the std field of struct v4l2_input and struct v4l2_output returned by the ioctl VID-
IOC_ENUMINPUT and ioctl VIDIOC_ENUMOUTPUT ioctls, respectively.

V4L2 defines one bit for each analog video standard currently in use worldwide, and sets aside
bits for driver defined standards, e. g. hybrid standards to watch NTSC video tapes on PAL
TVs and vice versa. Applications can use the predefined bits to select a particular standard,
although presenting the user a menu of supported standards is preferred. To enumerate and
query the attributes of the supported standards applications use the ioctl VIDIOC_ENUMSTD,
VIDIOC_SUBDEV_ENUMSTD ioctl.

Many of the defined standards are actually just variations of a few major standards. The hard-
ware may in fact not distinguish between them, or do so internal and switch automatically.
Therefore enumerated standards also contain sets of one or more standard bits.

Assume a hypothetic tuner capable of demodulating B/PAL, G/PAL and I/PAL signals. The first
enumerated standard is a set of B and G/PAL, switched automatically depending on the se-
lected radio frequency in UHF or VHF band. Enumeration gives a “PAL-B/G” or “PAL-I” choice.
Similar a Composite input may collapse standards, enumerating “PAL-B/G/H/I”, “NTSC-M” and
“SECAM-D/K”.1

To query and select the standard used by the current video input or output applications call the
VIDIOC_G_STD and VIDIOC_S_STD ioctl, respectively. The received standard can be sensed
with the ioctl VIDIOC_QUERYSTD, VIDIOC_SUBDEV_QUERYSTD ioctl.

Note: The parameter of all these ioctls is a pointer to a v4l2_std_id type (a standard set), not
an index into the standard enumeration. Drivers must implement all video standard ioctls when
the device has one or more video inputs or outputs.

Special rules apply to devices such as USB cameras where the notion of video standards makes
little sense. More generally for any capture or output device which is:

• incapable of capturing fields or frames at the nominal rate of the video standard, or

• that does not support the video standard formats at all.

Here the driver shall set the std field of struct v4l2_input and struct v4l2_output to zero and
the VIDIOC_G_STD, VIDIOC_S_STD, ioctl VIDIOC_QUERYSTD, VIDIOC_SUBDEV_QUERYSTD
and ioctl VIDIOC_ENUMSTD, VIDIOC_SUBDEV_ENUMSTD ioctls shall return the ENOTTY error
code or the EINVAL error code.

1 Some users are already confused by technical terms PAL, NTSC and SECAM. There is no point asking them to
distinguish between B, G, D, or K when the software or hardware can do that automatically.

3.2. Part I - Video for Linux API 723

Linux Media Documentation

Applications can make use of the Input capabilities and Output capabilities flags to determine
whether the video standard ioctls can be used with the given input or output.

Example: Information about the current video standard

v4l2_std_id std_id;
struct v4l2_standard standard;

if (-1 == ioctl(fd, VIDIOC_G_STD, &std_id)) {
/* Note when VIDIOC_ENUMSTD always returns ENOTTY this

is no video device or it falls under the USB exception,
and VIDIOC_G_STD returning ENOTTY is no error. */

perror("VIDIOC_G_STD");
exit(EXIT_FAILURE);

}

memset(&standard, 0, sizeof(standard));
standard.index = 0;

while (0 == ioctl(fd, VIDIOC_ENUMSTD, &standard)) {
if (standard.id & std_id) {

printf("Current video standard: %s\\n", standard.name);
exit(EXIT_SUCCESS);

}

standard.index++;
}

/* EINVAL indicates the end of the enumeration, which cannot be
empty unless this device falls under the USB exception. */

if (errno == EINVAL || standard.index == 0) {
perror("VIDIOC_ENUMSTD");
exit(EXIT_FAILURE);

}

Example: Listing the video standards supported by the current input

struct v4l2_input input;
struct v4l2_standard standard;

memset(&input, 0, sizeof(input));

if (-1 == ioctl(fd, VIDIOC_G_INPUT, &input.index)) {
perror("VIDIOC_G_INPUT");
exit(EXIT_FAILURE);

}

if (-1 == ioctl(fd, VIDIOC_ENUMINPUT, &input)) {
perror("VIDIOC_ENUM_INPUT");
exit(EXIT_FAILURE);

}

724 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

printf("Current input %s supports:\\n", input.name);

memset(&standard, 0, sizeof(standard));
standard.index = 0;

while (0 == ioctl(fd, VIDIOC_ENUMSTD, &standard)) {
if (standard.id & input.std)

printf("%s\\n", standard.name);

standard.index++;
}

/* EINVAL indicates the end of the enumeration, which cannot be
empty unless this device falls under the USB exception. */

if (errno != EINVAL || standard.index == 0) {
perror("VIDIOC_ENUMSTD");
exit(EXIT_FAILURE);

}

Example: Selecting a new video standard

struct v4l2_input input;
v4l2_std_id std_id;

memset(&input, 0, sizeof(input));

if (-1 == ioctl(fd, VIDIOC_G_INPUT, &input.index)) {
perror("VIDIOC_G_INPUT");
exit(EXIT_FAILURE);

}

if (-1 == ioctl(fd, VIDIOC_ENUMINPUT, &input)) {
perror("VIDIOC_ENUM_INPUT");
exit(EXIT_FAILURE);

}

if (0 == (input.std & V4L2_STD_PAL_BG)) {
fprintf(stderr, "Oops. B/G PAL is not supported.\\n");
exit(EXIT_FAILURE);

}

/* Note this is also supposed to work when only B
or G/PAL is supported. */

std_id = V4L2_STD_PAL_BG;

if (-1 == ioctl(fd, VIDIOC_S_STD, &std_id)) {
perror("VIDIOC_S_STD");
exit(EXIT_FAILURE);

}

3.2. Part I - Video for Linux API 725

Linux Media Documentation

3.2.1.8 Digital Video (DV) Timings

The video standards discussed so far have been dealing with Analog TV and the corresponding
video timings. Today there are manymore different hardware interfaces such as High Definition
TV interfaces (HDMI), VGA, DVI connectors etc., that carry video signals and there is a need to
extend the API to select the video timings for these interfaces. Since it is not possible to extend
the v4l2_std_id due to the limited bits available, a new set of ioctls was added to set/get video
timings at the input and output.

These ioctls deal with the detailed digital video timings that define each video format. This
includes parameters such as the active video width and height, signal polarities, frontporches,
backporches, sync widths etc. The linux/v4l2-dv-timings.h header can be used to get the
timings of the formats in the CEA-861-E and VESA DMT standards.

To enumerate and query the attributes of the DV timings supported by a device applications
use the ioctl VIDIOC_ENUM_DV_TIMINGS, VIDIOC_SUBDEV_ENUM_DV_TIMINGS and ioctl
VIDIOC_DV_TIMINGS_CAP, VIDIOC_SUBDEV_DV_TIMINGS_CAP ioctls. To set DV timings for
the device applications use the VIDIOC_S_DV_TIMINGS ioctl and to get current DV timings they
use the VIDIOC_G_DV_TIMINGS ioctl. To detect the DV timings as seen by the video receiver
applications use the ioctl VIDIOC_QUERY_DV_TIMINGS ioctl.

Applications can make use of the Input capabilities and Output capabilities flags to determine
whether the digital video ioctls can be used with the given input or output.

3.2.1.9 User Controls

Devices typically have a number of user-settable controls such as brightness, saturation and so
on, which would be presented to the user on a graphical user interface. But, different devices
will have different controls available, and furthermore, the range of possible values, and the
default value will vary from device to device. The control ioctls provide the information and a
mechanism to create a nice user interface for these controls that will work correctly with any
device.

All controls are accessed using an ID value. V4L2 defines several IDs for specific purposes.
Drivers can also implement their own custom controls using V4L2_CID_PRIVATE_BASE1 and
higher values. The pre-defined control IDs have the prefix V4L2_CID_, and are listed in Control
IDs. The ID is used when querying the attributes of a control, and when getting or setting the
current value.

Generally applications should present controls to the user without assumptions about their
purpose. Each control comes with a name string the user is supposed to understand. When the
purpose is non-intuitive the driver writer should provide a user manual, a user interface plug-in
or a driver specific panel application. Predefined IDs were introduced to change a few controls
programmatically, for example to mute a device during a channel switch.

Drivers may enumerate different controls after switching the current video input or output,
tuner or modulator, or audio input or output. Different in the sense of other bounds, another

1 The use of V4L2_CID_PRIVATE_BASE is problematic because different drivers may use the same
V4L2_CID_PRIVATE_BASE ID for different controls. This makes it hard to programmatically set such controls since
the meaning of the control with that ID is driver dependent. In order to resolve this drivers use unique IDs and the
V4L2_CID_PRIVATE_BASE IDs aremapped to those unique IDs by the kernel. Consider these V4L2_CID_PRIVATE_BASE
IDs as aliases to the real IDs.
Many applications today still use the V4L2_CID_PRIVATE_BASE IDs instead of using ioctls VIDIOC_QUERYCTRL,

VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU with the V4L2_CTRL_FLAG_NEXT_CTRL flag to enumerate all
IDs, so support for V4L2_CID_PRIVATE_BASE is still around.

726 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

default and current value, step size or other menu items. A control with a certain custom ID
can also change name and type.

If a control is not applicable to the current configuration of the device (for example, it doesn’t
apply to the current video input) drivers set the V4L2_CTRL_FLAG_INACTIVE flag.

Control values are stored globally, they do not change when switching except to stay within the
reported bounds. They also do not change e. g. when the device is opened or closed, when the
tuner radio frequency is changed or generally never without application request.

V4L2 specifies an event mechanism to notify applications when controls change value (see
ioctl VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT, event V4L2_EVENT_CTRL),
panel applications might want to make use of that in order to always reflect the correct control
value.

All controls use machine endianness.

Control IDs

V4L2_CID_BASE First predefined ID, equal to V4L2_CID_BRIGHTNESS.

V4L2_CID_USER_BASE Synonym of V4L2_CID_BASE.

V4L2_CID_BRIGHTNESS (integer) Picture brightness, or more precisely, the black level.

V4L2_CID_CONTRAST (integer) Picture contrast or luma gain.

V4L2_CID_SATURATION (integer) Picture color saturation or chroma gain.

V4L2_CID_HUE (integer) Hue or color balance.

V4L2_CID_AUDIO_VOLUME (integer) Overall audio volume. Note some drivers also provide an
OSS or ALSA mixer interface.

V4L2_CID_AUDIO_BALANCE (integer) Audio stereo balance. Minimum corresponds to all the
way left, maximum to right.

V4L2_CID_AUDIO_BASS (integer) Audio bass adjustment.

V4L2_CID_AUDIO_TREBLE (integer) Audio treble adjustment.

V4L2_CID_AUDIO_MUTE (boolean) Mute audio, i. e. set the volume to zero, however without
affecting V4L2_CID_AUDIO_VOLUME. Like ALSA drivers, V4L2 drivers must mute at load
time to avoid excessive noise. Actually the entire device should be reset to a low power
consumption state.

V4L2_CID_AUDIO_LOUDNESS (boolean) Loudness mode (bass boost).

V4L2_CID_BLACK_LEVEL (integer) Another name for brightness (not a synonym of
V4L2_CID_BRIGHTNESS). This control is deprecated and should not be used in new
drivers and applications.

V4L2_CID_AUTO_WHITE_BALANCE (boolean) Automatic white balance (cameras).

V4L2_CID_DO_WHITE_BALANCE (button) This is an action control. When set (the value is ig-
nored), the device will do a white balance and then hold the current setting. Contrast this
with the boolean V4L2_CID_AUTO_WHITE_BALANCE, which, when activated, keeps adjusting
the white balance.

V4L2_CID_RED_BALANCE (integer) Red chroma balance.

3.2. Part I - Video for Linux API 727

Linux Media Documentation

V4L2_CID_BLUE_BALANCE (integer) Blue chroma balance.

V4L2_CID_GAMMA (integer) Gamma adjust.

V4L2_CID_WHITENESS (integer) Whiteness for grey-scale devices. This is a synonym for
V4L2_CID_GAMMA. This control is deprecated and should not be used in new drivers and
applications.

V4L2_CID_EXPOSURE (integer) Exposure (cameras). [Unit?]

V4L2_CID_AUTOGAIN (boolean) Automatic gain/exposure control.

V4L2_CID_GAIN (integer) Gain control.

Primarily used to control gain on e.g. TV tuners but also on webcams. Most devices
control only digital gain with this control but on some this could include analogue gain as
well. Devices that recognise the difference between digital and analogue gain use controls
V4L2_CID_DIGITAL_GAIN and V4L2_CID_ANALOGUE_GAIN.

V4L2_CID_HFLIP (boolean) Mirror the picture horizontally.

V4L2_CID_VFLIP (boolean) Mirror the picture vertically.

V4L2_CID_POWER_LINE_FREQUENCY (enum) Enables a power line frequency filter to avoid
flicker. Possible values for enum v4l2_power_line_frequency are:

V4L2_CID_POWER_LINE_FREQUENCY_DISABLED 0
V4L2_CID_POWER_LINE_FREQUENCY_50HZ 1
V4L2_CID_POWER_LINE_FREQUENCY_60HZ 2
V4L2_CID_POWER_LINE_FREQUENCY_AUTO 3

V4L2_CID_HUE_AUTO (boolean) Enables automatic hue control by the device. The effect of
setting V4L2_CID_HUE while automatic hue control is enabled is undefined, drivers should
ignore such request.

V4L2_CID_WHITE_BALANCE_TEMPERATURE (integer) This control specifies the white balance
settings as a color temperature in Kelvin. A driver should have a minimum of 2800 (incan-
descent) to 6500 (daylight). For more information about color temperature see Wikipedia.

V4L2_CID_SHARPNESS (integer) Adjusts the sharpness filters in a camera. The minimum value
disables the filters, higher values give a sharper picture.

V4L2_CID_BACKLIGHT_COMPENSATION (integer) Adjusts the backlight compensation in a cam-
era. The minimum value disables backlight compensation.

V4L2_CID_CHROMA_AGC (boolean) Chroma automatic gain control.

V4L2_CID_CHROMA_GAIN (integer) Adjusts the Chroma gain control (for use when chroma AGC
is disabled).

V4L2_CID_COLOR_KILLER (boolean) Enable the color killer (i. e. force a black & white image
in case of a weak video signal).

V4L2_CID_COLORFX (enum) Selects a color effect. The following values are defined:

728 Chapter 3. Linux Media Infrastructure userspace API

http://en.wikipedia.org/wiki/Color_temperature

Linux Media Documentation

V4L2_COLORFX_NONE Color effect is disabled.
V4L2_COLORFX_ANTIQUE An aging (old photo) effect.
V4L2_COLORFX_ART_FREEZE Frost color effect.
V4L2_COLORFX_AQUA Water color, cool tone.
V4L2_COLORFX_BW Black and white.
V4L2_COLORFX_EMBOSS Emboss, the highlights and shadows replace light/dark

boundaries and low contrast areas are set to a gray back-
ground.

V4L2_COLORFX_GRASS_GREEN Grass green.
V4L2_COLORFX_NEGATIVE Negative.
V4L2_COLORFX_SEPIA Sepia tone.
V4L2_COLORFX_SKETCH Sketch.
V4L2_COLORFX_SKIN_WHITEN Skin whiten.
V4L2_COLORFX_SKY_BLUE Sky blue.
V4L2_COLORFX_SOLARIZATION Solarization, the image is partially reversed in tone, only

color values above or below a certain threshold are inverted.
V4L2_COLORFX_SILHOUETTE Silhouette (outline).
V4L2_COLORFX_VIVID Vivid colors.
V4L2_COLORFX_SET_CBCR The Cb and Cr chroma components are replaced by fixed co-

efficients determined by V4L2_CID_COLORFX_CBCR control.
V4L2_COLORFX_SET_RGB The RGB components are replaced by the fixed RGB compo-

nents determined by V4L2_CID_COLORFX_RGB control.

V4L2_CID_COLORFX_RGB (integer) Determines the Red, Green, and Blue coefficients for
V4L2_COLORFX_SET_RGB color effect. Bits [7:0] of the supplied 32 bit value are interpreted
as Blue component, bits [15:8] as Green component, bits [23:16] as Red component, and
bits [31:24] must be zero.

V4L2_CID_COLORFX_CBCR (integer) Determines the Cb and Cr coefficients for
V4L2_COLORFX_SET_CBCR color effect. Bits [7:0] of the supplied 32 bit value are in-
terpreted as Cr component, bits [15:8] as Cb component and bits [31:16] must be
zero.

V4L2_CID_AUTOBRIGHTNESS (boolean) Enable Automatic Brightness.

V4L2_CID_ROTATE (integer) Rotates the image by specified angle. Common angles are 90,
270 and 180. Rotating the image to 90 and 270 will reverse the height and width of the
display window. It is necessary to set the new height and width of the picture using the
VIDIOC_S_FMT ioctl according to the rotation angle selected.

V4L2_CID_BG_COLOR (integer) Sets the background color on the current output device. Back-
ground color needs to be specified in the RGB24 format. The supplied 32 bit value is
interpreted as bits 0-7 Red color information, bits 8-15 Green color information, bits 16-23
Blue color information and bits 24-31 must be zero.

V4L2_CID_ILLUMINATORS_1 V4L2_CID_ILLUMINATORS_2 (boolean) Switch on or off the illumi-
nator 1 or 2 of the device (usually a microscope).

V4L2_CID_MIN_BUFFERS_FOR_CAPTURE (integer) This is a read-only control that can be read
by the application and used as a hint to determine the number of CAPTURE buffers to pass
to REQBUFS. The value is the minimum number of CAPTURE buffers that is necessary for
hardware to work.

V4L2_CID_MIN_BUFFERS_FOR_OUTPUT (integer) This is a read-only control that can be read by

3.2. Part I - Video for Linux API 729

Linux Media Documentation

the application and used as a hint to determine the number of OUTPUT buffers to pass
to REQBUFS. The value is the minimum number of OUTPUT buffers that is necessary for
hardware to work.

V4L2_CID_ALPHA_COMPONENT (integer) Sets the alpha color component. When a capture de-
vice (or capture queue of a mem-to-mem device) produces a frame format that includes an
alpha component (e.g. packed RGB image formats) and the alpha value is not defined by
the device or the mem-to-mem input data this control lets you select the alpha component
value of all pixels. When an output device (or output queue of a mem-to-mem device) con-
sumes a frame format that doesn’t include an alpha component and the device supports
alpha channel processing this control lets you set the alpha component value of all pixels
for further processing in the device.

V4L2_CID_LASTP1 End of the predefined control IDs (currently V4L2_CID_ALPHA_COMPONENT +
1).

V4L2_CID_PRIVATE_BASE ID of the first custom (driver specific) control. Applications depend-
ing on particular custom controls should check the driver name and version, see Querying
Capabilities.

Applications can enumerate the available controls with the ioctls VIDIOC_QUERYCTRL, VID-
IOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU and VIDIOC_QUERYMENU ioctls, get and
set a control value with the VIDIOC_G_CTRL and VIDIOC_S_CTRL ioctls. Drivers must imple-
ment VIDIOC_QUERYCTRL, VIDIOC_G_CTRL and VIDIOC_S_CTRL when the device has one or more
controls, VIDIOC_QUERYMENU when it has one or more menu type controls.

Example: Enumerating all controls

struct v4l2_queryctrl queryctrl;
struct v4l2_querymenu querymenu;

static void enumerate_menu(__u32 id)
{

printf(" Menu items:\\n");

memset(&querymenu, 0, sizeof(querymenu));
querymenu.id = id;

for (querymenu.index = queryctrl.minimum;
querymenu.index <= queryctrl.maximum;
querymenu.index++) {

if (0 == ioctl(fd, VIDIOC_QUERYMENU, &querymenu)) {
printf(" %s\\n", querymenu.name);

}
}

}

memset(&queryctrl, 0, sizeof(queryctrl));

queryctrl.id = V4L2_CTRL_FLAG_NEXT_CTRL;
while (0 == ioctl(fd, VIDIOC_QUERYCTRL, &queryctrl)) {

if (!(queryctrl.flags & V4L2_CTRL_FLAG_DISABLED)) {
printf("Control %s\\n", queryctrl.name);

if (queryctrl.type == V4L2_CTRL_TYPE_MENU)

730 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

enumerate_menu(queryctrl.id);
}

queryctrl.id |= V4L2_CTRL_FLAG_NEXT_CTRL;
}
if (errno != EINVAL) {

perror("VIDIOC_QUERYCTRL");
exit(EXIT_FAILURE);

}

Example: Enumerating all controls including compound controls

struct v4l2_query_ext_ctrl query_ext_ctrl;

memset(&query_ext_ctrl, 0, sizeof(query_ext_ctrl));

query_ext_ctrl.id = V4L2_CTRL_FLAG_NEXT_CTRL | V4L2_CTRL_FLAG_NEXT_COMPOUND;
while (0 == ioctl(fd, VIDIOC_QUERY_EXT_CTRL, &query_ext_ctrl)) {

if (!(query_ext_ctrl.flags & V4L2_CTRL_FLAG_DISABLED)) {
printf("Control %s\\n", query_ext_ctrl.name);

if (query_ext_ctrl.type == V4L2_CTRL_TYPE_MENU)
enumerate_menu(query_ext_ctrl.id);

}

query_ext_ctrl.id |= V4L2_CTRL_FLAG_NEXT_CTRL | V4L2_CTRL_FLAG_NEXT_COMPOUND;
}
if (errno != EINVAL) {

perror("VIDIOC_QUERY_EXT_CTRL");
exit(EXIT_FAILURE);

}

Example: Enumerating all user controls (old style)

memset(&queryctrl, 0, sizeof(queryctrl));

for (queryctrl.id = V4L2_CID_BASE;
queryctrl.id < V4L2_CID_LASTP1;
queryctrl.id++) {

if (0 == ioctl(fd, VIDIOC_QUERYCTRL, &queryctrl)) {
if (queryctrl.flags & V4L2_CTRL_FLAG_DISABLED)

continue;

printf("Control %s\\n", queryctrl.name);

if (queryctrl.type == V4L2_CTRL_TYPE_MENU)
enumerate_menu(queryctrl.id);

} else {
if (errno == EINVAL)

continue;

perror("VIDIOC_QUERYCTRL");
exit(EXIT_FAILURE);

3.2. Part I - Video for Linux API 731

Linux Media Documentation

}
}

for (queryctrl.id = V4L2_CID_PRIVATE_BASE;;
queryctrl.id++) {

if (0 == ioctl(fd, VIDIOC_QUERYCTRL, &queryctrl)) {
if (queryctrl.flags & V4L2_CTRL_FLAG_DISABLED)

continue;

printf("Control %s\\n", queryctrl.name);

if (queryctrl.type == V4L2_CTRL_TYPE_MENU)
enumerate_menu(queryctrl.id);

} else {
if (errno == EINVAL)

break;

perror("VIDIOC_QUERYCTRL");
exit(EXIT_FAILURE);

}
}

Example: Changing controls

struct v4l2_queryctrl queryctrl;
struct v4l2_control control;

memset(&queryctrl, 0, sizeof(queryctrl));
queryctrl.id = V4L2_CID_BRIGHTNESS;

if (-1 == ioctl(fd, VIDIOC_QUERYCTRL, &queryctrl)) {
if (errno != EINVAL) {

perror("VIDIOC_QUERYCTRL");
exit(EXIT_FAILURE);

} else {
printf("V4L2_CID_BRIGHTNESS is not supportedn");

}
} else if (queryctrl.flags & V4L2_CTRL_FLAG_DISABLED) {

printf("V4L2_CID_BRIGHTNESS is not supportedn");
} else {

memset(&control, 0, sizeof (control));
control.id = V4L2_CID_BRIGHTNESS;
control.value = queryctrl.default_value;

if (-1 == ioctl(fd, VIDIOC_S_CTRL, &control)) {
perror("VIDIOC_S_CTRL");
exit(EXIT_FAILURE);

}
}

memset(&control, 0, sizeof(control));
control.id = V4L2_CID_CONTRAST;

if (0 == ioctl(fd, VIDIOC_G_CTRL, &control)) {
control.value += 1;

732 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

/* The driver may clamp the value or return ERANGE, ignored here */

if (-1 == ioctl(fd, VIDIOC_S_CTRL, &control)
&& errno != ERANGE) {
perror("VIDIOC_S_CTRL");
exit(EXIT_FAILURE);

}
/* Ignore if V4L2_CID_CONTRAST is unsupported */
} else if (errno != EINVAL) {

perror("VIDIOC_G_CTRL");
exit(EXIT_FAILURE);

}

control.id = V4L2_CID_AUDIO_MUTE;
control.value = 1; /* silence */

/* Errors ignored */
ioctl(fd, VIDIOC_S_CTRL, &control);

3.2.1.10 Extended Controls API

Introduction

The control mechanism as originally designed was meant to be used for user settings (bright-
ness, saturation, etc). However, it turned out to be a very useful model for implementing more
complicated driver APIs where each driver implements only a subset of a larger API.

The MPEG encoding API was the driving force behind designing and implementing this ex-
tended control mechanism: the MPEG standard is quite large and the currently supported
hardware MPEG encoders each only implement a subset of this standard. Further more, many
parameters relating to how the video is encoded into an MPEG stream are specific to the MPEG
encoding chip since the MPEG standard only defines the format of the resulting MPEG stream,
not how the video is actually encoded into that format.

Unfortunately, the original control API lacked some features needed for these new uses and so
it was extended into the (not terribly originally named) extended control API.

Even though the MPEG encoding API was the first effort to use the Extended Control API,
nowadays there are also other classes of Extended Controls, such as Camera Controls and FM
Transmitter Controls. The Extended Controls API as well as all Extended Controls classes are
described in the following text.

3.2. Part I - Video for Linux API 733

Linux Media Documentation

The Extended Control API

Three new ioctls are available: VIDIOC_G_EXT_CTRLS, VIDIOC_S_EXT_CTRLS and VID-
IOC_TRY_EXT_CTRLS. These ioctls act on arrays of controls (as opposed to the VIDIOC_G_CTRL
and VIDIOC_S_CTRL ioctls that act on a single control). This is needed since it is often required
to atomically change several controls at once.

Each of the new ioctls expects a pointer to a struct v4l2_ext_controls. This structure contains
a pointer to the control array, a count of the number of controls in that array and a control class.
Control classes are used to group similar controls into a single class. For example, control class
V4L2_CTRL_CLASS_USER contains all user controls (i. e. all controls that can also be set using the
old VIDIOC_S_CTRL ioctl). Control class V4L2_CTRL_CLASS_CODEC contains controls relating to
codecs.

All controls in the control array must belong to the specified control class. An error is returned
if this is not the case.

It is also possible to use an empty control array (count == 0) to check whether the specified
control class is supported.

The control array is a struct v4l2_ext_control array. The struct v4l2_ext_control is very
similar to struct v4l2_control, except for the fact that it also allows for 64-bit values and
pointers to be passed.

Since the struct v4l2_ext_control supports pointers it is now also possible to have controls
with compound types such as N-dimensional arrays and/or structures. You need to specify the
V4L2_CTRL_FLAG_NEXT_COMPOUND when enumerating controls to actually be able to see such
compound controls. In other words, these controls with compound types should only be used
programmatically.

Since such compound controls need to expose more information about themselves than is pos-
sible with VIDIOC_QUERYCTRL the VIDIOC_QUERY_EXT_CTRL ioctl was added. In particular,
this ioctl gives the dimensions of the N-dimensional array if this control consists of more than
one element.

Note:
1. It is important to realize that due to the flexibility of controls it is necessary to check
whether the control you want to set actually is supported in the driver and what the valid
range of values is. So use ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and
VIDIOC_QUERYMENU to check this.

2. It is possible that some of the menu indices in a control of type V4L2_CTRL_TYPE_MENUmay
not be supported (VIDIOC_QUERYMENU will return an error). A good example is the list of
supported MPEG audio bitrates. Some drivers only support one or two bitrates, others
support a wider range.

All controls use machine endianness.

734 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Enumerating Extended Controls

The recommended way to enumerate over the extended controls is by using ioctls VID-
IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU in combination with
the V4L2_CTRL_FLAG_NEXT_CTRL flag:

struct v4l2_queryctrl qctrl;

qctrl.id = V4L2_CTRL_FLAG_NEXT_CTRL;
while (0 == ioctl (fd, VIDIOC_QUERYCTRL, &qctrl)) {

/* ... */
qctrl.id |= V4L2_CTRL_FLAG_NEXT_CTRL;

}

The initial control ID is set to 0 ORed with the V4L2_CTRL_FLAG_NEXT_CTRL flag. The
VIDIOC_QUERYCTRL ioctl will return the first control with a higher ID than the specified one.
When no such controls are found an error is returned.

If you want to get all controls within a specific control class, then you can set the initial qctrl.
id value to the control class and add an extra check to break out of the loop when a control of
another control class is found:

qctrl.id = V4L2_CTRL_CLASS_CODEC | V4L2_CTRL_FLAG_NEXT_CTRL;
while (0 == ioctl(fd, VIDIOC_QUERYCTRL, &qctrl)) {

if (V4L2_CTRL_ID2CLASS(qctrl.id) != V4L2_CTRL_CLASS_CODEC)
break;

/* ... */
qctrl.id |= V4L2_CTRL_FLAG_NEXT_CTRL;

}

The 32-bit qctrl.id value is subdivided into three bit ranges: the top 4 bits are reserved for
flags (e. g. V4L2_CTRL_FLAG_NEXT_CTRL) and are not actually part of the ID. The remaining
28 bits form the control ID, of which the most significant 12 bits define the control class and
the least significant 16 bits identify the control within the control class. It is guaranteed that
these last 16 bits are always non-zero for controls. The range of 0x1000 and up are reserved
for driver-specific controls. The macro V4L2_CTRL_ID2CLASS(id) returns the control class ID
based on a control ID.

If the driver does not support extended controls, then VIDIOC_QUERYCTRL will fail when used
in combination with V4L2_CTRL_FLAG_NEXT_CTRL. In that case the old method of enumerating
control should be used (see Example: Enumerating all controls). But if it is supported, then it
is guaranteed to enumerate over all controls, including driver-private controls.

Creating Control Panels

It is possible to create control panels for a graphical user interface where the user can select
the various controls. Basically you will have to iterate over all controls using the method de-
scribed above. Each control class starts with a control of type V4L2_CTRL_TYPE_CTRL_CLASS.
VIDIOC_QUERYCTRL will return the name of this control class which can be used as the title of a
tab page within a control panel.

The flags field of struct v4l2_queryctrl also contains hints on the behavior of the control. See
the ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU docu-
mentation for more details.

3.2. Part I - Video for Linux API 735

Linux Media Documentation

3.2.1.11 Camera Control Reference

The Camera class includes controls for mechanical (or equivalent digital) features of a device
such as controllable lenses or sensors.

Camera Control IDs

V4L2_CID_CAMERA_CLASS (class) The Camera class descriptor. Calling ioctls VID-
IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU for this control
will return a description of this control class.

V4L2_CID_EXPOSURE_AUTO (enum)

enum v4l2_exposure_auto_type - Enables automatic adjustments of the exposure time
and/or iris aperture. The effect of manual changes of the exposure time or iris aperture
while these features are enabled is undefined, drivers should ignore such requests. Possi-
ble values are:

V4L2_EXPOSURE_AUTO Automatic exposure time, automatic iris aperture.
V4L2_EXPOSURE_MANUAL Manual exposure time, manual iris.
V4L2_EXPOSURE_SHUTTER_PRIORITY Manual exposure time, auto iris.
V4L2_EXPOSURE_APERTURE_PRIORITY Auto exposure time, manual iris.

V4L2_CID_EXPOSURE_ABSOLUTE (integer) Determines the exposure time of the camera sen-
sor. The exposure time is limited by the frame interval. Drivers should interpret the values
as 100 µs units, where the value 1 stands for 1/10000th of a second, 10000 for 1 second
and 100000 for 10 seconds.

V4L2_CID_EXPOSURE_AUTO_PRIORITY (boolean) When V4L2_CID_EXPOSURE_AUTO is set to
AUTO or APERTURE_PRIORITY, this control determines if the device may dynamically vary
the frame rate. By default this feature is disabled (0) and the frame rate must remain
constant.

V4L2_CID_AUTO_EXPOSURE_BIAS (integer menu) Determines the automatic exposure com-
pensation, it is effective only when V4L2_CID_EXPOSURE_AUTO control is set to AUTO,
SHUTTER_PRIORITY or APERTURE_PRIORITY. It is expressed in terms of EV, drivers should
interpret the values as 0.001 EV units, where the value 1000 stands for +1 EV.

Increasing the exposure compensation value is equivalent to decreasing the exposure value
(EV) and will increase the amount of light at the image sensor. The camera performs the
exposure compensation by adjusting absolute exposure time and/or aperture.

V4L2_CID_EXPOSURE_METERING (enum)

enum v4l2_exposure_metering - Determines how the camera measures the amount of light
available for the frame exposure. Possible values are:

736 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_EXPOSURE_METERING_AVERAGE Use the light information coming from the
entire frame and average giving no weight-
ing to any particular portion of the metered
area.

V4L2_EXPOSURE_METERING_CENTER_WEIGHTED Average the light information coming from
the entire frame giving priority to the center
of the metered area.

V4L2_EXPOSURE_METERING_SPOT Measure only very small area at the center of
the frame.

V4L2_EXPOSURE_METERING_MATRIX A multi-zone metering. The light intensity is
measured in several points of the frame and
the results are combined. The algorithm of
the zones selection and their significance in
calculating the final value is device depen-
dent.

V4L2_CID_PAN_RELATIVE (integer) This control turns the camera horizontally by the speci-
fied amount. The unit is undefined. A positive value moves the camera to the right (clock-
wise when viewed from above), a negative value to the left. A value of zero does not cause
motion. This is a write-only control.

V4L2_CID_TILT_RELATIVE (integer) This control turns the camera vertically by the specified
amount. The unit is undefined. A positive value moves the camera up, a negative value
down. A value of zero does not cause motion. This is a write-only control.

V4L2_CID_PAN_RESET (button) When this control is set, the camera moves horizontally to the
default position.

V4L2_CID_TILT_RESET (button) When this control is set, the camera moves vertically to the
default position.

V4L2_CID_PAN_ABSOLUTE (integer) This control turns the camera horizontally to the specified
position. Positive valuesmove the camera to the right (clockwise when viewed from above),
negative values to the left. Drivers should interpret the values as arc seconds, with valid
values between -180 * 3600 and +180 * 3600 inclusive.

V4L2_CID_TILT_ABSOLUTE (integer) This control turns the camera vertically to the specified
position. Positive values move the camera up, negative values down. Drivers should in-
terpret the values as arc seconds, with valid values between -180 * 3600 and +180 * 3600
inclusive.

V4L2_CID_FOCUS_ABSOLUTE (integer) This control sets the focal point of the camera to the
specified position. The unit is undefined. Positive values set the focus closer to the camera,
negative values towards infinity.

V4L2_CID_FOCUS_RELATIVE (integer) This control moves the focal point of the camera by the
specified amount. The unit is undefined. Positive values move the focus closer to the
camera, negative values towards infinity. This is a write-only control.

V4L2_CID_FOCUS_AUTO (boolean) Enables continuous automatic focus adjustments. The ef-
fect of manual focus adjustments while this feature is enabled is undefined, drivers should
ignore such requests.

V4L2_CID_AUTO_FOCUS_START (button) Starts single auto focus process. The effect of setting
this control when V4L2_CID_FOCUS_AUTO is set to TRUE (1) is undefined, drivers should

3.2. Part I - Video for Linux API 737

Linux Media Documentation

ignore such requests.

V4L2_CID_AUTO_FOCUS_STOP (button) Aborts automatic focusing started with
V4L2_CID_AUTO_FOCUS_START control. It is effective only when the continuous auto-
focus is disabled, that is when V4L2_CID_FOCUS_AUTO control is set to FALSE (0).

V4L2_CID_AUTO_FOCUS_STATUS (bitmask) The automatic focus status. This is a read-only con-
trol.

Setting V4L2_LOCK_FOCUS lock bit of the V4L2_CID_3A_LOCK control may stop updates of
the V4L2_CID_AUTO_FOCUS_STATUS control value.

V4L2_AUTO_FOCUS_STATUS_IDLE Automatic focus is not active.
V4L2_AUTO_FOCUS_STATUS_BUSY Automatic focusing is in progress.
V4L2_AUTO_FOCUS_STATUS_REACHED Focus has been reached.
V4L2_AUTO_FOCUS_STATUS_FAILED Automatic focus has failed, the driver will not transition

from this state until another action is performed by an
application.

V4L2_CID_AUTO_FOCUS_RANGE (enum)

enum v4l2_auto_focus_range - Determines auto focus distance range for which lens may be
adjusted.

V4L2_AUTO_FOCUS_RANGE_AUTO The camera automatically selects the focus range.
V4L2_AUTO_FOCUS_RANGE_NORMAL Normal distance range, limited for best automatic fo-

cus performance.
V4L2_AUTO_FOCUS_RANGE_MACRO Macro (close-up) auto focus. The camera will use its

minimum possible distance for auto focus.
V4L2_AUTO_FOCUS_RANGE_INFINITY The lens is set to focus on an object at infinite distance.

V4L2_CID_ZOOM_ABSOLUTE (integer) Specify the objective lens focal length as an absolute
value. The zoom unit is driver-specific and its value should be a positive integer.

V4L2_CID_ZOOM_RELATIVE (integer) Specify the objective lens focal length relatively to the
current value. Positive values move the zoom lens group towards the telephoto direction,
negative values towards the wide-angle direction. The zoom unit is driver-specific. This is
a write-only control.

V4L2_CID_ZOOM_CONTINUOUS (integer) Move the objective lens group at the specified speed
until it reaches physical device limits or until an explicit request to stop the movement.
A positive value moves the zoom lens group towards the telephoto direction. A value of
zero stops the zoom lens group movement. A negative value moves the zoom lens group
towards the wide-angle direction. The zoom speed unit is driver-specific.

V4L2_CID_IRIS_ABSOLUTE (integer) This control sets the camera’s aperture to the specified
value. The unit is undefined. Larger values open the iris wider, smaller values close it.

V4L2_CID_IRIS_RELATIVE (integer) This control modifies the camera’s aperture by the spec-
ified amount. The unit is undefined. Positive values open the iris one step further, negative
values close it one step further. This is a write-only control.

V4L2_CID_PRIVACY (boolean) Prevent video from being acquired by the camera. When this
control is set to TRUE (1), no image can be captured by the camera. Common means to
enforce privacy are mechanical obturation of the sensor and firmware image processing,

738 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

but the device is not restricted to these methods. Devices that implement the privacy
control must support read access and may support write access.

V4L2_CID_BAND_STOP_FILTER (integer) Switch the band-stop filter of a camera sensor on or
off, or specify its strength. Such band-stop filters can be used, for example, to filter out
the fluorescent light component.

V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE (enum)

enum v4l2_auto_n_preset_white_balance - Sets white balance to automatic, manual or a
preset. The presets determine color temperature of the light as a hint to the camera for
white balance adjustments resulting in most accurate color representation. The following
white balance presets are listed in order of increasing color temperature.

V4L2_WHITE_BALANCE_MANUAL Manual white balance.
V4L2_WHITE_BALANCE_AUTO Automatic white balance adjustments.
V4L2_WHITE_BALANCE_INCANDESCENT White balance setting for incandescent (tungsten)

lighting. It generally cools down the colors and cor-
responds approximately to 2500…3500 K color tem-
perature range.

V4L2_WHITE_BALANCE_FLUORESCENT White balance preset for fluorescent lighting. It cor-
responds approximately to 4000…5000 K color tem-
perature.

V4L2_WHITE_BALANCE_FLUORESCENT_H With this setting the camera will compensate for flu-
orescent H lighting.

V4L2_WHITE_BALANCE_HORIZON White balance setting for horizon daylight. It corre-
sponds approximately to 5000 K color temperature.

V4L2_WHITE_BALANCE_DAYLIGHT White balance preset for daylight (with clear sky).
It corresponds approximately to 5000…6500 K color
temperature.

V4L2_WHITE_BALANCE_FLASH With this setting the camera will compensate for the
flash light. It slightly warms up the colors and corre-
sponds roughly to 5000…5500 K color temperature.

V4L2_WHITE_BALANCE_CLOUDY White balance preset for moderately overcast
sky. This option corresponds approximately to
6500…8000 K color temperature range.

V4L2_WHITE_BALANCE_SHADE White balance preset for shade or heavily overcast
sky. It corresponds approximately to 9000…10000
K color temperature.

V4L2_CID_WIDE_DYNAMIC_RANGE (boolean) Enables or disables the camera’s wide dynamic
range feature. This feature allows to obtain clear images in situations where intensity
of the illumination varies significantly throughout the scene, i.e. there are simultaneously
very dark and very bright areas. It is most commonly realized in cameras by combining
two subsequent frames with different exposure times.1

V4L2_CID_IMAGE_STABILIZATION (boolean) Enables or disables image stabilization.

V4L2_CID_ISO_SENSITIVITY (integer menu) Determines ISO equivalent of an image sensor
indicating the sensor’s sensitivity to light. The numbers are expressed in arithmetic scale,
as per ISO 12232:2006 standard, where doubling the sensor sensitivity is represented

1 This control may be changed to a menu control in the future, if more options are required.

3.2. Part I - Video for Linux API 739

Linux Media Documentation

by doubling the numerical ISO value. Applications should interpret the values as stan-
dard ISO values multiplied by 1000, e.g. control value 800 stands for ISO 0.8. Drivers
will usually support only a subset of standard ISO values. The effect of setting this
control while the V4L2_CID_ISO_SENSITIVITY_AUTO control is set to a value other than
V4L2_CID_ISO_SENSITIVITY_MANUAL is undefined, drivers should ignore such requests.

V4L2_CID_ISO_SENSITIVITY_AUTO (enum)

enum v4l2_iso_sensitivity_type - Enables or disables automatic ISO sensitivity adjustments.

V4L2_CID_ISO_SENSITIVITY_MANUAL Manual ISO sensitivity.
V4L2_CID_ISO_SENSITIVITY_AUTO Automatic ISO sensitivity adjustments.

V4L2_CID_SCENE_MODE (enum)

enum v4l2_scene_mode - This control allows to select scene programs as the camera auto-
matic modes optimized for common shooting scenes. Within these modes the camera de-
termines best exposure, aperture, focusing, light metering, white balance and equivalent
sensitivity. The controls of those parameters are influenced by the scene mode control.
An exact behavior in each mode is subject to the camera specification.

When the scene mode feature is not used, this control should be set to
V4L2_SCENE_MODE_NONE to make sure the other possibly related controls are accessi-
ble. The following scene programs are defined:

V4L2_SCENE_MODE_NONE The scene mode feature is disabled.
V4L2_SCENE_MODE_BACKLIGHT Backlight. Compensates for dark shadows when light is coming

from behind a subject, also by automatically turning on the flash.
V4L2_SCENE_MODE_BEACH_SNOW Beach and snow. This mode compensates for all-white or bright

scenes, which tend to look gray and low contrast, when camera’s
automatic exposure is based on an average scene brightness.
To compensate, this mode automatically slightly overexposes the
frames. The white balance may also be adjusted to compensate
for the fact that reflected snow looks bluish rather than white.

V4L2_SCENE_MODE_CANDLELIGHT Candle light. The camera generally raises the ISO sensitivity and
lowers the shutter speed. This mode compensates for relatively
close subject in the scene. The flash is disabled in order to pre-
serve the ambiance of the light.

V4L2_SCENE_MODE_DAWN_DUSK Dawn and dusk. Preserves the colors seen in low natural light
before dusk and after down. The camera may turn off the flash,
and automatically focus at infinity. It will usually boost saturation
and lower the shutter speed.

V4L2_SCENE_MODE_FALL_COLORS Fall colors. Increases saturation and adjusts white balance for
color enhancement. Pictures of autumn leaves get saturated reds
and yellows.

V4L2_SCENE_MODE_FIREWORKS Fireworks. Long exposure times are used to capture the expand-
ing burst of light from a firework. The camera may invoke image
stabilization.

V4L2_SCENE_MODE_LANDSCAPE Landscape. The camera may choose a small aperture to provide
deep depth of field and long exposure duration to help capture de-
tail in dim light conditions. The focus is fixed at infinity. Suitable
for distant and wide scenery.

Continued on next page

740 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 1 – continued from previous page
V4L2_SCENE_MODE_NIGHT Night, also known as Night Landscape. Designed for low light

conditions, it preserves detail in the dark areas without blowing
out bright objects. The camera generally sets itself to a medium-
to-high ISO sensitivity, with a relatively long exposure time, and
turns flash off. As such, there will be increased image noise and
the possibility of blurred image.

V4L2_SCENE_MODE_PARTY_INDOOR Party and indoor. Designed to capture indoor scenes that are lit
by indoor background lighting as well as the flash. The camera
usually increases ISO sensitivity, and adjusts exposure for the low
light conditions.

V4L2_SCENE_MODE_PORTRAIT Portrait. The camera adjusts the aperture so that the depth of field
is reduced, which helps to isolate the subject against a smooth
background. Most cameras recognize the presence of faces in the
scene and focus on them. The color hue is adjusted to enhance
skin tones. The intensity of the flash is often reduced.

V4L2_SCENE_MODE_SPORTS Sports. Significantly increases ISO and uses a fast shutter speed
to freeze motion of rapidly-moving subjects. Increased image
noise may be seen in this mode.

V4L2_SCENE_MODE_SUNSET Sunset. Preserves deep hues seen in sunsets and sunrises. It
bumps up the saturation.

V4L2_SCENE_MODE_TEXT Text. It applies extra contrast and sharpness, it is typically a
black-and-white mode optimized for readability. Automatic focus
may be switched to close-up mode and this setting may also in-
volve some lens-distortion correction.

V4L2_CID_3A_LOCK (bitmask) This control locks or unlocks the automatic focus, exposure and
white balance. The automatic adjustments can be paused independently by setting the
corresponding lock bit to 1. The camera then retains the settings until the lock bit is
cleared. The following lock bits are defined:

When a given algorithm is not enabled, drivers should ignore requests to lock it and should
return no error. An example might be an application setting bit V4L2_LOCK_WHITE_BALANCE
when the V4L2_CID_AUTO_WHITE_BALANCE control is set to FALSE. The value of this control
may be changed by exposure, white balance or focus controls.

V4L2_LOCK_EXPOSURE Automatic exposure adjustments lock.
V4L2_LOCK_WHITE_BALANCE Automatic white balance adjustments lock.
V4L2_LOCK_FOCUS Automatic focus lock.

V4L2_CID_PAN_SPEED (integer) This control turns the camera horizontally at the specific
speed. The unit is undefined. A positive value moves the camera to the right (clockwise
when viewed from above), a negative value to the left. A value of zero stops the motion if
one is in progress and has no effect otherwise.

V4L2_CID_TILT_SPEED (integer) This control turns the camera vertically at the specified
speed. The unit is undefined. A positive value moves the camera up, a negative value
down. A value of zero stops the motion if one is in progress and has no effect otherwise.

V4L2_CID_CAMERA_ORIENTATION (menu) This read-only control describes the camera orienta-
tion by reporting its mounting position on the device where the camera is installed. The
control value is constant and not modifiable by software. This control is particularly mean-
ingful for devices which have a well defined orientation, such as phones, laptops and
portable devices since the control is expressed as a position relative to the device’s in-
tended usage orientation. For example, a camera installed on the user-facing side of a
phone, a tablet or a laptop device is said to be have V4L2_CAMERA_ORIENTATION_FRONT ori-

3.2. Part I - Video for Linux API 741

Linux Media Documentation

entation, while a camera installed on the opposite side of the front one is said to be have
V4L2_CAMERA_ORIENTATION_BACK orientation. Camera sensors not directly attached to the
device, or attached in a way that allows them to move freely, such as webcams and digital
cameras, are said to have the V4L2_CAMERA_ORIENTATION_EXTERNAL orientation.

V4L2_CAMERA_ORIENTATION_FRONT The camera is oriented towards the user facing
side of the device.

V4L2_CAMERA_ORIENTATION_BACK The camera is oriented towards the back facing
side of the device.

V4L2_CAMERA_ORIENTATION_EXTERNAL The camera is not directly attached to the device
and is freely movable.

V4L2_CID_CAMERA_SENSOR_ROTATION (integer) This read-only control describes the rotation
correction in degrees in the counter-clockwise direction to be applied to the captured
images once captured to memory to compensate for the camera sensor mounting rotation.

For a precise definition of the sensor mounting rotation refer to the extensive description
of the ‘rotation’ properties in the device tree bindings file ‘video-interfaces.txt’.

A few examples are below reported, using a shark swimming from left to right in front of
the user as the example scene to capture.

0 X-axis
0 +------------------------------------->

!
!
!
! |____)___
!) _____ __`<
! |/)/
!
!
!
V

Y-axis

Example one - Webcam

Assuming you can bring your laptop with you while swimming with sharks, the camera
module of the laptop is installed on the user facing part of a laptop screen casing, and is
typically used for video calls. The captured images are meant to be displayed in landscape
mode (width > height) on the laptop screen.

The camera is typically mounted upside-down to compensate the lens optical inversion
effect. In this case the value of the V4L2_CID_CAMERA_SENSOR_ROTATION control is 0,
no rotation is required to display images correctly to the user.

If the camera sensor is not mounted upside-down it is required to compensate the lens opti-
cal inversion effect and the value of the V4L2_CID_CAMERA_SENSOR_ROTATION control
is 180 degrees, as images will result rotated when captured to memory.

+--------------------------------------+
! !
! !
! !
! __/(_____/| !

742 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

! >.___ ____ (!
! \(\| !
! !
! !
! !
+--------------------------------------+

A software rotation correction of 180 degrees has to be applied to correctly display the
image on the user screen.

+--------------------------------------+
! !
! !
! !
! |____)___ !
!) _____ __`< !
! |/)/ !
! !
! !
! !
+--------------------------------------+

Example two - Phone camera

It is more handy to go and swim with sharks with only your mobile phone with you and
take pictures with the camera that is installed on the back side of the device, facing away
from the user. The captured images are meant to be displayed in portrait mode (height >
width) to match the device screen orientation and the device usage orientation used when
taking the picture.

The camera sensor is typically mountedwith its pixel array longer side aligned to the device
longer side, upside-down mounted to compensate for the lens optical inversion effect.

The images once captured to memory will be rotated and the value of the
V4L2_CID_CAMERA_SENSOR_ROTATION will report a 90 degree rotation.

+-------------------------------------+
| _ _ |
| \ / |
	>	
<		
.		
V		
+-------------------------------------+

A correction of 90 degrees in counter-clockwise direction has to be applied to correctly
display the image in portrait mode on the device screen.

+--------------------+
| |
| |
| |
| |
| |

3.2. Part I - Video for Linux API 743

Linux Media Documentation

| |
| |____)___ |
|) _____ __`< |
| |/)/ |
| |
| |
| |
| |
| |
+--------------------+

3.2.1.12 Flash Control Reference

The V4L2 flash controls are intended to provide generic access to flash controller devices. Flash
controller devices are typically used in digital cameras.

The interface can support both LED and xenon flash devices. As of writing this, there is no
xenon flash driver using this interface.

Supported use cases

Unsynchronised LED flash (software strobe)

Unsynchronised LED flash is controlled directly by the host as the sensor. The flash must be
enabled by the host before the exposure of the image starts and disabled once it ends. The host
is fully responsible for the timing of the flash.

Example of such device: Nokia N900.

Synchronised LED flash (hardware strobe)

The synchronised LED flash is pre-programmed by the host (power and timeout) but controlled
by the sensor through a strobe signal from the sensor to the flash.

The sensor controls the flash duration and timing. This information typically must be made
available to the sensor.

LED flash as torch

LED flash may be used as torch in conjunction with another use case involving camera or indi-
vidually.

744 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Flash Control IDs

V4L2_CID_FLASH_CLASS (class) The FLASH class descriptor.

V4L2_CID_FLASH_LED_MODE (menu) Defines the mode of the flash LED, the high-power white
LED attached to the flash controller. Setting this control may not be possible in presence
of some faults. See V4L2_CID_FLASH_FAULT.

V4L2_FLASH_LED_MODE_NONE Off.
V4L2_FLASH_LED_MODE_FLASH Flash mode.
V4L2_FLASH_LED_MODE_TORCH Torch mode.

See V4L2_CID_FLASH_TORCH_INTENSITY.

V4L2_CID_FLASH_STROBE_SOURCE (menu) Defines the source of the flash LED strobe.

V4L2_FLASH_STROBE_SOURCE_SOFTWARE The flash strobe is triggered by using
the V4L2_CID_FLASH_STROBE con-
trol.

V4L2_FLASH_STROBE_SOURCE_EXTERNAL The flash strobe is triggered by an ex-
ternal source. Typically this is a sen-
sor, which makes it possible to syn-
chronise the flash strobe start to expo-
sure start.

V4L2_CID_FLASH_STROBE (button) Strobe flash. Valid when V4L2_CID_FLASH_LED_MODE is
set to V4L2_FLASH_LED_MODE_FLASH and V4L2_CID_FLASH_STROBE_SOURCE is set
to V4L2_FLASH_STROBE_SOURCE_SOFTWARE. Setting this control may not be possible
in presence of some faults. See V4L2_CID_FLASH_FAULT.

V4L2_CID_FLASH_STROBE_STOP (button) Stop flash strobe immediately.

V4L2_CID_FLASH_STROBE_STATUS (boolean) Strobe status: whether the flash is strobing at
the moment or not. This is a read-only control.

V4L2_CID_FLASH_TIMEOUT (integer) Hardware timeout for flash. The flash strobe is stopped
after this period of time has passed from the start of the strobe.

V4L2_CID_FLASH_INTENSITY (integer) Intensity of the flash strobe when the flash LED is in
flash mode (V4L2_FLASH_LED_MODE_FLASH). The unit should be milliamps (mA) if pos-
sible.

V4L2_CID_FLASH_TORCH_INTENSITY (integer) Intensity of the flash LED in torch mode
(V4L2_FLASH_LED_MODE_TORCH). The unit should be milliamps (mA) if possi-
ble. Setting this control may not be possible in presence of some faults. See
V4L2_CID_FLASH_FAULT.

V4L2_CID_FLASH_INDICATOR_INTENSITY (integer) Intensity of the indicator LED. The indica-
tor LED may be fully independent of the flash LED. The unit should be microamps (uA) if
possible.

V4L2_CID_FLASH_FAULT (bitmask) Faults related to the flash. The faults tell about specific
problems in the flash chip itself or the LEDs attached to it. Faults may prevent further
use of some of the flash controls. In particular, V4L2_CID_FLASH_LED_MODE is set to
V4L2_FLASH_LED_MODE_NONE if the fault affects the flash LED. Exactly which faults

3.2. Part I - Video for Linux API 745

Linux Media Documentation

have such an effect is chip dependent. Reading the faults resets the control and returns
the chip to a usable state if possible.

V4L2_FLASH_FAULT_OVER_VOLTAGE Flash controller voltage to the flash LED has
exceeded the limit specific to the flash con-
troller.

V4L2_FLASH_FAULT_TIMEOUT The flash strobe was still on when the timeout
set by the user — V4L2_CID_FLASH_TIMEOUT
control — has expired. Not all flash controllers
may set this in all such conditions.

V4L2_FLASH_FAULT_OVER_TEMPERATURE The flash controller has overheated.
V4L2_FLASH_FAULT_SHORT_CIRCUIT The short circuit protection of the flash con-

troller has been triggered.
V4L2_FLASH_FAULT_OVER_CURRENT Current in the LED power supply has exceeded

the limit specific to the flash controller.
V4L2_FLASH_FAULT_INDICATOR The flash controller has detected a short or

open circuit condition on the indicator LED.
V4L2_FLASH_FAULT_UNDER_VOLTAGE Flash controller voltage to the flash LED has

been below the minimum limit specific to the
flash controller.

V4L2_FLASH_FAULT_INPUT_VOLTAGE The input voltage of the flash controller is be-
low the limit under which strobing the flash at
full current will not be possible.The condition
persists until this flag is no longer set.

V4L2_FLASH_FAULT_LED_OVER_TEMPERATURE The temperature of the LED has exceeded its
allowed upper limit.

V4L2_CID_FLASH_CHARGE (boolean) Enable or disable charging of the xenon flash capacitor.

V4L2_CID_FLASH_READY (boolean) Is the flash ready to strobe? Xenon flashes require their
capacitors charged before strobing. LED flashes often require a cooldown period after
strobe during which another strobe will not be possible. This is a read-only control.

3.2.1.13 Image Source Control Reference

The Image Source control class is intended for low-level control of image source devices such
as image sensors. The devices feature an analogue to digital converter and a bus transmitter
to transmit the image data out of the device.

Image Source Control IDs

V4L2_CID_IMAGE_SOURCE_CLASS (class) The IMAGE_SOURCE class descriptor.

V4L2_CID_VBLANK (integer) Vertical blanking. The idle period after every frame during which
no image data is produced. The unit of vertical blanking is a line. Every line has length of
the imagewidth plus horizontal blanking at the pixel rate defined by V4L2_CID_PIXEL_RATE
control in the same sub-device.

V4L2_CID_HBLANK (integer) Horizontal blanking. The idle period after every line of image
data during which no image data is produced. The unit of horizontal blanking is pixels.

746 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_CID_ANALOGUE_GAIN (integer) Analogue gain is gain affecting all colour components
in the pixel matrix. The gain operation is performed in the analogue domain before A/D
conversion.

V4L2_CID_TEST_PATTERN_RED (integer) Test pattern red colour component.

V4L2_CID_TEST_PATTERN_GREENR (integer) Test pattern green (next to red) colour compo-
nent.

V4L2_CID_TEST_PATTERN_BLUE (integer) Test pattern blue colour component.

V4L2_CID_TEST_PATTERN_GREENB (integer) Test pattern green (next to blue) colour compo-
nent.

V4L2_CID_UNIT_CELL_SIZE (struct) This control returns the unit cell size in nanometers. The
struct v4l2_area provides the width and the height in separate fields to take into con-
sideration asymmetric pixels. This control does not take into consideration any possible
hardware binning. The unit cell consists of the whole area of the pixel, sensitive and non-
sensitive. This control is required for automatic calibration of sensors/cameras.

v4l2_area

Table 2: struct v4l2_area
__u32 width Width of the area.
__u32 height Height of the area.

V4L2_CID_NOTIFY_GAINS (integer array) The sensor is notified what gains will be applied
to the different colour channels by subsequent processing (such as by an ISP). The sensor
is merely informed of these values in case it performs processing that requires them, but
it does not apply them itself to the output pixels.

Currently it is defined only for Bayer sensors, and is an array control taking 4 gain values,
being the gains for each of the Bayer channels. The gains are always in the order B, Gb,
Gr and R, irrespective of the exact Bayer order of the sensor itself.

The use of an array allows this control to be extended to sensors with, for example, non-
Bayer CFAs (colour filter arrays).

The units for the gain values are linear, with the default value representing a gain of exactly
1.0. For example, if this default value is reported as being (say) 128, then a value of 192
would represent a gain of exactly 1.5.

3.2.1.14 Image Process Control Reference

The Image Process control class is intended for low-level control of image processing functions.
Unlike V4L2_CID_IMAGE_SOURCE_CLASS, the controls in this class affect processing the image,
and do not control capturing of it.

3.2. Part I - Video for Linux API 747

Linux Media Documentation

Image Process Control IDs

V4L2_CID_IMAGE_PROC_CLASS (class) The IMAGE_PROC class descriptor.

V4L2_CID_LINK_FREQ (integer menu) The frequency of the data bus (e.g. parallel or CSI-2).

V4L2_CID_PIXEL_RATE (64-bit integer) Pixel sampling rate in the device’s pixel array. This
control is read-only and its unit is pixels / second.

Some devices use horizontal and vertical balanking to configure the frame rate. The frame
rate can be calculated from the pixel rate, analogue crop rectangle as well as horizontal
and vertical blanking. The pixel rate control may be present in a different sub-device than
the blanking controls and the analogue crop rectangle configuration.

The configuration of the frame rate is performed by selecting the desired horizontal and
vertical blanking. The unit of this control is Hz.

V4L2_CID_TEST_PATTERN (menu) Some capture/display/sensor devices have the capability to
generate test pattern images. These hardware specific test patterns can be used to test if
a device is working properly.

V4L2_CID_DEINTERLACING_MODE (menu) The video deinterlacing mode (such as Bob, Weave,
…). The menu items are driver specific and are documented in Video4Linux (V4L) driver-
specific documentation.

V4L2_CID_DIGITAL_GAIN (integer) Digital gain is the value by which all colour components
are multiplied by. Typically the digital gain applied is the control value divided by e.g.
0x100, meaning that to get no digital gain the control value needs to be 0x100. The no-
gain configuration is also typically the default.

3.2.1.15 Codec Control Reference

Below all controls within the Codec control class are described. First the generic controls, then
controls specific for certain hardware.

Note: These controls are applicable to all codecs and not just MPEG. The defines are prefixed
with V4L2_CID_MPEG/V4L2_MPEG as the controls were originally made for MPEG codecs and
later extended to cover all encoding formats.

Generic Codec Controls

Codec Control IDs

V4L2_CID_CODEC_CLASS (class) The Codec class descriptor. Calling ioctls VID-
IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU for this
control will return a description of this control class. This description can be used as the
caption of a Tab page in a GUI, for example.

V4L2_CID_MPEG_STREAM_TYPE (enum)

enum v4l2_mpeg_stream_type - The MPEG-1, -2 or -4 output stream type. One cannot as-
sume anything here. Each hardware MPEG encoder tends to support different subsets of

748 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

the available MPEG stream types. This control is specific to multiplexed MPEG streams.
The currently defined stream types are:

V4L2_MPEG_STREAM_TYPE_MPEG2_PS MPEG-2 program stream
V4L2_MPEG_STREAM_TYPE_MPEG2_TS MPEG-2 transport stream
V4L2_MPEG_STREAM_TYPE_MPEG1_SS MPEG-1 system stream
V4L2_MPEG_STREAM_TYPE_MPEG2_DVD MPEG-2 DVD-compatible stream
V4L2_MPEG_STREAM_TYPE_MPEG1_VCD MPEG-1 VCD-compatible stream
V4L2_MPEG_STREAM_TYPE_MPEG2_SVCD MPEG-2 SVCD-compatible stream

V4L2_CID_MPEG_STREAM_PID_PMT (integer) Program Map Table Packet ID for the MPEG
transport stream (default 16)

V4L2_CID_MPEG_STREAM_PID_AUDIO (integer) Audio Packet ID for the MPEG transport
stream (default 256)

V4L2_CID_MPEG_STREAM_PID_VIDEO (integer) Video Packet ID for the MPEG transport
stream (default 260)

V4L2_CID_MPEG_STREAM_PID_PCR (integer) Packet ID for the MPEG transport stream carry-
ing PCR fields (default 259)

V4L2_CID_MPEG_STREAM_PES_ID_AUDIO (integer) Audio ID for MPEG PES

V4L2_CID_MPEG_STREAM_PES_ID_VIDEO (integer) Video ID for MPEG PES

V4L2_CID_MPEG_STREAM_VBI_FMT (enum)

enum v4l2_mpeg_stream_vbi_fmt - Some cards can embed VBI data (e. g. Closed Caption,
Teletext) into the MPEG stream. This control selects whether VBI data should be embed-
ded, and if so, what embedding method should be used. The list of possible VBI formats
depends on the driver. The currently defined VBI format types are:

V4L2_MPEG_STREAM_VBI_FMT_NONE No VBI in the MPEG stream
V4L2_MPEG_STREAM_VBI_FMT_IVTV VBI in private packets, IVTV format (documented

in the kernel sources in the file Documentation/
userspace-api/media/drivers/cx2341x-uapi.rst)

V4L2_CID_MPEG_AUDIO_SAMPLING_FREQ (enum)

enum v4l2_mpeg_audio_sampling_freq - MPEG Audio sampling frequency. Possible values
are:

V4L2_MPEG_AUDIO_SAMPLING_FREQ_44100 44.1 kHz
V4L2_MPEG_AUDIO_SAMPLING_FREQ_48000 48 kHz
V4L2_MPEG_AUDIO_SAMPLING_FREQ_32000 32 kHz

V4L2_CID_MPEG_AUDIO_ENCODING (enum)

enum v4l2_mpeg_audio_encoding - MPEG Audio encoding. This control is specific to multi-
plexed MPEG streams. Possible values are:

3.2. Part I - Video for Linux API 749

Linux Media Documentation

V4L2_MPEG_AUDIO_ENCODING_LAYER_1 MPEG-1/2 Layer I encoding
V4L2_MPEG_AUDIO_ENCODING_LAYER_2 MPEG-1/2 Layer II encoding
V4L2_MPEG_AUDIO_ENCODING_LAYER_3 MPEG-1/2 Layer III encoding
V4L2_MPEG_AUDIO_ENCODING_AAC MPEG-2/4 AAC (Advanced Audio Coding)
V4L2_MPEG_AUDIO_ENCODING_AC3 AC-3 aka ATSC A/52 encoding

V4L2_CID_MPEG_AUDIO_L1_BITRATE (enum)

enum v4l2_mpeg_audio_l1_bitrate - MPEG-1/2 Layer I bitrate. Possible values are:

V4L2_MPEG_AUDIO_L1_BITRATE_32K 32 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_64K 64 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_96K 96 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_128K 128 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_160K 160 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_192K 192 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_224K 224 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_256K 256 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_288K 288 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_320K 320 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_352K 352 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_384K 384 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_416K 416 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_448K 448 kbit/s

V4L2_CID_MPEG_AUDIO_L2_BITRATE (enum)

enum v4l2_mpeg_audio_l2_bitrate - MPEG-1/2 Layer II bitrate. Possible values are:

V4L2_MPEG_AUDIO_L2_BITRATE_32K 32 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_48K 48 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_56K 56 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_64K 64 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_80K 80 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_96K 96 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_112K 112 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_128K 128 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_160K 160 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_192K 192 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_224K 224 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_256K 256 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_320K 320 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_384K 384 kbit/s

V4L2_CID_MPEG_AUDIO_L3_BITRATE (enum)

enum v4l2_mpeg_audio_l3_bitrate - MPEG-1/2 Layer III bitrate. Possible values are:

750 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_MPEG_AUDIO_L3_BITRATE_32K 32 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_40K 40 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_48K 48 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_56K 56 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_64K 64 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_80K 80 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_96K 96 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_112K 112 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_128K 128 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_160K 160 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_192K 192 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_224K 224 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_256K 256 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_320K 320 kbit/s

V4L2_CID_MPEG_AUDIO_AAC_BITRATE (integer) AAC bitrate in bits per second.

V4L2_CID_MPEG_AUDIO_AC3_BITRATE (enum)

enum v4l2_mpeg_audio_ac3_bitrate - AC-3 bitrate. Possible values are:

V4L2_MPEG_AUDIO_AC3_BITRATE_32K 32 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_40K 40 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_48K 48 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_56K 56 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_64K 64 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_80K 80 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_96K 96 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_112K 112 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_128K 128 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_160K 160 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_192K 192 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_224K 224 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_256K 256 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_320K 320 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_384K 384 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_448K 448 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_512K 512 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_576K 576 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_640K 640 kbit/s

V4L2_CID_MPEG_AUDIO_MODE (enum)

enum v4l2_mpeg_audio_mode - MPEG Audio mode. Possible values are:

V4L2_MPEG_AUDIO_MODE_STEREO Stereo
V4L2_MPEG_AUDIO_MODE_JOINT_STEREO Joint Stereo
V4L2_MPEG_AUDIO_MODE_DUAL Bilingual
V4L2_MPEG_AUDIO_MODE_MONO Mono

V4L2_CID_MPEG_AUDIO_MODE_EXTENSION (enum)

3.2. Part I - Video for Linux API 751

Linux Media Documentation

enum v4l2_mpeg_audio_mode_extension - Joint Stereo audio mode extension. In Layer I
and II they indicate which subbands are in intensity stereo. All other subbands are coded
in stereo. Layer III is not (yet) supported. Possible values are:

V4L2_MPEG_AUDIO_MODE_EXTENSION_BOUND_4 Subbands 4-31 in intensity stereo
V4L2_MPEG_AUDIO_MODE_EXTENSION_BOUND_8 Subbands 8-31 in intensity stereo
V4L2_MPEG_AUDIO_MODE_EXTENSION_BOUND_12 Subbands 12-31 in intensity stereo
V4L2_MPEG_AUDIO_MODE_EXTENSION_BOUND_16 Subbands 16-31 in intensity stereo

V4L2_CID_MPEG_AUDIO_EMPHASIS (enum)

enum v4l2_mpeg_audio_emphasis - Audio Emphasis. Possible values are:

V4L2_MPEG_AUDIO_EMPHASIS_NONE None
V4L2_MPEG_AUDIO_EMPHASIS_50_DIV_15_uS 50/15 microsecond emphasis
V4L2_MPEG_AUDIO_EMPHASIS_CCITT_J17 CCITT J.17

V4L2_CID_MPEG_AUDIO_CRC (enum)

enum v4l2_mpeg_audio_crc - CRC method. Possible values are:

V4L2_MPEG_AUDIO_CRC_NONE None
V4L2_MPEG_AUDIO_CRC_CRC16 16 bit parity check

V4L2_CID_MPEG_AUDIO_MUTE (boolean) Mutes the audio when capturing. This is not done by
muting audio hardware, which can still produce a slight hiss, but in the encoder itself,
guaranteeing a fixed and reproducible audio bitstream. 0 = unmuted, 1 = muted.

V4L2_CID_MPEG_AUDIO_DEC_PLAYBACK (enum)

enum v4l2_mpeg_audio_dec_playback - Determines how monolingual audio should be
played back. Possible values are:

V4L2_MPEG_AUDIO_DEC_PLAYBACK_AUTO Automatically determines the best play-
back mode.

V4L2_MPEG_AUDIO_DEC_PLAYBACK_STEREO Stereo playback.
V4L2_MPEG_AUDIO_DEC_PLAYBACK_LEFT Left channel playback.
V4L2_MPEG_AUDIO_DEC_PLAYBACK_RIGHT Right channel playback.
V4L2_MPEG_AUDIO_DEC_PLAYBACK_MONO Mono playback.
V4L2_MPEG_AUDIO_DEC_PLAYBACK_SWAPPED_STEREO Stereo playback with swapped left and

right channels.

V4L2_CID_MPEG_AUDIO_DEC_MULTILINGUAL_PLAYBACK (enum)

enum v4l2_mpeg_audio_dec_playback - Determines how multilingual audio should be
played back.

V4L2_CID_MPEG_VIDEO_ENCODING (enum)

enum v4l2_mpeg_video_encoding - MPEG Video encoding method. This control is specific
to multiplexed MPEG streams. Possible values are:

752 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_MPEG_VIDEO_ENCODING_MPEG_1 MPEG-1 Video encoding
V4L2_MPEG_VIDEO_ENCODING_MPEG_2 MPEG-2 Video encoding
V4L2_MPEG_VIDEO_ENCODING_MPEG_4_AVC MPEG-4 AVC (H.264) Video encoding

V4L2_CID_MPEG_VIDEO_ASPECT (enum)

enum v4l2_mpeg_video_aspect - Video aspect. Possible values are:

V4L2_MPEG_VIDEO_ASPECT_1x1
V4L2_MPEG_VIDEO_ASPECT_4x3
V4L2_MPEG_VIDEO_ASPECT_16x9
V4L2_MPEG_VIDEO_ASPECT_221x100

V4L2_CID_MPEG_VIDEO_B_FRAMES (integer) Number of B-Frames (default 2)

V4L2_CID_MPEG_VIDEO_GOP_SIZE (integer) GOP size (default 12)

V4L2_CID_MPEG_VIDEO_GOP_CLOSURE (boolean) GOP closure (default 1)

V4L2_CID_MPEG_VIDEO_PULLDOWN (boolean) Enable 3:2 pulldown (default 0)

V4L2_CID_MPEG_VIDEO_BITRATE_MODE (enum)

enum v4l2_mpeg_video_bitrate_mode - Video bitrate mode. Possible values are:

V4L2_MPEG_VIDEO_BITRATE_MODE_VBR Variable bitrate
V4L2_MPEG_VIDEO_BITRATE_MODE_CBR Constant bitrate
V4L2_MPEG_VIDEO_BITRATE_MODE_CQ Constant quality

V4L2_CID_MPEG_VIDEO_BITRATE (integer) Average video bitrate in bits per second.

V4L2_CID_MPEG_VIDEO_BITRATE_PEAK (integer) Peak video bitrate in bits per second. Must
be larger or equal to the average video bitrate. It is ignored if the video bitrate mode is
set to constant bitrate.

V4L2_CID_MPEG_VIDEO_CONSTANT_QUALITY (integer) Constant quality level control.
This control is applicable when V4L2_CID_MPEG_VIDEO_BITRATE_MODE value is
V4L2_MPEG_VIDEO_BITRATE_MODE_CQ. Valid range is 1 to 100 where 1 indicates low-
est quality and 100 indicates highest quality. Encoder will decide the appropriate
quantization parameter and bitrate to produce requested frame quality.

V4L2_CID_MPEG_VIDEO_FRAME_SKIP_MODE (enum)

enum v4l2_mpeg_video_frame_skip_mode - Indicates in what conditions the encoder
should skip frames. If encoding a frame would cause the encoded stream to be larger
then a chosen data limit then the frame will be skipped. Possible values are:

V4L2_MPEG_VIDEO_FRAME_SKIP_MODE_DISABLED Frame skip mode is disabled.
V4L2_MPEG_VIDEO_FRAME_SKIP_MODE_LEVEL_LIMITFrame skip mode enabled and buffer limit is set by

the chosen level and is defined by the standard.
V4L2_MPEG_VIDEO_FRAME_SKIP_MODE_BUF_LIMITFrame skip mode enabled and buffer limit is set by

the VBV (MPEG1/2/4) or CPB (H264) buffer size con-
trol.

V4L2_CID_MPEG_VIDEO_TEMPORAL_DECIMATION (integer) For every captured frame, skip this
many subsequent frames (default 0).

3.2. Part I - Video for Linux API 753

Linux Media Documentation

V4L2_CID_MPEG_VIDEO_MUTE (boolean) “Mutes” the video to a fixed color when capturing.
This is useful for testing, to produce a fixed video bitstream. 0 = unmuted, 1 = muted.

V4L2_CID_MPEG_VIDEO_MUTE_YUV (integer) Sets the “mute” color of the video. The supplied
32-bit integer is interpreted as follows (bit 0 = least significant bit):

Bit 0:7 V chrominance information
Bit 8:15 U chrominance information
Bit 16:23 Y luminance information
Bit 24:31 Must be zero.

V4L2_CID_MPEG_VIDEO_DEC_PTS (integer64) This read-only control returns the 33-bit video
Presentation Time Stamp as defined in ITU T-REC-H.222.0 and ISO/IEC 13818-1 of the cur-
rently displayed frame. This is the same PTS as is used in ioctl VIDIOC_DECODER_CMD,
VIDIOC_TRY_DECODER_CMD.

V4L2_CID_MPEG_VIDEO_DEC_FRAME (integer64) This read-only control returns the frame
counter of the frame that is currently displayed (decoded). This value is reset to 0 when-
ever the decoder is started.

V4L2_CID_MPEG_VIDEO_DEC_CONCEAL_COLOR (integer64) This control sets the conceal color
in YUV color space. It describes the client preference of the error conceal color in case
of an error where the reference frame is missing. The decoder should fill the reference
buffer with the preferred color and use it for future decoding. The control is using 16 bits
per channel. Applicable to decoders.

8bit format 10bit format 12bit format
Y luminance Bit 0:7 Bit 0:9 Bit 0:11
Cb chrominance Bit 16:23 Bit 16:25 Bit 16:27
Cr chrominance Bit 32:39 Bit 32:41 Bit 32:43
Must be zero Bit 48:63 Bit 48:63 Bit 48:63

V4L2_CID_MPEG_VIDEO_DECODER_SLICE_INTERFACE (boolean) If enabled the decoder expects
to receive a single slice per buffer, otherwise the decoder expects a single frame in per
buffer. Applicable to the decoder, all codecs.

V4L2_CID_MPEG_VIDEO_DEC_DISPLAY_DELAY_ENABLE (boolean) If the display delay is en-
abled then the decoder is forced to return a CAPTURE buffer (decoded frame) af-
ter processing a certain number of OUTPUT buffers. The delay can be set through
V4L2_CID_MPEG_VIDEO_DEC_DISPLAY_DELAY. This feature can be used for example for gen-
erating thumbnails of videos. Applicable to the decoder.

V4L2_CID_MPEG_VIDEO_DEC_DISPLAY_DELAY (integer) Display delay value for decoder. The
decoder is forced to return a decoded frame after the set ‘display delay’ number of frames.
If this number is low it may result in frames returned out of display order, in addition the
hardware may still be using the returned buffer as a reference picture for subsequent
frames.

V4L2_CID_MPEG_VIDEO_AU_DELIMITER (boolean) If enabled then, AUD (Access Unit Delim-
iter) NALUs will be generated. That could be useful to find the start of a frame without
having to fully parse each NALU. Applicable to the H264 and HEVC encoders.

V4L2_CID_MPEG_VIDEO_H264_VUI_SAR_ENABLE (boolean) Enable writing sample aspect ratio
in the Video Usability Information. Applicable to the H264 encoder.

754 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_CID_MPEG_VIDEO_H264_VUI_SAR_IDC (enum)

enum v4l2_mpeg_video_h264_vui_sar_idc - VUI sample aspect ratio indicator for H.264 en-
coding. The value is defined in the table E-1 in the standard. Applicable to the H264
encoder.

V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_UNSPECIFIED Unspecified
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_1x1 1x1
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_12x11 12x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_10x11 10x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_16x11 16x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_40x33 40x33
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_24x11 24x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_20x11 20x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_32x11 32x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_80x33 80x33
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_18x11 18x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_15x11 15x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_64x33 64x33
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_160x99 160x99
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_4x3 4x3
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_3x2 3x2
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_2x1 2x1
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_EXTENDED Extended SAR

V4L2_CID_MPEG_VIDEO_H264_VUI_EXT_SAR_WIDTH (integer) Extended sample aspect ratio
width for H.264 VUI encoding. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_VUI_EXT_SAR_HEIGHT (integer) Extended sample aspect ratio
height for H.264 VUI encoding. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_LEVEL (enum)

enum v4l2_mpeg_video_h264_level - The level information for the H264 video elementary
stream. Applicable to the H264 encoder. Possible values are:

3.2. Part I - Video for Linux API 755

Linux Media Documentation

V4L2_MPEG_VIDEO_H264_LEVEL_1_0 Level 1.0
V4L2_MPEG_VIDEO_H264_LEVEL_1B Level 1B
V4L2_MPEG_VIDEO_H264_LEVEL_1_1 Level 1.1
V4L2_MPEG_VIDEO_H264_LEVEL_1_2 Level 1.2
V4L2_MPEG_VIDEO_H264_LEVEL_1_3 Level 1.3
V4L2_MPEG_VIDEO_H264_LEVEL_2_0 Level 2.0
V4L2_MPEG_VIDEO_H264_LEVEL_2_1 Level 2.1
V4L2_MPEG_VIDEO_H264_LEVEL_2_2 Level 2.2
V4L2_MPEG_VIDEO_H264_LEVEL_3_0 Level 3.0
V4L2_MPEG_VIDEO_H264_LEVEL_3_1 Level 3.1
V4L2_MPEG_VIDEO_H264_LEVEL_3_2 Level 3.2
V4L2_MPEG_VIDEO_H264_LEVEL_4_0 Level 4.0
V4L2_MPEG_VIDEO_H264_LEVEL_4_1 Level 4.1
V4L2_MPEG_VIDEO_H264_LEVEL_4_2 Level 4.2
V4L2_MPEG_VIDEO_H264_LEVEL_5_0 Level 5.0
V4L2_MPEG_VIDEO_H264_LEVEL_5_1 Level 5.1
V4L2_MPEG_VIDEO_H264_LEVEL_5_2 Level 5.2
V4L2_MPEG_VIDEO_H264_LEVEL_6_0 Level 6.0
V4L2_MPEG_VIDEO_H264_LEVEL_6_1 Level 6.1
V4L2_MPEG_VIDEO_H264_LEVEL_6_2 Level 6.2

V4L2_CID_MPEG_VIDEO_MPEG2_LEVEL (enum)

enum v4l2_mpeg_video_mpeg2_level - The level information for the MPEG2 elementary
stream. Applicable to MPEG2 codecs. Possible values are:

V4L2_MPEG_VIDEO_MPEG2_LEVEL_LOW Low Level (LL)
V4L2_MPEG_VIDEO_MPEG2_LEVEL_MAIN Main Level (ML)
V4L2_MPEG_VIDEO_MPEG2_LEVEL_HIGH_1440 High-1440 Level (H-14)
V4L2_MPEG_VIDEO_MPEG2_LEVEL_HIGH High Level (HL)

V4L2_CID_MPEG_VIDEO_MPEG4_LEVEL (enum)

enum v4l2_mpeg_video_mpeg4_level - The level information for the MPEG4 elementary
stream. Applicable to the MPEG4 encoder. Possible values are:

V4L2_MPEG_VIDEO_MPEG4_LEVEL_0 Level 0
V4L2_MPEG_VIDEO_MPEG4_LEVEL_0B Level 0b
V4L2_MPEG_VIDEO_MPEG4_LEVEL_1 Level 1
V4L2_MPEG_VIDEO_MPEG4_LEVEL_2 Level 2
V4L2_MPEG_VIDEO_MPEG4_LEVEL_3 Level 3
V4L2_MPEG_VIDEO_MPEG4_LEVEL_3B Level 3b
V4L2_MPEG_VIDEO_MPEG4_LEVEL_4 Level 4
V4L2_MPEG_VIDEO_MPEG4_LEVEL_5 Level 5

V4L2_CID_MPEG_VIDEO_H264_PROFILE (enum)

enum v4l2_mpeg_video_h264_profile - The profile information for H264. Applicable to the
H264 encoder. Possible values are:

756 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE Baseline profile
V4L2_MPEG_VIDEO_H264_PROFILE_CONSTRAINED_BASELINE Constrained Baseline profile
V4L2_MPEG_VIDEO_H264_PROFILE_MAIN Main profile
V4L2_MPEG_VIDEO_H264_PROFILE_EXTENDED Extended profile
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH High profile
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_10 High 10 profile
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_422 High 422 profile
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_444_PREDICTIVE High 444 Predictive profile
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_10_INTRA High 10 Intra profile
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_422_INTRA High 422 Intra profile
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_444_INTRA High 444 Intra profile
V4L2_MPEG_VIDEO_H264_PROFILE_CAVLC_444_INTRA CAVLC 444 Intra profile
V4L2_MPEG_VIDEO_H264_PROFILE_SCALABLE_BASELINE Scalable Baseline profile
V4L2_MPEG_VIDEO_H264_PROFILE_SCALABLE_HIGH Scalable High profile
V4L2_MPEG_VIDEO_H264_PROFILE_SCALABLE_HIGH_INTRA Scalable High Intra profile
V4L2_MPEG_VIDEO_H264_PROFILE_STEREO_HIGH Stereo High profile
V4L2_MPEG_VIDEO_H264_PROFILE_MULTIVIEW_HIGH Multiview High profile
V4L2_MPEG_VIDEO_H264_PROFILE_CONSTRAINED_HIGH Constrained High profile

V4L2_CID_MPEG_VIDEO_MPEG2_PROFILE (enum)

enum v4l2_mpeg_video_mpeg2_profile - The profile information for MPEG2. Applicable to
MPEG2 codecs. Possible values are:

V4L2_MPEG_VIDEO_MPEG2_PROFILE_SIMPLE Simple profile (SP)
V4L2_MPEG_VIDEO_MPEG2_PROFILE_MAIN Main profile (MP)
V4L2_MPEG_VIDEO_MPEG2_PROFILE_SNR_SCALABLE SNR Scalable profile (SNR)
V4L2_MPEG_VIDEO_MPEG2_PROFILE_SPATIALLY_SCALABLE Spatially Scalable profile (Spt)
V4L2_MPEG_VIDEO_MPEG2_PROFILE_HIGH High profile (HP)
V4L2_MPEG_VIDEO_MPEG2_PROFILE_MULTIVIEW Multi-view profile (MVP)

V4L2_CID_MPEG_VIDEO_MPEG4_PROFILE (enum)

enum v4l2_mpeg_video_mpeg4_profile - The profile information for MPEG4. Applicable to
the MPEG4 encoder. Possible values are:

V4L2_MPEG_VIDEO_MPEG4_PROFILE_SIMPLE Simple profile
V4L2_MPEG_VIDEO_MPEG4_PROFILE_ADVANCED_SIMPLE Advanced Simple profile
V4L2_MPEG_VIDEO_MPEG4_PROFILE_CORE Core profile
V4L2_MPEG_VIDEO_MPEG4_PROFILE_SIMPLE_SCALABLE Simple Scalable profile
V4L2_MPEG_VIDEO_MPEG4_PROFILE_ADVANCED_CODING_EFFICIENCY Advanced Coding Efficiency

profile

V4L2_CID_MPEG_VIDEO_MAX_REF_PIC (integer) The maximum number of reference pictures
used for encoding. Applicable to the encoder.

V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MODE (enum)

enum v4l2_mpeg_video_multi_slice_mode - Determines how the encoder should handle di-
vision of frame into slices. Applicable to the encoder. Possible values are:

3.2. Part I - Video for Linux API 757

Linux Media Documentation

V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_SINGLE Single slice per frame.
V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_MAX_MB Multiple slices with set maximum num-

ber of macroblocks per slice.
V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_MAX_BYTES Multiple slice with set maximum size in

bytes per slice.

V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_MB (integer) The maximum number of mac-
roblocks in a slice. Used when V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MODE is set to
V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_MAX_MB. Applicable to the encoder.

V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_BYTES (integer) The maximum size of a
slice in bytes. Used when V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MODE is set to
V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_MAX_BYTES. Applicable to the encoder.

V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_MODE (enum)

enum v4l2_mpeg_video_h264_loop_filter_mode - Loop filter mode for H264 encoder. Pos-
sible values are:

V4L2_MPEG_VIDEO_H264_LOOP_FILTER_MODE_ENABLED Loop filter is enabled.
V4L2_MPEG_VIDEO_H264_LOOP_FILTER_MODE_DISABLED Loop filter is disabled.
V4L2_MPEG_VIDEO_H264_LOOP_FILTER_MODE_DISABLED_AT_SLICE_BOUNDARY Loop filter is disabled

at the slice boundary.

V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_ALPHA (integer) Loop filter alpha coefficient, de-
fined in the H264 standard. This value corresponds to the slice_alpha_c0_offset_div2 slice
header field, and should be in the range of -6 to +6, inclusive. The actual alpha offset
FilterOffsetA is twice this value. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_BETA (integer) Loop filter beta coefficient, de-
fined in the H264 standard. This corresponds to the slice_beta_offset_div2 slice header
field, and should be in the range of -6 to +6, inclusive. The actual beta offset FilterOffsetB
is twice this value. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_ENTROPY_MODE (enum)

enum v4l2_mpeg_video_h264_entropy_mode - Entropy coding mode for H264 -
CABAC/CAVALC. Applicable to the H264 encoder. Possible values are:

V4L2_MPEG_VIDEO_H264_ENTROPY_MODE_CAVLC Use CAVLC entropy coding.
V4L2_MPEG_VIDEO_H264_ENTROPY_MODE_CABAC Use CABAC entropy coding.

V4L2_CID_MPEG_VIDEO_H264_8X8_TRANSFORM (boolean) Enable 8X8 transform for H264. Ap-
plicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_CONSTRAINED_INTRA_PREDICTION (boolean) Enable con-
strained intra prediction for H264. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_CHROMA_QP_INDEX_OFFSET (integer) Specify the offset that
should be added to the luma quantization parameter to determine the chroma quantization
parameter. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_CYCLIC_INTRA_REFRESH_MB (integer) Cyclic intra macroblock re-
fresh. This is the number of continuous macroblocks refreshed every frame. Each
frame a successive set of macroblocks is refreshed until the cycle completes and

758 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

starts from the top of the frame. Setting this control to zero means that mac-
roblocks will not be refreshed. Note that this control will not take effect when
V4L2_CID_MPEG_VIDEO_INTRA_REFRESH_PERIOD control is set to non zero value. Applicable
to H264, H263 and MPEG4 encoder.

V4L2_CID_MPEG_VIDEO_INTRA_REFRESH_PERIOD (integer) Intra macroblock refresh period.
This sets the period to refresh the whole frame. In other words, this defines the num-
ber of frames for which the whole frame will be intra-refreshed. An example: setting
period to 1 means that the whole frame will be refreshed, setting period to 2 means
that the half of macroblocks will be intra-refreshed on frameX and the other half of mac-
roblocks will be refreshed in frameX + 1 and so on. Setting the period to zero means
no period is specified. Note that if the client sets this control to non zero value the
V4L2_CID_MPEG_VIDEO_CYCLIC_INTRA_REFRESH_MB control shall be ignored. Applicable
to H264 and HEVC encoders.

V4L2_CID_MPEG_VIDEO_FRAME_RC_ENABLE (boolean) Frame level rate control enable. If this
control is disabled then the quantization parameter for each frame type is constant and set
with appropriate controls (e.g. V4L2_CID_MPEG_VIDEO_H263_I_FRAME_QP). If frame rate
control is enabled then quantization parameter is adjusted to meet the chosen bitrate.
Minimum and maximum value for the quantization parameter can be set with appropriate
controls (e.g. V4L2_CID_MPEG_VIDEO_H263_MIN_QP). Applicable to encoders.

V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE (boolean) Macroblock level rate control enable. Appli-
cable to the MPEG4 and H264 encoders.

V4L2_CID_MPEG_VIDEO_MPEG4_QPEL (boolean) Quarter pixel motion estimation for MPEG4.
Applicable to the MPEG4 encoder.

V4L2_CID_MPEG_VIDEO_H263_I_FRAME_QP (integer) Quantization parameter for an I frame
for H263. Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_H263_MIN_QP (integer) Minimum quantization parameter for H263.
Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_H263_MAX_QP (integer) Maximum quantization parameter for H263.
Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_H263_P_FRAME_QP (integer) Quantization parameter for an P frame
for H263. Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_H263_B_FRAME_QP (integer) Quantization parameter for an B frame
for H263. Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_H264_I_FRAME_QP (integer) Quantization parameter for an I frame
for H264. Valid range: from 0 to 51.

V4L2_CID_MPEG_VIDEO_H264_MIN_QP (integer) Minimum quantization parameter for H264.
Valid range: from 0 to 51.

V4L2_CID_MPEG_VIDEO_H264_MAX_QP (integer) Maximum quantization parameter for H264.
Valid range: from 0 to 51.

V4L2_CID_MPEG_VIDEO_H264_P_FRAME_QP (integer) Quantization parameter for an P frame
for H264. Valid range: from 0 to 51.

V4L2_CID_MPEG_VIDEO_H264_B_FRAME_QP (integer) Quantization parameter for an B frame
for H264. Valid range: from 0 to 51.

3.2. Part I - Video for Linux API 759

Linux Media Documentation

V4L2_CID_MPEG_VIDEO_H264_I_FRAME_MIN_QP (integer) Minimum quantization parameter
for the H264 I frame to limit I frame quality to a range. Valid range: from 0 to 51. If
V4L2_CID_MPEG_VIDEO_H264_MIN_QP is also set, the quantization parameter should
be chosen to meet both requirements.

V4L2_CID_MPEG_VIDEO_H264_I_FRAME_MAX_QP (integer) Maximum quantization parameter
for the H264 I frame to limit I frame quality to a range. Valid range: from 0 to 51. If
V4L2_CID_MPEG_VIDEO_H264_MAX_QP is also set, the quantization parameter should
be chosen to meet both requirements.

V4L2_CID_MPEG_VIDEO_H264_P_FRAME_MIN_QP (integer) Minimum quantization parameter
for the H264 P frame to limit P frame quality to a range. Valid range: from 0 to 51. If
V4L2_CID_MPEG_VIDEO_H264_MIN_QP is also set, the quantization parameter should
be chosen to meet both requirements.

V4L2_CID_MPEG_VIDEO_H264_P_FRAME_MAX_QP (integer) Maximum quantization parameter
for the H264 P frame to limit P frame quality to a range. Valid range: from 0 to 51. If
V4L2_CID_MPEG_VIDEO_H264_MAX_QP is also set, the quantization parameter should
be chosen to meet both requirements.

V4L2_CID_MPEG_VIDEO_H264_B_FRAME_MIN_QP (integer) Minimum quantization parameter
for the H264 B frame to limit B frame quality to a range. Valid range: from 0 to 51. If
V4L2_CID_MPEG_VIDEO_H264_MIN_QP is also set, the quantization parameter should
be chosen to meet both requirements.

V4L2_CID_MPEG_VIDEO_H264_B_FRAME_MAX_QP (integer) Maximum quantization parameter
for the H264 B frame to limit B frame quality to a range. Valid range: from 0 to 51. If
V4L2_CID_MPEG_VIDEO_H264_MAX_QP is also set, the quantization parameter should
be chosen to meet both requirements.

V4L2_CID_MPEG_VIDEO_MPEG4_I_FRAME_QP (integer) Quantization parameter for an I frame
for MPEG4. Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_MPEG4_MIN_QP (integer) Minimum quantization parameter for
MPEG4. Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_MPEG4_MAX_QP (integer) Maximum quantization parameter for
MPEG4. Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_MPEG4_P_FRAME_QP (integer) Quantization parameter for an P frame
for MPEG4. Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_MPEG4_B_FRAME_QP (integer) Quantization parameter for an B frame
for MPEG4. Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_VBV_SIZE (integer) The Video Buffer Verifier size in kilobytes, it is
used as a limitation of frame skip. The VBV is defined in the standard as a mean to verify
that the produced stream will be successfully decoded. The standard describes it as “Part
of a hypothetical decoder that is conceptually connected to the output of the encoder. Its
purpose is to provide a constraint on the variability of the data rate that an encoder or
editing process may produce.”. Applicable to the MPEG1, MPEG2, MPEG4 encoders.

V4L2_CID_MPEG_VIDEO_VBV_DELAY (integer) Sets the initial delay in milliseconds for VBV
buffer control.

V4L2_CID_MPEG_VIDEO_MV_H_SEARCH_RANGE (integer) Horizontal search range defines max-
imum horizontal search area in pixels to search and match for the present Macroblock

760 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

(MB) in the reference picture. This V4L2 control macro is used to set horizontal search
range for motion estimation module in video encoder.

V4L2_CID_MPEG_VIDEO_MV_V_SEARCH_RANGE (integer) Vertical search range defines maxi-
mum vertical search area in pixels to search and match for the present Macroblock (MB)
in the reference picture. This V4L2 control macro is used to set vertical search range for
motion estimation module in video encoder.

V4L2_CID_MPEG_VIDEO_FORCE_KEY_FRAME (button) Force a key frame for the next queued
buffer. Applicable to encoders. This is a general, codec-agnostic keyframe control.

V4L2_CID_MPEG_VIDEO_H264_CPB_SIZE (integer) The Coded Picture Buffer size in kilobytes,
it is used as a limitation of frame skip. The CPB is defined in the H264 standard as a mean
to verify that the produced stream will be successfully decoded. Applicable to the H264
encoder.

V4L2_CID_MPEG_VIDEO_H264_I_PERIOD (integer) Period between I-frames in the open GOP
for H264. In case of an open GOP this is the period between two I-frames. The period be-
tween IDR (Instantaneous Decoding Refresh) frames is taken from the GOP_SIZE control.
An IDR frame, which stands for Instantaneous Decoding Refresh is an I-frame after which
no prior frames are referenced. This means that a stream can be restarted from an IDR
frame without the need to store or decode any previous frames. Applicable to the H264
encoder.

V4L2_CID_MPEG_VIDEO_HEADER_MODE (enum)

enum v4l2_mpeg_video_header_mode - Determines whether the header is returned as the
first buffer or is it returned together with the first frame. Applicable to encoders. Possible
values are:

V4L2_MPEG_VIDEO_HEADER_MODE_SEPARATE The stream header is returned sepa-
rately in the first buffer.

V4L2_MPEG_VIDEO_HEADER_MODE_JOINED_WITH_1ST_FRAME The stream header is returned together
with the first encoded frame.

V4L2_CID_MPEG_VIDEO_REPEAT_SEQ_HEADER (boolean) Repeat the video sequence headers.
Repeating these headers makes random access to the video stream easier. Applicable
to the MPEG1, 2 and 4 encoder.

V4L2_CID_MPEG_VIDEO_DECODER_MPEG4_DEBLOCK_FILTER (boolean) Enabled the deblocking
post processing filter for MPEG4 decoder. Applicable to the MPEG4 decoder.

V4L2_CID_MPEG_VIDEO_MPEG4_VOP_TIME_RES (integer) vop_time_increment_resolution
value for MPEG4. Applicable to the MPEG4 encoder.

V4L2_CID_MPEG_VIDEO_MPEG4_VOP_TIME_INC (integer) vop_time_increment value for
MPEG4. Applicable to the MPEG4 encoder.

V4L2_CID_MPEG_VIDEO_H264_SEI_FRAME_PACKING (boolean) Enable generation of frame
packing supplemental enhancement information in the encoded bitstream. The frame
packing SEI message contains the arrangement of L and R planes for 3D viewing.
Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_SEI_FP_CURRENT_FRAME_0 (boolean) Sets current frame as
frame0 in frame packing SEI. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE (enum)

3.2. Part I - Video for Linux API 761

Linux Media Documentation

enum v4l2_mpeg_video_h264_sei_fp_arrangement_type - Frame packing arrangement
type for H264 SEI. Applicable to the H264 encoder. Possible values are:

V4L2_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE_CHEKERBOARD Pixels are alternatively from L
and R.

V4L2_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE_COLUMN L and R are interlaced by col-
umn.

V4L2_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE_ROW L and R are interlaced by row.
V4L2_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE_SIDE_BY_SIDE L is on the left, R on the right.
V4L2_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE_TOP_BOTTOM L is on top, R on bottom.
V4L2_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE_TEMPORAL One view per frame.

V4L2_CID_MPEG_VIDEO_H264_FMO (boolean) Enables flexible macroblock ordering in the en-
coded bitstream. It is a technique used for restructuring the ordering of macroblocks in
pictures. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_FMO_MAP_TYPE (enum)

enum v4l2_mpeg_video_h264_fmo_map_type - When using FMO, the map type divides the
image in different scan patterns of macroblocks. Applicable to the H264 encoder. Possible
values are:

V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_INTERLEAVED_SLICES Slices are interleaved
one after other with mac-
roblocks in run length
order.

V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_SCATTERED_SLICES Scatters the macroblocks
based on a mathematical
function known to both en-
coder and decoder.

V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_FOREGROUND_WITH_LEFT_OVER Macroblocks arranged
in rectangular areas or
regions of interest.

V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_BOX_OUT Slice groups grow in a cyclic
way from centre to out-
wards.

V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_RASTER_SCAN Slice groups grow in raster
scan pattern from left to
right.

V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_WIPE_SCAN Slice groups grow in wipe
scan pattern from top to bot-
tom.

V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_EXPLICIT User defined map type.

V4L2_CID_MPEG_VIDEO_H264_FMO_SLICE_GROUP (integer) Number of slice groups in FMO.
Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_FMO_CHANGE_DIRECTION (enum)

enum v4l2_mpeg_video_h264_fmo_change_dir - Specifies a direction of the slice group
change for raster and wipe maps. Applicable to the H264 encoder. Possible values are:

V4L2_MPEG_VIDEO_H264_FMO_CHANGE_DIR_RIGHT Raster scan or wipe right.
V4L2_MPEG_VIDEO_H264_FMO_CHANGE_DIR_LEFT Reverse raster scan or wipe left.

V4L2_CID_MPEG_VIDEO_H264_FMO_CHANGE_RATE (integer) Specifies the size of the first slice

762 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

group for raster and wipe map. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_FMO_RUN_LENGTH (integer) Specifies the number of consecutive
macroblocks for the interleaved map. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_ASO (boolean) Enables arbitrary slice ordering in encoded bit-
stream. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_ASO_SLICE_ORDER (integer) Specifies the slice order in ASO.
Applicable to the H264 encoder. The supplied 32-bit integer is interpreted as follows (bit
0 = least significant bit):

Bit 0:15 Slice ID
Bit 16:32 Slice position or order

V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING (boolean) Enables H264 hierarchical
coding. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING_TYPE (enum)

enum v4l2_mpeg_video_h264_hierarchical_coding_type - Specifies the hierarchical cod-
ing type. Applicable to the H264 encoder. Possible values are:

V4L2_MPEG_VIDEO_H264_HIERARCHICAL_CODING_B Hierarchical B coding.
V4L2_MPEG_VIDEO_H264_HIERARCHICAL_CODING_P Hierarchical P coding.

V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING_LAYER (integer) Specifies the number
of hierarchical coding layers. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING_LAYER_QP (integer) Specifies a user
defined QP for each layer. Applicable to the H264 encoder. The supplied 32-bit integer is
interpreted as follows (bit 0 = least significant bit):

Bit 0:15 QP value
Bit 16:32 Layer number

V4L2_CID_MPEG_VIDEO_H264_HIER_CODING_L0_BR (integer) Indicates bit rate (bps) for hier-
archical coding layer 0 for H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_HIER_CODING_L1_BR (integer) Indicates bit rate (bps) for hier-
archical coding layer 1 for H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_HIER_CODING_L2_BR (integer) Indicates bit rate (bps) for hier-
archical coding layer 2 for H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_HIER_CODING_L3_BR (integer) Indicates bit rate (bps) for hier-
archical coding layer 3 for H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_HIER_CODING_L4_BR (integer) Indicates bit rate (bps) for hier-
archical coding layer 4 for H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_HIER_CODING_L5_BR (integer) Indicates bit rate (bps) for hier-
archical coding layer 5 for H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_HIER_CODING_L6_BR (integer) Indicates bit rate (bps) for hier-
archical coding layer 6 for H264 encoder.

3.2. Part I - Video for Linux API 763

Linux Media Documentation

V4L2_CID_FWHT_I_FRAME_QP (integer) Quantization parameter for an I frame for FWHT. Valid
range: from 1 to 31.

V4L2_CID_FWHT_P_FRAME_QP (integer) Quantization parameter for a P frame for FWHT. Valid
range: from 1 to 31.

MFC 5.1 MPEG Controls

The following MPEG class controls deal with MPEG decoding and encoding settings that are
specific to the Multi Format Codec 5.1 device present in the S5P family of SoCs by Samsung.

MFC 5.1 Control IDs

V4L2_CID_MPEG_MFC51_VIDEO_DECODER_H264_DISPLAY_DELAY_ENABLE (boolean) If the dis-
play delay is enabled then the decoder is forced to return a CAPTURE buffer (decoded
frame) after processing a certain number of OUTPUT buffers. The delay can be set through
V4L2_CID_MPEG_MFC51_VIDEO_DECODER_H264_DISPLAY_DELAY. This feature can be used
for example for generating thumbnails of videos. Applicable to the H264 decoder.

Note: This control is deprecated. Use the standard
V4L2_CID_MPEG_VIDEO_DEC_DISPLAY_DELAY_ENABLE control instead.

V4L2_CID_MPEG_MFC51_VIDEO_DECODER_H264_DISPLAY_DELAY (integer) Display delay value
for H264 decoder. The decoder is forced to return a decoded frame after the set ‘display
delay’ number of frames. If this number is low it may result in frames returned out of
display order, in addition the hardware may still be using the returned buffer as a reference
picture for subsequent frames.

Note: This control is deprecated. Use the standard
V4L2_CID_MPEG_VIDEO_DEC_DISPLAY_DELAY control instead.

V4L2_CID_MPEG_MFC51_VIDEO_H264_NUM_REF_PIC_FOR_P (integer) The number of reference
pictures used for encoding a P picture. Applicable to the H264 encoder.

V4L2_CID_MPEG_MFC51_VIDEO_PADDING (boolean) Padding enable in the encoder - use a color
instead of repeating border pixels. Applicable to encoders.

V4L2_CID_MPEG_MFC51_VIDEO_PADDING_YUV (integer) Padding color in the encoder. Appli-
cable to encoders. The supplied 32-bit integer is interpreted as follows (bit 0 = least
significant bit):

Bit 0:7 V chrominance information
Bit 8:15 U chrominance information
Bit 16:23 Y luminance information
Bit 24:31 Must be zero.

V4L2_CID_MPEG_MFC51_VIDEO_RC_REACTION_COEFF (integer) Reaction coefficient for MFC
rate control. Applicable to encoders.

764 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Note:
1. Valid only when the frame level RC is enabled.

2. For tight CBR, this field must be small (ex. 2 ~ 10). For VBR, this field must be large
(ex. 100 ~ 1000).

3. It is not recommended to use the greater number than FRAME_RATE * (10^9 /
BIT_RATE).

V4L2_CID_MPEG_MFC51_VIDEO_H264_ADAPTIVE_RC_DARK (boolean) Adaptive rate control for
dark region. Valid only when H.264 and macroblock level RC is enabled
(V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE). Applicable to the H264 encoder.

V4L2_CID_MPEG_MFC51_VIDEO_H264_ADAPTIVE_RC_SMOOTH (boolean) Adaptive rate control
for smooth region. Valid only when H.264 and macroblock level RC is enabled
(V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE). Applicable to the H264 encoder.

V4L2_CID_MPEG_MFC51_VIDEO_H264_ADAPTIVE_RC_STATIC (boolean) Adaptive rate control
for static region. Valid only when H.264 and macroblock level RC is enabled
(V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE). Applicable to the H264 encoder.

V4L2_CID_MPEG_MFC51_VIDEO_H264_ADAPTIVE_RC_ACTIVITY (boolean) Adaptive rate control
for activity region. Valid only when H.264 and macroblock level RC is enabled
(V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE). Applicable to the H264 encoder.

V4L2_CID_MPEG_MFC51_VIDEO_FRAME_SKIP_MODE (enum)

Note: This control is deprecated. Use the standard
V4L2_CID_MPEG_VIDEO_FRAME_SKIP_MODE control instead.

enum v4l2_mpeg_mfc51_video_frame_skip_mode - Indicates in what conditions the en-
coder should skip frames. If encoding a frame would cause the encoded stream to be
larger then a chosen data limit then the frame will be skipped. Possible values are:

V4L2_MPEG_MFC51_VIDEO_FRAME_SKIP_MODE_DISABLED Frame skip mode is disabled.
V4L2_MPEG_MFC51_VIDEO_FRAME_SKIP_MODE_LEVEL_LIMITFrame skip mode enabled and buffer limit is

set by the chosen level and is defined by the
standard.

V4L2_MPEG_MFC51_VIDEO_FRAME_SKIP_MODE_BUF_LIMITFrame skip mode enabled and buffer limit is
set by the VBV (MPEG1/2/4) or CPB (H264)
buffer size control.

V4L2_CID_MPEG_MFC51_VIDEO_RC_FIXED_TARGET_BIT (integer) Enable rate-control with
fixed target bit. If this setting is enabled, then the rate control logic of the encoder will
calculate the average bitrate for a GOP and keep it below or equal the set bitrate target.
Otherwise the rate control logic calculates the overall average bitrate for the stream and
keeps it below or equal to the set bitrate. In the first case the average bitrate for the
whole stream will be smaller then the set bitrate. This is caused because the average
is calculated for smaller number of frames, on the other hand enabling this setting will
ensure that the stream will meet tight bandwidth constraints. Applicable to encoders.

V4L2_CID_MPEG_MFC51_VIDEO_FORCE_FRAME_TYPE (enum)

3.2. Part I - Video for Linux API 765

Linux Media Documentation

enum v4l2_mpeg_mfc51_video_force_frame_type - Force a frame type for the next queued
buffer. Applicable to encoders. Possible values are:

V4L2_MPEG_MFC51_FORCE_FRAME_TYPE_DISABLED Forcing a specific frame type disabled.
V4L2_MPEG_MFC51_FORCE_FRAME_TYPE_I_FRAME Force an I-frame.
V4L2_MPEG_MFC51_FORCE_FRAME_TYPE_NOT_CODED Force a non-coded frame.

CX2341x MPEG Controls

The following MPEG class controls deal with MPEG encoding settings that are specific to the
Conexant CX23415 and CX23416 MPEG encoding chips.

CX2341x Control IDs

V4L2_CID_MPEG_CX2341X_VIDEO_SPATIAL_FILTER_MODE (enum)

enum v4l2_mpeg_cx2341x_video_spatial_filter_mode - Sets the Spatial Filter mode (de-
fault MANUAL). Possible values are:

V4L2_MPEG_CX2341X_VIDEO_SPATIAL_FILTER_MODE_MANUAL Choose the filter manually
V4L2_MPEG_CX2341X_VIDEO_SPATIAL_FILTER_MODE_AUTO Choose the filter automatically

V4L2_CID_MPEG_CX2341X_VIDEO_SPATIAL_FILTER (integer (0-15)) The setting for the Spa-
tial Filter. 0 = off, 15 = maximum. (Default is 0.)

V4L2_CID_MPEG_CX2341X_VIDEO_LUMA_SPATIAL_FILTER_TYPE (enum)

enum v4l2_mpeg_cx2341x_video_luma_spatial_filter_type - Select the algorithm to use for
the Luma Spatial Filter (default 1D_HOR). Possible values:

V4L2_MPEG_CX2341X_VIDEO_LUMA_SPATIAL_FILTER_TYPE_OFF No filter
V4L2_MPEG_CX2341X_VIDEO_LUMA_SPATIAL_FILTER_TYPE_1D_HOR One-dimensional horizontal
V4L2_MPEG_CX2341X_VIDEO_LUMA_SPATIAL_FILTER_TYPE_1D_VERT One-dimensional vertical
V4L2_MPEG_CX2341X_VIDEO_LUMA_SPATIAL_FILTER_TYPE_2D_HV_SEPARABLE Two-dimensional separable
V4L2_MPEG_CX2341X_VIDEO_LUMA_SPATIAL_FILTER_TYPE_2D_SYM_NON_SEPARABLE Two-dimensional symmetri-

cal non-separable

V4L2_CID_MPEG_CX2341X_VIDEO_CHROMA_SPATIAL_FILTER_TYPE (enum)

enum v4l2_mpeg_cx2341x_video_chroma_spatial_filter_type - Select the algorithm for
the Chroma Spatial Filter (default 1D_HOR). Possible values are:

V4L2_MPEG_CX2341X_VIDEO_CHROMA_SPATIAL_FILTER_TYPE_OFF No filter
V4L2_MPEG_CX2341X_VIDEO_CHROMA_SPATIAL_FILTER_TYPE_1D_HOR One-dimensional horizontal

V4L2_CID_MPEG_CX2341X_VIDEO_TEMPORAL_FILTER_MODE (enum)

enum v4l2_mpeg_cx2341x_video_temporal_filter_mode - Sets the Temporal Filter mode
(default MANUAL). Possible values are:

V4L2_MPEG_CX2341X_VIDEO_TEMPORAL_FILTER_MODE_MANUAL Choose the filter manually
V4L2_MPEG_CX2341X_VIDEO_TEMPORAL_FILTER_MODE_AUTO Choose the filter automatically

766 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_CID_MPEG_CX2341X_VIDEO_TEMPORAL_FILTER (integer (0-31)) The setting for the
Temporal Filter. 0 = off, 31 = maximum. (Default is 8 for full-scale capturing and 0 for
scaled capturing.)

V4L2_CID_MPEG_CX2341X_VIDEO_MEDIAN_FILTER_TYPE (enum)

enum v4l2_mpeg_cx2341x_video_median_filter_type - Median Filter Type (default OFF).
Possible values are:

V4L2_MPEG_CX2341X_VIDEO_MEDIAN_FILTER_TYPE_OFF No filter
V4L2_MPEG_CX2341X_VIDEO_MEDIAN_FILTER_TYPE_HOR Horizontal filter
V4L2_MPEG_CX2341X_VIDEO_MEDIAN_FILTER_TYPE_VERT Vertical filter
V4L2_MPEG_CX2341X_VIDEO_MEDIAN_FILTER_TYPE_HOR_VERT Horizontal and vertical filter
V4L2_MPEG_CX2341X_VIDEO_MEDIAN_FILTER_TYPE_DIAG Diagonal filter

V4L2_CID_MPEG_CX2341X_VIDEO_LUMA_MEDIAN_FILTER_BOTTOM (integer (0-255))
Threshold above which the luminance median filter is enabled (default 0)

V4L2_CID_MPEG_CX2341X_VIDEO_LUMA_MEDIAN_FILTER_TOP (integer (0-255)) Threshold
below which the luminance median filter is enabled (default 255)

V4L2_CID_MPEG_CX2341X_VIDEO_CHROMA_MEDIAN_FILTER_BOTTOM (integer (0-255))
Threshold above which the chroma median filter is enabled (default 0)

V4L2_CID_MPEG_CX2341X_VIDEO_CHROMA_MEDIAN_FILTER_TOP (integer (0-255)) Threshold
below which the chroma median filter is enabled (default 255)

V4L2_CID_MPEG_CX2341X_STREAM_INSERT_NAV_PACKETS (boolean) The CX2341X MPEG en-
coder can insert one empty MPEG-2 PES packet into the stream between every four
video frames. The packet size is 2048 bytes, including the packet_start_code_prefix and
stream_id fields. The stream_id is 0xBF (private stream 2). The payload consists of 0x00
bytes, to be filled in by the application. 0 = do not insert, 1 = insert packets.

VPX Control Reference

The VPX controls include controls for encoding parameters of VPx video codec.

VPX Control IDs

V4L2_CID_MPEG_VIDEO_VPX_NUM_PARTITIONS (enum)

enum v4l2_vp8_num_partitions - The number of token partitions to use in VP8 encoder. Pos-
sible values are:

V4L2_CID_MPEG_VIDEO_VPX_1_PARTITION 1 coefficient partition
V4L2_CID_MPEG_VIDEO_VPX_2_PARTITIONS 2 coefficient partitions
V4L2_CID_MPEG_VIDEO_VPX_4_PARTITIONS 4 coefficient partitions
V4L2_CID_MPEG_VIDEO_VPX_8_PARTITIONS 8 coefficient partitions

V4L2_CID_MPEG_VIDEO_VPX_IMD_DISABLE_4X4 (boolean) Setting this prevents intra 4x4
mode in the intra mode decision.

V4L2_CID_MPEG_VIDEO_VPX_NUM_REF_FRAMES (enum)

3.2. Part I - Video for Linux API 767

Linux Media Documentation

enum v4l2_vp8_num_ref_frames - The number of reference pictures for encoding P frames.
Possible values are:

V4L2_CID_MPEG_VIDEO_VPX_1_REF_FRAME Last encoded frame will be searched
V4L2_CID_MPEG_VIDEO_VPX_2_REF_FRAME Two frames will be searched among the

last encoded frame, the golden frame and
the alternate reference (altref) frame. The
encoder implementation will decide which
two are chosen.

V4L2_CID_MPEG_VIDEO_VPX_3_REF_FRAME The last encoded frame, the golden frame
and the altref frame will be searched.

V4L2_CID_MPEG_VIDEO_VPX_FILTER_LEVEL (integer) Indicates the loop filter level. The ad-
justment of the loop filter level is done via a delta value against a baseline loop filter value.

V4L2_CID_MPEG_VIDEO_VPX_FILTER_SHARPNESS (integer) This parameter affects the loop fil-
ter. Anything above zero weakens the deblocking effect on the loop filter.

V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_REF_PERIOD (integer) Sets the refresh period for
the golden frame. The period is defined in number of frames. For a value of ‘n’, every
nth frame starting from the first key frame will be taken as a golden frame. For eg. for
encoding sequence of 0, 1, 2, 3, 4, 5, 6, 7 where the golden frame refresh period is set
as 4, the frames 0, 4, 8 etc will be taken as the golden frames as frame 0 is always a key
frame.

V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_SEL (enum)

enum v4l2_vp8_golden_frame_sel - Selects the golden frame for encoding. Possible values
are:

V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_USE_PREV Use the (n-2)th frame as a golden frame, current frame index
being ‘n’.

V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_USE_REF_PERIOD Use the previous specific frame indicated by
V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_REF_PERIOD as
a golden frame.

V4L2_CID_MPEG_VIDEO_VPX_MIN_QP (integer) Minimum quantization parameter for VP8.

V4L2_CID_MPEG_VIDEO_VPX_MAX_QP (integer) Maximum quantization parameter for VP8.

V4L2_CID_MPEG_VIDEO_VPX_I_FRAME_QP (integer) Quantization parameter for an I frame for
VP8.

V4L2_CID_MPEG_VIDEO_VPX_P_FRAME_QP (integer) Quantization parameter for a P frame for
VP8.

V4L2_CID_MPEG_VIDEO_VP8_PROFILE (enum)

enum v4l2_mpeg_video_vp8_profile - This control allows selecting the profile for VP8 en-
coder. This is also used to enumerate supported profiles by VP8 encoder or decoder.
Possible values are:

V4L2_MPEG_VIDEO_VP8_PROFILE_0 Profile 0
V4L2_MPEG_VIDEO_VP8_PROFILE_1 Profile 1
V4L2_MPEG_VIDEO_VP8_PROFILE_2 Profile 2
V4L2_MPEG_VIDEO_VP8_PROFILE_3 Profile 3

V4L2_CID_MPEG_VIDEO_VP9_PROFILE (enum)

768 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

enum v4l2_mpeg_video_vp9_profile - This control allows selecting the profile for VP9 en-
coder. This is also used to enumerate supported profiles by VP9 encoder or decoder.
Possible values are:

V4L2_MPEG_VIDEO_VP9_PROFILE_0 Profile 0
V4L2_MPEG_VIDEO_VP9_PROFILE_1 Profile 1
V4L2_MPEG_VIDEO_VP9_PROFILE_2 Profile 2
V4L2_MPEG_VIDEO_VP9_PROFILE_3 Profile 3

V4L2_CID_MPEG_VIDEO_VP9_LEVEL (enum)

enum v4l2_mpeg_video_vp9_level - This control allows selecting the level for VP9 encoder.
This is also used to enumerate supported levels by VP9 encoder or decoder. More infor-
mation can be found at webmproject. Possible values are:

V4L2_MPEG_VIDEO_VP9_LEVEL_1_0 Level 1
V4L2_MPEG_VIDEO_VP9_LEVEL_1_1 Level 1.1
V4L2_MPEG_VIDEO_VP9_LEVEL_2_0 Level 2
V4L2_MPEG_VIDEO_VP9_LEVEL_2_1 Level 2.1
V4L2_MPEG_VIDEO_VP9_LEVEL_3_0 Level 3
V4L2_MPEG_VIDEO_VP9_LEVEL_3_1 Level 3.1
V4L2_MPEG_VIDEO_VP9_LEVEL_4_0 Level 4
V4L2_MPEG_VIDEO_VP9_LEVEL_4_1 Level 4.1
V4L2_MPEG_VIDEO_VP9_LEVEL_5_0 Level 5
V4L2_MPEG_VIDEO_VP9_LEVEL_5_1 Level 5.1
V4L2_MPEG_VIDEO_VP9_LEVEL_5_2 Level 5.2
V4L2_MPEG_VIDEO_VP9_LEVEL_6_0 Level 6
V4L2_MPEG_VIDEO_VP9_LEVEL_6_1 Level 6.1
V4L2_MPEG_VIDEO_VP9_LEVEL_6_2 Level 6.2

High Efficiency Video Coding (HEVC/H.265) Control Reference

The HEVC/H.265 controls include controls for encoding parameters of HEVC/H.265 video
codec.

HEVC/H.265 Control IDs

V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP (integer) Minimum quantization parameter for HEVC.
Valid range: from 0 to 51 for 8 bit and from 0 to 63 for 10 bit.

V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP (integer) Maximum quantization parameter for HEVC.
Valid range: from 0 to 51 for 8 bit and from 0 to 63 for 10 bit.

V4L2_CID_MPEG_VIDEO_HEVC_I_FRAME_QP (integer) Quantization parameter for an
I frame for HEVC. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_P_FRAME_QP (integer) Quantization parameter for a
P frame for HEVC. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

3.2. Part I - Video for Linux API 769

https://www.webmproject.org/vp9/levels/

Linux Media Documentation

V4L2_CID_MPEG_VIDEO_HEVC_B_FRAME_QP (integer) Quantization parameter for a
B frame for HEVC. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_I_FRAME_MIN_QP (integer) Minimum quantization parameter
for the HEVC I frame to limit I frame quality to a range. Valid range: from 0 to 51 for
8 bit and from 0 to 63 for 10 bit. If V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP is also set,
the quantization parameter should be chosen to meet both requirements.

V4L2_CID_MPEG_VIDEO_HEVC_I_FRAME_MAX_QP (integer) Maximum quantization parameter
for the HEVC I frame to limit I frame quality to a range. Valid range: from 0 to 51 for
8 bit and from 0 to 63 for 10 bit. If V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP is also set,
the quantization parameter should be chosen to meet both requirements.

V4L2_CID_MPEG_VIDEO_HEVC_P_FRAME_MIN_QP (integer) Minimum quantization parameter
for the HEVC P frame to limit P frame quality to a range. Valid range: from 0 to 51 for 8
bit and from 0 to 63 for 10 bit. If V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP is also set, the
quantization parameter should be chosen to meet both requirements.

V4L2_CID_MPEG_VIDEO_HEVC_P_FRAME_MAX_QP (integer) Maximum quantization parameter
for the HEVC P frame to limit P frame quality to a range. Valid range: from 0 to 51 for 8
bit and from 0 to 63 for 10 bit. If V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP is also set, the
quantization parameter should be chosen to meet both requirements.

V4L2_CID_MPEG_VIDEO_HEVC_B_FRAME_MIN_QP (integer) Minimum quantization parameter
for the HEVC B frame to limit B frame quality to a range. Valid range: from 0 to 51
for 8 bit and from 0 to 63 for 10 bit. If V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP is also
set, the quantization parameter should be chosen to meet both requirements.

V4L2_CID_MPEG_VIDEO_HEVC_B_FRAME_MAX_QP (integer) Maximum quantization parameter
for the HEVC B frame to limit B frame quality to a range. Valid range: from 0 to 51
for 8 bit and from 0 to 63 for 10 bit. If V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP is also
set, the quantization parameter should be chosen to meet both requirements.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_QP (boolean) HIERARCHICAL_QP allows the host to spec-
ify the quantization parameter values for each temporal layer through HIERARCHI-
CAL_QP_LAYER. This is valid only if HIERARCHICAL_CODING_LAYER is greater than 1.
Setting the control value to 1 enables setting of the QP values for the layers.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_TYPE (enum)

enum v4l2_mpeg_video_hevc_hier_coding_type - Selects the hierarchical coding type for
encoding. Possible values are:

V4L2_MPEG_VIDEO_HEVC_HIERARCHICAL_CODING_B Use the B frame for hierarchical coding.
V4L2_MPEG_VIDEO_HEVC_HIERARCHICAL_CODING_P Use the P frame for hierarchical coding.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_LAYER (integer) Selects the hierarchical coding
layer. In normal encoding (non-hierarchial coding), it should be zero. Possible values
are [0, 6]. 0 indicates HIERARCHICAL CODING LAYER 0, 1 indicates HIERARCHICAL
CODING LAYER 1 and so on.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L0_QP (integer) Indicates quantization parame-
ter for hierarchical coding layer 0. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

770 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L1_QP (integer) Indicates quantization parame-
ter for hierarchical coding layer 1. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L2_QP (integer) Indicates quantization parame-
ter for hierarchical coding layer 2. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L3_QP (integer) Indicates quantization parame-
ter for hierarchical coding layer 3. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L4_QP (integer) Indicates quantization parame-
ter for hierarchical coding layer 4. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L5_QP (integer) Indicates quantization parame-
ter for hierarchical coding layer 5. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L6_QP (integer) Indicates quantization parame-
ter for hierarchical coding layer 6. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_PROFILE (enum)

enum v4l2_mpeg_video_hevc_profile - Select the desired profile for HEVC encoder.

V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN Main profile.
V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN_STILL_PICTURE Main still picture profile.
V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN_10 Main 10 profile.

V4L2_CID_MPEG_VIDEO_HEVC_LEVEL (enum)

enum v4l2_mpeg_video_hevc_level - Selects the desired level for HEVC encoder.

V4L2_MPEG_VIDEO_HEVC_LEVEL_1 Level 1.0
V4L2_MPEG_VIDEO_HEVC_LEVEL_2 Level 2.0
V4L2_MPEG_VIDEO_HEVC_LEVEL_2_1 Level 2.1
V4L2_MPEG_VIDEO_HEVC_LEVEL_3 Level 3.0
V4L2_MPEG_VIDEO_HEVC_LEVEL_3_1 Level 3.1
V4L2_MPEG_VIDEO_HEVC_LEVEL_4 Level 4.0
V4L2_MPEG_VIDEO_HEVC_LEVEL_4_1 Level 4.1
V4L2_MPEG_VIDEO_HEVC_LEVEL_5 Level 5.0
V4L2_MPEG_VIDEO_HEVC_LEVEL_5_1 Level 5.1
V4L2_MPEG_VIDEO_HEVC_LEVEL_5_2 Level 5.2
V4L2_MPEG_VIDEO_HEVC_LEVEL_6 Level 6.0
V4L2_MPEG_VIDEO_HEVC_LEVEL_6_1 Level 6.1
V4L2_MPEG_VIDEO_HEVC_LEVEL_6_2 Level 6.2

V4L2_CID_MPEG_VIDEO_HEVC_FRAME_RATE_RESOLUTION (integer) Indicates the number of
evenly spaced subintervals, called ticks, within one second. This is a 16 bit unsigned
integer and has a maximum value up to 0xffff and a minimum value of 1.

V4L2_CID_MPEG_VIDEO_HEVC_TIER (enum)

3.2. Part I - Video for Linux API 771

Linux Media Documentation

enum v4l2_mpeg_video_hevc_tier - TIER_FLAG specifies tiers information of the HEVC en-
coded picture. Tier were made to deal with applications that differ in terms of maximum
bit rate. Setting the flag to 0 selects HEVC tier as Main tier and setting this flag to 1
indicates High tier. High tier is for applications requiring high bit rates.

V4L2_MPEG_VIDEO_HEVC_TIER_MAIN Main tier.
V4L2_MPEG_VIDEO_HEVC_TIER_HIGH High tier.

V4L2_CID_MPEG_VIDEO_HEVC_MAX_PARTITION_DEPTH (integer) Selects HEVC maximum cod-
ing unit depth.

V4L2_CID_MPEG_VIDEO_HEVC_LOOP_FILTER_MODE (enum)

enum v4l2_mpeg_video_hevc_loop_filter_mode - Loop filter mode for HEVC encoder. Pos-
sible values are:

V4L2_MPEG_VIDEO_HEVC_LOOP_FILTER_MODE_DISABLED Loop filter is disabled.
V4L2_MPEG_VIDEO_HEVC_LOOP_FILTER_MODE_ENABLED Loop filter is enabled.
V4L2_MPEG_VIDEO_HEVC_LOOP_FILTER_MODE_DISABLED_AT_SLICE_BOUNDARY Loop filter is disabled at the slice

boundary.

V4L2_CID_MPEG_VIDEO_HEVC_LF_BETA_OFFSET_DIV2 (integer) Selects HEVC loop filter beta
offset. The valid range is [-6, +6].

V4L2_CID_MPEG_VIDEO_HEVC_LF_TC_OFFSET_DIV2 (integer) Selects HEVC loop filter tc off-
set. The valid range is [-6, +6].

V4L2_CID_MPEG_VIDEO_HEVC_REFRESH_TYPE (enum)

enum v4l2_mpeg_video_hevc_hier_refresh_type - Selects refresh type for HEVC encoder.
Host has to specify the period into V4L2_CID_MPEG_VIDEO_HEVC_REFRESH_PERIOD.

V4L2_MPEG_VIDEO_HEVC_REFRESH_NONE Use the B frame for hierarchical coding.
V4L2_MPEG_VIDEO_HEVC_REFRESH_CRA Use CRA (Clean Random Access Unit) picture encoding.
V4L2_MPEG_VIDEO_HEVC_REFRESH_IDR Use IDR (Instantaneous Decoding Refresh) picture encoding.

V4L2_CID_MPEG_VIDEO_HEVC_REFRESH_PERIOD (integer) Selects the refresh period for HEVC
encoder. This specifies the number of I pictures between two CRA/IDR pictures. This is
valid only if REFRESH_TYPE is not 0.

V4L2_CID_MPEG_VIDEO_HEVC_LOSSLESS_CU (boolean) Indicates HEVC lossless encoding. Set-
ting it to 0 disables lossless encoding. Setting it to 1 enables lossless encoding.

V4L2_CID_MPEG_VIDEO_HEVC_CONST_INTRA_PRED (boolean) Indicates constant intra predic-
tion for HEVC encoder. Specifies the constrained intra prediction in which intra largest
coding unit (LCU) prediction is performed by using residual data and decoded samples of
neighboring intra LCU only. Setting the value to 1 enables constant intra prediction and
setting the value to 0 disables constant intra prediction.

V4L2_CID_MPEG_VIDEO_HEVC_WAVEFRONT (boolean) Indicates wavefront parallel processing
for HEVC encoder. Setting it to 0 disables the feature and setting it to 1 enables the
wavefront parallel processing.

V4L2_CID_MPEG_VIDEO_HEVC_GENERAL_PB (boolean) Setting the value to 1 enables combina-
tion of P and B frame for HEVC encoder.

V4L2_CID_MPEG_VIDEO_HEVC_TEMPORAL_ID (boolean) Indicates temporal identifier for HEVC
encoder which is enabled by setting the value to 1.

772 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_CID_MPEG_VIDEO_HEVC_STRONG_SMOOTHING (boolean) Indicates bi-linear interpolation
is conditionally used in the intra prediction filtering process in the CVS when set to 1.
Indicates bi-linear interpolation is not used in the CVS when set to 0.

V4L2_CID_MPEG_VIDEO_HEVC_MAX_NUM_MERGE_MV_MINUS1 (integer) Indicates maximum
number of merge candidate motion vectors. Values are from 0 to 4.

V4L2_CID_MPEG_VIDEO_HEVC_TMV_PREDICTION (boolean) Indicates temporal motion vector
prediction for HEVC encoder. Setting it to 1 enables the prediction. Setting it to 0 disables
the prediction.

V4L2_CID_MPEG_VIDEO_HEVC_WITHOUT_STARTCODE (boolean) Specifies if HEVC
generates a stream with a size of the length field instead of start
code pattern. The size of the length field is configurable through the
V4L2_CID_MPEG_VIDEO_HEVC_SIZE_OF_LENGTH_FIELD control. Setting the value
to 0 disables encoding without startcode pattern. Setting the value to 1 will enables
encoding without startcode pattern.

V4L2_CID_MPEG_VIDEO_HEVC_SIZE_OF_LENGTH_FIELD (enum)

enum v4l2_mpeg_video_hevc_size_of_length_field - Indicates the size of length field. This
is valid when encoding WITHOUT_STARTCODE_ENABLE is enabled.

V4L2_MPEG_VIDEO_HEVC_SIZE_0 Generate start code pattern (Normal).
V4L2_MPEG_VIDEO_HEVC_SIZE_1 Generate size of length field instead of start code pattern and length is 1.
V4L2_MPEG_VIDEO_HEVC_SIZE_2 Generate size of length field instead of start code pattern and length is 2.
V4L2_MPEG_VIDEO_HEVC_SIZE_4 Generate size of length field instead of start code pattern and length is 4.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L0_BR (integer) Indicates bit rate for hierarchi-
cal coding layer 0 for HEVC encoder.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L1_BR (integer) Indicates bit rate for hierarchi-
cal coding layer 1 for HEVC encoder.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L2_BR (integer) Indicates bit rate for hierarchi-
cal coding layer 2 for HEVC encoder.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L3_BR (integer) Indicates bit rate for hierarchi-
cal coding layer 3 for HEVC encoder.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L4_BR (integer) Indicates bit rate for hierarchi-
cal coding layer 4 for HEVC encoder.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L5_BR (integer) Indicates bit rate for hierarchi-
cal coding layer 5 for HEVC encoder.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L6_BR (integer) Indicates bit rate for hierarchi-
cal coding layer 6 for HEVC encoder.

V4L2_CID_MPEG_VIDEO_REF_NUMBER_FOR_PFRAMES (integer) Selects number of P reference
pictures required for HEVC encoder. P-Frame can use 1 or 2 frames for reference.

V4L2_CID_MPEG_VIDEO_PREPEND_SPSPPS_TO_IDR (integer) Indicates whether to generate
SPS and PPS at every IDR. Setting it to 0 disables generating SPS and PPS at every IDR.
Setting it to one enables generating SPS and PPS at every IDR.

V4L2_CID_MPEG_VIDEO_HEVC_SPS (struct) Specifies the Sequence Parameter Set fields (as
extracted from the bitstream) for the associated HEVC slice data. These bitstream pa-

3.2. Part I - Video for Linux API 773

Linux Media Documentation

rameters are defined according to ITU H.265/HEVC. They are described in section 7.4.3.2
“Sequence parameter set RBSP semantics” of the specification.

v4l2_ctrl_hevc_sps

Table 3: struct v4l2_ctrl_hevc_sps
__u16 pic_width_in_luma_samples
__u16 pic_height_in_luma_samples
__u8 bit_depth_luma_minus8
__u8 bit_depth_chroma_minus8
__u8 log2_max_pic_order_cnt_lsb_minus4
__u8 sps_max_dec_pic_buffering_minus1
__u8 sps_max_num_reorder_pics
__u8 sps_max_latency_increase_plus1
__u8 log2_min_luma_coding_block_size_minus3
__u8 log2_diff_max_min_luma_coding_block_size
__u8 log2_min_luma_transform_block_size_minus2
__u8 log2_diff_max_min_luma_transform_block_size
__u8 max_transform_hierarchy_depth_inter
__u8 max_transform_hierarchy_depth_intra
__u8 pcm_sample_bit_depth_luma_minus1
__u8 pcm_sample_bit_depth_chroma_minus1
__u8 log2_min_pcm_luma_coding_block_size_minus3
__u8 log2_diff_max_min_pcm_luma_coding_block_size
__u8 num_short_term_ref_pic_sets
__u8 num_long_term_ref_pics_sps
__u8 chroma_format_idc
__u8 sps_max_sub_layers_minus1
__u64 flags See Sequence Parameter Set Flags

Sequence Parameter Set Flags

V4L2_HEVC_SPS_FLAG_SEPARATE_COLOUR_PLANE 0x00000001
V4L2_HEVC_SPS_FLAG_SCALING_LIST_ENABLED 0x00000002
V4L2_HEVC_SPS_FLAG_AMP_ENABLED 0x00000004
V4L2_HEVC_SPS_FLAG_SAMPLE_ADAPTIVE_OFFSET 0x00000008
V4L2_HEVC_SPS_FLAG_PCM_ENABLED 0x00000010
V4L2_HEVC_SPS_FLAG_PCM_LOOP_FILTER_DISABLED 0x00000020
V4L2_HEVC_SPS_FLAG_LONG_TERM_REF_PICS_PRESENT 0x00000040
V4L2_HEVC_SPS_FLAG_SPS_TEMPORAL_MVP_ENABLED 0x00000080
V4L2_HEVC_SPS_FLAG_STRONG_INTRA_SMOOTHING_ENABLED 0x00000100

V4L2_CID_MPEG_VIDEO_HEVC_PPS (struct) Specifies the Picture Parameter Set fields (as ex-
tracted from the bitstream) for the associated HEVC slice data. These bitstream param-
eters are defined according to ITU H.265/HEVC. They are described in section 7.4.3.3
“Picture parameter set RBSP semantics” of the specification.

v4l2_ctrl_hevc_pps

Table 5: struct v4l2_ctrl_hevc_pps
__u8 num_extra_slice_header_bits
__u8 num_ref_idx_l0_default_active_minus1 Specifies the inferred value of

num_ref_idx_l0_active_minus1
Continued on next page

774 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 5 – continued from previous page
__u8 num_ref_idx_l1_default_active_minus1 Specifies the inferred value of

num_ref_idx_l1_active_minus1
__s8 init_qp_minus26
__u8 diff_cu_qp_delta_depth
__s8 pps_cb_qp_offset
__s8 pps_cr_qp_offset
__u8 num_tile_columns_minus1
__u8 num_tile_rows_minus1
__u8 column_width_minus1[20]
__u8 row_height_minus1[22]
__s8 pps_beta_offset_div2
__s8 pps_tc_offset_div2
__u8 log2_parallel_merge_level_minus2
__u8 padding[4] Applications and drivers must set this

to zero.
__u64 flags See Picture Parameter Set Flags

Picture Parameter Set Flags

V4L2_HEVC_PPS_FLAG_DEPENDENT_SLICE_SEGMENT_ENABLED0x00000001
V4L2_HEVC_PPS_FLAG_OUTPUT_FLAG_PRESENT0x00000002
V4L2_HEVC_PPS_FLAG_SIGN_DATA_HIDING_ENABLED0x00000004
V4L2_HEVC_PPS_FLAG_CABAC_INIT_PRESENT0x00000008
V4L2_HEVC_PPS_FLAG_CONSTRAINED_INTRA_PRED0x00000010
V4L2_HEVC_PPS_FLAG_TRANSFORM_SKIP_ENABLED0x00000020
V4L2_HEVC_PPS_FLAG_CU_QP_DELTA_ENABLED0x00000040
V4L2_HEVC_PPS_FLAG_PPS_SLICE_CHROMA_QP_OFFSETS_PRESENT0x00000080
V4L2_HEVC_PPS_FLAG_WEIGHTED_PRED0x00000100
V4L2_HEVC_PPS_FLAG_WEIGHTED_BIPRED0x00000200
V4L2_HEVC_PPS_FLAG_TRANSQUANT_BYPASS_ENABLED0x00000400
V4L2_HEVC_PPS_FLAG_TILES_ENABLED0x00000800
V4L2_HEVC_PPS_FLAG_ENTROPY_CODING_SYNC_ENABLED0x00001000
V4L2_HEVC_PPS_FLAG_LOOP_FILTER_ACROSS_TILES_ENABLED0x00002000
V4L2_HEVC_PPS_FLAG_PPS_LOOP_FILTER_ACROSS_SLICES_ENABLED0x00004000
V4L2_HEVC_PPS_FLAG_DEBLOCKING_FILTER_OVERRIDE_ENABLED0x00008000
V4L2_HEVC_PPS_FLAG_PPS_DISABLE_DEBLOCKING_FILTER0x00010000
V4L2_HEVC_PPS_FLAG_LISTS_MODIFICATION_PRESENT0x00020000
V4L2_HEVC_PPS_FLAG_SLICE_SEGMENT_HEADER_EXTENSION_PRESENT0x00040000
V4L2_HEVC_PPS_FLAG_DEBLOCKING_FILTER_CONTROL_PRESENT0x00080000 Specifies the presence of deblocking filter control

syntax elements in the PPS
V4L2_HEVC_PPS_FLAG_UNIFORM_SPACING0x00100000 Specifies that tile column boundaries and likewise

tile row boundaries are distributed uniformly across
the picture

V4L2_CID_MPEG_VIDEO_HEVC_SLICE_PARAMS (struct) Specifies various slice-specific parame-
ters, especially from the NAL unit header, general slice segment header and weighted
prediction parameter parts of the bitstream. These bitstream parameters are defined ac-
cording to ITU H.265/HEVC. They are described in section 7.4.7 “General slice segment
header semantics” of the specification.

v4l2_ctrl_hevc_slice_params

3.2. Part I - Video for Linux API 775

Linux Media Documentation

Table 6: struct v4l2_ctrl_hevc_slice_params
__u32 bit_size Size (in bits) of the current slice

data.
__u32 data_bit_offset Offset (in bits) to the video data in

the current slice data.
__u8 nal_unit_type
__u8 nuh_temporal_id_plus1
__u8 slice_type (V4L2_HEVC_SLICE_TYPE_I,

V4L2_HEVC_SLICE_TYPE_P or
V4L2_HEVC_SLICE_TYPE_B).

__u8 colour_plane_id
__u16 slice_pic_order_cnt
__u8 num_ref_idx_l0_active_minus1
__u8 num_ref_idx_l1_active_minus1
__u8 collocated_ref_idx
__u8 five_minus_max_num_merge_cand
__s8 slice_qp_delta
__s8 slice_cb_qp_offset
__s8 slice_cr_qp_offset
__s8 slice_act_y_qp_offset
__s8 slice_act_cb_qp_offset
__s8 slice_act_cr_qp_offset
__s8 slice_beta_offset_div2
__s8 slice_tc_offset_div2
__u8 pic_struct
__u32 slice_segment_addr
__u8 ref_idx_l0[V4L2_HEVC_DPB_ENTRIES_NUM_MAX] The list of L0 reference elements as

indices in the DPB.
__u8 ref_idx_l1[V4L2_HEVC_DPB_ENTRIES_NUM_MAX] The list of L1 reference elements as

indices in the DPB.
__u8 padding Applications and drivers must set

this to zero.
struct v4l2_hevc_pred_weight_table pred_weight_table The prediction weight coefficients

for inter-picture prediction.
__u64 flags See Slice Parameters Flags

Slice Parameters Flags

V4L2_HEVC_SLICE_PARAMS_FLAG_SLICE_SAO_LUMA 0x00000001
V4L2_HEVC_SLICE_PARAMS_FLAG_SLICE_SAO_CHROMA 0x00000002
V4L2_HEVC_SLICE_PARAMS_FLAG_SLICE_TEMPORAL_MVP_ENABLED 0x00000004
V4L2_HEVC_SLICE_PARAMS_FLAG_MVD_L1_ZERO 0x00000008
V4L2_HEVC_SLICE_PARAMS_FLAG_CABAC_INIT 0x00000010
V4L2_HEVC_SLICE_PARAMS_FLAG_COLLOCATED_FROM_L0 0x00000020
V4L2_HEVC_SLICE_PARAMS_FLAG_USE_INTEGER_MV 0x00000040
V4L2_HEVC_SLICE_PARAMS_FLAG_SLICE_DEBLOCKING_FILTER_DISABLED 0x00000080
V4L2_HEVC_SLICE_PARAMS_FLAG_SLICE_LOOP_FILTER_ACROSS_SLICES_ENABLED 0x00000100
V4L2_HEVC_SLICE_PARAMS_FLAG_DEPENDENT_SLICE_SEGMENT 0x00000200

V4L2_CID_MPEG_VIDEO_HEVC_SCALING_MATRIX (struct) Specifies the HEVC scaling matrix
parameters used for the scaling process for transform coefficients. These matrix and pa-
rameters are defined according to ITU H.265/HEVC. They are described in section 7.4.5
“Scaling list data semantics” of the specification.

v4l2_ctrl_hevc_scaling_matrix

Table 7: struct v4l2_ctrl_hevc_scaling_matrix
__u8 scaling_list_4x4[6][16] Scaling list is used for the scaling

process for transform coefficients.
The values on each scaling list are
expected in raster scan order.

__u8 scaling_list_8x8[6][64] Scaling list is used for the scaling
process for transform coefficients.
The values on each scaling list are
expected in raster scan order.

Continued on next page

776 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 7 – continued from previous page
__u8 scaling_list_16x16[6][64] Scaling list is used for the scaling

process for transform coefficients.
The values on each scaling list are
expected in raster scan order.

__u8 scaling_list_32x32[2][64] Scaling list is used for the scaling
process for transform coefficients.
The values on each scaling list are
expected in raster scan order.

__u8 scaling_list_dc_coef_16x16[6] Scaling list is used for the scaling
process for transform coefficients.
The values on each scaling list are
expected in raster scan order.

__u8 scaling_list_dc_coef_32x32[2] Scaling list is used for the scaling
process for transform coefficients.
The values on each scaling list are
expected in raster scan order.

v4l2_hevc_dpb_entry

Table 8: struct v4l2_hevc_dpb_entry
__u64 timestamp Timestamp of the V4L2 capture buffer to use as reference, used with

B-coded and P-coded frames. The timestamp refers to the timestamp
field in struct v4l2_buffer. Use the v4l2_timeval_to_ns() func-
tion to convert the struct timeval in struct v4l2_buffer to a __u64.

__u8 rps The reference set for the reference frame
(V4L2_HEVC_DPB_ENTRY_RPS_ST_CURR_BEFORE,
V4L2_HEVC_DPB_ENTRY_RPS_ST_CURR_AFTER or
V4L2_HEVC_DPB_ENTRY_RPS_LT_CURR)

__u8 field_pic Whether the reference is a field picture or a frame.
__u16 pic_order_cnt[2] The picture order count of the reference. Only the first element of

the array is used for frame pictures, while the first element identifies
the top field and the second the bottom field in field-coded pictures.

__u8 padding[2] Applications and drivers must set this to zero.

v4l2_hevc_pred_weight_table

Table 9: struct v4l2_hevc_pred_weight_table
__u8 luma_log2_weight_denom
__s8 delta_chroma_log2_weight_denom
__s8 delta_luma_weight_l0[V4L2_HEVC_DPB_ENTRIES_NUM_MAX]
__s8 luma_offset_l0[V4L2_HEVC_DPB_ENTRIES_NUM_MAX]
__s8 delta_chroma_weight_l0[V4L2_HEVC_DPB_ENTRIES_NUM_MAX][2]
__s8 chroma_offset_l0[V4L2_HEVC_DPB_ENTRIES_NUM_MAX][2]
__s8 delta_luma_weight_l1[V4L2_HEVC_DPB_ENTRIES_NUM_MAX]
__s8 luma_offset_l1[V4L2_HEVC_DPB_ENTRIES_NUM_MAX]
__s8 delta_chroma_weight_l1[V4L2_HEVC_DPB_ENTRIES_NUM_MAX][2]
__s8 chroma_offset_l1[V4L2_HEVC_DPB_ENTRIES_NUM_MAX][2]
__u8 padding[6] Applications and drivers must set

this to zero.

V4L2_CID_MPEG_VIDEO_HEVC_DECODE_MODE (enum) Specifies the decoding mode to use. Cur-
rently exposes slice-based and frame-based decoding but new modes might be added later
on. This control is used as a modifier for V4L2_PIX_FMT_HEVC_SLICE pixel format. Appli-
cations that support V4L2_PIX_FMT_HEVC_SLICE are required to set this control in order
to specify the decoding mode that is expected for the buffer. Drivers may expose a single
or multiple decoding modes, depending on what they can support.

Note: This menu control is not yet part of the public kernel API and it is expected to

3.2. Part I - Video for Linux API 777

Linux Media Documentation

change.

v4l2_mpeg_video_hevc_decode_mode

V4L2_MPEG_VIDEO_HEVC_DECODE_MODE_SLICE_BASED 0 Decoding is done at the slice granularity.
The OUTPUT buffer must contain a single
slice.

V4L2_MPEG_VIDEO_HEVC_DECODE_MODE_FRAME_BASED 1 Decoding is done at the frame granular-
ity. The OUTPUT buffer must contain all
slices needed to decode the frame. The
OUTPUT buffer must also contain both
fields.

V4L2_CID_MPEG_VIDEO_HEVC_START_CODE (enum) Specifies the HEVC slice start code ex-
pected for each slice. This control is used as a modifier for V4L2_PIX_FMT_HEVC_SLICE
pixel format. Applications that support V4L2_PIX_FMT_HEVC_SLICE are required to set
this control in order to specify the start code that is expected for the buffer. Drivers may
expose a single or multiple start codes, depending on what they can support.

Note: This menu control is not yet part of the public kernel API and it is expected to
change.

v4l2_mpeg_video_hevc_start_code

V4L2_MPEG_VIDEO_HEVC_START_CODE_NONE 0 Selecting this value specifies that
HEVC slices are passed to the driver
without any start code. The bit-
stream data should be according to
ITU H.265/HEVC 7.3.1.1 General NAL
unit syntax, hence contains emulation
prevention bytes when required.

V4L2_MPEG_VIDEO_HEVC_START_CODE_ANNEX_B 1 Selecting this value specifies that
HEVC slices are expected to be pre-
fixed by Annex B start codes. Ac-
cording to ITU H.265/HEVC valid start
codes can be 3-bytes 0x000001 or 4-
bytes 0x00000001.

V4L2_CID_MPEG_VIDEO_BASELAYER_PRIORITY_ID (integer) Specifies a priority identifier for
the NAL unit, which will be applied to the base layer. By default this value is set to 0 for
the base layer, and the next layer will have the priority ID assigned as 1, 2, 3 and so on.
The video encoder can’t decide the priority id to be applied to a layer, so this has to come
from client. This is applicable to H264 and valid Range is from 0 to 63. Source Rec. ITU-T
H.264 (06/2019); G.7.4.1.1, G.8.8.1.

V4L2_CID_MPEG_VIDEO_LTR_COUNT (integer) Specifies the maximum number of Long Term
Reference (LTR) frames at any given time that the encoder can keep. This is applicable to
the H264 and HEVC encoders.

V4L2_CID_MPEG_VIDEO_FRAME_LTR_INDEX (integer) After setting this control the frame that
will be queued next will be marked as a Long Term Reference (LTR) frame and given this

778 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

LTR index which ranges from 0 to LTR_COUNT-1. This is applicable to the H264 and HEVC
encoders. Source Rec. ITU-T H.264 (06/2019); Table 7.9

V4L2_CID_MPEG_VIDEO_USE_LTR_FRAMES (bitmask) Specifies the Long Term Reference (LTR)
frame(s) to be used for encoding the next frame queued after setting this control. This
provides a bitmask which consists of bits [0, LTR_COUNT-1]. This is applicable to the
H264 and HEVC encoders.

V4L2_CID_MPEG_VIDEO_HEVC_DECODE_PARAMS (struct) Specifies various decode parameters,
especially the references picture order count (POC) for all the lists (short, long, before,
current, after) and the number of entries for each of them. These parameters are defined
according to ITU H.265/HEVC. They are described in section 8.3 “Slice decoding process”
of the specification.

v4l2_ctrl_hevc_decode_params

Table 10: struct v4l2_ctrl_hevc_decode_params
__s32 pic_order_cnt_val PicOrderCntVal as described in section 8.3.1 “Decoding process for picture order count” of the specification.
__u8 num_active_dpb_entries The number of entries in dpb.
struct v4l2_hevc_dpb_entry dpb[V4L2_HEVC_DPB_ENTRIES_NUM_MAX] The decoded picture buffer, for meta-data about reference frames.
__u8 num_poc_st_curr_before The number of reference pictures in the short-term set that come before the current frame.
__u8 num_poc_st_curr_after The number of reference pictures in the short-term set that come after the current frame.
__u8 num_poc_lt_curr The number of reference pictures in the long-term set.
__u8 poc_st_curr_before[V4L2_HEVC_DPB_ENTRIES_NUM_MAX] PocStCurrBefore as described in section 8.3.2 “Decoding process for reference picture set.
__u8 poc_st_curr_after[V4L2_HEVC_DPB_ENTRIES_NUM_MAX] PocStCurrAfter as described in section 8.3.2 “Decoding process for reference picture set.
__u8 poc_lt_curr[V4L2_HEVC_DPB_ENTRIES_NUM_MAX] PocLtCurr as described in section 8.3.2 “Decoding process for reference picture set.
__u64 flags See Decode Parameters Flags

Decode Parameters Flags

V4L2_HEVC_DECODE_PARAM_FLAG_IRAP_PIC 0x00000001
V4L2_HEVC_DECODE_PARAM_FLAG_IDR_PIC 0x00000002
V4L2_HEVC_DECODE_PARAM_FLAG_NO_OUTPUT_OF_PRIOR 0x00000004

3.2.1.16 Stateless Codec Control Reference

The Stateless Codec control class is intended to support stateless decoder and encoders (i.e.
hardware accelerators).

These drivers are typically supported by the Memory-to-memory Stateless Video Decoder In-
terface, and deal with parsed pixel formats such as V4L2_PIX_FMT_H264_SLICE.

3.2. Part I - Video for Linux API 779

Linux Media Documentation

Stateless Codec Control ID

V4L2_CID_CODEC_STATELESS_CLASS (class) The Stateless Codec class descriptor.

V4L2_CID_STATELESS_H264_SPS (struct) Specifies the sequence parameter set (as extracted
from the bitstream) for the associated H264 slice data. This includes the necessary pa-
rameters for configuring a stateless hardware decoding pipeline for H264. The bitstream
parameters are defined according to ITU-T Rec. H.264 Specification (04/2017 Edition),
section 7.4.2.1.1 “Sequence Parameter Set Data Semantics”. For further documentation,
refer to the above specification, unless there is an explicit comment stating otherwise.

v4l2_ctrl_h264_sps

Table 12: struct v4l2_ctrl_h264_sps
__u8 profile_idc
__u8 constraint_set_flags See Sequence Parameter Set Constraints

Set Flags
__u8 level_idc
__u8 seq_parameter_set_id
__u8 chroma_format_idc
__u8 bit_depth_luma_minus8
__u8 bit_depth_chroma_minus8
__u8 log2_max_frame_num_minus4
__u8 pic_order_cnt_type
__u8 log2_max_pic_order_cnt_lsb_minus4
__u8 max_num_ref_frames
__u8 num_ref_frames_in_pic_order_cnt_cycle
__s32 offset_for_ref_frame[255]
__s32 offset_for_non_ref_pic
__s32 offset_for_top_to_bottom_field
__u16 pic_width_in_mbs_minus1
__u16 pic_height_in_map_units_minus1
__u32 flags See Sequence Parameter Set Flags

Sequence Parameter Set Constraints Set Flags

V4L2_H264_SPS_CONSTRAINT_SET0_FLAG 0x00000001
V4L2_H264_SPS_CONSTRAINT_SET1_FLAG 0x00000002
V4L2_H264_SPS_CONSTRAINT_SET2_FLAG 0x00000004
V4L2_H264_SPS_CONSTRAINT_SET3_FLAG 0x00000008
V4L2_H264_SPS_CONSTRAINT_SET4_FLAG 0x00000010
V4L2_H264_SPS_CONSTRAINT_SET5_FLAG 0x00000020

Sequence Parameter Set Flags

V4L2_H264_SPS_FLAG_SEPARATE_COLOUR_PLANE 0x00000001
V4L2_H264_SPS_FLAG_QPPRIME_Y_ZERO_TRANSFORM_BYPASS 0x00000002
V4L2_H264_SPS_FLAG_DELTA_PIC_ORDER_ALWAYS_ZERO 0x00000004
V4L2_H264_SPS_FLAG_GAPS_IN_FRAME_NUM_VALUE_ALLOWED 0x00000008
V4L2_H264_SPS_FLAG_FRAME_MBS_ONLY 0x00000010
V4L2_H264_SPS_FLAG_MB_ADAPTIVE_FRAME_FIELD 0x00000020

Continued on next page

780 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 14 – continued from previous page
V4L2_H264_SPS_FLAG_DIRECT_8X8_INFERENCE 0x00000040

V4L2_CID_STATELESS_H264_PPS (struct) Specifies the picture parameter set (as extracted
from the bitstream) for the associated H264 slice data. This includes the necessary pa-
rameters for configuring a stateless hardware decoding pipeline for H264. The bitstream
parameters are defined according to ITU-T Rec. H.264 Specification (04/2017 Edition),
section 7.4.2.2 “Picture Parameter Set RBSP Semantics”. For further documentation, re-
fer to the above specification, unless there is an explicit comment stating otherwise.

v4l2_ctrl_h264_pps

Table 15: struct v4l2_ctrl_h264_pps
__u8 pic_parameter_set_id
__u8 seq_parameter_set_id
__u8 num_slice_groups_minus1
__u8 num_ref_idx_l0_default_active_minus1
__u8 num_ref_idx_l1_default_active_minus1
__u8 weighted_bipred_idc
__s8 pic_init_qp_minus26
__s8 pic_init_qs_minus26
__s8 chroma_qp_index_offset
__s8 second_chroma_qp_index_offset
__u16 flags See Picture Parameter Set Flags

Picture Parameter Set Flags

V4L2_H264_PPS_FLAG_ENTROPY_CODING_MODE 0x0001
V4L2_H264_PPS_FLAG_BOTTOM_FIELD_PIC_ORDER_IN_FRAME_PRESENT 0x0002
V4L2_H264_PPS_FLAG_WEIGHTED_PRED 0x0004
V4L2_H264_PPS_FLAG_DEBLOCKING_FILTER_CONTROL_PRESENT 0x0008
V4L2_H264_PPS_FLAG_CONSTRAINED_INTRA_PRED 0x0010
V4L2_H264_PPS_FLAG_REDUNDANT_PIC_CNT_PRESENT 0x0020
V4L2_H264_PPS_FLAG_TRANSFORM_8X8_MODE 0x0040
V4L2_H264_PPS_FLAG_SCALING_MATRIX_PRESENT 0x0080 V4L2_CID_STATELESS_H264_SCALING_MATRIX

must be used for this picture.

V4L2_CID_STATELESS_H264_SCALING_MATRIX (struct) Specifies the scaling matrix (as ex-
tracted from the bitstream) for the associated H264 slice data. The bitstream parame-
ters are defined according to ITU-T Rec. H.264 Specification (04/2017 Edition), section
7.4.2.1.1.1 “Scaling List Semantics”. For further documentation, refer to the above speci-
fication, unless there is an explicit comment stating otherwise.

v4l2_ctrl_h264_scaling_matrix

Table 16: struct v4l2_ctrl_h264_scaling_matrix
__u8 scaling_list_4x4[6][16] Scaling matrix after applying the inverse scanning process. Ex-

pected list order is Intra Y, Intra Cb, Intra Cr, Inter Y, Inter Cb,
Inter Cr. The values on each scaling list are expected in raster
scan order.

__u8 scaling_list_8x8[6][64] Scaling matrix after applying the inverse scanning process. Ex-
pected list order is Intra Y, Inter Y, Intra Cb, Inter Cb, Intra Cr,
Inter Cr. The values on each scaling list are expected in raster
scan order.

V4L2_CID_STATELESS_H264_SLICE_PARAMS (struct) Specifies the slice parameters (as extracted from
the bitstream) for the associated H264 slice data. This includes the necessary parameters for con-

3.2. Part I - Video for Linux API 781

Linux Media Documentation

figuring a stateless hardware decoding pipeline for H264. The bitstream parameters are defined
according to ITU-T Rec. H.264 Specification (04/2017 Edition), section 7.4.3 “Slice Header Se-
mantics”. For further documentation, refer to the above specification, unless there is an explicit
comment stating otherwise.

v4l2_ctrl_h264_slice_params

Table 17: struct v4l2_ctrl_h264_slice_params
__u32 header_bit_size Offset in bits to slice_data() from the be-

ginning of this slice.
__u32 first_mb_in_slice
__u8 slice_type
__u8 colour_plane_id
__u8 redundant_pic_cnt
__u8 cabac_init_idc
__s8 slice_qp_delta
__s8 slice_qs_delta
__u8 disable_deblocking_filter_idc
__s8 slice_alpha_c0_offset_div2
__s8 slice_beta_offset_div2
__u8 num_ref_idx_l0_active_minus1 If num_ref_idx_active_override_flag is not

set, this field must be set to the value of
num_ref_idx_l0_default_active_minus1

__u8 num_ref_idx_l1_active_minus1 If num_ref_idx_active_override_flag is not
set, this field must be set to the value of
num_ref_idx_l1_default_active_minus1

__u8 reserved Applications and drivers must set this to
zero.

struct
v4l2_h264_reference

ref_pic_list0[32] Reference picture list after applying the
per-slice modifications

struct
v4l2_h264_reference

ref_pic_list1[32] Reference picture list after applying the
per-slice modifications

__u32 flags See Slice Parameter Flags

Slice Parameter Set Flags

V4L2_H264_SLICE_FLAG_DIRECT_SPATIAL_MV_PRED 0x00000001
V4L2_H264_SLICE_FLAG_SP_FOR_SWITCH 0x00000002

V4L2_CID_STATELESS_H264_PRED_WEIGHTS (struct) Prediction weight table defined accord-
ing to ITU-T Rec. H.264 Specification (04/2017 Edition), section 7.4.3.2 “PredictionWeight
Table Semantics”. The prediction weight table must be passed by applications under the
conditions explained in section 7.3.3 “Slice header syntax”.

v4l2_ctrl_h264_pred_weights

Table 19: struct v4l2_ctrl_h264_pred_weights
__u16 luma_log2_weight_denom
__u16 chroma_log2_weight_denom
struct
v4l2_h264_weight_factors

weight_factors[2] The weight factors at index 0 are the
weight factors for the reference list 0, the
one at index 1 for the reference list 1.

v4l2_h264_weight_factors

782 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 20: struct v4l2_h264_weight_factors
__s16 luma_weight[32]
__s16 luma_offset[32]
__s16 chroma_weight[32][2]
__s16 chroma_offset[32][2]

Picture Reference

v4l2_h264_reference

Table 21: struct v4l2_h264_reference
__u8 fields Specifies how the picture is referenced. See Reference Fields
__u8 index Index into the v4l2_ctrl_h264_decode_params.dpb array.

Reference Fields

V4L2_H264_TOP_FIELD_REF 0x1 The top field in field pair is used for short-term reference.
V4L2_H264_BOTTOM_FIELD_REF 0x2 The bottom field in field pair is used for short-term reference.
V4L2_H264_FRAME_REF 0x3 The frame (or the top/bottom fields, if it’s a field pair) is used

for short-term reference.

V4L2_CID_STATELESS_H264_DECODE_PARAMS (struct) Specifies the decode parameters (as ex-
tracted from the bitstream) for the associated H264 slice data. This includes the neces-
sary parameters for configuring a stateless hardware decoding pipeline for H264. The
bitstream parameters are defined according to ITU-T Rec. H.264 Specification (04/2017
Edition). For further documentation, refer to the above specification, unless there is an
explicit comment stating otherwise.

v4l2_ctrl_h264_decode_params

3.2. Part I - Video for Linux API 783

Linux Media Documentation

Table 22: struct v4l2_ctrl_h264_decode_params
struct
v4l2_h264_dpb_entry

dpb[16]

__u16 nal_ref_idc NAL reference ID value coming from the
NAL Unit header

__u16 frame_num
__s32 top_field_order_cnt Picture Order Count for the coded top

field
__s32 bottom_field_order_cnt Picture Order Count for the coded bottom

field
__u16 idr_pic_id
__u16 pic_order_cnt_lsb
__s32 delta_pic_order_cnt_bottom
__s32 delta_pic_order_cnt0
__s32 delta_pic_order_cnt1
__u32 dec_ref_pic_marking_bit_size Size in bits of the dec_ref_pic_marking()

syntax element.
__u32 pic_order_cnt_bit_size Combined size in bits of the pic-

ture order count related syn-
tax elements: pic_order_cnt_lsb,
delta_pic_order_cnt_bottom,
delta_pic_order_cnt0, and
delta_pic_order_cnt1.

__u32 slice_group_change_cycle
__u32 reserved Applications and drivers must set this to

zero.
__u32 flags See Decode Parameters Flags

Decode Parameters Flags

V4L2_H264_DECODE_PARAM_FLAG_IDR_PIC 0x00000001 That picture is an IDR picture
V4L2_H264_DECODE_PARAM_FLAG_FIELD_PIC 0x00000002
V4L2_H264_DECODE_PARAM_FLAG_BOTTOM_FIELD 0x00000004

v4l2_h264_dpb_entry

Table 23: struct v4l2_h264_dpb_entry
__u64 reference_ts Timestamp of the V4L2 capture buffer to use as reference,

used with B-coded and P-coded frames. The timestamp
refers to the timestamp field in struct v4l2_buffer. Use the
v4l2_timeval_to_ns() function to convert the struct timeval
in struct v4l2_buffer to a __u64.

__u32 pic_num
__u16 frame_num
__u8 fields Specifies how the DPB entry is referenced. See Reference Fields
__u8 reserved[5] Applications and drivers must set this to zero.
__s32 top_field_order_cnt
__s32 bottom_field_order_cnt
__u32 flags See DPB Entry Flags

DPB Entries Flags

784 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_H264_DPB_ENTRY_FLAG_VALID 0x00000001 The DPB entry is valid (non-empty) and
should be considered.

V4L2_H264_DPB_ENTRY_FLAG_ACTIVE 0x00000002 The DPB entry is used for reference.
V4L2_H264_DPB_ENTRY_FLAG_LONG_TERM 0x00000004 The DPB entry is used for long-term refer-

ence.
V4L2_H264_DPB_ENTRY_FLAG_FIELD 0x00000008 The DPB entry is a single field or a com-

plementary field pair.

V4L2_CID_STATELESS_H264_DECODE_MODE (enum) Specifies the decoding mode to use. Cur-
rently exposes slice-based and frame-based decoding but new modes might be added later
on. This control is used as a modifier for V4L2_PIX_FMT_H264_SLICE pixel format. Appli-
cations that support V4L2_PIX_FMT_H264_SLICE are required to set this control in order
to specify the decoding mode that is expected for the buffer. Drivers may expose a single
or multiple decoding modes, depending on what they can support.

v4l2_stateless_h264_decode_mode

V4L2_STATELESS_H264_DECODE_MODE_SLICE_BASED 0 Decoding is done at the slice granularity. The OUTPUT
buffer must contain a single slice. When this mode is se-
lected, the V4L2_CID_STATELESS_H264_SLICE_PARAMS control shall
be set. When multiple slices compose a frame, use of
V4L2_BUF_CAP_SUPPORTS_M2M_HOLD_CAPTURE_BUF flag is required.

V4L2_STATELESS_H264_DECODE_MODE_FRAME_BASED 1 Decoding is done at the frame granularity, The OUTPUT buffer must
contain all slices needed to decode the frame. The OUTPUT buffer
must also contain both fields. This mode will be supported by de-
vices that parse the slice(s) header(s) in hardware. When this mode
is selected, the V4L2_CID_STATELESS_H264_SLICE_PARAMS control
shall not be set.

V4L2_CID_STATELESS_H264_START_CODE (enum) Specifies the H264 slice start code expected
for each slice. This control is used as a modifier for V4L2_PIX_FMT_H264_SLICE pixel
format. Applications that support V4L2_PIX_FMT_H264_SLICE are required to set this
control in order to specify the start code that is expected for the buffer. Drivers may
expose a single or multiple start codes, depending on what they can support.

v4l2_stateless_h264_start_code

V4L2_STATELESS_H264_START_CODE_NONE 0 Selecting this value specifies that H264 slices are
passed to the driver without any start code. The
bitstream data should be according to ITU-T Rec.
H.264 Specification (04/2017 Edition) 7.3.1 NAL
unit syntax, hence contains emulation prevention
bytes when required.

V4L2_STATELESS_H264_START_CODE_ANNEX_B 1 Selecting this value specifies that H264 slices are
expected to be prefixed by Annex B start codes.
According to ITU-T Rec. H.264 Specification
(04/2017 Edition) valid start codes can be 3-bytes
0x000001 or 4-bytes 0x00000001.

V4L2_CID_STATELESS_FWHT_PARAMS (struct) Specifies the FWHT (Fast Walsh Hadamard
Transform) parameters (as extracted from the bitstream) for the associated FWHT data.
This includes the necessary parameters for configuring a stateless hardware decoding
pipeline for FWHT. This codec is specific to the vicodec test driver.

v4l2_ctrl_fwht_params

3.2. Part I - Video for Linux API 785

Linux Media Documentation

Table 24: struct v4l2_ctrl_fwht_params
__u64 backward_ref_ts Timestamp of the V4L2 capture buffer to use as backward reference,

used with P-coded frames. The timestamp refers to the timestamp
field in struct v4l2_buffer. Use the v4l2_timeval_to_ns() func-
tion to convert the struct timeval in struct v4l2_buffer to a __u64.

__u32 version The version of the codec. Set to V4L2_FWHT_VERSION.
__u32 width The width of the frame.
__u32 height The height of the frame.
__u32 flags The flags of the frame, see FWHT Flags.
__u32 colorspace The colorspace of the frame, from enum v4l2_colorspace.
__u32 xfer_func The transfer function, from enum v4l2_xfer_func.
__u32 ycbcr_enc The Y’CbCr encoding, from enum v4l2_ycbcr_encoding.
__u32 quantization The quantization range, from enum v4l2_quantization.

FWHT Flags

V4L2_FWHT_FL_IS_INTERLACED 0x00000001 Set if this is an interlaced format.
V4L2_FWHT_FL_IS_BOTTOM_FIRST 0x00000002 Set if this is a bottom-first (NTSC) interlaced

format.
V4L2_FWHT_FL_IS_ALTERNATE 0x00000004 Set if each ‘frame’ contains just one field.
V4L2_FWHT_FL_IS_BOTTOM_FIELD 0x00000008 If V4L2_FWHT_FL_IS_ALTERNATE was set,

then this is set if this ‘frame’ is the bottom
field, else it is the top field.

V4L2_FWHT_FL_LUMA_IS_UNCOMPRESSED 0x00000010 Set if the Y’ (luma) plane is uncompressed.
V4L2_FWHT_FL_CB_IS_UNCOMPRESSED 0x00000020 Set if the Cb plane is uncompressed.
V4L2_FWHT_FL_CR_IS_UNCOMPRESSED 0x00000040 Set if the Cr plane is uncompressed.
V4L2_FWHT_FL_CHROMA_FULL_HEIGHT 0x00000080 Set if the chroma plane has the same height

as the luma plane, else the chroma plane is
half the height of the luma plane.

V4L2_FWHT_FL_CHROMA_FULL_WIDTH 0x00000100 Set if the chroma plane has the same width
as the luma plane, else the chroma plane is
half the width of the luma plane.

V4L2_FWHT_FL_ALPHA_IS_UNCOMPRESSED 0x00000200 Set if the alpha plane is uncompressed.
V4L2_FWHT_FL_I_FRAME 0x00000400 Set if this is an I-frame.
V4L2_FWHT_FL_COMPONENTS_NUM_MSK 0x00070000 The number of color components minus one.
V4L2_FWHT_FL_PIXENC_MSK 0x00180000 The mask for the pixel encoding.
V4L2_FWHT_FL_PIXENC_YUV 0x00080000 Set if the pixel encoding is YUV.
V4L2_FWHT_FL_PIXENC_RGB 0x00100000 Set if the pixel encoding is RGB.
V4L2_FWHT_FL_PIXENC_HSV 0x00180000 Set if the pixel encoding is HSV.

V4L2_CID_STATELESS_VP8_FRAME (struct) Specifies the frame parameters for the associated
VP8 parsed frame data. This includes the necessary parameters for configuring a stateless
hardware decoding pipeline for VP8. The bitstream parameters are defined according to
VP8.

v4l2_ctrl_vp8_frame

Table 25: struct v4l2_ctrl_vp8_frame
struct v4l2_vp8_segment segment Structure with segment-based

adjustments metadata.
struct v4l2_vp8_loop_filter lf Structure with loop filter level

adjustments metadata.
Continued on next page

786 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 25 – continued from previous page
struct v4l2_vp8_quantization quant Structure with VP8 dequantiza-

tion indices metadata.
struct v4l2_vp8_entropy entropy Structure with VP8 entropy

coder probabilities metadata.
struct v4l2_vp8_entropy_coder_state coder_state Structure with VP8 entropy

coder state.
__u16 width The width of the frame. Must be

set for all frames.
__u16 height The height of the frame. Must

be set for all frames.
__u8 horizontal_scale Horizontal scaling factor.
__u8 vertical_scaling

factor
Vertical scale.

__u8 version Bitstream version.
__u8 prob_skip_false Indicates the probability that

the macroblock is not skipped.
__u8 prob_intra Indicates the probability that a

macroblock is intra-predicted.
__u8 prob_last Indicates the probability that

the last reference frame is used
for inter-prediction

__u8 prob_gf Indicates the probability that
the golden reference frame is
used for inter-prediction

__u8 num_dct_parts Number of DCT coefficients par-
titions. Must be one of: 1, 2, 4,
or 8.

__u32 first_part_size Size of the first partition, i.e. the
control partition.

__u32 first_part_header_bits Size in bits of the first partition
header portion.

__u32 dct_part_sizes[8] DCT coefficients sizes.
__u64 last_frame_ts Timestamp for the V4L2 cap-

ture buffer to use as last
reference frame, used with
inter-coded frames. The times-
tamp refers to the timestamp
field in struct v4l2_buffer.
Use the v4l2_timeval_to_ns()
function to convert the struct
timeval in struct v4l2_buffer
to a __u64.

__u64 golden_frame_ts Timestamp for the V4L2 cap-
ture buffer to use as last
reference frame, used with
inter-coded frames. The times-
tamp refers to the timestamp
field in struct v4l2_buffer.
Use the v4l2_timeval_to_ns()
function to convert the struct
timeval in struct v4l2_buffer
to a __u64.

Continued on next page

3.2. Part I - Video for Linux API 787

Linux Media Documentation

Table 25 – continued from previous page
__u64 alt_frame_ts Timestamp for the V4L2 cap-

ture buffer to use as alternate
reference frame, used with
inter-coded frames. The times-
tamp refers to the timestamp
field in struct v4l2_buffer.
Use the v4l2_timeval_to_ns()
function to convert the struct
timeval in struct v4l2_buffer
to a __u64.

__u64 flags See Frame Flags

Frame Flags

V4L2_VP8_FRAME_FLAG_KEY_FRAME 0x01 Indicates if the frame is a key
frame.

V4L2_VP8_FRAME_FLAG_EXPERIMENTAL 0x02 Experimental bitstream.
V4L2_VP8_FRAME_FLAG_SHOW_FRAME 0x04 Show frame flag, indicates if the

frame is for display.
V4L2_VP8_FRAME_FLAG_MB_NO_SKIP_COEFF 0x08 Enable/disable skipping of mac-

roblocks with no non-zero coeffi-
cients.

V4L2_VP8_FRAME_FLAG_SIGN_BIAS_GOLDEN 0x10 Sign of motion vectors when the
golden frame is referenced.

V4L2_VP8_FRAME_FLAG_SIGN_BIAS_ALT 0x20 Sign of motion vectors when the
alt frame is referenced.

v4l2_vp8_entropy_coder_state

Table 27: struct v4l2_vp8_entropy_coder_state
__u8 range coder state value for “Range”
__u8 value coder state value for “Value”-
__u8 bit_count number of bits left.
__u8 padding Applications and drivers must set this to zero.

v4l2_vp8_segment

Table 28: struct v4l2_vp8_segment
__s8 quant_update[4] Signed quantizer value update.
__s8 lf_update[4] Signed loop filter level value update.
__u8 segment_probs[3] Segment probabilities.
__u8 padding Applications and drivers must set this to zero.
__u32 flags See Segment Flags

Segment Flags

788 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_VP8_SEGMENT_FLAG_ENABLED 0x01 Enable/disable segment-based ad-
justments.

V4L2_VP8_SEGMENT_FLAG_UPDATE_MAP 0x02 Indicates if the macroblock seg-
mentation map is updated in this
frame.

V4L2_VP8_SEGMENT_FLAG_UPDATE_FEATURE_DATA 0x04 Indicates if the segment feature
data is updated in this frame.

V4L2_VP8_SEGMENT_FLAG_DELTA_VALUE_MODE 0x08 If is set, the segment feature data
mode is delta-value. If cleared, it’s
absolute-value.

v4l2_vp8_loop_filter

Table 29: struct v4l2_vp8_loop_filter
__s8 ref_frm_delta[4] Reference adjustment (signed) delta value.
__s8 mb_mode_delta[4] Macroblock prediction mode adjustment (signed) delta value.
__u8 sharpness_level Sharpness level
__u8 level Filter level
__u16 padding Applications and drivers must set this to zero.
__u32 flags See Loop Filter Flags

Loop Filter Flags

V4L2_VP8_LF_ADJ_ENABLE 0x01 Enable/disable macroblock-level loop filter ad-
justment.

V4L2_VP8_LF_DELTA_UPDATE 0x02 Indicates if the delta values used in an adjust-
ment are updated.

V4L2_VP8_LF_FILTER_TYPE_SIMPLE 0x04 If set, indicates the filter type is simple. If
cleared, the filter type is normal.

v4l2_vp8_quantization

Table 30: struct v4l2_vp8_quantization
__u8 y_ac_qi Luma AC coefficient table index.
__s8 y_dc_delta Luma DC delta vaue.
__s8 y2_dc_delta Y2 block DC delta value.
__s8 y2_ac_delta Y2 block AC delta value.
__s8 uv_dc_delta Chroma DC delta value.
__s8 uv_ac_delta Chroma AC delta value.
__u16 padding Applications and drivers must set this to zero.

v4l2_vp8_entropy

Table 31: struct v4l2_vp8_entropy
__u8 coeff_probs[4][8][3][11] Coefficient update probabilities.
__u8 y_mode_probs[4] Luma mode update probabilities.
__u8 uv_mode_probs[3] Chroma mode update probabilities.
__u8 mv_probs[2][19] MV decoding update probabilities.
__u8 padding[3] Applications and drivers must set this to zero.

3.2. Part I - Video for Linux API 789

Linux Media Documentation

V4L2_CID_STATELESS_MPEG2_SEQUENCE (struct) Specifies the sequence parameters (as ex-
tracted from the bitstream) for the associated MPEG-2 slice data. This includes fields
matching the syntax elements from the sequence header and sequence extension parts of
the bitstream as specified by ISO 13818-2.

v4l2_ctrl_mpeg2_sequence

Table 32: struct v4l2_ctrl_mpeg2_sequence
__u16 horizontal_size The width of the displayable part of the frame’s lumi-

nance component.
__u16 vertical_size The height of the displayable part of the frame’s lu-

minance component.
__u32 vbv_buffer_size Used to calculate the required size of the video

buffering verifier, defined (in bits) as: 16 * 1024 *
vbv_buffer_size.

__u16 profile_and_level_indication The current profile and level indication as extracted
from the bitstream.

__u8 chroma_format The chrominance sub-sampling format (1: 4:2:0, 2:
4:2:2, 3: 4:4:4).

__u8 flags See MPEG-2 Sequence Flags.

MPEG-2 Sequence Flags

V4L2_MPEG2_SEQ_FLAG_PROGRESSIVE 0x01 Indication that all the frames for the sequence are progressive instead of interlaced.

V4L2_CID_STATELESS_MPEG2_PICTURE (struct) Specifies the picture parameters (as ex-
tracted from the bitstream) for the associated MPEG-2 slice data. This includes fields
matching the syntax elements from the picture header and picture coding extension parts
of the bitstream as specified by ISO 13818-2.

v4l2_ctrl_mpeg2_picture

Table 34: struct v4l2_ctrl_mpeg2_picture
__u64 backward_ref_ts Timestamp of the V4L2 capture buffer to use as back-

ward reference, used with B-coded and P-coded frames.
The timestamp refers to the timestamp field in struct
v4l2_buffer. Use the v4l2_timeval_to_ns() function to
convert the struct timeval in struct v4l2_buffer to a __u64.

__u64 forward_ref_ts Timestamp for the V4L2 capture buffer to use as for-
ward reference, used with B-coded frames. The timestamp
refers to the timestamp field in struct v4l2_buffer. Use
the v4l2_timeval_to_ns() function to convert the struct
timeval in struct v4l2_buffer to a __u64.

__u32 flags See MPEG-2 Picture Flags.
__u8 f_code[2][2] Motion vector codes.
__u8 picture_coding_type Picture coding type for the frame covered by the

current slice (V4L2_MPEG2_PIC_CODING_TYPE_I,
V4L2_MPEG2_PIC_CODING_TYPE_P or
V4L2_MPEG2_PIC_CODING_TYPE_B).

__u8 picture_structure Picture structure (1: interlaced top field, 2: interlaced bot-
tom field, 3: progressive frame).

__u8 intra_dc_precision Precision of Discrete Cosine transform (0: 8 bits precision,
1: 9 bits precision, 2: 10 bits precision, 3: 11 bits precision).

__u8 reserved[5] Applications and drivers must set this to zero.

790 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

MPEG-2 Picture Flags

V4L2_MPEG2_PIC_FLAG_TOP_FIELD_FIRST 0x00000001 If set and it’s an interlaced stream, top field is output first.
V4L2_MPEG2_PIC_FLAG_FRAME_PRED_DCT 0x00000002 If set only frame-DCT and frame prediction are used.
V4L2_MPEG2_PIC_FLAG_CONCEALMENT_MV 0x00000004 If set motion vectors are coded for intra macroblocks.
V4L2_MPEG2_PIC_FLAG_Q_SCALE_TYPE 0x00000008 This flag affects the inverse quantization process.
V4L2_MPEG2_PIC_FLAG_INTRA_VLC 0x00000010 This flag affects the decoding of transform coefficient data.
V4L2_MPEG2_PIC_FLAG_ALT_SCAN 0x00000020 This flag affects the decoding of transform coefficient data.
V4L2_MPEG2_PIC_FLAG_REPEAT_FIRST 0x00000040 This flag affects the decoding process of progressive frames.
V4L2_MPEG2_PIC_FLAG_PROGRESSIVE 0x00000080 Indicates whether the current frame is progressive.

V4L2_CID_STATELESS_MPEG2_QUANTISATION (struct) Specifies quantisation matrices, in
zigzag scanning order, for the associated MPEG-2 slice data. This control is initialized
by the kernel to the matrices default values. If a bitstream transmits a user-defined quan-
tisation matrices load, applications are expected to use this control. Applications are also
expected to set the control loading the default values, if the quantisation matrices need
to be reset, for instance on a sequence header. This process is specified by section 6.3.7.
“Quant matrix extension” of the specification.

v4l2_ctrl_mpeg2_quantisation

Table 36: struct v4l2_ctrl_mpeg2_quantisation
__u8 intra_quantiser_matrix[64] The quantisation matrix coefficients for intra-

coded frames, in zigzag scanning order. It is
relevant for both luma and chroma components,
although it can be superseded by the chroma-
specific matrix for non-4:2:0 YUV formats.

__u8 non_intra_quantiser_matrix[64] The quantisation matrix coefficients for non-
intra-coded frames, in zigzag scanning order.
It is relevant for both luma and chroma com-
ponents, although it can be superseded by the
chroma-specific matrix for non-4:2:0 YUV for-
mats.

__u8 chroma_intra_quantiser_matrix[64] The quantisation matrix coefficients for the
chominance component of intra-coded frames,
in zigzag scanning order. Only relevant for non-
4:2:0 YUV formats.

__u8 chroma_non_intra_quantiser_matrix[64] The quantisation matrix coefficients for the
chrominance component of non-intra-coded
frames, in zigzag scanning order. Only relevant
for non-4:2:0 YUV formats.

V4L2_CID_STATELESS_VP9_COMPRESSED_HDR (struct) Stores VP9 probabilities updates as
parsed from the current compressed frame header. A value of zero in an array element
means no update of the relevant probability. Motion vector-related updates contain a new
value or zero. All other updates contain values translated with inv_map_table[] (see 6.3.5
in VP9).

v4l2_ctrl_vp9_compressed_hdr

Table 37: struct v4l2_ctrl_vp9_compressed_hdr
__u8 tx_mode Specifies the TX mode. See TX Mode for more details.
__u8 tx8[2][1] TX 8x8 probabilities delta.

Continued on next page

3.2. Part I - Video for Linux API 791

Linux Media Documentation

Table 37 – continued from previous page
__u8 tx16[2][2] TX 16x16 probabilities delta.
__u8 tx32[2][3] TX 32x32 probabilities delta.
__u8 coef[4][2][2][6][6][3] Coefficient probabilities delta.
__u8 skip[3] Skip probabilities delta.
__u8 inter_mode[7][3] Inter prediction mode probabilities delta.
__u8 interp_filter[4][2] Interpolation filter probabilities delta.
__u8 is_inter[4] Is inter-block probabilities delta.
__u8 comp_mode[5] Compound prediction mode probabilities delta.
__u8 single_ref[5][2] Single reference probabilities delta.
__u8 comp_ref[5] Compound reference probabilities delta.
__u8 y_mode[4][9] Y prediction mode probabilities delta.
__u8 uv_mode[10][9] UV prediction mode probabilities delta.
__u8 partition[16][3] Partition probabilities delta.
__u8 mv.joint[3] Motion vector joint probabilities delta.
__u8 mv.sign[2] Motion vector sign probabilities delta.
__u8 mv.classes[2][10] Motion vector class probabilities delta.
__u8 mv.class0_bit[2] Motion vector class0 bit probabilities delta.
__u8 mv.bits[2][10] Motion vector bits probabilities delta.
__u8 mv.

class0_fr[2][2][3]
Motion vector class0 fractional bit probabilities delta.

__u8 mv.fr[2][3] Motion vector fractional bit probabilities delta.
__u8 mv.class0_hp[2] Motion vector class0 high precision fractional bit probabil-

ities delta.
__u8 mv.hp[2] Motion vector high precision fractional bit probabilities

delta.

TX Mode

V4L2_VP9_TX_MODE_ONLY_4X4 0 Transform size is 4x4.
V4L2_VP9_TX_MODE_ALLOW_8X8 1 Transform size can be up to 8x8.
V4L2_VP9_TX_MODE_ALLOW_16X16 2 Transform size can be up to 16x16.
V4L2_VP9_TX_MODE_ALLOW_32X32 3 transform size can be up to 32x32.
V4L2_VP9_TX_MODE_SELECT 4 Bitstream contains the transform size for each block.

See section ‘7.3.1 Tx mode semantics’ of the VP9 specification for more details.

V4L2_CID_STATELESS_VP9_FRAME (struct) Specifies the frame parameters for the associated
VP9 frame decode request. This includes the necessary parameters for configuring a state-
less hardware decoding pipeline for VP9. The bitstream parameters are defined according
to VP9.

v4l2_ctrl_vp9_frame

Table 38: struct v4l2_ctrl_vp9_frame
struct
v4l2_vp9_loop_filter

lf Loop filter parameters. See struct
v4l2_vp9_loop_filter for more de-
tails.

struct
v4l2_vp9_quantization

quant Quantization parameters. See
v4l2_vp9_quantization for more
details.

Continued on next page

792 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 38 – continued from previous page
struct
v4l2_vp9_segmentation

seg Segmentation parameters. See
v4l2_vp9_segmentation for more
details.

__u32 flags Combination of
V4L2_VP9_FRAME_FLAG_* flags. See
Frame Flags.

__u16 compressed_header_size Compressed header size in bytes.
__u16 uncompressed_header_size Uncompressed header size in bytes.
__u16 frame_width_minus_1 Add 1 to get the frame width expressed

in pixels. See section 7.2.3 in VP9.
__u16 frame_height_minus_1 Add 1 to get the frame height expressed

in pixels. See section 7.2.3 in VP9.
__u16 render_width_minus_1 Add 1 to get the expected render width

expressed in pixels. This is not used dur-
ing the decoding process but might be
used by HW scalers to prepare a frame
that’s ready for scanout. See section
7.2.4 in VP9.

__u16 render_height_minus_1 Add 1 to get the expected render height
expressed in pixels. This is not used dur-
ing the decoding process but might be
used by HW scalers to prepare a frame
that’s ready for scanout. See section
7.2.4 in VP9.

__u64 last_frame_ts “last” reference buffer timestamp. The
timestamp refers to the timestamp
field in struct v4l2_buffer. Use
the v4l2_timeval_to_ns() function to
convert the struct timeval in struct
v4l2_buffer to a __u64.

__u64 golden_frame_ts “golden” reference buffer timestamp.
The timestamp refers to the timestamp
field in struct v4l2_buffer. Use
the v4l2_timeval_to_ns() function to
convert the struct timeval in struct
v4l2_buffer to a __u64.

__u64 alt_frame_ts “alt” reference buffer timestamp. The
timestamp refers to the timestamp
field in struct v4l2_buffer. Use
the v4l2_timeval_to_ns() function to
convert the struct timeval in struct
v4l2_buffer to a __u64.

__u8 ref_frame_sign_bias a bitfield specifying whether the sign
bias is set for a given reference frame.
SeeReference Frame Sign Bias for more
details.

__u8 reset_frame_context specifies whether the frame context
should be reset to default values. See
Reset Frame Context for more details.

__u8 frame_context_idx Frame context that should be
used/updated.

__u8 profile VP9 profile. Can be 0, 1, 2 or 3.
__u8 bit_depth Component depth in bits. Can be 8, 10

or 12. Note that not all profiles support
10 and/or 12 bits depths.

Continued on next page

3.2. Part I - Video for Linux API 793

Linux Media Documentation

Table 38 – continued from previous page
__u8 interpolation_filter Specifies the filter selection used for

performing inter prediction. See Inter-
polation Filter for more details.

__u8 tile_cols_log2 Specifies the base 2 logarithm of the
width of each tile (where the width is
measured in units of 8x8 blocks). Shall
be less than or equal to 6.

__u8 tile_rows_log2 Specifies the base 2 logarithm of the
height of each tile (where the height is
measured in units of 8x8 blocks).

__u8 reference_mode Specifies the type of inter prediction to
be used. See Reference Mode for more
details.

__u8 reserved[7] Applications and drivers must set this to
zero.

Frame Flags

V4L2_VP9_FRAME_FLAG_KEY_FRAME 0x001 The frame is a key frame.
V4L2_VP9_FRAME_FLAG_SHOW_FRAME 0x002 The frame should be displayed.
V4L2_VP9_FRAME_FLAG_ERROR_RESILIENT 0x004 The decoding should be error

resilient.
V4L2_VP9_FRAME_FLAG_INTRA_ONLY 0x008 The frame does not reference

other frames.
V4L2_VP9_FRAME_FLAG_ALLOW_HIGH_PREC_MV 0x010 The frame can use high preci-

sion motion vectors.
V4L2_VP9_FRAME_FLAG_REFRESH_FRAME_CTX 0x020 Frame context should be up-

dated after decoding.
V4L2_VP9_FRAME_FLAG_PARALLEL_DEC_MODE 0x040 Parallel decoding is used.
V4L2_VP9_FRAME_FLAG_X_SUBSAMPLING 0x080 Vertical subsampling is en-

abled.
V4L2_VP9_FRAME_FLAG_Y_SUBSAMPLING 0x100 Horizontal subsampling is en-

abled.
V4L2_VP9_FRAME_FLAG_COLOR_RANGE_FULL_SWING 0x200 The full UV range is used.

Reference Frame Sign Bias

V4L2_VP9_SIGN_BIAS_LAST 0x1 Sign bias is set for the last reference frame.
V4L2_VP9_SIGN_BIAS_GOLDEN 0x2 Sign bias is set for the golden reference frame.
V4L2_VP9_SIGN_BIAS_ALT 0x2 Sign bias is set for the alt reference frame.

Reset Frame Context

V4L2_VP9_RESET_FRAME_CTX_NONE 0 Do not reset any frame context.
V4L2_VP9_RESET_FRAME_CTX_SPEC 1 Reset the frame context pointed to by

v4l2_ctrl_vp9_frame.frame_context_idx.
V4L2_VP9_RESET_FRAME_CTX_ALL 2 Reset all frame contexts.

See section ‘7.2 Uncompressed header semantics’ of the VP9 specification for more details.

Interpolation Filter

794 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_VP9_INTERP_FILTER_EIGHTTAP 0 Eight tap filter.
V4L2_VP9_INTERP_FILTER_EIGHTTAP_SMOOTH 1 Eight tap smooth filter.
V4L2_VP9_INTERP_FILTER_EIGHTTAP_SHARP 2 Eeight tap sharp filter.
V4L2_VP9_INTERP_FILTER_BILINEAR 3 Bilinear filter.
V4L2_VP9_INTERP_FILTER_SWITCHABLE 4 Filter selection is signaled at the

block level.

See section ‘7.2.7 Interpolation filter semantics’ of the VP9 specification for more details.

Reference Mode

V4L2_VP9_REFERENCE_MODE_SINGLE_REFERENCE 0 Indicates that all the inter blocks
use only a single reference frame to
generate motion compensated pre-
diction.

V4L2_VP9_REFERENCE_MODE_COMPOUND_REFERENCE 1 Requires all the inter blocks to use
compound mode. Single reference
frame prediction is not allowed.

V4L2_VP9_REFERENCE_MODE_SELECT 2 Allows each individual inter block to
select between single and compound
prediction modes.

See section ‘7.3.6 Frame reference mode semantics’ of the VP9 specification for more details.

v4l2_vp9_segmentation

Encodes the quantization parameters. See section ‘7.2.10 Segmentation params syntax’ of the
VP9 specification for more details.

Table 39: struct v4l2_vp9_segmentation
__u8 feature_data[8][4] Data attached to each feature. Data entry is only valid if

the feature is enabled. The array shall be indexed with
segment number as the first dimension (0..7) and one of
V4L2_VP9_SEG_* as the second dimension. See Segment
Feature IDs.

__u8 feature_enabled[8] Bitmask defining which features are enabled in each seg-
ment. The value for each segment is a combination
of V4L2_VP9_SEGMENT_FEATURE_ENABLED(id) values
where id is one of V4L2_VP9_SEG_*. See Segment Feature
IDs.

__u8 tree_probs[7] Specifies the probability values to be used when decoding a
Segment-ID. See ‘5.15. Segmentation map’ section of VP9
for more details.

__u8 pred_probs[3] Specifies the probability values to be used when decoding a
Predicted-Segment-ID. See ‘6.4.14. Get segment id syntax’
section of VP9 for more details.

__u8 flags Combination of V4L2_VP9_SEGMENTATION_FLAG_*
flags. See Segmentation Flags.

__u8 reserved[5] Applications and drivers must set this to zero.

3.2. Part I - Video for Linux API 795

Linux Media Documentation

Segment feature IDs

V4L2_VP9_SEG_LVL_ALT_Q 0 Quantizer segment feature.
V4L2_VP9_SEG_LVL_ALT_L 1 Loop filter segment feature.
V4L2_VP9_SEG_LVL_REF_FRAME 2 Reference frame segment feature.
V4L2_VP9_SEG_LVL_SKIP 3 Skip segment feature.
V4L2_VP9_SEG_LVL_MAX 4 Number of segment features.

Segmentation Flags

V4L2_VP9_SEGMENTATION_FLAG_ENABLED 0x01 Indicates that this frame
makes use of the segmenta-
tion tool.

V4L2_VP9_SEGMENTATION_FLAG_UPDATE_MAP 0x02 Indicates that the segmenta-
tion map should be updated
during the decoding of this
frame.

V4L2_VP9_SEGMENTATION_FLAG_TEMPORAL_UPDATE 0x04 Indicates that the updates to
the segmentation map are
coded relative to the existing
segmentation map.

V4L2_VP9_SEGMENTATION_FLAG_UPDATE_DATA 0x08 Indicates that new parameters
are about to be specified for
each segment.

V4L2_VP9_SEGMENTATION_FLAG_ABS_OR_DELTA_UPDATE 0x10 Indicates that the segmenta-
tion parameters represent the
actual values to be used.

v4l2_vp9_quantization

Encodes the quantization parameters. See section ‘7.2.9 Quantization params syntax’ of the
VP9 specification for more details.

Table 40: struct v4l2_vp9_quantization
__u8 base_q_idx Indicates the base frame qindex.
__s8 delta_q_y_dc Indicates the Y DC quantizer relative to base_q_idx.
__s8 delta_q_uv_dc Indicates the UV DC quantizer relative to base_q_idx.
__s8 delta_q_uv_ac Indicates the UV AC quantizer relative to base_q_idx.
__u8 reserved[4] Applications and drivers must set this to zero.

v4l2_vp9_loop_filter

This structure contains all loop filter related parameters. See sections ‘7.2.8 Loop filter seman-
tics’ of the VP9 specification for more details.

Table 41: struct v4l2_vp9_loop_filter
__s8 ref_deltas[4] Contains the adjustment needed for the filter level based on the

chosen reference frame.
Continued on next page

796 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 41 – continued from previous page
__s8 mode_deltas[2] Contains the adjustment needed for the filter level based on the

chosen mode.
__u8 level Indicates the loop filter strength.
__u8 sharpness Indicates the sharpness level.
__u8 flags Combination of V4L2_VP9_LOOP_FILTER_FLAG_* flags. See

Loop Filter Flags.
__u8 reserved[7] Applications and drivers must set this to zero.

Loop Filter Flags

V4L2_VP9_LOOP_FILTER_FLAG_DELTA_ENABLED 0x1 When set, the filter level depends on
the mode and reference frame used
to predict a block.

V4L2_VP9_LOOP_FILTER_FLAG_DELTA_UPDATE 0x2 When set, the bitstream contains ad-
ditional syntax elements that spec-
ify which mode and reference frame
deltas are to be updated.

3.2.1.17 JPEG Control Reference

The JPEG class includes controls for common features of JPEG encoders and decoders. Cur-
rently it includes features for codecs implementing progressive baseline DCT compression pro-
cess with Huffman entrophy coding.

JPEG Control IDs

V4L2_CID_JPEG_CLASS (class) The JPEG class descriptor. Calling ioctls VID-
IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU for this
control will return a description of this control class.

V4L2_CID_JPEG_CHROMA_SUBSAMPLING (menu) The chroma subsampling factors describe how
each component of an input image is sampled, in respect to maximum sample rate
in each spatial dimension. See ITU-T.81, clause A.1.1. for more details. The
V4L2_CID_JPEG_CHROMA_SUBSAMPLING control determines how Cb and Cr components are
downsampled after converting an input image from RGB to Y’CbCr color space.

V4L2_JPEG_CHROMA_SUBSAMPLING_444 No chroma subsampling, each pixel has Y, Cr and
Cb values.

V4L2_JPEG_CHROMA_SUBSAMPLING_422 Horizontally subsample Cr, Cb components by a fac-
tor of 2.

V4L2_JPEG_CHROMA_SUBSAMPLING_420 Subsample Cr, Cb components horizontally and ver-
tically by 2.

V4L2_JPEG_CHROMA_SUBSAMPLING_411 Horizontally subsample Cr, Cb components by a fac-
tor of 4.

V4L2_JPEG_CHROMA_SUBSAMPLING_410 Subsample Cr, Cb components horizontally by 4 and
vertically by 2.

V4L2_JPEG_CHROMA_SUBSAMPLING_GRAY Use only luminance component.

3.2. Part I - Video for Linux API 797

Linux Media Documentation

V4L2_CID_JPEG_RESTART_INTERVAL (integer) The restart interval determines an interval of
inserting RSTm markers (m = 0..7). The purpose of these markers is to addition-
ally reinitialize the encoder process, in order to process blocks of an image indepen-
dently. For the lossy compression processes the restart interval unit is MCU (Mini-
mum Coded Unit) and its value is contained in DRI (Define Restart Interval) marker. If
V4L2_CID_JPEG_RESTART_INTERVAL control is set to 0, DRI and RSTm markers will not be
inserted.

V4L2_CID_JPEG_COMPRESSION_QUALITY (integer) Determines trade-off between image qual-
ity and size. It provides simpler method for applications to control image quality, without
a need for direct reconfiguration of luminance and chrominance quantization tables. In
cases where a driver uses quantization tables configured directly by an application, us-
ing interfaces defined elsewhere, V4L2_CID_JPEG_COMPRESSION_QUALITY control should
be set by driver to 0.

The value range of this control is driver-specific. Only positive, non-zero values are mean-
ingful. The recommended range is 1 - 100, where larger values correspond to better image
quality.

V4L2_CID_JPEG_ACTIVE_MARKER (bitmask) Specify which JPEG markers are included in com-
pressed stream. This control is valid only for encoders.

V4L2_JPEG_ACTIVE_MARKER_APP0 Application data segment APP0.
V4L2_JPEG_ACTIVE_MARKER_APP1 Application data segment APP1.
V4L2_JPEG_ACTIVE_MARKER_COM Comment segment.
V4L2_JPEG_ACTIVE_MARKER_DQT Quantization tables segment.
V4L2_JPEG_ACTIVE_MARKER_DHT Huffman tables segment.

For more details about JPEG specification, refer to ITU-T.81, JFIF, W3C JPEG JFIF.

3.2.1.18 Digital Video Control Reference

The Digital Video control class is intended to control receivers and transmitters for VGA, DVI
(Digital Visual Interface), HDMI (HDMI) and DisplayPort (DP). These controls are generally
expected to be private to the receiver or transmitter subdevice that implements them, so they
are only exposed on the /dev/v4l-subdev* device node.

Note: Note that these devices can have multiple input or output pads which are hooked up
to e.g. HDMI connectors. Even though the subdevice will receive or transmit video from/to
only one of those pads, the other pads can still be active when it comes to EDID (Extended Dis-
play Identification Data, EDID) and HDCP (High-bandwidth Digital Content Protection System,
HDCP) processing, allowing the device to do the fairly slow EDID/HDCP handling in advance.
This allows for quick switching between connectors.

These pads appear in several of the controls in this section as bitmasks, one bit for each pad.
Bit 0 corresponds to pad 0, bit 1 to pad 1, etc. The maximum value of the control is the set of
valid pads.

798 Chapter 3. Linux Media Infrastructure userspace API

http://en.wikipedia.org/wiki/Vga
http://en.wikipedia.org/wiki/Digital_Visual_Interface

Linux Media Documentation

Digital Video Control IDs

V4L2_CID_DV_CLASS (class) The Digital Video class descriptor.

V4L2_CID_DV_TX_HOTPLUG (bitmask) Many connectors have a hotplug pin which is high if
EDID information is available from the source. This control shows the state of the hotplug
pin as seen by the transmitter. Each bit corresponds to an output pad on the transmitter.
If an output pad does not have an associated hotplug pin, then the bit for that pad will be
0. This read-only control is applicable to DVI-D, HDMI and DisplayPort connectors.

V4L2_CID_DV_TX_RXSENSE (bitmask) Rx Sense is the detection of pull-ups on the TMDS clock
lines. This normally means that the sink has left/entered standby (i.e. the transmitter can
sense that the receiver is ready to receive video). Each bit corresponds to an output pad
on the transmitter. If an output pad does not have an associated Rx Sense, then the bit for
that pad will be 0. This read-only control is applicable to DVI-D and HDMI devices.

V4L2_CID_DV_TX_EDID_PRESENT (bitmask) When the transmitter sees the hotplug signal from
the receiver it will attempt to read the EDID. If set, then the transmitter has read at least
the first block (= 128 bytes). Each bit corresponds to an output pad on the transmitter. If
an output pad does not support EDIDs, then the bit for that pad will be 0. This read-only
control is applicable to VGA, DVI-A/D, HDMI and DisplayPort connectors.

V4L2_CID_DV_TX_MODE (enum)

enum v4l2_dv_tx_mode - HDMI transmitters can transmit in DVI-D mode (just video) or in
HDMI mode (video + audio + auxiliary data). This control selects which mode to use:
V4L2_DV_TX_MODE_DVI_D or V4L2_DV_TX_MODE_HDMI. This control is applicable to
HDMI connectors.

V4L2_CID_DV_TX_RGB_RANGE (enum)

enum v4l2_dv_rgb_range - Select the quantization range for RGB output.
V4L2_DV_RANGE_AUTO follows the RGB quantization range specified in the stan-
dard for the video interface (ie. CEA-861-E for HDMI). V4L2_DV_RANGE_LIMITED and
V4L2_DV_RANGE_FULL override the standard to be compatible with sinks that have not
implemented the standard correctly (unfortunately quite common for HDMI and DVI-D).
Full range allows all possible values to be used whereas limited range sets the range to
(16 << (N-8)) - (235 << (N-8)) where N is the number of bits per component. This control
is applicable to VGA, DVI-A/D, HDMI and DisplayPort connectors.

V4L2_CID_DV_TX_IT_CONTENT_TYPE (enum)

enum v4l2_dv_it_content_type - Configures the IT Content Type of the transmitted video.
This information is sent over HDMI and DisplayPort connectors as part of the AVI
InfoFrame. The term ‘IT Content’ is used for content that originates from a com-
puter as opposed to content from a TV broadcast or an analog source. The enum
v4l2_dv_it_content_type defines the possible content types:

3.2. Part I - Video for Linux API 799

Linux Media Documentation

V4L2_DV_IT_CONTENT_TYPE_GRAPHICS Graphics content. Pixel data should be passed unfil-
tered and without analog reconstruction.

V4L2_DV_IT_CONTENT_TYPE_PHOTO Photo content. The content is derived from digital
still pictures. The content should be passed through
with minimal scaling and picture enhancements.

V4L2_DV_IT_CONTENT_TYPE_CINEMA Cinema content.
V4L2_DV_IT_CONTENT_TYPE_GAME Game content. Audio and video latency should be

minimized.
V4L2_DV_IT_CONTENT_TYPE_NO_ITC No IT Content information is available and the ITC

bit in the AVI InfoFrame is set to 0.

V4L2_CID_DV_RX_POWER_PRESENT (bitmask) Detects whether the receiver receives power
from the source (e.g. HDMI carries 5V on one of the pins). This is often used to power an
eeprom which contains EDID information, such that the source can read the EDID even if
the sink is in standby/power off. Each bit corresponds to an input pad on the receiver. If
an input pad cannot detect whether power is present, then the bit for that pad will be 0.
This read-only control is applicable to DVI-D, HDMI and DisplayPort connectors.

V4L2_CID_DV_RX_RGB_RANGE (enum)

enum v4l2_dv_rgb_range - Select the quantization range for RGB input.
V4L2_DV_RANGE_AUTO follows the RGB quantization range specified in the stan-
dard for the video interface (ie. CEA-861-E for HDMI). V4L2_DV_RANGE_LIMITED and
V4L2_DV_RANGE_FULL override the standard to be compatible with sources that have
not implemented the standard correctly (unfortunately quite common for HDMI and
DVI-D). Full range allows all possible values to be used whereas limited range sets the
range to (16 << (N-8)) - (235 << (N-8)) where N is the number of bits per component.
This control is applicable to VGA, DVI-A/D, HDMI and DisplayPort connectors.

V4L2_CID_DV_RX_IT_CONTENT_TYPE (enum)

enum v4l2_dv_it_content_type - Reads the IT Content Type of the received video. This in-
formation is sent over HDMI and DisplayPort connectors as part of the AVI InfoFrame.
The term ‘IT Content’ is used for content that originates from a computer as opposed to
content from a TV broadcast or an analog source. See V4L2_CID_DV_TX_IT_CONTENT_TYPE
for the available content types.

3.2.1.19 RF Tuner Control Reference

The RF Tuner (RF_TUNER) class includes controls for common features of devices having RF
tuner.

In this context, RF tuner is radio receiver circuit between antenna and demodulator. It receives
radio frequency (RF) from the antenna and converts that received signal to lower intermediate
frequency (IF) or baseband frequency (BB). Tuners that could do baseband output are often
called Zero-IF tuners. Older tuners were typically simple PLL tuners inside a metal box, while
newer ones are highly integrated chips without a metal box “silicon tuners”. These controls are
mostly applicable for new feature rich silicon tuners, just because older tuners does not have
much adjustable features.

For more information about RF tuners see Tuner (radio) and RF front end from Wikipedia.

800 Chapter 3. Linux Media Infrastructure userspace API

http://en.wikipedia.org/wiki/Tuner_%28radio%29
http://en.wikipedia.org/wiki/RF_front_end

Linux Media Documentation

RF_TUNER Control IDs

V4L2_CID_RF_TUNER_CLASS (class) The RF_TUNER class descriptor. Calling ioctls VID-
IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU for this control
will return a description of this control class.

V4L2_CID_RF_TUNER_BANDWIDTH_AUTO (boolean) Enables/disables tuner radio channel band-
width configuration. In automatic mode bandwidth configuration is performed by the
driver.

V4L2_CID_RF_TUNER_BANDWIDTH (integer) Filter(s) on tuner signal path are used to filter sig-
nal according to receiving party needs. Driver configures filters to fulfill desired bandwidth
requirement. Used when V4L2_CID_RF_TUNER_BANDWIDTH_AUTO is not set. Unit is in
Hz. The range and step are driver-specific.

V4L2_CID_RF_TUNER_LNA_GAIN_AUTO (boolean) Enables/disables LNA automatic gain control
(AGC)

V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO (boolean) Enables/disables mixer automatic gain
control (AGC)

V4L2_CID_RF_TUNER_IF_GAIN_AUTO (boolean) Enables/disables IF automatic gain control
(AGC)

V4L2_CID_RF_TUNER_RF_GAIN (integer) The RF amplifier is the very first amplifier on the re-
ceiver signal path, just right after the antenna input. The difference between the LNA gain
and the RF gain in this document is that the LNA gain is integrated in the tuner chip while
the RF gain is a separate chip. There may be both RF and LNA gain controls in the same
device. The range and step are driver-specific.

V4L2_CID_RF_TUNER_LNA_GAIN (integer) LNA (low noise amplifier) gain is first gain stage on
the RF tuner signal path. It is located very close to tuner antenna input. Used when
V4L2_CID_RF_TUNER_LNA_GAIN_AUTO is not set. See V4L2_CID_RF_TUNER_RF_GAIN to un-
derstand how RF gain and LNA gain differs from the each others. The range and step are
driver-specific.

V4L2_CID_RF_TUNER_MIXER_GAIN (integer) Mixer gain is second gain stage on the RF tuner
signal path. It is located inside mixer block, where RF signal is down-converted by the
mixer. Used when V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO is not set. The range and step
are driver-specific.

V4L2_CID_RF_TUNER_IF_GAIN (integer) IF gain is last gain stage on the RF tuner signal path.
It is located on output of RF tuner. It controls signal level of intermediate frequency output
or baseband output. Used when V4L2_CID_RF_TUNER_IF_GAIN_AUTO is not set. The range
and step are driver-specific.

V4L2_CID_RF_TUNER_PLL_LOCK (boolean) Is synthesizer PLL locked? RF tuner is receiving
given frequency when that control is set. This is a read-only control.

3.2. Part I - Video for Linux API 801

Linux Media Documentation

3.2.1.20 FM Transmitter Control Reference

The FM Transmitter (FM_TX) class includes controls for common features of FM transmissions
capable devices. Currently this class includes parameters for audio compression, pilot tone
generation, audio deviation limiter, RDS transmission and tuning power features.

FM_TX Control IDs

V4L2_CID_FM_TX_CLASS (class) The FM_TX class descriptor. Calling ioctls VID-
IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU for this
control will return a description of this control class.

V4L2_CID_RDS_TX_DEVIATION (integer) Configures RDS signal frequency deviation level in
Hz. The range and step are driver-specific.

V4L2_CID_RDS_TX_PI (integer) Sets the RDS Programme Identification field for transmis-
sion.

V4L2_CID_RDS_TX_PTY (integer) Sets the RDS Programme Type field for transmission. This
encodes up to 31 pre-defined programme types.

V4L2_CID_RDS_TX_PS_NAME (string) Sets the Programme Service name (PS_NAME) for
transmission. It is intended for static display on a receiver. It is the primary aid to lis-
teners in programme service identification and selection. In Annex E of IEC 62106, the
RDS specification, there is a full description of the correct character encoding for Pro-
gramme Service name strings. Also from RDS specification, PS is usually a single eight
character text. However, it is also possible to find receivers which can scroll strings sized
as 8 x N characters. So, this control must be configured with steps of 8 characters. The
result is it must always contain a string with size multiple of 8.

V4L2_CID_RDS_TX_RADIO_TEXT (string) Sets the Radio Text info for transmission. It is a tex-
tual description of what is being broadcasted. RDS Radio Text can be applied when broad-
caster wishes to transmit longer PS names, programme-related information or any other
text. In these cases, RadioText should be used in addition to V4L2_CID_RDS_TX_PS_NAME.
The encoding for Radio Text strings is also fully described in Annex E of IEC 62106. The
length of Radio Text strings depends on which RDS Block is being used to transmit it, ei-
ther 32 (2A block) or 64 (2B block). However, it is also possible to find receivers which
can scroll strings sized as 32 x N or 64 x N characters. So, this control must be configured
with steps of 32 or 64 characters. The result is it must always contain a string with size
multiple of 32 or 64.

V4L2_CID_RDS_TX_MONO_STEREO (boolean) Sets the Mono/Stereo bit of the Decoder Identifi-
cation code. If set, then the audio was recorded as stereo.

V4L2_CID_RDS_TX_ARTIFICIAL_HEAD (boolean) Sets the Artificial Head bit of the Decoder
Identification code. If set, then the audio was recorded using an artificial head.

V4L2_CID_RDS_TX_COMPRESSED (boolean) Sets the Compressed bit of the Decoder Identifica-
tion code. If set, then the audio is compressed.

V4L2_CID_RDS_TX_DYNAMIC_PTY (boolean) Sets the Dynamic PTY bit of the Decoder Identifi-
cation code. If set, then the PTY code is dynamically switched.

V4L2_CID_RDS_TX_TRAFFIC_ANNOUNCEMENT (boolean) If set, then a traffic announcement is in
progress.

802 Chapter 3. Linux Media Infrastructure userspace API

http://en.wikipedia.org/wiki/Artificial_head

Linux Media Documentation

V4L2_CID_RDS_TX_TRAFFIC_PROGRAM (boolean) If set, then the tuned programme carries traf-
fic announcements.

V4L2_CID_RDS_TX_MUSIC_SPEECH (boolean) If set, then this channel broadcasts music. If
cleared, then it broadcasts speech. If the transmitter doesn’t make this distinction, then
it should be set.

V4L2_CID_RDS_TX_ALT_FREQS_ENABLE (boolean) If set, then transmit alternate frequencies.

V4L2_CID_RDS_TX_ALT_FREQS (__u32 array) The alternate frequencies in kHz units. The
RDS standard allows for up to 25 frequencies to be defined. Drivers may support fewer
frequencies so check the array size.

V4L2_CID_AUDIO_LIMITER_ENABLED (boolean) Enables or disables the audio deviation limiter
feature. The limiter is useful when trying to maximize the audio volume, minimize receiver-
generated distortion and prevent overmodulation.

V4L2_CID_AUDIO_LIMITER_RELEASE_TIME (integer) Sets the audio deviation limiter feature
release time. Unit is in useconds. Step and range are driver-specific.

V4L2_CID_AUDIO_LIMITER_DEVIATION (integer) Configures audio frequency deviation level
in Hz. The range and step are driver-specific.

V4L2_CID_AUDIO_COMPRESSION_ENABLED (boolean) Enables or disables the audio compres-
sion feature. This feature amplifies signals below the threshold by a fixed gain and com-
presses audio signals above the threshold by the ratio of Threshold/(Gain + Threshold).

V4L2_CID_AUDIO_COMPRESSION_GAIN (integer) Sets the gain for audio compression feature.
It is a dB value. The range and step are driver-specific.

V4L2_CID_AUDIO_COMPRESSION_THRESHOLD (integer) Sets the threshold level for audio com-
pression freature. It is a dB value. The range and step are driver-specific.

V4L2_CID_AUDIO_COMPRESSION_ATTACK_TIME (integer) Sets the attack time for audio com-
pression feature. It is a useconds value. The range and step are driver-specific.

V4L2_CID_AUDIO_COMPRESSION_RELEASE_TIME (integer) Sets the release time for audio com-
pression feature. It is a useconds value. The range and step are driver-specific.

V4L2_CID_PILOT_TONE_ENABLED (boolean) Enables or disables the pilot tone generation fea-
ture.

V4L2_CID_PILOT_TONE_DEVIATION (integer) Configures pilot tone frequency deviation level.
Unit is in Hz. The range and step are driver-specific.

V4L2_CID_PILOT_TONE_FREQUENCY (integer) Configures pilot tone frequency value. Unit is
in Hz. The range and step are driver-specific.

V4L2_CID_TUNE_PREEMPHASIS (enum)

enum v4l2_preemphasis - Configures the pre-emphasis value for broadcasting. A pre-
emphasis filter is applied to the broadcast to accentuate the high audio frequencies. De-
pending on the region, a time constant of either 50 or 75 useconds is used. The enum
v4l2_preemphasis defines possible values for pre-emphasis. Here they are:

V4L2_PREEMPHASIS_DISABLED No pre-emphasis is applied.
V4L2_PREEMPHASIS_50_uS A pre-emphasis of 50 uS is used.
V4L2_PREEMPHASIS_75_uS A pre-emphasis of 75 uS is used.

3.2. Part I - Video for Linux API 803

Linux Media Documentation

V4L2_CID_TUNE_POWER_LEVEL (integer) Sets the output power level for signal transmission.
Unit is in dBuV. Range and step are driver-specific.

V4L2_CID_TUNE_ANTENNA_CAPACITOR (integer) This selects the value of antenna tuning ca-
pacitor manually or automatically if set to zero. Unit, range and step are driver-specific.

For more details about RDS specification, refer to IEC 62106 document, from CENELEC.

3.2.1.21 FM Receiver Control Reference

The FMReceiver (FM_RX) class includes controls for common features of FMReception capable
devices.

FM_RX Control IDs

V4L2_CID_FM_RX_CLASS (class) The FM_RX class descriptor. Calling ioctls VID-
IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU for this
control will return a description of this control class.

V4L2_CID_RDS_RECEPTION (boolean) Enables/disables RDS reception by the radio tuner

V4L2_CID_RDS_RX_PTY (integer) Gets RDS Programme Type field. This encodes up to 31 pre-
defined programme types.

V4L2_CID_RDS_RX_PS_NAME (string) Gets the Programme Service name (PS_NAME). It is in-
tended for static display on a receiver. It is the primary aid to listeners in programme
service identification and selection. In Annex E of IEC 62106, the RDS specification, there
is a full description of the correct character encoding for Programme Service name strings.
Also from RDS specification, PS is usually a single eight character text. However, it is also
possible to find receivers which can scroll strings sized as 8 x N characters. So, this con-
trol must be configured with steps of 8 characters. The result is it must always contain a
string with size multiple of 8.

V4L2_CID_RDS_RX_RADIO_TEXT (string) Gets the Radio Text info. It is a textual description
of what is being broadcasted. RDS Radio Text can be applied when broadcaster wishes
to transmit longer PS names, programme-related information or any other text. In these
cases, RadioText can be used in addition to V4L2_CID_RDS_RX_PS_NAME. The encoding for
Radio Text strings is also fully described in Annex E of IEC 62106. The length of Radio Text
strings depends on which RDS Block is being used to transmit it, either 32 (2A block) or
64 (2B block). However, it is also possible to find receivers which can scroll strings sized
as 32 x N or 64 x N characters. So, this control must be configured with steps of 32 or 64
characters. The result is it must always contain a string with size multiple of 32 or 64.

V4L2_CID_RDS_RX_TRAFFIC_ANNOUNCEMENT (boolean) If set, then a traffic announcement is in
progress.

V4L2_CID_RDS_RX_TRAFFIC_PROGRAM (boolean) If set, then the tuned programme carries traf-
fic announcements.

V4L2_CID_RDS_RX_MUSIC_SPEECH (boolean) If set, then this channel broadcasts music. If
cleared, then it broadcasts speech. If the transmitter doesn’t make this distinction, then
it will be set.

V4L2_CID_TUNE_DEEMPHASIS (enum)

804 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

enum v4l2_deemphasis - Configures the de-emphasis value for reception. A de-emphasis fil-
ter is applied to the broadcast to accentuate the high audio frequencies. Depending on the
region, a time constant of either 50 or 75 useconds is used. The enum v4l2_deemphasis
defines possible values for de-emphasis. Here they are:

V4L2_DEEMPHASIS_DISABLED No de-emphasis is applied.
V4L2_DEEMPHASIS_50_uS A de-emphasis of 50 uS is used.
V4L2_DEEMPHASIS_75_uS A de-emphasis of 75 uS is used.

3.2.1.22 Detect Control Reference

The Detect class includes controls for common features of various motion or object detection
capable devices.

Detect Control IDs

V4L2_CID_DETECT_CLASS (class) The Detect class descriptor. Calling ioctls VID-
IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU for this
control will return a description of this control class.

V4L2_CID_DETECT_MD_MODE (menu) Sets the motion detection mode.

V4L2_DETECT_MD_MODE_DISABLED Disable motion detection.
V4L2_DETECT_MD_MODE_GLOBAL Use a single motion detection threshold.
V4L2_DETECT_MD_MODE_THRESHOLD_GRID The image is divided into a grid, each

cell with its own motion detection thresh-
old. These thresholds are set through the
V4L2_CID_DETECT_MD_THRESHOLD_GRID matrix
control.

V4L2_DETECT_MD_MODE_REGION_GRID The image is divided into a grid, each cell with
its own region value that specifies which per-
region motion detection thresholds should be
used. Each region has its own thresholds. How
these per-region thresholds are set up is driver-
specific. The region values for the grid are set
through the V4L2_CID_DETECT_MD_REGION_GRID
matrix control.

V4L2_CID_DETECT_MD_GLOBAL_THRESHOLD (integer) Sets the global motion detection thresh-
old to be used with the V4L2_DETECT_MD_MODE_GLOBAL motion detection mode.

V4L2_CID_DETECT_MD_THRESHOLD_GRID (__u16 matrix) Sets the motion detection thresholds
for each cell in the grid. To be used with the V4L2_DETECT_MD_MODE_THRESHOLD_GRID mo-
tion detection mode. Matrix element (0, 0) represents the cell at the top-left of the grid.

V4L2_CID_DETECT_MD_REGION_GRID (__u8 matrix) Sets the motion detection region value for
each cell in the grid. To be used with the V4L2_DETECT_MD_MODE_REGION_GRID motion
detection mode. Matrix element (0, 0) represents the cell at the top-left of the grid.

3.2. Part I - Video for Linux API 805

Linux Media Documentation

3.2.1.23 Colorimetry Control Reference

The Colorimetry class includes controls for High Dynamic Range imaging for representing col-
ors in digital images and video. The controls should be used for video and image encoding and
decoding as well as in HDMI receivers and transmitters.

Colorimetry Control IDs

V4L2_CID_COLORIMETRY_CLASS (class) The Colorimetry class descriptor. Calling ioctls VID-
IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU for this control
will return a description of this control class.

V4L2_CID_COLORIMETRY_HDR10_CLL_INFO (struct) The Content Light Level defines upper
bounds for the nominal target brightness light level of the pictures.

v4l2_ctrl_hdr10_cll_info

Table 42: struct v4l2_ctrl_hdr10_cll_info
__u16 max_content_light_level The upper bound for the maximum light level among all individual samples for the pictures of a video sequence, cd/m2. When equal to 0 no such upper bound is present.
__u16 max_pic_average_light_level The upper bound for the maximum average light level among the samples for any individual picture of a video sequence, cd/m2. When equal to 0 no such upper bound is present.

V4L2_CID_COLORIMETRY_HDR10_MASTERING_DISPLAY (struct) The mastering display defines
the color volume (the color primaries, white point and luminance range) of a display con-
sidered to be the mastering display for the current video content.

v4l2_ctrl_hdr10_mastering_display

Table 43: struct v4l2_ctrl_hdr10_mastering_display
__u16 display_primaries_x[3] Specifies the normalized x chromaticity coordinate of the color primary component c of the mastering display in increments of 0.00002. For describing the mastering display that uses Red, Green and Blue color primaries, index value c equal to 0 corresponds to the Green primary, c equal to 1 corresponds to Blue primary and c equal to 2 corresponds to the Red color primary.
__u16 display_primaries_y[3] Specifies the normalized y chromaticity coordinate of the color primary component c of the mastering display in increments of 0.00002. For describing the mastering display that uses Red, Green and Blue color primaries, index value c equal to 0 corresponds to the Green primary, c equal to 1 corresponds to Blue primary and c equal to 2 corresponds to Red color primary.
__u16 white_point_x Specifies the normalized x chromaticity coordinate of the white point of the mastering display in increments of 0.00002.
__u16 white_point_y Specifies the normalized y chromaticity coordinate of the white point of the mastering display in increments of 0.00002.
__u32 max_luminance Specifies the nominal maximum display luminance of the mastering display in units of 0.0001 cd/m2.
__u32 min_luminance specifies the nominal minimum display luminance of the mastering display in units of 0.0001 cd/m2.

3.2.1.24 Guidelines for Video4Linux pixel format 4CCs

Guidelines for Video4Linux 4CC codes defined using v4l2_fourcc() are specified in this docu-
ment. First of the characters defines the nature of the pixel format, compression and colour
space. The interpretation of the other three characters depends on the first one.

Existing 4CCs may not obey these guidelines.

806 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Raw bayer

The following first characters are used by raw bayer formats:

• B: raw bayer, uncompressed

• b: raw bayer, DPCM compressed

• a: A-law compressed

• u: u-law compressed

2nd character: pixel order

• B: BGGR

• G: GBRG

• g: GRBG

• R: RGGB

3rd character: uncompressed bits-per-pixel 0–9, A–

4th character: compressed bits-per-pixel 0–9, A–

3.2.1.25 Data Formats

Data Format Negotiation

Different devices exchange different kinds of data with applications, for example video images,
raw or sliced VBI data, RDS datagrams. Even within one kind many different formats are pos-
sible, in particular there is an abundance of image formats. Although drivers must provide a
default and the selection persists across closing and reopening a device, applications should
always negotiate a data format before engaging in data exchange. Negotiation means the ap-
plication asks for a particular format and the driver selects and reports the best the hardware
can do to satisfy the request. Of course applications can also just query the current selection.

A single mechanism exists to negotiate all data formats using the aggregate struct v4l2_format
and the VIDIOC_G_FMT and VIDIOC_S_FMT ioctls. Additionally the VIDIOC_TRY_FMT ioctl
can be used to examine what the hardware could do, without actually selecting a new data
format. The data formats supported by the V4L2 API are covered in the respective device
section in Interfaces. For a closer look at image formats see Image Formats.

The VIDIOC_S_FMT ioctl is a major turning-point in the initialization sequence. Prior to this
point multiple panel applications can access the same device concurrently to select the current
input, change controls or modify other properties. The first VIDIOC_S_FMT assigns a logical
stream (video data, VBI data etc.) exclusively to one file descriptor.

Exclusive means no other application, more precisely no other file descriptor, can grab this
stream or change device properties inconsistent with the negotiated parameters. A video stan-
dard change for example, when the new standard uses a different number of scan lines, can
invalidate the selected image format. Therefore only the file descriptor owning the stream can
make invalidating changes. Accordingly multiple file descriptors which grabbed different log-
ical streams prevent each other from interfering with their settings. When for example video
overlay is about to start or already in progress, simultaneous video capturing may be restricted
to the same cropping and image size.

3.2. Part I - Video for Linux API 807

Linux Media Documentation

When applications omit the VIDIOC_S_FMT ioctl its locking side effects are implied by the next
step, the selection of an I/O method with the ioctl VIDIOC_REQBUFS ioctl or implicit with the
first read() or write() call.

Generally only one logical stream can be assigned to a file descriptor, the exception being
drivers permitting simultaneous video capturing and overlay using the same file descriptor for
compatibility with V4L and earlier versions of V4L2. Switching the logical stream or returning
into “panel mode” is possible by closing and reopening the device. Driversmay support a switch
using VIDIOC_S_FMT.

All drivers exchanging data with applications must support the VIDIOC_G_FMT and VID-
IOC_S_FMT ioctl. Implementation of the VIDIOC_TRY_FMT is highly recommended but op-
tional.

Image Format Enumeration

Apart of the generic format negotiation functions a special ioctl to enumerate all image formats
supported by video capture, overlay or output devices is available.1

The ioctl VIDIOC_ENUM_FMT ioctl must be supported by all drivers exchanging image data
with applications.

Important: Drivers are not supposed to convert image formats in kernel space. They must
enumerate only formats directly supported by the hardware. If necessary driver writers should
publish an example conversion routine or library for integration into applications.

3.2.1.26 Single- and multi-planar APIs

Some devices require data for each input or output video frame to be placed in discontiguous
memory buffers. In such cases, one video frame has to be addressed using more than one
memory address, i.e. one pointer per “plane”. A plane is a sub-buffer of the current frame. For
examples of such formats see Image Formats.

Initially, V4L2 API did not support multi-planar buffers and a set of extensions has been intro-
duced to handle them. Those extensions constitute what is being referred to as the “multi-planar
API”.

Some of the V4L2 API calls and structures are interpreted differently, depending on whether
single- or multi-planar API is being used. An application can choose whether to use one or the
other by passing a corresponding buffer type to its ioctl calls. Multi-planar versions of buffer
types are suffixed with an _MPLANE string. For a list of available multi-planar buffer types see
enum v4l2_buf_type.

1 Enumerating formats an application has no a-priori knowledge of (otherwise it could explicitly ask for them and
need not enumerate) seems useless, but there are applications serving as proxy between drivers and the actual
video applications for which this is useful.

808 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Multi-planar formats

Multi-planar API introduces new multi-planar formats. Those formats use a separate set of
FourCC codes. It is important to distinguish between the multi-planar API and a multi-planar
format. Multi-planar API calls can handle all single-planar formats as well (as long as they are
passed in multi-planar API structures), while the single-planar API cannot handle multi-planar
formats.

Calls that distinguish between single and multi-planar APIs

VIDIOC_QUERYCAP Two additional multi-planar capabilities are added. They can be set to-
gether with non-multi-planar ones for devices that handle both single- and multi-planar
formats.

VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT New structures for describ-
ing multi-planar formats are added: struct v4l2_pix_format_mplane and struct
v4l2_plane_pix_format. Drivers may define new multi-planar formats, which have
distinct FourCC codes from the existing single-planar ones.

VIDIOC_QBUF, VIDIOC_DQBUF, VIDIOC_QUERYBUF A new struct v4l2_plane structure
for describing planes is added. Arrays of this structure are passed in the new m.planes
field of struct v4l2_buffer.

VIDIOC_REQBUFS Will allocate multi-planar buffers as requested.

3.2.1.27 Cropping, composing and scaling – the SELECTION API

Introduction

Some video capture devices can sample a subsection of a picture and shrink or enlarge it to
an image of arbitrary size. Next, the devices can insert the image into larger one. Some video
output devices can crop part of an input image, scale it up or down and insert it at an arbitrary
scan line and horizontal offset into a video signal. We call these abilities cropping, scaling and
composing.

On a video capture device the source is a video signal, and the cropping target determine the
area actually sampled. The sink is an image stored in a memory buffer. The composing area
specifies which part of the buffer is actually written to by the hardware.

On a video output device the source is an image in a memory buffer, and the cropping target is
a part of an image to be shown on a display. The sink is the display or the graphics screen. The
application may select the part of display where the image should be displayed. The size and
position of such a window is controlled by the compose target.

Rectangles for all cropping and composing targets are defined even if the device does supports
neither cropping nor composing. Their size and position will be fixed in such a case. If the
device does not support scaling then the cropping and composing rectangles have the same
size.

3.2. Part I - Video for Linux API 809

Linux Media Documentation

Selection targets

Fig. 2: Cropping and composing targets
Targets used by a cropping, composing and scaling process

See Selection targets for more information.

Configuration

Applications can use the selection API to select an area in a video signal or a buffer, and to
query for default settings and hardware limits.

Video hardware can have various cropping, composing and scaling limitations. It may only
scale up or down, support only discrete scaling factors, or have different scaling abilities in the
horizontal and vertical directions. Also it may not support scaling at all. At the same time the
cropping/composing rectangles may have to be aligned, and both the source and the sink may
have arbitrary upper and lower size limits. Therefore, as usual, drivers are expected to adjust
the requested parameters and return the actual values selected. An application can control the
rounding behaviour using constraint flags.

Configuration of video capture

See figure Cropping and composing targets for examples of the selection targets available for
a video capture device. It is recommended to configure the cropping targets before to the
composing targets.

The range of coordinates of the top left corner, width and height of areas that can be sampled is
given by the V4L2_SEL_TGT_CROP_BOUNDS target. It is recommended for the driver developers
to put the top/left corner at position (0,0). The rectangle’s coordinates are expressed in pixels.

The top left corner, width and height of the source rectangle, that is the area actually sam-
pled, is given by the V4L2_SEL_TGT_CROP target. It uses the same coordinate system as
V4L2_SEL_TGT_CROP_BOUNDS. The active cropping area must lie completely inside the capture

810 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

boundaries. The driver may further adjust the requested size and/or position according to hard-
ware limitations.

Each capture device has a default source rectangle, given by the V4L2_SEL_TGT_CROP_DEFAULT
target. This rectangle shall cover what the driver writer considers the complete picture. Drivers
shall set the active crop rectangle to the default when the driver is first loaded, but not later.

The composing targets refer to a memory buffer. The limits of composing coordinates are
obtained using V4L2_SEL_TGT_COMPOSE_BOUNDS. All coordinates are expressed in pixels. The
rectangle’s top/left corner must be located at position (0,0). The width and height are equal
to the image size set by VIDIOC_S_FMT.

The part of a buffer into which the image is inserted by the hardware is controlled by the
V4L2_SEL_TGT_COMPOSE target. The rectangle’s coordinates are also expressed in the same
coordinate system as the bounds rectangle. The composing rectangle must lie completely inside
bounds rectangle. The driver must adjust the composing rectangle to fit to the bounding limits.
Moreover, the driver can perform other adjustments according to hardware limitations. The
application can control rounding behaviour using constraint flags.

For capture devices the default composing rectangle is queried using
V4L2_SEL_TGT_COMPOSE_DEFAULT. It is usually equal to the bounding rectangle.

The part of a buffer that is modified by the hardware is given by
V4L2_SEL_TGT_COMPOSE_PADDED. It contains all pixels defined using V4L2_SEL_TGT_COMPOSE
plus all padding data modified by hardware during insertion process. All pixels outside this
rectangle must not be changed by the hardware. The content of pixels that lie inside the
padded area but outside active area is undefined. The application can use the padded and
active rectangles to detect where the rubbish pixels are located and remove them if needed.

Configuration of video output

For output devices targets and ioctls are used similarly to the video capture case. The compos-
ing rectangle refers to the insertion of an image into a video signal. The cropping rectangles
refer to a memory buffer. It is recommended to configure the composing targets before to the
cropping targets.

The cropping targets refer to the memory buffer that contains an image to be inserted into
a video signal or graphical screen. The limits of cropping coordinates are obtained using
V4L2_SEL_TGT_CROP_BOUNDS. All coordinates are expressed in pixels. The top/left corner is
always point (0,0). The width and height is equal to the image size specified using VID-
IOC_S_FMT ioctl.

The top left corner, width and height of the source rectangle, that is the area from which image
date are processed by the hardware, is given by the V4L2_SEL_TGT_CROP. Its coordinates are
expressed in the same coordinate system as the bounds rectangle. The active cropping area
must lie completely inside the crop boundaries and the driver may further adjust the requested
size and/or position according to hardware limitations.

For output devices the default cropping rectangle is queried using
V4L2_SEL_TGT_CROP_DEFAULT. It is usually equal to the bounding rectangle.

The part of a video signal or graphics display where the image is inserted by the hardware
is controlled by V4L2_SEL_TGT_COMPOSE target. The rectangle’s coordinates are expressed in
pixels. The composing rectangle must lie completely inside the bounds rectangle. The driver

3.2. Part I - Video for Linux API 811

Linux Media Documentation

must adjust the area to fit to the bounding limits. Moreover, the driver can perform other
adjustments according to hardware limitations.

The device has a default composing rectangle, given by the V4L2_SEL_TGT_COMPOSE_DEFAULT
target. This rectangle shall cover what the driver writer considers the complete picture. It is
recommended for the driver developers to put the top/left corner at position (0,0). Drivers
shall set the active composing rectangle to the default one when the driver is first loaded.

The devices may introduce additional content to video signal other than an image from memory
buffers. It includes borders around an image. However, such a padded area is driver-dependent
feature not covered by this document. Driver developers are encouraged to keep padded rect-
angle equal to active one. The padded target is accessed by the V4L2_SEL_TGT_COMPOSE_PADDED
identifier. It must contain all pixels from the V4L2_SEL_TGT_COMPOSE target.

Scaling control

An application can detect if scaling is performed by comparing the width and the height of
rectangles obtained using V4L2_SEL_TGT_CROP and V4L2_SEL_TGT_COMPOSE targets. If these
are not equal then the scaling is applied. The application can compute the scaling ratios using
these values.

Comparison with old cropping API

The selection API was introduced to cope with deficiencies of the older CROP API, that was de-
signed to control simple capture devices. Later the cropping API was adopted by video output
drivers. The ioctls are used to select a part of the display were the video signal is inserted. It
should be considered as an API abuse because the described operation is actually the compos-
ing. The selection API makes a clear distinction between composing and cropping operations
by setting the appropriate targets.

The CROP API lacks any support for composing to and cropping from an image inside a mem-
ory buffer. The application could configure a capture device to fill only a part of an image by
abusing V4L2 API. Cropping a smaller image from a larger one is achieved by setting the field
bytesperline at struct v4l2_pix_format. Introducing an image offsets could be done by mod-
ifying field m_userptr at struct v4l2_buffer before calling VIDIOC_QBUF. Those operations
should be avoided because they are not portable (endianness), and do not work for macroblock
and Bayer formats and mmap buffers.

The selection API deals with configuration of buffer cropping/composing in a clear, intuitive and
portable way. Next, with the selection API the concepts of the padded target and constraints
flags are introduced. Finally, struct v4l2_crop and struct v4l2_cropcap have no reserved
fields. Therefore there is no way to extend their functionality. The new struct v4l2_selection
provides a lot of place for future extensions.

Driver developers are encouraged to implement only selection API. The former cropping API
would be simulated using the new one.

812 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Examples

(A video capture device is assumed; change V4L2_BUF_TYPE_VIDEO_CAPTURE for other devices;
change target to V4L2_SEL_TGT_COMPOSE_* family to configure composing area)

Example: Resetting the cropping parameters

struct v4l2_selection sel = {
.type = V4L2_BUF_TYPE_VIDEO_CAPTURE,
.target = V4L2_SEL_TGT_CROP_DEFAULT,

};
ret = ioctl(fd, VIDIOC_G_SELECTION, &sel);
if (ret)

exit(-1);
sel.target = V4L2_SEL_TGT_CROP;
ret = ioctl(fd, VIDIOC_S_SELECTION, &sel);
if (ret)

exit(-1);

Setting a composing area on output of size of at most half of limit placed at a center of a display.

Example: Simple downscaling

struct v4l2_selection sel = {
.type = V4L2_BUF_TYPE_VIDEO_OUTPUT,
.target = V4L2_SEL_TGT_COMPOSE_BOUNDS,

};
struct v4l2_rect r;

ret = ioctl(fd, VIDIOC_G_SELECTION, &sel);
if (ret)

exit(-1);
/* setting smaller compose rectangle */
r.width = sel.r.width / 2;
r.height = sel.r.height / 2;
r.left = sel.r.width / 4;
r.top = sel.r.height / 4;
sel.r = r;
sel.target = V4L2_SEL_TGT_COMPOSE;
sel.flags = V4L2_SEL_FLAG_LE;
ret = ioctl(fd, VIDIOC_S_SELECTION, &sel);
if (ret)

exit(-1);

A video output device is assumed; change V4L2_BUF_TYPE_VIDEO_OUTPUT for other devices

3.2. Part I - Video for Linux API 813

Linux Media Documentation

Example: Querying for scaling factors

struct v4l2_selection compose = {
.type = V4L2_BUF_TYPE_VIDEO_OUTPUT,
.target = V4L2_SEL_TGT_COMPOSE,

};
struct v4l2_selection crop = {

.type = V4L2_BUF_TYPE_VIDEO_OUTPUT,

.target = V4L2_SEL_TGT_CROP,
};
double hscale, vscale;

ret = ioctl(fd, VIDIOC_G_SELECTION, &compose);
if (ret)

exit(-1);
ret = ioctl(fd, VIDIOC_G_SELECTION, &crop);
if (ret)

exit(-1);

/* computing scaling factors */
hscale = (double)compose.r.width / crop.r.width;
vscale = (double)compose.r.height / crop.r.height;

3.2.1.28 Image Cropping, Insertion and Scaling – the CROP API

Note: The CROP API is mostly superseded by the newer SELECTION API. The new API should
be preferred in most cases, with the exception of pixel aspect ratio detection, which is imple-
mented by VIDIOC_CROPCAP and has no equivalent in the SELECTION API. See Comparison
with old cropping API for a comparison of the two APIs.

Some video capture devices can sample a subsection of the picture and shrink or enlarge it
to an image of arbitrary size. We call these abilities cropping and scaling. Some video output
devices can scale an image up or down and insert it at an arbitrary scan line and horizontal
offset into a video signal.

Applications can use the following API to select an area in the video signal, query the default
area and the hardware limits.

Note: Despite their name, the VIDIOC_CROPCAP, VIDIOC_G_CROP and VIDIOC_S_CROP
ioctls apply to input as well as output devices.

Scaling requires a source and a target. On a video capture or overlay device the source is
the video signal, and the cropping ioctls determine the area actually sampled. The target are
images read by the application or overlaid onto the graphics screen. Their size (and position
for an overlay) is negotiated with the VIDIOC_G_FMT and VIDIOC_S_FMT ioctls.

On a video output device the source are the images passed in by the application, and their size
is again negotiated with the VIDIOC_G_FMT and VIDIOC_S_FMT ioctls, or may be encoded in
a compressed video stream. The target is the video signal, and the cropping ioctls determine
the area where the images are inserted.

814 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Source and target rectangles are defined even if the device does not support scaling or the
VIDIOC_G_CROP and VIDIOC_S_CROP ioctls. Their size (and position where applicable) will
be fixed in this case.

Note: All capture and output devices that support the CROP or SELECTION API will also
support the VIDIOC_CROPCAP ioctl.

Cropping Structures

Fig. 3: Image Cropping, Insertion and Scaling
The cropping, insertion and scaling process

For capture devices the coordinates of the top left corner, width and height of the area which
can be sampled is given by the bounds substructure of the struct v4l2_cropcap returned by
the VIDIOC_CROPCAP ioctl. To support a wide range of hardware this specification does not
define an origin or units. However by convention drivers should horizontally count unscaled
samples relative to 0H (the leading edge of the horizontal sync pulse, see Figure 4.1. Line
synchronization). Vertically ITU-R line numbers of the first field (see ITU R-525 line numbering
for 525 lines and for 625 lines), multiplied by two if the driver can capture both fields.

The top left corner, width and height of the source rectangle, that is the area actually sam-
pled, is given by struct v4l2_crop using the same coordinate system as struct v4l2_cropcap.
Applications can use the VIDIOC_G_CROP and VIDIOC_S_CROP ioctls to get and set this rect-
angle. It must lie completely within the capture boundaries and the driver may further adjust
the requested size and/or position according to hardware limitations.

Each capture device has a default source rectangle, given by the defrect substructure of struct
v4l2_cropcap. The center of this rectangle shall align with the center of the active picture area
of the video signal, and cover what the driver writer considers the complete picture. Drivers
shall reset the source rectangle to the default when the driver is first loaded, but not later.

3.2. Part I - Video for Linux API 815

Linux Media Documentation

For output devices these structures and ioctls are used accordingly, defining the target rectan-
gle where the images will be inserted into the video signal.

Scaling Adjustments

Video hardware can have various cropping, insertion and scaling limitations. It may only scale
up or down, support only discrete scaling factors, or have different scaling abilities in horizontal
and vertical direction. Also it may not support scaling at all. At the same time the struct
v4l2_crop rectangle may have to be aligned, and both the source and target rectangles may
have arbitrary upper and lower size limits. In particular the maximum width and height in
struct v4l2_crop may be smaller than the struct v4l2_cropcap. bounds area. Therefore, as
usual, drivers are expected to adjust the requested parameters and return the actual values
selected.

Applications can change the source or the target rectangle first, as they may prefer a particular
image size or a certain area in the video signal. If the driver has to adjust both to satisfy
hardware limitations, the last requested rectangle shall take priority, and the driver should
preferably adjust the opposite one. The VIDIOC_TRY_FMT ioctl however shall not change the
driver state and therefore only adjust the requested rectangle.

Suppose scaling on a video capture device is restricted to a factor 1:1 or 2:1 in either direction
and the target image size must be a multiple of 16 × 16 pixels. The source cropping rectangle
is set to defaults, which are also the upper limit in this example, of 640 × 400 pixels at offset
0, 0. An application requests an image size of 300 × 225 pixels, assuming video will be scaled
down from the “full picture” accordingly. The driver sets the image size to the closest possible
values 304 × 224, then chooses the cropping rectangle closest to the requested size, that is
608 × 224 (224 × 2:1 would exceed the limit 400). The offset 0, 0 is still valid, thus unmodified.
Given the default cropping rectangle reported by VIDIOC_CROPCAP the application can easily
propose another offset to center the cropping rectangle.

Now the application may insist on covering an area using a picture aspect ratio closer to the
original request, so it asks for a cropping rectangle of 608 × 456 pixels. The present scaling
factors limit cropping to 640 × 384, so the driver returns the cropping size 608 × 384 and
adjusts the image size to closest possible 304 × 192.

Examples

Source and target rectangles shall remain unchanged across closing and reopening a device,
such that piping data into or out of a device will work without special preparations. More
advanced applications should ensure the parameters are suitable before starting I/O.

Note: On the next two examples, a video capture device is assumed; change
V4L2_BUF_TYPE_VIDEO_CAPTURE for other types of device.

816 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Example: Resetting the cropping parameters

struct v4l2_cropcap cropcap;
struct v4l2_crop crop;

memset (&cropcap, 0, sizeof (cropcap));
cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == ioctl (fd, VIDIOC_CROPCAP, &cropcap)) {
perror ("VIDIOC_CROPCAP");
exit (EXIT_FAILURE);

}

memset (&crop, 0, sizeof (crop));
crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
crop.c = cropcap.defrect;

/* Ignore if cropping is not supported (EINVAL). */

if (-1 == ioctl (fd, VIDIOC_S_CROP, &crop)
&& errno != EINVAL) {
perror ("VIDIOC_S_CROP");
exit (EXIT_FAILURE);

}

Example: Simple downscaling

struct v4l2_cropcap cropcap;
struct v4l2_format format;

reset_cropping_parameters ();

/* Scale down to 1/4 size of full picture. */

memset (&format, 0, sizeof (format)); /* defaults */

format.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

format.fmt.pix.width = cropcap.defrect.width >> 1;
format.fmt.pix.height = cropcap.defrect.height >> 1;
format.fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV;

if (-1 == ioctl (fd, VIDIOC_S_FMT, &format)) {
perror ("VIDIOC_S_FORMAT");
exit (EXIT_FAILURE);

}

/* We could check the actual image size now, the actual scaling factor
or if the driver can scale at all. */

3.2. Part I - Video for Linux API 817

Linux Media Documentation

Example: Selecting an output area

Note: This example assumes an output device.

struct v4l2_cropcap cropcap;
struct v4l2_crop crop;

memset (&cropcap, 0, sizeof (cropcap));
cropcap.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;

if (-1 == ioctl (fd, VIDIOC_CROPCAP;, &cropcap)) {
perror ("VIDIOC_CROPCAP");
exit (EXIT_FAILURE);

}

memset (&crop, 0, sizeof (crop));

crop.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
crop.c = cropcap.defrect;

/* Scale the width and height to 50 % of their original size
and center the output. */

crop.c.width /= 2;
crop.c.height /= 2;
crop.c.left += crop.c.width / 2;
crop.c.top += crop.c.height / 2;

/* Ignore if cropping is not supported (EINVAL). */

if (-1 == ioctl (fd, VIDIOC_S_CROP, &crop)
&& errno != EINVAL) {
perror ("VIDIOC_S_CROP");
exit (EXIT_FAILURE);

}

Example: Current scaling factor and pixel aspect

Note: This example assumes a video capture device.

struct v4l2_cropcap cropcap;
struct v4l2_crop crop;
struct v4l2_format format;
double hscale, vscale;
double aspect;
int dwidth, dheight;

memset (&cropcap, 0, sizeof (cropcap));
cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == ioctl (fd, VIDIOC_CROPCAP, &cropcap)) {

818 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

perror ("VIDIOC_CROPCAP");
exit (EXIT_FAILURE);

}

memset (&crop, 0, sizeof (crop));
crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == ioctl (fd, VIDIOC_G_CROP, &crop)) {
if (errno != EINVAL) {

perror ("VIDIOC_G_CROP");
exit (EXIT_FAILURE);

}

/* Cropping not supported. */
crop.c = cropcap.defrect;

}

memset (&format, 0, sizeof (format));
format.fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == ioctl (fd, VIDIOC_G_FMT, &format)) {
perror ("VIDIOC_G_FMT");
exit (EXIT_FAILURE);

}

/* The scaling applied by the driver. */

hscale = format.fmt.pix.width / (double) crop.c.width;
vscale = format.fmt.pix.height / (double) crop.c.height;

aspect = cropcap.pixelaspect.numerator /
(double) cropcap.pixelaspect.denominator;

aspect = aspect * hscale / vscale;

/* Devices following ITU-R BT.601 do not capture
square pixels. For playback on a computer monitor
we should scale the images to this size. */

dwidth = format.fmt.pix.width / aspect;
dheight = format.fmt.pix.height;

3.2.1.29 Streaming Parameters

Streaming parameters are intended to optimize the video capture process as well as I/O.
Presently applications can request a high quality capture mode with the VIDIOC_S_PARM ioctl.

The current video standard determines a nominal number of frames per second. If less than
this number of frames is to be captured or output, applications can request frame skipping or
duplicating on the driver side. This is especially useful when using the read() or write(),
which are not augmented by timestamps or sequence counters, and to avoid unnecessary data
copying.

Finally these ioctls can be used to determine the number of buffers used internally by a driver
in read/write mode. For implications see the section discussing the read() function.

To get and set the streaming parameters applications call the VIDIOC_G_PARM and VID-

3.2. Part I - Video for Linux API 819

Linux Media Documentation

IOC_S_PARM ioctl, respectively. They take a pointer to a struct v4l2_streamparm, which con-
tains a union holding separate parameters for input and output devices.

These ioctls are optional, drivers need not implement them. If so, they return the EINVAL error
code.

3.2.2 Image Formats

The V4L2 API was primarily designed for devices exchanging image data with applications. The
struct v4l2_pix_format and struct v4l2_pix_format_mplane structures define the format and
layout of an image in memory. The former is used with the single-planar API, while the latter
is used with the multi-planar version (see Single- and multi-planar APIs). Image formats are
negotiated with the VIDIOC_S_FMT ioctl. (The explanations here focus on video capturing and
output, for overlay frame buffer formats see also VIDIOC_G_FBUF.)

3.2.2.1 Single-planar format structure

v4l2_pix_format

Table 44: struct v4l2_pix_format
__u32 width Image width in pixels.
__u32 height Image height in pixels. If field is one

of V4L2_FIELD_TOP, V4L2_FIELD_BOTTOM or
V4L2_FIELD_ALTERNATE then height refers to the
number of lines in the field, otherwise it refers to the
number of lines in the frame (which is twice the field
height for interlaced formats).

Applications set these fields to request an image size, drivers return the closest possible val-
ues. In case of planar formats the width and height applies to the largest plane. To avoid
ambiguities drivers must return values rounded up to a multiple of the scale factor of any
smaller planes. For example when the image format is YUV 4:2:0, width and height must be
multiples of two.
For compressed formats that contain the resolution information encoded inside the stream,
when fed to a stateful mem2mem decoder, the fields may be zero to rely on the decoder
to detect the right values. For more details see Memory-to-Memory Stateful Video Decoder
Interface and format descriptions.
For compressed formats on the CAPTURE side of a stateful mem2mem encoder, the fields
must be zero, since the coded size is expected to be calculated internally by the encoder
itself, based on the OUTPUT side. For more details see Memory-to-Memory Stateful Video
Encoder Interface and format descriptions.
__u32 pixelformat The pixel format or type of compression, set by the ap-

plication. This is a little endian four character code.
V4L2 defines standard RGB formats in RGB Formats,
YUV formats in YUV Formats, and reserved codes in
Reserved Image Formats

Continued on next page

820 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 44 – continued from previous page
__u32 field Field order, from enum v4l2_field. Video images are

typically interlaced. Applications can request to cap-
ture or output only the top or bottom field, or both fields
interlaced or sequentially stored in one buffer or alter-
nating in separate buffers. Drivers return the actual
field order selected. For more details on fields see Field
Order.

__u32 bytesperline Distance in bytes between the leftmost pixels in two ad-
jacent lines.

Both applications and drivers can set this field to request padding bytes at the end of each
line. Drivers however may ignore the value requested by the application, returning width
times bytes per pixel or a larger value required by the hardware. That implies applications
can just set this field to zero to get a reasonable default.
Video hardware may access padding bytes, therefore they must reside in accessible memory.
Consider cases where padding bytes after the last line of an image cross a system page bound-
ary. Input devices may write padding bytes, the value is undefined. Output devices ignore the
contents of padding bytes.
When the image format is planar the bytesperline value applies to the first plane and is
divided by the same factor as the width field for the other planes. For example the Cb and
Cr planes of a YUV 4:2:0 image have half as many padding bytes following each line as the
Y plane. To avoid ambiguities drivers must return a bytesperline value rounded up to a
multiple of the scale factor.
For compressed formats the bytesperline value makes no sense. Applications and drivers
must set this to 0 in that case.
__u32 sizeimage Size in bytes of the buffer to hold a complete image,

set by the driver. Usually this is bytesperline times
height. When the image consists of variable length
compressed data this is the number of bytes required by
the codec to support the worst-case compression sce-
nario.
The driver will set the value for uncompressed images.
Clients are allowed to set the sizeimage field
for variable length compressed data flagged
with V4L2_FMT_FLAG_COMPRESSED at ioctl VID-
IOC_ENUM_FMT, but the driver may ignore it and
set the value itself, or it may modify the provided
value based on alignment requirements or mini-
mum/maximum size requirements. If the client wants
to leave this to the driver, then it should set sizeimage
to 0.

Continued on next page

3.2. Part I - Video for Linux API 821

Linux Media Documentation

Table 44 – continued from previous page
__u32 colorspace Image colorspace, from enum v4l2_colorspace. This

information supplements the pixelformat and must be
set by the driver for capture streams and by the appli-
cation for output streams, see Colorspaces. If the appli-
cation sets the flag V4L2_PIX_FMT_FLAG_SET_CSC then
the application can set this field for a capture stream
to request a specific colorspace for the captured image
data. If the driver cannot handle requested conversion,
it will return another supported colorspace. The driver
indicates that colorspace conversion is supported by
setting the flag V4L2_FMT_FLAG_CSC_COLORSPACE
in the corresponding struct v4l2_fmtdesc during enu-
meration. See Image Format Description Flags.

__u32 priv This field indicates whether the remaining fields
of the struct v4l2_pix_format, also called
the extended fields, are valid. When set to
V4L2_PIX_FMT_PRIV_MAGIC, it indicates that the
extended fields have been correctly initialized. When
set to any other value it indicates that the extended
fields contain undefined values.
Applications that wish to use the pixel format
extended fields must first ensure that the fea-
ture is supported by querying the device for the
V4L2_CAP_EXT_PIX_FORMAT capability. If the capa-
bility isn’t set the pixel format extended fields are not
supported and using the extended fields will lead to un-
defined results.
To use the extended fields, applications must set the
priv field to V4L2_PIX_FMT_PRIV_MAGIC, initialize all
the extended fields and zero the unused bytes of the
struct v4l2_format raw_data field.
When the priv field isn’t set to
V4L2_PIX_FMT_PRIV_MAGIC drivers must act as if all
the extended fields were set to zero. On return drivers
must set the priv field to V4L2_PIX_FMT_PRIV_MAGIC
and all the extended fields to applicable values.

__u32 flags Flags set by the application or driver, see Format Flags.
union { (anonymous)

Continued on next page

822 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 44 – continued from previous page
__u32 ycbcr_enc Y’CbCr encoding, from enum v4l2_ycbcr_encoding.

This information supplements the colorspace and
must be set by the driver for capture streams and by the
application for output streams, see Colorspaces. If the
application sets the flag V4L2_PIX_FMT_FLAG_SET_CSC
then the application can set this field for a cap-
ture stream to request a specific Y’CbCr encoding
for the captured image data. If the driver can-
not handle requested conversion, it will return an-
other supported encoding. This field is ignored
for HSV pixelformats. The driver indicates that
ycbcr_enc conversion is supported by setting the
flag V4L2_FMT_FLAG_CSC_YCBCR_ENC in the cor-
responding struct v4l2_fmtdesc during enumeration.
See Image Format Description Flags.

__u32 hsv_enc HSV encoding, from enum v4l2_hsv_encoding. This
information supplements the colorspace and must be
set by the driver for capture streams and by the appli-
cation for output streams, see Colorspaces. If the appli-
cation sets the flag V4L2_PIX_FMT_FLAG_SET_CSC then
the application can set this field for a capture stream to
request a specific HSV encoding for the captured image
data. If the driver cannot handle requested conversion,
it will return another supported encoding. This field
is ignored for non-HSV pixelformats. The driver indi-
cates that hsv_enc conversion is supported by setting
the flag V4L2_FMT_FLAG_CSC_HSV_ENC in the cor-
responding struct v4l2_fmtdesc during enumeration.
See Image Format Description Flags.

}
__u32 quantization Quantization range, from enum v4l2_quantization.

This information supplements the colorspace and
must be set by the driver for capture streams and by the
application for output streams, see Colorspaces. If the
application sets the flag V4L2_PIX_FMT_FLAG_SET_CSC
then the application can set this field for a capture
stream to request a specific quantization range for
the captured image data. If the driver cannot han-
dle requested conversion, it will return another sup-
ported quantization. The driver indicates that quan-
tization conversion is supported by setting the flag
V4L2_FMT_FLAG_CSC_QUANTIZATION in the corre-
sponding struct v4l2_fmtdesc during enumeration.
See Image Format Description Flags.

Continued on next page

3.2. Part I - Video for Linux API 823

Linux Media Documentation

Table 44 – continued from previous page
__u32 xfer_func Transfer function, from enum v4l2_xfer_func. This

information supplements the colorspace and must be
set by the driver for capture streams and by the ap-
plication for output streams, see Colorspaces. If the
application sets the flag V4L2_PIX_FMT_FLAG_SET_CSC
then the application can set this field for a cap-
ture stream to request a specific transfer function
for the captured image data. If the driver cannot
handle requested conversion, it will return another
supported transfer function. The driver indicates
that xfer_func conversion is supported by setting the
flag V4L2_FMT_FLAG_CSC_XFER_FUNC in the cor-
responding struct v4l2_fmtdesc during enumeration.
See Image Format Description Flags.

Table 45: Format Flags
V4L2_PIX_FMT_FLAG_PREMUL_ALPHA 0x00000001 The color values are premultiplied by the

alpha channel value. For example, if a
light blue pixel with 50% transparency
was described by RGBA values (128, 192,
255, 128), the same pixel described with
premultiplied colors would be described
by RGBA values (64, 96, 128, 128)

V4L2_PIX_FMT_FLAG_SET_CSC 0x00000002 Set by the application. It is only used
for capture and is ignored for output
streams. If set, then request the device
to do colorspace conversion from the
received colorspace to the requested
colorspace values. If the colorimetry
field (colorspace, xfer_func, ycbcr_enc,
hsv_enc or quantization) is set to
*_DEFAULT, then that colorimetry set-
ting will remain unchanged from what
was received. So in order to change
the quantization, only the quantization
field shall be set to non default value
(V4L2_QUANTIZATION_FULL_RANGE or
V4L2_QUANTIZATION_LIM_RANGE) and all
other colorimetry fields shall be set to
*_DEFAULT.
To check which conversions are supported
by the hardware for the current pixel for-
mat, see Image Format Description Flags.

824 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

3.2.2.2 Multi-planar format structures

The struct v4l2_plane_pix_format structures define size and layout for each of the planes
in a multi-planar format. The struct v4l2_pix_format_mplane structure contains infor-
mation common to all planes (such as image width and height) and an array of struct
v4l2_plane_pix_format structures, describing all planes of that format.

v4l2_plane_pix_format

Table 46: struct v4l2_plane_pix_format
__u32 sizeimage Maximum size in bytes required for image data in this plane,

set by the driver. When the image consists of variable length
compressed data this is the number of bytes required by the
codec to support the worst-case compression scenario.
The driver will set the value for uncompressed images.
Clients are allowed to set the sizeimage field
for variable length compressed data flagged with
V4L2_FMT_FLAG_COMPRESSED at ioctl VIDIOC_ENUM_FMT,
but the driver may ignore it and set the value itself, or it may
modify the provided value based on alignment requirements
or minimum/maximum size requirements. If the client wants
to leave this to the driver, then it should set sizeimage to 0.

__u32 bytesperline Distance in bytes between the leftmost pixels in two adjacent
lines. See struct v4l2_pix_format.

__u16 reserved[6] Reserved for future extensions. Should be zeroed by drivers
and applications.

v4l2_pix_format_mplane

3.2. Part I - Video for Linux API 825

Linux Media Documentation

Table 47: struct v4l2_pix_format_mplane
__u32 width Image width in pixels. See struct

v4l2_pix_format.
__u32 height Image height in pixels. See struct

v4l2_pix_format.
__u32 pixelformat The pixel format. Both single- and multi-

planar four character codes can be used.
__u32 field Field order, from enum v4l2_field. See

struct v4l2_pix_format.
__u32 colorspace Colorspace encoding, from enum

v4l2_colorspace. See struct
v4l2_pix_format.

struct
v4l2_plane_pix_format

plane_fmt[VIDEO_MAX_PLANES] An array of structures describing format
of each plane this pixel format consists of.
The number of valid entries in this array
has to be put in the num_planes field.

__u8 num_planes Number of planes (i.e. separate memory
buffers) for this format and the number
of valid entries in the plane_fmt array.

__u8 flags Flags set by the application or driver, see
Format Flags.

union { (anonymous)
__u8 ycbcr_enc Y’CbCr encoding, from enum

v4l2_ycbcr_encoding. See struct
v4l2_pix_format.

__u8 hsv_enc HSV encoding, from enum
v4l2_hsv_encoding. See struct
v4l2_pix_format.

}
__u8 quantization Quantization range, from enum

v4l2_quantization. See struct
v4l2_pix_format.

__u8 xfer_func Transfer function, from enum
v4l2_xfer_func. See struct
v4l2_pix_format.

__u8 reserved[7] Reserved for future extensions. Should
be zeroed by drivers and applications.

3.2.2.3 Standard Image Formats

In order to exchange images between drivers and applications, it is necessary to have standard
image data formats which both sides will interpret the same way. V4L2 includes several such
formats, and this section is intended to be an unambiguous specification of the standard image
data formats in V4L2.

V4L2 drivers are not limited to these formats, however. Driver-specific formats are possible.
In that case the application may depend on a codec to convert images to one of the standard
formats when needed. But the data can still be stored and retrieved in the proprietary format.
For example, a device may support a proprietary compressed format. Applications can still
capture and save the data in the compressed format, saving much disk space, and later use a
codec to convert the images to the X Windows screen format when the video is to be displayed.

Even so, ultimately, some standard formats are needed, so the V4L2 specification would not be
complete without well-defined standard formats.

826 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

The V4L2 standard formats are mainly uncompressed formats. The pixels are always arranged
in memory from left to right, and from top to bottom. The first byte of data in the image buffer
is always for the leftmost pixel of the topmost row. Following that is the pixel immediately to
its right, and so on until the end of the top row of pixels. Following the rightmost pixel of the
row there may be zero or more bytes of padding to guarantee that each row of pixel data has a
certain alignment. Following the pad bytes, if any, is data for the leftmost pixel of the second
row from the top, and so on. The last row has just as many pad bytes after it as the other rows.

In V4L2 each format has an identifier which looks like PIX_FMT_XXX, defined in the videodev2.h
header file. These identifiers represent four character (FourCC) codes which are also listed
below, however they are not the same as those used in the Windows world.

For some formats, data is stored in separate, discontiguous memory buffers. Those formats are
identified by a separate set of FourCC codes and are referred to as “multi-planar formats”. For
example, a YUV422 frame is normally stored in one memory buffer, but it can also be placed in
two or three separate buffers, with Y component in one buffer and CbCr components in another
in the 2-planar version or with each component in its own buffer in the 3-planar case. Those
sub-buffers are referred to as “planes”.

3.2.2.4 Indexed Format

In this format each pixel is represented by an 8 bit index into a 256 entry ARGB palette. It is
intended for Video Output Overlays only. There are no ioctls to access the palette, this must be
done with ioctls of the Linux framebuffer API.

Table 48: Indexed Image Format
Identifier Code Byte 0

Bit 7 6 5 4 3 2 1 0

V4L2_PIX_FMT_PAL8 ‘PAL8’ i7 i6 i5 i4 i3 i2 i1 i0

3.2.2.5 RGB Formats

These formats encode each pixel as a triplet of RGB values. They are packed formats, meaning
that the RGB values for one pixel are stored consecutively in memory and each pixel consumes
an integer number of bytes. When the number of bits required to store a pixel is not aligned to
a byte boundary, the data is padded with additional bits to fill the remaining byte.

The formats differ by the number of bits per RGB component (typically but not always the
same for all components), the order of components in memory, and the presence of an alpha
component or additional padding bits.

The usage and value of the alpha bits in formats that support them (named ARGB or a permuta-
tion thereof, collectively referred to as alpha formats) depend on the device type and hardware
operation. Capture devices (including capture queues of mem-to-mem devices) fill the alpha
component in memory. When the device captures an alpha channel the alpha component will
have a meaningful value. Otherwise, when the device doesn’t capture an alpha channel but
can set the alpha bit to a user-configurable value, the V4L2_CID_ALPHA_COMPONENT con-
trol is used to specify that alpha value, and the alpha component of all pixels will be set to the
value specified by that control. Otherwise a corresponding format without an alpha component
(XRGB or XBGR) must be used instead of an alpha format.

3.2. Part I - Video for Linux API 827

Linux Media Documentation

Output devices (including output queues of mem-to-mem devices and video output overlay de-
vices) read the alpha component from memory. When the device processes the alpha channel
the alpha component must be filled with meaningful values by applications. Otherwise a cor-
responding format without an alpha component (XRGB or XBGR) must be used instead of an
alpha format.

Formats that contain padding bits are named XRGB (or a permutation thereof). The padding
bits contain undefined values and must be ignored by applications, devices and drivers, for both
Video Capture Interface and Video Output Interface devices.

Note:
• In all the tables that follow, bit 7 is the most significant bit in a byte.

• ‘r’, ‘g’ and ‘b’ denote bits of the red, green and blue components respectively. ‘a’ denotes
bits of the alpha component (if supported by the format), and ‘x’ denotes padding bits.

Less Than 8 Bits Per Component

These formats store an RGB triplet in one, two or four bytes. They are named based on the order
of the RGB components as seen in a 8-, 16- or 32-bit word, which is then stored in memory in
little endian byte order (unless otherwise noted by the presence of bit 31 in the 4CC value), and
on the number of bits for each component. For instance, the RGB565 format stores a pixel in a
16-bit word [15:0] laid out at as [R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B4 B3 B2 B1 B0], and stored
in memory in two bytes, [R4 R3 R2 R1 R0 G5 G4 G3] followed by [G2 G1 G0 B4 B3 B2 B1 B0].

Table 49: RGB Formats With Less Than 8 Bits Per
Component

Identifier Code Byte 0 in memory Byte 1 Byte 2 Byte 3
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

V4L2_PIX_FMT_RGB332 ‘RGB1’ r2 r1 r0 g2 g1 g0 b1 b0
V4L2_PIX_FMT_ARGB444 ‘AR12’ g3 g2 g1 g0 b3 b2 b1 b0 a3 a2 a1 a0 r3 r2 r1 r0
V4L2_PIX_FMT_XRGB444 ‘XR12’ g3 g2 g1 g0 b3 b2 b1 b0 x x x x r3 r2 r1 r0
V4L2_PIX_FMT_RGBA444 ‘RA12’ b3 b2 b1 b0 a3 a2 a1 a0 r3 r2 r1 r0 g3 g2 g1 g0
V4L2_PIX_FMT_RGBX444 ‘RX12’ b3 b2 b1 b0 x x x x r3 r2 r1 r0 g3 g2 g1 g0
V4L2_PIX_FMT_ABGR444 ‘AB12’ g3 g2 g1 g0 r3 r2 r1 r0 a3 a2 a1 a0 b3 b2 b1 b0
V4L2_PIX_FMT_XBGR444 ‘XB12’ g3 g2 g1 g0 r3 r2 r1 r0 x x x x b3 b2 b1 b0
V4L2_PIX_FMT_BGRA444 ‘BA12’ r3 r2 r1 r0 a3 a2 a1 a0 b3 b2 b1 b0 g3 g2 g1 g0
V4L2_PIX_FMT_BGRX444 ‘BX12’ r3 r2 r1 r0 x x x x b3 b2 b1 b0 g3 g2 g1 g0
V4L2_PIX_FMT_ARGB555 ‘AR15’ g2 g1 g0 b4 b3 b2 b1 b0 a r4 r3 r2 r1 r0 g4 g3
V4L2_PIX_FMT_XRGB555 ‘XR15’ g2 g1 g0 b4 b3 b2 b1 b0 x r4 r3 r2 r1 r0 g4 g3
V4L2_PIX_FMT_RGBA555 ‘RA15’ g1 g0 b4 b3 b2 b1 b0 a r4 r3 r2 r1 r0 g4 g3 g2
V4L2_PIX_FMT_RGBX555 ‘RX15’ g1 g0 b4 b3 b2 b1 b0 x r4 r3 r2 r1 r0 g4 g3 g2
V4L2_PIX_FMT_ABGR555 ‘AB15’ g2 g1 g0 r4 r3 r2 r1 r0 a b4 b3 b2 b1 b0 g4 g3
V4L2_PIX_FMT_XBGR555 ‘XB15’ g2 g1 g0 r4 r3 r2 r1 r0 x b4 b3 b2 b1 b0 g4 g3
V4L2_PIX_FMT_BGRA555 ‘BA15’ g1 g0 r4 r3 r2 r1 r0 a b4 b3 b2 b1 b0 g4 g3 g2
V4L2_PIX_FMT_BGRX555 ‘BX15’ g1 g0 r4 r3 r2 r1 r0 x b4 b3 b2 b1 b0 g4 g3 g2
V4L2_PIX_FMT_RGB565 ‘RGBP’ g2 g1 g0 b4 b3 b2 b1 b0 r4 r3 r2 r1 r0 g5 g4 g3
V4L2_PIX_FMT_ARGB555X ‘AR15’ | (1 << 31) a r4 r3 r2 r1 r0 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0
V4L2_PIX_FMT_XRGB555X ‘XR15’ | (1 << 31) x r4 r3 r2 r1 r0 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0
V4L2_PIX_FMT_RGB565X ‘RGBR’ r4 r3 r2 r1 r0 g5 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0
V4L2_PIX_FMT_BGR666 ‘BGRH’ b5 b4 b3 b2 b1 b0 g5 g4 g3 g2 g1 g0 r5 r4 r3 r2 r1 r0 x x x x x x x x x x x x x x

828 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

8 Bits Per Component

These formats store an RGB triplet in three or four bytes. They are named based on the order
of the RGB components as stored in memory, and on the total number of bits per pixel. For
instance, RGB24 format stores a pixel with [R7 R6 R5 R4 R3 R2 R1 R0] in the first byte, [G7 G6
G5 G4 G3 G2 G1 G0] in the second byte and [B7 B6 B5 B4 B3 B2 B1 B0] in the third byte. This
differs from the DRM format nomenclature that instead use the order of components as seen
in a 24- or 32-bit little endian word.

Table 50: RGB Formats With 8 Bits Per Component
Identifier Code Byte 0 in memory Byte 1 Byte 2 Byte 3

V4L2_PIX_FMT_BGR24 ‘BGR3’ G7-0 B7-0 R7-0

V4L2_PIX_FMT_RGB24 ‘RGB3’ R7-0 G7-0 B7-0

V4L2_PIX_FMT_ABGR32 ‘AR24’ B7-0 G7-0 R7-0 A7-0

V4L2_PIX_FMT_XBGR32 ‘XR24’ B7-0 G7-0 R7-0 X7-0

V4L2_PIX_FMT_BGRA32 ‘RA24’ A7-0 B7-0 G7-0 R7-0

V4L2_PIX_FMT_BGRX32 ‘RX24’ X7-0 B7-0 G7-0 R7-0

V4L2_PIX_FMT_RGBA32 ‘AB24’ R7-0 G7-0 B7-0 A7-0

V4L2_PIX_FMT_RGBX32 ‘XB24’ R7-0 G7-0 B7-0 X7-0

V4L2_PIX_FMT_ARGB32 ‘BA24’ A7-0 R7-0 G7-0 B7-0

V4L2_PIX_FMT_XRGB32 ‘BX24’ X7-0 R7-0 G7-0 B7-0

Deprecated RGB Formats

Formats defined in Deprecated Packed RGB Image Formats are deprecated and must not be
used by new drivers. They are documented here for reference. The meaning of their alpha bits
(a) is ill-defined and they are interpreted as in either the corresponding ARGB or XRGB format,
depending on the driver.

Table 51: Deprecated Packed RGB Image Formats
Identifier Code Byte 0 in memory Byte 1 Byte 2 Byte 3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

V4L2_PIX_FMT_RGB444 ‘R444’ g3 g2 g1 g0 b3 b2 b1 b0 a3 a2 a1 a0 r3 r2 r1 r0
V4L2_PIX_FMT_RGB555 ‘RGBO’ g2 g1 g0 b4 b3 b2 b1 b0 a r4 r3 r2 r1 r0 g4 g3
V4L2_PIX_FMT_RGB555X ‘RGBQ’ a r4 r3 r2 r1 r0 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0
V4L2_PIX_FMT_BGR32 ‘BGR4’ b7 b6 b5 b4 b3 b2 b1 b0 g7 g6 g5 g4 g3 g2 g1 g0 r7 r6 r5 r4 r3 r2 r1 r0 a7 a6 a5 a4 a3 a2 a1 a0
V4L2_PIX_FMT_RGB32 ‘RGB4’ a7 a6 a5 a4 a3 a2 a1 a0 r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0

A test utility to determine which RGB formats a driver actually supports is available from the
LinuxTV v4l-dvb repository. See https://linuxtv.org/repo/ for access instructions.

3.2. Part I - Video for Linux API 829

https://linuxtv.org/repo/

Linux Media Documentation

3.2.2.6 Raw Bayer Formats

Description

The raw Bayer formats are used by image sensors before much if any processing is performed
on the image. The formats contain green, red and blue components, with alternating lines of
red and green, and blue and green pixels in different orders. See also the Wikipedia article on
Bayer filter.

V4L2_PIX_FMT_SRGGB8 (‘RGGB’), V4L2_PIX_FMT_SGRBG8 (‘GRBG’),
V4L2_PIX_FMT_SGBRG8 (‘GBRG’), V4L2_PIX_FMT_SBGGR8 (‘BA81’),

8-bit Bayer formats

Description

These four pixel formats are raw sRGB / Bayer formats with 8 bits per sample. Each sample is
stored in a byte. Each n-pixel row contains n/2 green samples and n/2 blue or red samples, with
alternating red and blue rows. They are conventionally described as GRGR… BGBG…, RGRG…
GBGB…, etc. Below is an example of a small V4L2_PIX_FMT_SBGGR8 image:

Byte Order. Each cell is one byte.

start + 0: B00 G01 B02 G03
start + 4: G10 R11 G12 R13
start + 8: B20 G21 B22 G23
start + 12: G30 R31 G32 R33

V4L2_PIX_FMT_SRGGB10 (‘RG10’), V4L2_PIX_FMT_SGRBG10 (‘BA10’),
V4L2_PIX_FMT_SGBRG10 (‘GB10’), V4L2_PIX_FMT_SBGGR10 (‘BG10’),

V4L2_PIX_FMT_SGRBG10 V4L2_PIX_FMT_SGBRG10 V4L2_PIX_FMT_SBGGR10 10-bit Bayer
formats expanded to 16 bits

Description

These four pixel formats are raw sRGB / Bayer formats with 10 bits per sample. Each sample
is stored in a 16-bit word, with 6 unused high bits filled with zeros. Each n-pixel row contains
n/2 green samples and n/2 blue or red samples, with alternating red and blue rows. Bytes are
stored in memory in little endian order. They are conventionally described as GRGR… BGBG…,
RGRG… GBGB…, etc. Below is an example of one of these formats:

Byte Order. Each cell is one byte, the 6 most significant bits in the high bytes are 0.

start + 0: B00low B00high G01low G01high B02low B02high G03low G03high
start + 8: G10low G10high R11low R11high G12low G12high R13low R13high
start + 16: B20low B20high G21low G21high B22low B22high G23low G23high
start + 24: G30low G30high R31low R31high G32low G32high R33low R33high

830 Chapter 3. Linux Media Infrastructure userspace API

https://en.wikipedia.org/wiki/Bayer_filter
https://en.wikipedia.org/wiki/Bayer_filter

Linux Media Documentation

V4L2_PIX_FMT_SRGGB10P (‘pRAA’), V4L2_PIX_FMT_SGRBG10P (‘pgAA’),
V4L2_PIX_FMT_SGBRG10P (‘pGAA’), V4L2_PIX_FMT_SBGGR10P (‘pBAA’),

V4L2_PIX_FMT_SGRBG10P V4L2_PIX_FMT_SGBRG10P V4L2_PIX_FMT_SBGGR10P 10-bit
packed Bayer formats

Description

These four pixel formats are packed raw sRGB / Bayer formats with 10 bits per sample. Every
four consecutive samples are packed into 5 bytes. Each of the first 4 bytes contain the 8 high
order bits of the pixels, and the 5th byte contains the 2 least significants bits of each pixel, in
the same order.

Each n-pixel row contains n/2 green samples and n/2 blue or red samples, with alternating
green-red and green-blue rows. They are conventionally described as GRGR…BGBG…, RGRG…
GBGB…, etc. Below is an example of a small V4L2_PIX_FMT_SBGGR10P image:

Byte Order. Each cell is one byte.

start + 0: B00high G01high B02high G03high G03low(bits 7–6) B02low(bits 5–4)
G01low(bits 3–2) B00low(bits 1–0)

start + 5: G10high R11high G12high R13high R13low(bits 7–6) G12low(bits 5–4)
R11low(bits 3–2) G10low(bits 1–0)

start + 10: B20high G21high B22high G23high G23low(bits 7–6) B22low(bits 5–4)
G21low(bits 3–2) B20low(bits 1–0)

start + 15: G30high R31high G32high R33high R33low(bits 7–6) G32low(bits 5–4)
R31low(bits 3–2) G30low(bits 1–0)

V4L2_PIX_FMT_SBGGR10ALAW8 (‘aBA8’), V4L2_PIX_FMT_SGBRG10ALAW8 (‘aGA8’),
V4L2_PIX_FMT_SGRBG10ALAW8 (‘agA8’), V4L2_PIX_FMT_SRGGB10ALAW8 (‘aRA8’),

V4L2_PIX_FMT_SGBRG10ALAW8 V4L2_PIX_FMT_SGRBG10ALAW8
V4L2_PIX_FMT_SRGGB10ALAW8 10-bit Bayer formats compressed to 8 bits

Description

These four pixel formats are raw sRGB / Bayer formats with 10 bits per color com-
pressed to 8 bits each, using the A-LAW algorithm. Each color component consumes
8 bits of memory. In other respects this format is similar to V4L2_PIX_FMT_SRGGB8
(‘RGGB’), V4L2_PIX_FMT_SGRBG8 (‘GRBG’), V4L2_PIX_FMT_SGBRG8 (‘GBRG’),
V4L2_PIX_FMT_SBGGR8 (‘BA81’),.

3.2. Part I - Video for Linux API 831

Linux Media Documentation

V4L2_PIX_FMT_SBGGR10DPCM8 (‘bBA8’), V4L2_PIX_FMT_SGBRG10DPCM8 (‘bGA8’),
V4L2_PIX_FMT_SGRBG10DPCM8 (‘BD10’), V4L2_PIX_FMT_SRGGB10DPCM8 (‘bRA8’),

man V4L2_PIX_FMT_SBGGR10DPCM8(2)

V4L2_PIX_FMT_SGBRG10DPCM8 V4L2_PIX_FMT_SGRBG10DPCM8
V4L2_PIX_FMT_SRGGB10DPCM8 10-bit Bayer formats compressed to 8 bits

Description

These four pixel formats are raw sRGB / Bayer formats with 10 bits per colour com-
pressed to 8 bits each, using DPCM compression. DPCM, differential pulse-code modula-
tion, is lossy. Each colour component consumes 8 bits of memory. In other respects this
format is similar to V4L2_PIX_FMT_SRGGB10 (‘RG10’), V4L2_PIX_FMT_SGRBG10 (‘BA10’),
V4L2_PIX_FMT_SGBRG10 (‘GB10’), V4L2_PIX_FMT_SBGGR10 (‘BG10’),.

V4L2_PIX_FMT_IPU3_SBGGR10 (‘ip3b’), V4L2_PIX_FMT_IPU3_SGBRG10 (‘ip3g’),
V4L2_PIX_FMT_IPU3_SGRBG10 (‘ip3G’), V4L2_PIX_FMT_IPU3_SRGGB10 (‘ip3r’)

10-bit Bayer formats

Description

These four pixel formats are used by Intel IPU3 driver, they are raw sRGB / Bayer formats
with 10 bits per sample with every 25 pixels packed to 32 bytes leaving 6 most significant bits
padding in the last byte. The format is little endian.

In other respects this format is similar to V4L2_PIX_FMT_SRGGB10
(‘RG10’), V4L2_PIX_FMT_SGRBG10 (‘BA10’), V4L2_PIX_FMT_SGBRG10 (‘GB10’),
V4L2_PIX_FMT_SBGGR10 (‘BG10’),. Below is an example of a small image in
V4L2_PIX_FMT_IPU3_SBGGR10 format.

Byte Order. Each cell is one byte.

start
+ 0:

B0000low G0001low(bits 7–2)
B0000high(bits 1–0)

B0002low(bits 7–4)
G0001high(bits 3–0)

G0003low(bits 7–6)
B0002high(bits 5–0)

start
+ 4:

G0003high B0004low G0005low(bits 7–2)
B0004high(bits 1–0)

B0006low(bits 7–4)
G0005high(bits 3–0)

start
+ 8:

G0007low(bits 7–6)
B0006high(bits 5–0)

G0007high B0008low G0009low(bits 7–2)
B0008high(bits 1–0)

start
+
12:

B0010low(bits 7–4)
G0009high(bits 3–0)

G0011low(bits 7–6)
B0010high(bits 5–0)

G0011high B0012low

start
+
16:

G0013low(bits 7–2)
B0012high(bits 1–0)

B0014low(bits 7–4)
G0013high(bits 3–0)

G0015low(bits 7–6)
B0014high(bits 5–0)

G0015high

start
+
20

B0016low G0017low(bits 7–2)
B0016high(bits 1–0)

B0018low(bits 7–4)
G0017high(bits 3–0)

G0019low(bits 7–6)
B0018high(bits 5–0)

Continued on next page

832 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 52 – continued from previous page
start
+
24:

G0019high B0020low G0021low(bits 7–2)
B0020high(bits 1–0)

B0022low(bits 7–4)
G0021high(bits 3–0)

start
+
28:

G0023low(bits 7–6)
B0022high(bits 5–0)

G0023high B0024low B0024high(bits 1–0)

start
+
32:

G0100low R0101low(bits 7–2)
G0100high(bits 1–0)

G0102low(bits 7–4)
R0101high(bits 3–0)

R0103low(bits 7–6)
G0102high(bits 5–0)

start
+
36:

R0103high G0104low R0105low(bits 7–2)
G0104high(bits 1–0)

G0106low(bits 7–4)
R0105high(bits 3–0)

start
+
40:

R0107low(bits 7–6)
G0106high(bits 5–0)

R0107high G0108low R0109low(bits 7–2)
G0108high(bits 1–0)

start
+
44:

G0110low(bits 7–4)
R0109high(bits 3–0)

R0111low(bits 7–6)
G0110high(bits 5–0)

R0111high G0112low

start
+
48:

R0113low(bits 7–2)
G0112high(bits 1–0)

G0114low(bits 7–4)
R0113high(bits 3–0)

R0115low(bits 7–6)
G0114high(bits 5–0)

R0115high

start
+
52:

G0116low R0117low(bits 7–2)
G0116high(bits 1–0)

G0118low(bits 7–4)
R0117high(bits 3–0)

R0119low(bits 7–6)
G0118high(bits 5–0)

start
+
56:

R0119high G0120low R0121low(bits 7–2)
G0120high(bits 1–0)

G0122low(bits 7–4)
R0121high(bits 3–0)

start
+
60:

R0123low(bits 7–6)
G0122high(bits 5–0)

R0123high G0124low G0124high(bits 1–0)

start
+
64:

B0200low G0201low(bits 7–2)
B0200high(bits 1–0)

B0202low(bits 7–4)
G0201high(bits 3–0)

G0203low(bits 7–6)
B0202high(bits 5–0)

start
+
68:

G0203high B0204low G0205low(bits 7–2)
B0204high(bits 1–0)

B0206low(bits 7–4)
G0205high(bits 3–0)

start
+
72:

G0207low(bits 7–6)
B0206high(bits 5–0)

G0207high B0208low G0209low(bits 7–2)
B0208high(bits 1–0)

start
+
76:

B0210low(bits 7–4)
G0209high(bits 3–0)

G0211low(bits 7–6)
B0210high(bits 5–0)

G0211high B0212low

start
+
80:

G0213low(bits 7–2)
B0212high(bits 1–0)

B0214low(bits 7–4)
G0213high(bits 3–0)

G0215low(bits 7–6)
B0214high(bits 5–0)

G0215high

start
+
84:

B0216low G0217low(bits 7–2)
B0216high(bits 1–0)

B0218low(bits 7–4)
G0217high(bits 3–0)

G0219low(bits 7–6)
B0218high(bits 5–0)

start
+
88:

G0219high B0220low G0221low(bits 7–2)
B0220high(bits 1–0)

B0222low(bits 7–4)
G0221high(bits 3–0)

start
+
92:

G0223low(bits 7–6)
B0222high(bits 5–0)

G0223high B0224low B0224high(bits 1–0)

Continued on next page

3.2. Part I - Video for Linux API 833

Linux Media Documentation

Table 52 – continued from previous page
start
+
96:

G0300low R0301low(bits 7–2)
G0300high(bits 1–0)

G0302low(bits 7–4)
R0301high(bits 3–0)

R0303low(bits 7–6)
G0302high(bits 5–0)

start
+
100:

R0303high G0304low R0305low(bits 7–2)
G0304high(bits 1–0)

G0306low(bits 7–4)
R0305high(bits 3–0)

start
+
104:

R0307low(bits 7–6)
G0306high(bits 5–0)

R0307high G0308low R0309low(bits 7–2)
G0308high(bits 1–0)

start
+
108:

G0310low(bits 7–4)
R0309high(bits 3–0)

R0311low(bits 7–6)
G0310high(bits 5–0)

R0311high G0312low

start
+
112:

R0313low(bits 7–2)
G0312high(bits 1–0)

G0314low(bits 7–4)
R0313high(bits 3–0)

R0315low(bits 7–6)
G0314high(bits 5–0)

R0315high

start
+
116:

G0316low R0317low(bits 7–2)
G0316high(bits 1–0)

G0318low(bits 7–4)
R0317high(bits 3–0)

R0319low(bits 7–6)
G0318high(bits 5–0)

start
+
120:

R0319high G0320low R0321low(bits 7–2)
G0320high(bits 1–0)

G0322low(bits 7–4)
R0321high(bits 3–0)

start
+
124:

R0323low(bits 7–6)
G0322high(bits 5–0)

R0323high G0324low G0324high(bits 1–0)

V4L2_PIX_FMT_SRGGB12 (‘RG12’), V4L2_PIX_FMT_SGRBG12 (‘BA12’),
V4L2_PIX_FMT_SGBRG12 (‘GB12’), V4L2_PIX_FMT_SBGGR12 (‘BG12’),

V4L2_PIX_FMT_SGRBG12 V4L2_PIX_FMT_SGBRG12 V4L2_PIX_FMT_SBGGR12 12-bit Bayer
formats expanded to 16 bits

Description

These four pixel formats are raw sRGB / Bayer formats with 12 bits per colour. Each colour
component is stored in a 16-bit word, with 4 unused high bits filled with zeros. Each n-pixel row
contains n/2 green samples and n/2 blue or red samples, with alternating red and blue rows.
Bytes are stored in memory in little endian order. They are conventionally described as GRGR…
BGBG…, RGRG… GBGB…, etc. Below is an example of a small V4L2_PIX_FMT_SBGGR12 im-
age:

Byte Order. Each cell is one byte, the 4 most significant bits in the high bytes are 0.

start + 0: B00low B00high G01low G01high B02low B02high G03low G03high
start + 8: G10low G10high R11low R11high G12low G12high R13low R13high
start + 16: B20low B20high G21low G21high B22low B22high G23low G23high
start + 24: G30low G30high R31low R31high G32low G32high R33low R33high

834 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_PIX_FMT_SRGGB12P (‘pRCC’), V4L2_PIX_FMT_SGRBG12P (‘pgCC’),
V4L2_PIX_FMT_SGBRG12P (‘pGCC’), V4L2_PIX_FMT_SBGGR12P (‘pBCC’),

12-bit packed Bayer formats

Description

These four pixel formats are packed raw sRGB / Bayer formats with 12 bits per colour. Every
two consecutive samples are packed into three bytes. Each of the first two bytes contain the 8
high order bits of the pixels, and the third byte contains the four least significants bits of each
pixel, in the same order.

Each n-pixel row contains n/2 green samples and n/2 blue or red samples, with alternating
green-red and green-blue rows. They are conventionally described as GRGR…BGBG…, RGRG…
GBGB…, etc. Below is an example of a small V4L2_PIX_FMT_SBGGR12P image:

Byte Order. Each cell is one byte.

start + 0: B00high G01high G01low(bits 7–4)
B00low(bits 3–0)

B02high G03high G03low(bits 7–4)
B02low(bits 3–0)

start + 6: G10high R11high R11low(bits 7–4)
G10low(bits 3–0)

G12high R13high R13low(bits 3–2)
G12low(bits 3–0)

start + 12: B20high G21high G21low(bits 7–4)
B20low(bits 3–0)

B22high G23high G23low(bits 7–4)
B22low(bits 3–0)

start + 18: G30high R31high R31low(bits 7–4)
G30low(bits 3–0)

G32high R33high R33low(bits 3–2)
G32low(bits 3–0)

V4L2_PIX_FMT_SRGGB14 (‘RG14’), V4L2_PIX_FMT_SGRBG14 (‘GR14’),
V4L2_PIX_FMT_SGBRG14 (‘GB14’), V4L2_PIX_FMT_SBGGR14 (‘BG14’),

14-bit Bayer formats expanded to 16 bits

Description

These four pixel formats are raw sRGB / Bayer formats with 14 bits per colour. Each sample is
stored in a 16-bit word, with two unused high bits filled with zeros. Each n-pixel row contains
n/2 green samples and n/2 blue or red samples, with alternating red and blue rows. Bytes are
stored in memory in little endian order. They are conventionally described as GRGR… BGBG…,
RGRG… GBGB…, etc. Below is an example of a small V4L2_PIX_FMT_SBGGR14 image:

Byte Order. Each cell is one byte, the two most significant bits in the high bytes are zero.

start + 0: B00low B00high G01low G01high B02low B02high G03low G03high
start + 8: G10low G10high R11low R11high G12low G12high R13low R13high
start + 16: B20low B20high G21low G21high B22low B22high G23low G23high
start + 24: G30low G30high R31low R31high G32low G32high R33low R33high

3.2. Part I - Video for Linux API 835

Linux Media Documentation

V4L2_PIX_FMT_SRGGB14P (‘pREE’), V4L2_PIX_FMT_SGRBG14P (‘pgEE’),
V4L2_PIX_FMT_SGBRG14P (‘pGEE’), V4L2_PIX_FMT_SBGGR14P (‘pBEE’),

man V4L2_PIX_FMT_SRGGB14P(2)

V4L2_PIX_FMT_SGRBG14P V4L2_PIX_FMT_SGBRG14P V4L2_PIX_FMT_SBGGR14P 14-bit
packed Bayer formats

Description

These four pixel formats are packed raw sRGB / Bayer formats with 14 bits per colour. Every
four consecutive samples are packed into seven bytes. Each of the first four bytes contain
the eight high order bits of the pixels, and the three following bytes contains the six least
significants bits of each pixel, in the same order.

Each n-pixel row contains n/2 green samples and n/2 blue or red samples, with alternating
green-red and green-blue rows. They are conventionally described as GRGR…BGBG…, RGRG…
GBGB…, etc. Below is an example of one of these formats:

Byte Order. Each cell is one byte.

start + 0 B00high G01high B02high G03high G01low bits 1–0(bits 7–6)
B00low bits 5–0(bits 5–0)

B02low bits 3–0(bits 7–4)
G01low bits 5–2(bits 3–0)

G03low bits 5–0(bits 7–2)
B02low bits 5–4(bits 1–0)

start + 7 G10high R11high G12high R13high R11low bits 1–0(bits 7–6)
G10low bits 5–0(bits 5–0)

G12low bits 3–0(bits 7–4)
R11low bits 5–2(bits 3–0)

R13low bits 5–0(bits 7–2)
G12low bits 5–4(bits 1–0)

start + 14 B20high G21high B22high G23high G21low bits 1–0(bits 7–6)
B20low bits 5–0(bits 5–0)

B22low bits 3–0(bits 7–4)
G21low bits 5–2(bits 3–0)

G23low bits 5–0(bits 7–2)
B22low bits 5–4(bits 1–0)

start + 21 G30high R31high G32high R33high R31low bits 1–0(bits 7–6)
G30low bits 5–0(bits 5–0)

G32low bits 3–0(bits 7–4)
R31low bits 5–2(bits 3–0)

R33low bits 5–0(bits 7–2)
G32low bits 5–4(bits 1–0)

V4L2_PIX_FMT_SRGGB16 (‘RG16’), V4L2_PIX_FMT_SGRBG16 (‘GR16’),
V4L2_PIX_FMT_SGBRG16 (‘GB16’), V4L2_PIX_FMT_SBGGR16 (‘BYR2’),

16-bit Bayer formats

Description

These four pixel formats are raw sRGB / Bayer formats with 16 bits per sample. Each sample
is stored in a 16-bit word. Each n-pixel row contains n/2 green samples and n/2 blue or red
samples, with alternating red and blue rows. Bytes are stored in memory in little endian or-
der. They are conventionally described as GRGR… BGBG…, RGRG… GBGB…, etc. Below is an
example of a small V4L2_PIX_FMT_SBGGR16 image:

Byte Order. Each cell is one byte.

start + 0: B00low B00high G01low G01high B02low B02high G03low G03high
start + 8: G10low G10high R11low R11high G12low G12high R13low R13high
start + 16: B20low B20high G21low G21high B22low B22high G23low G23high
start + 24: G30low G30high R31low R31high G32low G32high R33low R33high

836 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

3.2.2.7 YUV Formats

YUV is the format native to TV broadcast and composite video signals. It separates the bright-
ness information (Y) from the color information (U and V or Cb and Cr). The color information
consists of red and blue color difference signals, this way the green component can be re-
constructed by subtracting from the brightness component. See Colorspaces for conversion
examples. YUV was chosen because early television would only transmit brightness informa-
tion. To add color in a way compatible with existing receivers a new signal carrier was added
to transmit the color difference signals.

Subsampling

YUV formats commonly encode images with a lower resolution for the chroma components than
for the luma component. This compression technique, taking advantage of the human eye being
more sensitive to luminance than color differences, is called chroma subsampling.

While many combinations of subsampling factors in the horizontal and vertical direction are
possible, common factors are 1 (no subsampling), 2 and 4, with horizontal subsampling always
larger than or equal to vertical subsampling. Common combinations are named as follows.

• 4:4:4: No subsampling

• 4:2:2: Horizontal subsampling by 2, no vertical subsampling

• 4:2:0: Horizontal subsampling by 2, vertical subsampling by 2

• 4:1:1: Horizontal subsampling by 4, no vertical subsampling

• 4:1:0: Horizontal subsampling by 4, vertical subsampling by 4

Subsampling the chroma component effectively creates chroma values that can be located in
different spatial locations:

• The subsampled chroma value may be calculated by simply averaging the chroma value of
two consecutive pixels. It effectively models the chroma of a pixel sited between the two
original pixels. This is referred to as centered or interstitially sited chroma.

• The other option is to subsample chroma values in a way that place them in the same
spatial sites as the pixels. This may be performed by skipping every other chroma sample
(creating aliasing artifacts), or with filters using an odd number of taps. This is referred
to as co-sited chroma.

The following examples show different combination of chroma siting in a 4x4 image.

Table 53: 4:2:2 subsampling, interstitially sited
0 1 2 3

0 Y C Y Y C Y
1 Y C Y Y C Y
2 Y C Y Y C Y
3 Y C Y Y C Y

3.2. Part I - Video for Linux API 837

Linux Media Documentation

Table 54: 4:2:2 subsampling, co-sited
0 1 2 3

0 Y/C Y Y/C Y
1 Y/C Y Y/C Y
2 Y/C Y Y/C Y
3 Y/C Y Y/C Y

Table 55: 4:2:0 subsampling, horizontally intersti-
tially sited, vertically co-sited

0 1 2 3
0 Y C Y Y C Y
1 Y Y Y Y
2 Y C Y Y C Y
3 Y Y Y Y

Table 56: 4:1:0 subsampling, horizontally and verti-
cally interstitially sited

0 1 2 3
0 Y Y Y Y

1 Y Y Y Y
C

2 Y Y Y Y

3 Y Y Y Y

Packed YUV formats

Similarly to the packed RGB formats, the packed YUV formats store the Y, Cb and Cr components
consecutively in memory. They may apply subsampling to the chroma components and thus
differ in how they interlave the three components.

Note:
• In all the tables that follow, bit 7 is the most significant bit in a byte.

• ‘Y’, ‘Cb’ and ‘Cr’ denote bits of the luma, blue chroma (also known as ‘U’) and red chroma
(also known as ‘V’) components respectively. ‘A’ denotes bits of the alpha component (if
supported by the format), and ‘X’ denotes padding bits.

838 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

4:4:4 Subsampling

These formats do not subsample the chroma components and store each pixels as a full triplet
of Y, Cb and Cr values.

The next table lists the packed YUV 4:4:4 formats with less than 8 bits per component. They
are named based on the order of the Y, Cb and Cr components as seen in a 16-bit word, which is
then stored in memory in little endian byte order, and on the number of bits for each component.
For instance the YUV565 format stores a pixel in a 16-bit word [15:0] laid out at as [Y’4-0 Cb5-0
Cr4-0], and stored in memory in two bytes, [Cb2-0 Cr4-0] followed by [Y’4-0 Cb5-3].

Table 57: Packed YUV 4:4:4 Image Formats (less
than 8bpc)

Identifier Code Byte 0 in memory Byte 1
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

V4L2_PIX_FMT_YUV444 ‘Y444’ Cb3 Cb2 Cb1 Cb0 Cr3 Cr2 Cr1 Cr0 a3 a2 a1 a0 Y’3 Y’2 Y’1 Y’0

V4L2_PIX_FMT_YUV555 ‘YUVO’ Cb2 Cb1 Cb0 Cr4 Cr3 Cr2 Cr1 Cr0 a Y’4 Y’3 Y’2 Y’1 Y’0 Cb4 Cb3

V4L2_PIX_FMT_YUV565 ‘YUVP’ Cb2 Cb1 Cb0 Cr4 Cr3 Cr2 Cr1 Cr0 Y’4 Y’3 Y’2 Y’1 Y’0 Cb5 Cb4 Cb3

Note: For the YUV444 and YUV555 formats, the value of alpha bits is undefined when read-
ing from the driver, ignored when writing to the driver, except when alpha blending has been
negotiated for a Video Overlay or Video Output Overlay.

The next table lists the packed YUV 4:4:4 formats with 8 bits per component. They are named
based on the order of the Y, Cb and Cr components as stored in memory, and on the total number
of bits per pixel. For instance, the VUYX32 format stores a pixel with Cr7-0 in the first byte, Cb7-0
in the second byte and Y’7-0 in the third byte.

Table 58: Packed YUV Image Formats (8bpc)
Identifier Code Byte 0 Byte 1 Byte 2 Byte 3

V4L2_PIX_FMT_YUV32 ‘YUV4’ A7-0 Y’7-0 Cb7-0 Cr7-0

V4L2_PIX_FMT_AYUV32 ‘AYUV’ A7-0 Y’7-0 Cb7-0 Cr7-0

V4L2_PIX_FMT_XYUV32 ‘XYUV’ X7-0 Y’7-0 Cb7-0 Cr7-0

V4L2_PIX_FMT_VUYA32 ‘VUYA’ Cr7-0 Cb7-0 Y’7-0 A7-0

V4L2_PIX_FMT_VUYX32 ‘VUYX’ Cr7-0 Cb7-0 Y’7-0 X7-0

V4L2_PIX_FMT_YUV24 ‘YUV3’ Y’7-0 Cb7-0 Cr7-0 -

Note:
• The alpha component is expected to contain a meaningful value that can be used by drivers
and applications.

• The padding bits contain undefined values that must be ignored by all applications and
drivers.

3.2. Part I - Video for Linux API 839

Linux Media Documentation

4:2:2 Subsampling

These formats, commonly referred to as YUYV or YUY2, subsample the chroma components
horizontally by 2, storing 2 pixels in 4 bytes.

Table 59: Packed YUV 4:2:2 Formats
Identifier Code Byte

0
Byte
1

Byte
2

Byte
3

Byte
4

Byte
5

Byte
6

Byte
7

V4L2_PIX_FMT_UYVY ‘UYVY’ Cb0 Y’0 Cr0 Y’1 Cb2 Y’2 Cr2 Y’3

V4L2_PIX_FMT_VYUY ‘VYUY’ Cr0 Y’0 Cb0 Y’1 Cr2 Y’2 Cb2 Y’3

V4L2_PIX_FMT_YUYV ‘YUYV’ Y’0 Cb0 Y’1 Cr0 Y’2 Cb2 Y’3 Cr2

V4L2_PIX_FMT_YVYU ‘YVYU’ Y’0 Cr0 Y’1 Cb0 Y’2 Cr2 Y’3 Cb2

Color Sample Location: Chroma samples are interstitially sited horizontally.

4:1:1 Subsampling

This format subsamples the chroma components horizontally by 4, storing 8 pixels in 12 bytes.

Table 60: Packed YUV 4:1:1 Formats
Identifier Code Byte

0
Byte
1

Byte
2

Byte
3

Byte
4

Byte
5

Byte
6

Byte
7

Byte
8

Byte
9

Byte
10

Byte
11

V4L2_PIX_FMT_Y41P ‘Y41P’ Cb0 Y’0 Cr0 Y’1 Cb4 Y’2 Cr4 Y’3 Y’4 Y’5 Y’6 Y’7

Note: Do not confuse V4L2_PIX_FMT_Y41P with V4L2_PIX_FMT_YUV411P. Y41P is derived
from “YUV 4:1:1 packed”, while YUV411P stands for “YUV 4:1:1 planar”.

Color Sample Location: Chroma samples are interstitially sited horizontally.

Planar YUV formats

Planar formats split luma and chroma data in separate memory regions. They exist in two
variants:

• Semi-planar formats use two planes. The first plane is the luma plane and stores the Y
components. The second plane is the chroma plane and stores the Cb and Cr components
interleaved.

• Fully planar formats use three planes to store the Y, Cb and Cr components separately.

Within a plane, components are stored in pixel order, which may be linear or tiled. Padding may
be supported at the end of the lines, and the line stride of the chroma planes may be constrained
by the line stride of the luma plane.

Some planar formats allow planes to be placed in independent memory locations. They are
identified by an ‘M’ suffix in their name (such as in V4L2_PIX_FMT_NV12M). Those formats are
intended to be used only in drivers and applications that support the multi-planar API, described

840 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

in Single- and multi-planar APIs. Unless explicitly documented as supporting non-contiguous
planes, formats require the planes to follow each other immediately in memory.

Semi-Planar YUV Formats

These formats are commonly referred to as NV formats (NV12, NV16, …). They use two planes,
and store the luma components in the first plane and the chroma components in the second
plane. The Cb and Cr components are interleaved in the chroma plane, with Cb and Cr always
stored in pairs. The chroma order is exposed as different formats.

For memory contiguous formats, the number of padding pixels at the end of the chroma lines
is identical to the padding of the luma lines. Without horizontal subsampling, the chroma line
stride (in bytes) is thus equal to twice the luma line stride. With horizontal subsampling by 2,
the chroma line stride is equal to the luma line stride. Vertical subsampling doesn’t affect the
line stride.

For non-contiguous formats, no constraints are enforced by the format on the relationship be-
tween the luma and chroma line padding and stride.

All components are stored with the same number of bits per component.

Table 61: Overview of Semi-Planar YUV Formats
Identifier Code Bits per

compo-
nent

Subsampling Chroma
order1

Contiguous2 Tiling3

V4L2_PIX_FMT_NV12 ‘NV12’ 8 4:2:0 Cb, Cr Yes Linear
V4L2_PIX_FMT_NV21 ‘NV21’ 8 4:2:0 Cr, Cr Yes Linear
V4L2_PIX_FMT_NV12M ‘NM12’ 8 4:2:0 Cb, Cr No Linear
V4L2_PIX_FMT_NV21M ‘NM21’ 8 4:2:0 Cr, Cr No Linear
V4L2_PIX_FMT_NV12MT ‘TM12’ 8 4:2:0 Cb, Cr No 64x32 tiles

Horizontal Z or-
der

V4L2_PIX_FMT_NV12MT_16X16 ‘VM12’ 8 4:2:2 Cb, Cr No 16x16 tiles
V4L2_PIX_FMT_NV16 ‘NV16’ 8 4:2:2 Cb, Cr Yes Linear
V4L2_PIX_FMT_NV61 ‘NV61’ 8 4:2:2 Cr, Cr Yes Linear
V4L2_PIX_FMT_NV16M ‘NM16’ 8 4:2:2 Cb, Cr No Linear
V4L2_PIX_FMT_NV61M ‘NM61’ 8 4:2:2 Cr, Cr No Linear
V4L2_PIX_FMT_NV24 ‘NV24’ 8 4:4:4 Cb, Cr Yes Linear
V4L2_PIX_FMT_NV42 ‘NV42’ 8 4:4:4 Cr, Cr Yes Linear

Color Sample Location: Chroma samples are interstitially sited horizontally.
1 Order of chroma samples in the second plane
2 Indicates if planes have to be contiguous in memory or can be disjoint
3 Macroblock size in pixels

3.2. Part I - Video for Linux API 841

Linux Media Documentation

NV12, NV21, NV12M and NV21M

Semi-planar YUV 4:2:0 formats. The chroma plane is subsampled by 2 in each direction.
Chroma lines contain half the number of pixels and the same number of bytes as luma lines,
and the chroma plane contains half the number of lines of the luma plane.

Table 62: Sample 4x4 NV12 Image
start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cb00 Cr00 Cb01 Cr01
start + 20: Cb10 Cr10 Cb11 Cr11

Table 63: Sample 4x4 NV12M Image
start0 + 0: Y’00 Y’01 Y’02 Y’03
start0 + 4: Y’10 Y’11 Y’12 Y’13
start0 + 8: Y’20 Y’21 Y’22 Y’23
start0 + 12: Y’30 Y’31 Y’32 Y’33

start1 + 0: Cb00 Cr00 Cb01 Cr01
start1 + 4: Cb10 Cr10 Cb11 Cr11

Tiled NV12

Semi-planar YUV 4:2:0 formats, using macroblock tiling. The chroma plane is subsampled by
2 in each direction. Chroma lines contain half the number of pixels and the same number of
bytes as luma lines, and the chroma plane contains half the number of lines of the luma plane.
Each tile follows the previous one linearly in memory (from left to right, top to bottom).

V4L2_PIX_FMT_NV12MT_16X16 is similar to V4L2_PIX_FMT_NV12M but stores pixels in 2D 16x16
tiles, and stores tiles linearly in memory. The line stride and image height must be aligned to a
multiple of 16. The layouts of the luma and chroma planes are identical.

V4L2_PIX_FMT_NV12MT is similar to V4L2_PIX_FMT_NV12M but stores pixels in 2D 64x32 tiles, and
stores 2x2 groups of tiles in Z-order in memory, alternating Z and mirrored Z shapes horizon-
tally. The line stride must be a multiple of 128 pixels to ensure an integer number of Z shapes.
The image height must be a multiple of 32 pixels. If the vertical resolution is an odd number of
tiles, the last row of tiles is stored in linear order. The layouts of the luma and chroma planes
are identical.

V4L2_PIX_FMT_NV12_4L4 stores pixel in 4x4 tiles, and stores tiles linearly in memory. The line
stride and image height must be aligned to a multiple of 4. The layouts of the luma and chroma
planes are identical.

V4L2_PIX_FMT_NV12_16L16 stores pixel in 16x16 tiles, and stores tiles linearly in memory. The
line stride and image height must be aligned to a multiple of 16. The layouts of the luma and
chroma planes are identical.

V4L2_PIX_FMT_NV12_32L32 stores pixel in 32x32 tiles, and stores tiles linearly in memory. The

842 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

line stride and image height must be aligned to a multiple of 32. The layouts of the luma and
chroma planes are identical.

Fig. 4: V4L2_PIX_FMT_NV12MT macroblock Z shape memory layout

Fig. 5: Example V4L2_PIX_FMT_NV12MT memory layout of tiles

NV16, NV61, NV16M and NV61M

Semi-planar YUV 4:2:2 formats. The chroma plane is subsampled by 2 in the horizontal direc-
tion. Chroma lines contain half the number of pixels and the same number of bytes as luma
lines, and the chroma plane contains the same number of lines as the luma plane.

Table 64: Sample 4x4 NV16 Image
start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cb00 Cr00 Cb01 Cr01
start + 20: Cb10 Cr10 Cb11 Cr11
start + 24: Cb20 Cr20 Cb21 Cr21
start + 28: Cb30 Cr30 Cb31 Cr31

3.2. Part I - Video for Linux API 843

Linux Media Documentation

Table 65: Sample 4x4 NV16M Image
start0 + 0: Y’00 Y’01 Y’02 Y’03
start0 + 4: Y’10 Y’11 Y’12 Y’13
start0 + 8: Y’20 Y’21 Y’22 Y’23
start0 + 12: Y’30 Y’31 Y’32 Y’33

start1 + 0: Cb00 Cr00 Cb02 Cr02
start1 + 4: Cb10 Cr10 Cb12 Cr12
start1 + 8: Cb20 Cr20 Cb22 Cr22
start1 + 12: Cb30 Cr30 Cb32 Cr32

NV24 and NV42

Semi-planar YUV 4:4:4 formats. The chroma plane is not subsampled. Chroma lines contain
the same number of pixels and twice the number of bytes as luma lines, and the chroma plane
contains the same number of lines as the luma plane.

Table 66: Sample 4x4 NV24 Image
start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cb00 Cr00 Cb01 Cr01 Cb02 Cr02 Cb03 Cr03
start + 24: Cb10 Cr10 Cb11 Cr11 Cb12 Cr12 Cb13 Cr13
start + 32: Cb20 Cr20 Cb21 Cr21 Cb22 Cr22 Cb23 Cr23
start + 40: Cb30 Cr30 Cb31 Cr31 Cb32 Cr32 Cb33 Cr33

Fully Planar YUV Formats

These formats store the Y, Cb and Cr components in three separate planes. The luma plane
comes first, and the order of the two chroma planes varies between formats. The two chroma
planes always use the same subsampling.

For memory contiguous formats, the number of padding pixels at the end of the chroma lines
is identical to the padding of the luma lines. The chroma line stride (in bytes) is thus equal to
the luma line stride divided by the horizontal subsampling factor. Vertical subsampling doesn’t
affect the line stride.

For non-contiguous formats, no constraints are enforced by the format on the relationship be-
tween the luma and chroma line padding and stride.

All components are stored with the same number of bits per component.

844 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 67: Overview of Fully Planar YUV Formats
Identifier Code Bits per

compo-
nent

Subsampling Planes
order4

Contiguous5

V4L2_PIX_FMT_YUV410 ‘YUV9’ 8 4:1:0 Y, Cb,
Cr

Yes

V4L2_PIX_FMT_YVU410 ‘YVU9’ 8 4:1:0 Y, Cr,
Cb

Yes

V4L2_PIX_FMT_YUV411P ‘411P’ 8 4:1:1 Y, Cb,
Cr

Yes

V4L2_PIX_FMT_YUV420M ‘YM12’ 8 4:2:0 Y, Cb,
Cr

No

V4L2_PIX_FMT_YVU420M ‘YM21’ 8 4:2:0 Y, Cr,
Cb

No

V4L2_PIX_FMT_YUV420 ‘YU12’ 8 4:2:0 Y, Cb,
Cr

Yes

V4L2_PIX_FMT_YVU420 ‘YV12’ 8 4:2:0 Y, Cr,
Cb

Yes

V4L2_PIX_FMT_YUV422P ‘422P’ 8 4:2:2 Y, Cb,
Cr

Yes

V4L2_PIX_FMT_YUV422M ‘YM16’ 8 4:2:2 Y, Cb,
Cr

No

V4L2_PIX_FMT_YVU422M ‘YM61’ 8 4:2:2 Y, Cr,
Cb

No

V4L2_PIX_FMT_YUV444M ‘YM24’ 8 4:4:4 Y, Cb,
Cr

No

V4L2_PIX_FMT_YVU444M ‘YM42’ 8 4:4:4 Y, Cr,
Cb

No

Color Sample Location: Chroma samples are interstitially sited horizontally.

YUV410 and YVU410

Planar YUV 4:1:0 formats. The chroma planes are subsampled by 4 in each direction. Chroma
lines contain a quarter of the number of pixels and bytes of the luma lines, and the chroma
planes contain a quarter of the number of lines of the luma plane.

Table 68: Sample 4x4 YUV410 Image
start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cr00
start + 17: Cb00

4 Order of luma and chroma planes
5 Indicates if planes have to be contiguous in memory or can be disjoint

3.2. Part I - Video for Linux API 845

Linux Media Documentation

YUV411P

Planar YUV 4:1:1 formats. The chroma planes are subsampled by 4 in the horizontal direction.
Chroma lines contain a quarter of the number of pixels and bytes of the luma lines, and the
chroma planes contain the same number of lines as the luma plane.

Table 69: Sample 4x4 YUV411P Image
start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cb00
start + 17: Cb10
start + 18: Cb20
start + 19: Cb30
start + 20: Cr00
start + 21: Cr10
start + 22: Cr20
start + 23: Cr30

YUV420, YVU420, YUV420M and YVU420M

Planar YUV 4:2:0 formats. The chroma planes are subsampled by 2 in each direction. Chroma
lines contain half of the number of pixels and bytes of the luma lines, and the chroma planes
contain half of the number of lines of the luma plane.

Table 70: Sample 4x4 YUV420 Image
start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cr00 Cr01
start + 18: Cr10 Cr11
start + 20: Cb00 Cb01
start + 22: Cb10 Cb11

Table 71: Sample 4x4 YUV420M Image
start0 + 0: Y’00 Y’01 Y’02 Y’03
start0 + 4: Y’10 Y’11 Y’12 Y’13
start0 + 8: Y’20 Y’21 Y’22 Y’23
start0 + 12: Y’30 Y’31 Y’32 Y’33

start1 + 0: Cb00 Cb01
start1 + 2: Cb10 Cb11

start2 + 0: Cr00 Cr01
start2 + 2: Cr10 Cr11

846 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

YUV422P, YUV422M and YVU422M

Planar YUV 4:2:2 formats. The chroma planes are subsampled by 2 in the horizontal direction.
Chroma lines contain half of the number of pixels and bytes of the luma lines, and the chroma
planes contain the same number of lines as the luma plane.

Table 72: Sample 4x4 YUV422P Image
start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cb00 Cb01
start + 18: Cb10 Cb11
start + 20: Cb20 Cb21
start + 22: Cb30 Cb31
start + 24: Cr00 Cr01
start + 26: Cr10 Cr11
start + 28: Cr20 Cr21
start + 30: Cr30 Cr31

Table 73: Sample 4x4 YUV422M Image
start0 + 0: Y’00 Y’01 Y’02 Y’03
start0 + 4: Y’10 Y’11 Y’12 Y’13
start0 + 8: Y’20 Y’21 Y’22 Y’23
start0 + 12: Y’30 Y’31 Y’32 Y’33

start1 + 0: Cb00 Cb01
start1 + 2: Cb10 Cb11
start1 + 4: Cb20 Cb21
start1 + 6: Cb30 Cb31

start2 + 0: Cr00 Cr01
start2 + 2: Cr10 Cr11
start2 + 4: Cr20 Cr21
start2 + 6: Cr30 Cr31

3.2. Part I - Video for Linux API 847

Linux Media Documentation

YUV444M and YVU444M

Planar YUV 4:4:4 formats. The chroma planes are no subsampled. Chroma lines contain the
same number of pixels and bytes of the luma lines, and the chroma planes contain the same
number of lines as the luma plane.

Table 74: Sample 4x4 YUV444M Image
start0 + 0: Y’00 Y’01 Y’02 Y’03
start0 + 4: Y’10 Y’11 Y’12 Y’13
start0 + 8: Y’20 Y’21 Y’22 Y’23
start0 + 12: Y’30 Y’31 Y’32 Y’33

start1 + 0: Cb00 Cb01 Cb02 Cb03
start1 + 4: Cb10 Cb11 Cb12 Cb13
start1 + 8: Cb20 Cb21 Cb22 Cb23
start1 + 12: Cb20 Cb21 Cb32 Cb33

start2 + 0: Cr00 Cr01 Cr02 Cr03
start2 + 4: Cr10 Cr11 Cr12 Cr13
start2 + 8: Cr20 Cr21 Cr22 Cr23
start2 + 12: Cr30 Cr31 Cr32 Cr33

Luma-Only Formats

This family of formats only store the luma component of a Y’CbCr image. They are often referred
to as greyscale formats.

Note:
• In all the tables that follow, bit 7 is the most significant bit in a byte.

• Formats are described with the minimum number of pixels needed to create a byte-aligned
repeating pattern. … indicates repetition of the pattern.

• Y’x[9:2] denotes bits 9 to 2 of the Y’ value for pixel at colum x.

• 0 denotes padding bits set to 0.

848 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 75: Luma-Only Image Formats
Identifier Code Byte 0 Byte 1 Byte 2 Byte 3 Byte 4

V4L2_PIX_FMT_GREY ‘GREY’ Y’0[7:0] … … … …

V4L2_PIX_FMT_Y10 ‘Y10 ‘ Y’0[7:0] 000000 Y’0[9:8] … … …

V4L2_PIX_FMT_Y10BPACK ‘Y10B’ Y’0[9:2] Y’0[1:0] Y’1[9:4] Y’1[3:0]
Y’2[9:6]

Y’2[5:0]
Y’3[9:8]

Y’3[7:0]

V4L2_PIX_FMT_Y10P ‘Y10P’ Y’0[7:0] Y’1[9:8] Y’2[9:2] Y’3[9:2] Y’3[1:0]
Y’2[1:0]
Y’1[1:0]
Y’0[1:0]

V4L2_PIX_FMT_Y12 ‘Y12 ‘ Y’0[7:0] 0000 Y’0[11:8] … … …

V4L2_PIX_FMT_Y14 ‘Y14 ‘ Y’0[7:0] 00 Y’0[13:8] … … …

V4L2_PIX_FMT_Y16 ‘Y16 ‘ Y’0[7:0] Y’0[15:8] … … …

V4L2_PIX_FMT_Y16_BE ‘Y16 ‘ | (1U << 31) Y’0[15:8] Y’0[7:0] … … …

Note: For the Y16 and Y16_BE formats, the actual sampling precision may be lower than 16
bits. For example, 10 bits per pixel uses values in the range 0 to 1023.

V4L2_PIX_FMT_Y8I (‘Y8I ‘)

Interleaved grey-scale image, e.g. from a stereo-pair

Description

This is a grey-scale image with a depth of 8 bits per pixel, but with pixels from 2 sources
interleaved. Each pixel is stored in a 16-bit word. E.g. the R200 RealSense camera stores
pixel from the left sensor in lower and from the right sensor in the higher 8 bits.

Byte Order. Each cell is one byte.

start + 0: Y’00left Y’00right Y’01left Y’01right Y’02left Y’02right Y’03left Y’03right
start + 8: Y’10left Y’10right Y’11left Y’11right Y’12left Y’12right Y’13left Y’13right
start + 16: Y’20left Y’20right Y’21left Y’21right Y’22left Y’22right Y’23left Y’23right
start + 24: Y’30left Y’30right Y’31left Y’31right Y’32left Y’32right Y’33left Y’33right

V4L2_PIX_FMT_Y12I (‘Y12I’)

Interleaved grey-scale image, e.g. from a stereo-pair

3.2. Part I - Video for Linux API 849

Linux Media Documentation

Description

This is a grey-scale image with a depth of 12 bits per pixel, but with pixels from 2 sources
interleaved and bit-packed. Each pixel is stored in a 24-bit word in the little-endian order. On
a little-endian machine these pixels can be deinterlaced using

__u8 *buf;
left0 = 0xfff & *(__u16 *)buf;
right0 = *(__u16 *)(buf + 1) >> 4;

Bit-packed representation. pixels cross the byte boundary and have a ratio of 3 bytes for
each interleaved pixel.

Y’0left[7:0] Y’0right[3:0]Y’0left[11:8] Y’0right[11:4]

V4L2_PIX_FMT_UV8 (‘UV8’)

UV plane interleaved

Description

In this format there is no Y plane, Only CbCr plane. ie (UV interleaved)

Byte Order. Each cell is one byte.

start + 0: Cb00 Cr00 Cb01 Cr01
start + 4: Cb10 Cr10 Cb11 Cr11
start + 8: Cb20 Cr20 Cb21 Cr21
start + 12: Cb30 Cr30 Cb31 Cr31

V4L2_PIX_FMT_M420 (‘M420’)

Format with ½ horizontal and vertical chroma resolution, also known as YUV 4:2:0. Hybrid
plane line-interleaved layout.

Description

M420 is a YUV format with ½ horizontal and vertical chroma subsampling (YUV 4:2:0). Pixels
are organized as interleaved luma and chroma planes. Two lines of luma data are followed by
one line of chroma data.

The luma plane has one byte per pixel. The chroma plane contains interleaved CbCr pixels
subsampled by ½ in the horizontal and vertical directions. Each CbCr pair belongs to four
pixels. For example, Cb0/Cr0 belongs to Y’00, Y’01, Y’10, Y’11.

All line lengths are identical: if the Y lines include pad bytes so do the CbCr lines.

Byte Order. Each cell is one byte.

850 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Cb00 Cr00 Cb01 Cr01
start + 16: Y’20 Y’21 Y’22 Y’23
start + 20: Y’30 Y’31 Y’32 Y’33
start + 24: Cb10 Cr10 Cb11 Cr11

Color Sample Location: Chroma samples are interstitially sited horizontally and vertically.

3.2.2.8 HSV Formats

These formats store the color information of the image in a geometrical representation. The
colors are mapped into a cylinder, where the angle is the HUE, the height is the VALUE and the
distance to the center is the SATURATION. This is a very useful format for image segmentation
algorithms.

Packed HSV formats

Description

The hue (h) is measured in degrees, the equivalence between degrees and LSBs depends on
the hsv-encoding used, see Colorspaces. The saturation (s) and the value (v) are measured in
percentage of the cylinder: 0 being the smallest value and 255 the maximum.

The values are packed in 24 or 32 bit formats.

Table 76: Packed HSV Image Formats
Identifier Code Byte 0 in memory Byte 1 Byte 2 Byte 3

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

V4L2_PIX_FMT_HSV32 ‘HSV4’ h7 h6 h5 h4 h3 h2 h1 h0 s7 s6 s5 s4 s3 s2 s1 s0 v7 v6 v5 v4 v3 v2 v1 v0
V4L2_PIX_FMT_HSV24 ‘HSV3’ h7 h6 h5 h4 h3 h2 h1 h0 s7 s6 s5 s4 s3 s2 s1 s0 v7 v6 v5 v4 v3 v2 v1 v0

Bit 7 is the most significant bit.

3.2.2.9 Depth Formats

Depth data provides distance to points, mapped onto the image plane

V4L2_PIX_FMT_INZI (‘INZI’)

Infrared 10-bit linked with Depth 16-bit images

3.2. Part I - Video for Linux API 851

Linux Media Documentation

Description

Proprietarymulti-planar format used by Intel SR300Depth cameras, comprise of Infrared image
followed by Depth data. The pixel definition is 32-bpp, with the Depth and Infrared Data split
into separate continuous planes of identical dimensions.

The first plane - Infrared data - is stored according to V4L2_PIX_FMT_Y10 greyscale format.
Each pixel is 16-bit cell, with actual data stored in the 10 LSBs with values in range 0 to 1023.
The six remaining MSBs are padded with zeros.

The second plane provides 16-bit per-pixel Depth data arranged in V4L2-PIX-FMT-Z16 format.

Frame Structure. Each cell is a 16-bit word with more significant data stored at higher mem-
ory address (byte order is little-endian).

Ir0,0 Ir0,1 Ir0,2 … … …
…
Infrared Data
…
… … … Irn-1,n-3 Irn-1,n-2 Irn-1,n-1
Depth0,0 Depth0,1 Depth0,2 … … …
…
Depth Data
…
… … … Depthn-1,n-3 Depthn-1,n-2 Depthn-1,n-1

V4L2_PIX_FMT_Z16 (‘Z16 ‘)

16-bit depth data with distance values at each pixel

Description

This is a 16-bit format, representing depth data. Each pixel is a distance to the respective
point in the image coordinates. Distance unit can vary and has to be negotiated with the device
separately. Each pixel is stored in a 16-bit word in the little endian byte order.

Byte Order. Each cell is one byte.

start + 0: Z00low Z00high Z01low Z01high Z02low Z02high Z03low Z03high
start + 8: Z10low Z10high Z11low Z11high Z12low Z12high Z13low Z13high
start + 16: Z20low Z20high Z21low Z21high Z22low Z22high Z23low Z23high
start + 24: Z30low Z30high Z31low Z31high Z32low Z32high Z33low Z33high

852 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_PIX_FMT_CNF4 (‘CNF4’)

Depth sensor confidence information as a 4 bits per pixel packed array

Description

Proprietary format used by Intel RealSense Depth cameras containing depth confidence infor-
mation in range 0-15 with 0 indicating that the sensor was unable to resolve any signal and
15 indicating maximum level of confidence for the specific sensor (actual error margins might
change from sensor to sensor).

Every two consecutive pixels are packed into a single byte. Bits 0-3 of byte n refer to confidence
value of depth pixel 2*n, bits 4-7 to confidence value of depth pixel 2*n+1.

Bit-packed representation.

Y’01[3:0](bits 7–4) Y’00[3:0](bits 3–0) Y’03[3:0](bits 7–4) Y’02[3:0](bits 3–0)

3.2.2.10 Compressed Formats

Table 77: Compressed Image Formats
Identifier Code Details
V4L2_PIX_FMT_JPEG

‘JPEG’
TBD. See also VIDIOC_G_JPEGCOMP, VID-

IOC_S_JPEGCOMP.
V4L2_PIX_FMT_MPEG

‘MPEG’
MPEG multiplexed stream. The actual format is deter-
mined by extended control V4L2_CID_MPEG_STREAM_TYPE,
see Codec Control IDs.

V4L2_PIX_FMT_H264
‘H264’

H264 Access Unit. The decoder expects one Ac-
cess Unit per buffer. The encoder generates one Ac-
cess Unit per buffer. If ioctl VIDIOC_ENUM_FMT re-
ports V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM then the
decoder has no requirements since it can parse all the in-
formation from the raw bytestream.

V4L2_PIX_FMT_H264_NO_SC
‘AVC1’

H264 video elementary stream without start codes.

V4L2_PIX_FMT_H264_MVC
‘M264’

H264 MVC video elementary stream.

Continued on next page

3.2. Part I - Video for Linux API 853

Linux Media Documentation

Table 77 – continued from previous page
Identifier Code Details
V4L2_PIX_FMT_H264_SLICE

‘S264’
H264 parsed slice data, including slice headers, either
with or without the start code, as extracted from the H264
bitstream. This format is adapted for stateless video de-
coders that implement an H264 pipeline with theMemory-
to-memory Stateless Video Decoder Interface. This pix-
elformat has two modifiers that must be set at least once
through the V4L2_CID_STATELESS_H264_DECODE_MODE
and V4L2_CID_STATELESS_H264_START_CODE con-
trols. In addition, metadata associated with
the frame to decode are required to be passed
through the V4L2_CID_STATELESS_H264_SPS,
V4L2_CID_STATELESS_H264_PPS,
V4L2_CID_STATELESS_H264_SCALING_MATRIX,
V4L2_CID_STATELESS_H264_SLICE_PARAMS and
V4L2_CID_STATELESS_H264_DECODE_PARAMS controls.
See the associated Codec Control IDs. Exactly one output
and one capture buffer must be provided for use with
this pixel format. The output buffer must contain the
appropriate number of macroblocks to decode a full
corresponding frame to the matching capture buffer.
The syntax for this format is documented in ITU-T Rec.
H.264 Specification (04/2017 Edition), section 7.3.2.8
“Slice layer without partitioning RBSP syntax” and the fol-
lowing sections.

V4L2_PIX_FMT_H263
‘H263’

H263 video elementary stream.

V4L2_PIX_FMT_MPEG1
‘MPG1’

MPEG1 Picture. Each buffer starts with a Picture
header, followed by other headers as needed and ending
with the Picture data. If ioctl VIDIOC_ENUM_FMT re-
ports V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM then the
decoder has no requirements since it can parse all the in-
formation from the raw bytestream.

V4L2_PIX_FMT_MPEG2
‘MPG2’

MPEG2 Picture. Each buffer starts with a Picture
header, followed by other headers as needed and ending
with the Picture data. If ioctl VIDIOC_ENUM_FMT re-
ports V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM then the
decoder has no requirements since it can parse all the in-
formation from the raw bytestream.

V4L2_PIX_FMT_MPEG2_SLICE
‘MG2S’

MPEG-2 parsed slice data, as extracted from the
MPEG-2 bitstream. This format is adapted for
stateless video decoders that implement a MPEG-
2 pipeline with the Memory-to-memory Stateless
Video Decoder Interface. Metadata associated
with the frame to decode is required to be passed
through the V4L2_CID_STATELESS_MPEG2_SEQUENCE and
V4L2_CID_STATELESS_MPEG2_PICTURE controls. Quanti-
sation matrices can optionally be specified through the
V4L2_CID_STATELESS_MPEG2_QUANTISATION control. See
the associated Codec Control IDs. Exactly one output and
one capture buffer must be provided for use with this pixel
format. The output buffer must contain the appropriate
number of macroblocks to decode a full corresponding
frame to the matching capture buffer.

V4L2_PIX_FMT_MPEG4
‘MPG4’

MPEG4 video elementary stream.

Continued on next page

854 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 77 – continued from previous page
Identifier Code Details
V4L2_PIX_FMT_XVID

‘XVID’
Xvid video elementary stream.

V4L2_PIX_FMT_VC1_ANNEX_G
‘VC1G’

VC1, SMPTE 421M Annex G compliant stream.

V4L2_PIX_FMT_VC1_ANNEX_L ‘VC1L’ VC1, SMPTE 421M Annex L compliant stream.
V4L2_PIX_FMT_VP8

‘VP80’
VP8 compressed video frame. The encoder generates one
compressed frame per buffer, and the decoder requires
one compressed frame per buffer.

V4L2_PIX_FMT_VP8_FRAME
‘VP8F’

VP8 parsed frame, including the frame header, as ex-
tracted from the container. This format is adapted
for stateless video decoders that implement an VP8
pipeline with the Memory-to-memory Stateless Video
Decoder Interface. Metadata associated with the
frame to decode is required to be passed through the
V4L2_CID_STATELESS_VP8_FRAME control. See the associ-
ated Codec Control IDs. Exactly one output and one cap-
ture buffer must be provided for use with this pixel format.
The output buffer must contain the appropriate number of
macroblocks to decode a full corresponding frame to the
matching capture buffer.

V4L2_PIX_FMT_VP9
‘VP90’

VP9 compressed video frame. The encoder generates one
compressed frame per buffer, and the decoder requires
one compressed frame per buffer.

V4L2_PIX_FMT_VP9_FRAME
‘VP9F’

VP9 parsed frame, including the frame header,
as extracted from the container. This format is
adapted for stateless video decoders that implement
a VP9 pipeline with the Memory-to-memory State-
less Video Decoder Interface. Metadata associated
with the frame to decode is required to be passed
through the V4L2_CID_STATELESS_VP9_FRAME and the
V4L2_CID_STATELESS_VP9_COMPRESSED_HDR controls. See
the associated Codec Control IDs. Exactly one output and
one capture buffer must be provided for use with this pixel
format. The output buffer must contain the appropriate
number of macroblocks to decode a full corresponding
frame to the matching capture buffer.

V4L2_PIX_FMT_HEVC
‘HEVC’

HEVC/H.265 Access Unit. The decoder expects one Ac-
cess Unit per buffer. The encoder generates one Ac-
cess Unit per buffer. If ioctl VIDIOC_ENUM_FMT re-
ports V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM then the
decoder has no requirements since it can parse all the in-
formation from the raw bytestream.

Continued on next page

3.2. Part I - Video for Linux API 855

Linux Media Documentation

Table 77 – continued from previous page
Identifier Code Details
V4L2_PIX_FMT_HEVC_SLICE

‘S265’
HEVC parsed slice data, as extracted from the HEVC
bitstream. This format is adapted for stateless video de-
coders that implement a HEVC pipeline (using the Video
Memory-To-Memory Interface and Request API). This pix-
elformat has two modifiers that must be set at least once
through the V4L2_CID_MPEG_VIDEO_HEVC_DECODE_MODE
and V4L2_CID_MPEG_VIDEO_HEVC_START_CODE con-
trols. Metadata associated with the frame to de-
code is required to be passed through the fol-
lowing controls: V4L2_CID_MPEG_VIDEO_HEVC_SPS,
V4L2_CID_MPEG_VIDEO_HEVC_PPS, and
V4L2_CID_MPEG_VIDEO_HEVC_SLICE_PARAMS. See the
associated Codec Control IDs. Buffers associated with
this pixel format must contain the appropriate number of
macroblocks to decode a full corresponding frame.

Note: This format is not yet part of the public kernel API
and it is expected to change.

V4L2_PIX_FMT_FWHT
‘FWHT’

Video elementary stream using a codec based on the Fast
Walsh Hadamard Transform. This codec is implemented
by the vicodec (‘Virtual Codec’) driver. See the codec-
fwht.h header for more details. ioctl VIDIOC_ENUM_FMT
reports V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM since
the decoder can parse all the information from the raw
bytestream.

V4L2_PIX_FMT_FWHT_STATELESS
‘SFWH’

Same format as V4L2_PIX_FMT_FWHT but requires state-
less codec implementation. Metadata associated with the
frame to decode is required to be passed through the
V4L2_CID_STATELESS_FWHT_PARAMS control. See the asso-
ciated Codec Control ID.

3.2.2.11 SDR Formats

These formats are used for SDR interface only.

V4L2_SDR_FMT_CU8 (‘CU08’)

Complex unsigned 8-bit IQ sample

Description

This format contains sequence of complex number samples. Each complex number consist two
parts, called In-phase and Quadrature (IQ). Both I and Q are represented as a 8 bit unsigned
number. I value comes first and Q value after that.

Byte Order. Each cell is one byte.

start + 0: I’0
start + 1: Q’0

856 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_SDR_FMT_CU16LE (‘CU16’)

Complex unsigned 16-bit little endian IQ sample

Description

This format contains sequence of complex number samples. Each complex number consist two
parts, called In-phase and Quadrature (IQ). Both I and Q are represented as a 16 bit unsigned
little endian number. I value comes first and Q value after that.

Byte Order. Each cell is one byte.

start + 0: I’0[7:0] I’0[15:8]
start + 2: Q’0[7:0] Q’0[15:8]

V4L2_SDR_FMT_CS8 (‘CS08’)

Complex signed 8-bit IQ sample

Description

This format contains sequence of complex number samples. Each complex number consist two
parts, called In-phase and Quadrature (IQ). Both I and Q are represented as a 8 bit signed
number. I value comes first and Q value after that.

Byte Order. Each cell is one byte.

start + 0: I’0
start + 1: Q’0

V4L2_SDR_FMT_CS14LE (‘CS14’)

Complex signed 14-bit little endian IQ sample

Description

This format contains sequence of complex number samples. Each complex number consist two
parts, called In-phase and Quadrature (IQ). Both I and Q are represented as a 14 bit signed
little endian number. I value comes first and Q value after that. 14 bit value is stored in 16 bit
space with unused high bits padded with 0.

Byte Order. Each cell is one byte.

start + 0: I’0[7:0] I’0[13:8]
start + 2: Q’0[7:0] Q’0[13:8]

3.2. Part I - Video for Linux API 857

Linux Media Documentation

V4L2_SDR_FMT_RU12LE (‘RU12’)

Real unsigned 12-bit little endian sample

Description

This format contains sequence of real number samples. Each sample is represented as a 12 bit
unsigned little endian number. Sample is stored in 16 bit space with unused high bits padded
with 0.

Byte Order. Each cell is one byte.

start + 0: I’0[7:0] I’0[11:8]

V4L2_SDR_FMT_PCU16BE (‘PC16’)

Planar complex unsigned 16-bit big endian IQ sample

Description

This format contains a sequence of complex number samples. Each complex number consist
of two parts called In-phase and Quadrature (IQ). Both I and Q are represented as a 16 bit
unsigned big endian number stored in 32 bit space. The remaining unused bits within the 32
bit space will be padded with 0. I value starts first and Q value starts at an offset equalling half
of the buffer size (i.e.) offset = buffersize/2. Out of the 16 bits, bit 15:2 (14 bit) is data and bit
1:0 (2 bit) can be any value.

Byte Order. Each cell is one byte.

Offset: Byte B0 Byte B1 Byte B2 Byte B3
start + 0: I’0[13:6] I’0[5:0]; B1[1:0]=pad pad pad
start + 4: I’1[13:6] I’1[5:0]; B1[1:0]=pad pad pad
…
start + offset: Q’0[13:6] Q’0[5:0]; B1[1:0]=pad pad pad
start + offset + 4: Q’1[13:6] Q’1[5:0]; B1[1:0]=pad pad pad

V4L2_SDR_FMT_PCU18BE (‘PC18’)

Planar complex unsigned 18-bit big endian IQ sample

858 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Description

This format contains a sequence of complex number samples. Each complex number consist
of two parts called In-phase and Quadrature (IQ). Both I and Q are represented as a 18 bit
unsigned big endian number stored in 32 bit space. The remaining unused bits within the 32
bit space will be padded with 0. I value starts first and Q value starts at an offset equalling half
of the buffer size (i.e.) offset = buffersize/2. Out of the 18 bits, bit 17:2 (16 bit) is data and bit
1:0 (2 bit) can be any value.

Byte Order. Each cell is one byte.

Offset: Byte B0 Byte B1 Byte B2 Byte B3
start + 0: I’0[17:10] I’0[9:2] I’0[1:0]; B2[5:0]=pad pad
start + 4: I’1[17:10] I’1[9:2] I’1[1:0]; B2[5:0]=pad pad
…
start + offset: Q’0[17:10] Q’0[9:2] Q’0[1:0]; B2[5:0]=pad pad
start + offset + 4: Q’1[17:10] Q’1[9:2] Q’1[1:0]; B2[5:0]=pad pad

V4L2_SDR_FMT_PCU20BE (‘PC20’)

Planar complex unsigned 20-bit big endian IQ sample

Description

This format contains a sequence of complex number samples. Each complex number consist
of two parts called In-phase and Quadrature (IQ). Both I and Q are represented as a 20 bit
unsigned big endian number stored in 32 bit space. The remaining unused bits within the 32
bit space will be padded with 0. I value starts first and Q value starts at an offset equalling half
of the buffer size (i.e.) offset = buffersize/2. Out of the 20 bits, bit 19:2 (18 bit) is data and bit
1:0 (2 bit) can be any value.

Byte Order. Each cell is one byte.

Offset: Byte B0 Byte B1 Byte B2 Byte B3
start + 0: I’0[19:12] I’0[11:4] I’0[3:0]; B2[3:0]=pad pad
start + 4: I’1[19:12] I’1[11:4] I’1[3:0]; B2[3:0]=pad pad
…
start + offset: Q’0[19:12] Q’0[11:4] Q’0[3:0]; B2[3:0]=pad pad
start + offset + 4: Q’1[19:12] Q’1[11:4] Q’1[3:0]; B2[3:0]=pad pad

3.2. Part I - Video for Linux API 859

Linux Media Documentation

3.2.2.12 Touch Formats

These formats are used for Touch Devices interface only.

V4L2_TCH_FMT_DELTA_TD16 (‘TD16’)

man V4L2_TCH_FMT_DELTA_TD16(2)

16-bit signed little endian Touch Delta

Description

This format represents delta data from a touch controller.

Delta values may range from -32768 to 32767. Typically the values will vary through a small
range depending on whether the sensor is touched or not. The full value may be seen if one of
the touchscreen nodes has a fault or the line is not connected.

Byte Order. Each cell is one byte.

start + 0: D’00low D’00high D’01low D’01high D’02low D’02high D’03low D’03high
start + 8: D’10low D’10high D’11low D’11high D’12low D’12high D’13low D’13high
start + 16: D’20low D’20high D’21low D’21high D’22low D’22high D’23low D’23high
start + 24: D’30low D’30high D’31low D’31high D’32low D’32high D’33low D’33high

V4L2_TCH_FMT_DELTA_TD08 (‘TD08’)

man V4L2_TCH_FMT_DELTA_TD08(2)

8-bit signed Touch Delta

Description

This format represents delta data from a touch controller.

Delta values may range from -128 to 127. Typically the values will vary through a small range
depending on whether the sensor is touched or not. The full value may be seen if one of the
touchscreen nodes has a fault or the line is not connected.

Byte Order. Each cell is one byte.

start + 0: D’00 D’01 D’02 D’03
start + 4: D’10 D’11 D’12 D’13
start + 8: D’20 D’21 D’22 D’23
start + 12: D’30 D’31 D’32 D’33

860 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_TCH_FMT_TU16 (‘TU16’)

man V4L2_TCH_FMT_TU16(2)

16-bit unsigned little endian raw touch data

Description

This format represents unsigned 16-bit data from a touch controller.

This may be used for output for raw and reference data. Values may range from 0 to 65535.

Byte Order. Each cell is one byte.

start + 0: R’00low R’00high R’01low R’01high R’02low R’02high R’03low R’03high
start + 8: R’10low R’10high R’11low R’11high R’12low R’12high R’13low R’13high
start + 16: R’20low R’20high R’21low R’21high R’22low R’22high R’23low R’23high
start + 24: R’30low R’30high R’31low R’31high R’32low R’32high R’33low R’33high

V4L2_TCH_FMT_TU08 (‘TU08’)

man V4L2_TCH_FMT_TU08(2)

8-bit unsigned raw touch data

Description

This format represents unsigned 8-bit data from a touch controller.

This may be used for output for raw and reference data. Values may range from 0 to 255.

Byte Order. Each cell is one byte.

start + 0: R’00 R’01 R’02 R’03
start + 4: R’10 R’11 R’12 R’13
start + 8: R’20 R’21 R’22 R’23
start + 12: R’30 R’31 R’32 R’33

3.2.2.13 Metadata Formats

These formats are used for the Metadata Interface interface only.

3.2. Part I - Video for Linux API 861

Linux Media Documentation

V4L2_META_FMT_D4XX (‘D4XX’)

Intel D4xx UVC Cameras Metadata

Description

Intel D4xx (D435 and other) cameras include per-framemetadata in their UVC payload headers,
following the Microsoft(R) UVC extension proposal [1]. That means, that the private D4XX
metadata, following the standard UVC header, is organised in blocks. D4XX cameras implement
several standard block types, proposed by Microsoft, and several proprietary ones. Supported
standard metadata types are MetadataId_CaptureStats (ID 3), MetadataId_CameraExtrinsics
(ID 4), and MetadataId_CameraIntrinsics (ID 5). For their description see [1]. This document
describes proprietary metadata types, used by D4xx cameras.

V4L2_META_FMT_D4XX buffers follow the metadata buffer layout of V4L2_META_FMT_UVC
with the only difference, that it also includes proprietary payload header data. D4xx cameras
use bulk transfers and only send one payload per frame, therefore their headers cannot be
larger than 255 bytes.

Below are proprietary Microsoft style metadata types, used by D4xx cameras, where all fields
are in little endian order:

Table 78: D4xx metadata
Field Description
Depth Control
__u32 ID 0x80000000
__u32 Size Size in bytes (currently 56)
__u32 Version Version of this structure. The documentation herein corresponds

to version xxx. The version number will be incremented when
new fields are added.

__u32 Flags A bitmask of flags: see [2] below
__u32 Gain Gain value in internal units, same as the V4L2_CID_GAIN con-

trol, used to capture the frame
__u32 Exposure Exposure time (in microseconds) used to capture the frame
__u32 Laser power Power of the laser LED 0-360, used for depth measurement
__u32 AE mode 0: manual; 1: automatic exposure
__u32 Exposure priority Exposure priority value: 0 - constant frame rate
__u32 AE ROI left Left border of the AE Region of Interest (all ROI values are in

pixels and lie between 0 and maximum width or height respec-
tively)

__u32 AE ROI right Right border of the AE Region of Interest
__u32 AE ROI top Top border of the AE Region of Interest
__u32 AE ROI bottom Bottom border of the AE Region of Interest
__u32 Preset Preset selector value, default: 0, unless changed by the user
__u32 Laser mode 0: off, 1: on
Capture Timing
__u32 ID 0x80000001
__u32 Size Size in bytes (currently 40)

Continued on next page

862 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 78 – continued from previous page
Field Description
__u32 Version Version of this structure. The documentation herein corresponds

to version xxx. The version number will be incremented when
new fields are added.

__u32 Flags A bitmask of flags: see [3] below
__u32 Frame counter Monotonically increasing counter
__u32 Optical time Time in microseconds from the beginning of a frame till its mid-

dle
__u32 Readout time Time, used to read out a frame in microseconds
__u32 Exposure time Frame exposure time in microseconds
__u32 Frame interval In microseconds = 1000000 / framerate
__u32 Pipe latency Time in microseconds from start of frame to data in USB buffer
Configuration
__u32 ID 0x80000002
__u32 Size Size in bytes (currently 40)
__u32 Version Version of this structure. The documentation herein corresponds

to version xxx. The version number will be incremented when
new fields are added.

__u32 Flags A bitmask of flags: see [4] below
__u8 Hardware type Camera hardware version [5]
__u8 SKU ID Camera hardware configuration [6]
__u32 Cookie Internal synchronisation
__u16 Format Image format code [7]
__u16 Width Width in pixels
__u16 Height Height in pixels
__u16 Framerate Requested frame rate per second
__u16 Trigger Byte 0: bit 0: depth and RGB are synchronised, bit 1: external

trigger

[1] https://docs.microsoft.com/en-us/windows-hardware/drivers/stream/uvc-extensions-1-5

[2] Depth Control flags specify which fields are valid:

0x00000001 Gain
0x00000002 Exposure
0x00000004 Laser power
0x00000008 AE mode
0x00000010 Exposure priority
0x00000020 AE ROI
0x00000040 Preset

[3] Capture Timing flags specify which fields are valid:

0x00000001 Frame counter
0x00000002 Optical time
0x00000004 Readout time
0x00000008 Exposure time
0x00000010 Frame interval
0x00000020 Pipe latency

[4] Configuration flags specify which fields are valid:

3.2. Part I - Video for Linux API 863

https://docs.microsoft.com/en-us/windows-hardware/drivers/stream/uvc-extensions-1-5

Linux Media Documentation

0x00000001 Hardware type
0x00000002 SKU ID
0x00000004 Cookie
0x00000008 Format
0x00000010 Width
0x00000020 Height
0x00000040 Framerate
0x00000080 Trigger
0x00000100 Cal count

[5] Camera model:

0 DS5
1 IVCAM2

[6] 8-bit camera hardware configuration bitfield:

[1:0] depthCamera
00: no depth
01: standard depth
10: wide depth
11: reserved

[2] depthIsActive - has a laser projector
[3] RGB presence
[4] Inertial Measurement Unit (IMU) presence
[5] projectorType

0: HPTG
1: Princeton

[6] 0: a projector, 1: an LED
[7] reserved

[7] Image format codes per video streaming interface:

Depth:

1 Z16
2 Z

Left sensor:

1 Y8
2 UYVY
3 R8L8
4 Calibration
5 W10

Fish Eye sensor:

1 RAW8

864 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_META_FMT_IPU3_PARAMS (‘ip3p’), V4L2_META_FMT_IPU3_3A (‘ip3s’)

3A statistics

The IPU3 ImgU 3A statistics accelerators collect different statistics over an input Bayer
frame. Those statistics are obtained from the “ipu3-imgu [01] 3a stat” metadata capture
video nodes, using the v4l2_meta_format interface. They are formatted as described by the
ipu3_uapi_stats_3a structure.

The statistics collected are AWB (Auto-white balance) RGBS (Red, Green, Blue and Saturation
measure) cells, AWB filter response, AF (Auto-focus) filter response, and AE (Auto-exposure)
histogram.

The struct ipu3_uapi_4a_config saves all configurable parameters.

struct ipu3_uapi_stats_3a {
struct ipu3_uapi_awb_raw_buffer awb_raw_buffer;
struct ipu3_uapi_ae_raw_buffer_aligned ae_raw_buffer[IPU3_UAPI_MAX_STRIPES];
struct ipu3_uapi_af_raw_buffer af_raw_buffer;
struct ipu3_uapi_awb_fr_raw_buffer awb_fr_raw_buffer;
struct ipu3_uapi_4a_config stats_4a_config;
__u32 ae_join_buffers;
__u8 padding[28];
struct ipu3_uapi_stats_3a_bubble_info_per_stripe stats_3a_bubble_per_stripe;
struct ipu3_uapi_ff_status stats_3a_status;

};

Pipeline parameters

The pipeline parameters are passed to the “ipu3-imgu [01] parameters” metadata output
video nodes, using the v4l2_meta_format interface. They are formatted as described by the
ipu3_uapi_params structure.

Both 3A statistics and pipeline parameters described here are closely tied to the underlying
camera sub-system (CSS) APIs. They are usually consumed and produced by dedicated user
space libraries that comprise the important tuning tools, thus freeing the developers from being
bothered with the low level hardware and algorithm details.

struct ipu3_uapi_params {
/* Flags which of the settings below are to be applied */
struct ipu3_uapi_flags use;

/* Accelerator cluster parameters */
struct ipu3_uapi_acc_param acc_param;

/* ISP vector address space parameters */
struct ipu3_uapi_isp_lin_vmem_params lin_vmem_params;
struct ipu3_uapi_isp_tnr3_vmem_params tnr3_vmem_params;
struct ipu3_uapi_isp_xnr3_vmem_params xnr3_vmem_params;

/* ISP data memory (DMEM) parameters */
struct ipu3_uapi_isp_tnr3_params tnr3_dmem_params;
struct ipu3_uapi_isp_xnr3_params xnr3_dmem_params;

3.2. Part I - Video for Linux API 865

Linux Media Documentation

/* Optical black level compensation */
struct ipu3_uapi_obgrid_param obgrid_param;

};

Intel IPU3 ImgU uAPI data types

struct ipu3_uapi_grid_config
Grid plane config

Definition

struct ipu3_uapi_grid_config {
__u8 width;
__u8 height;
__u16 block_width_log2:3;
__u16 block_height_log2:3;
__u16 height_per_slice:8;
__u16 x_start;
__u16 y_start;
__u16 x_end;
__u16 y_end;

};

Members
width Grid horizontal dimensions, in number of grid blocks(cells). For AWB, the range is (16,

80). For AF/AE, the range is (16, 32).

height Grid vertical dimensions, in number of grid cells. For AWB, the range is (16, 60). For
AF/AE, the range is (16, 24).

block_width_log2 Log2 of the width of each cell in pixels. For AWB, the range is [3, 6]. For
AF/AE, the range is [3, 7].

block_height_log2 Log2 of the height of each cell in pixels. For AWB, the range is [3, 6]. For
AF/AE, the range is [3, 7].

height_per_slice The number of blocks in vertical axis per slice. Default 2.

x_start X value of top left corner of Region of Interest(ROI).

y_start Y value of top left corner of ROI

x_end X value of bottom right corner of ROI

y_end Y value of bottom right corner of ROI

Description
Due to the size of total amount of collected data, most statistics create a grid-based output, and
the data is then divided into “slices”.

struct ipu3_uapi_awb_raw_buffer
AWB raw buffer

Definition

866 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

struct ipu3_uapi_awb_raw_buffer {
__u8 meta_data[IPU3_UAPI_AWB_MAX_BUFFER_SIZE] ;

};

Members
meta_data buffer to hold auto white balance meta data which is the average values for each

color channel.

struct ipu3_uapi_awb_config_s
AWB config

Definition

struct ipu3_uapi_awb_config_s {
__u16 rgbs_thr_gr;
__u16 rgbs_thr_r;
__u16 rgbs_thr_gb;
__u16 rgbs_thr_b;
struct ipu3_uapi_grid_config grid;

};

Members
rgbs_thr_gr gr threshold value.

rgbs_thr_r Red threshold value.

rgbs_thr_gb gb threshold value.

rgbs_thr_b Blue threshold value.

grid ipu3_uapi_grid_config, the default grid resolution is 16x16 cells.

Description
The threshold is a saturation measure range [0, 8191], 8191 is default. Values over threshold
may be optionally rejected for averaging.

struct ipu3_uapi_awb_config
AWB config wrapper

Definition

struct ipu3_uapi_awb_config {
struct ipu3_uapi_awb_config_s config ;

};

Members
config config for auto white balance as defined by ipu3_uapi_awb_config_s

struct ipu3_uapi_ae_raw_buffer
AE global weighted histogram

Definition

struct ipu3_uapi_ae_raw_buffer {
__u32 vals[IPU3_UAPI_AE_BINS * IPU3_UAPI_AE_COLORS];

};

3.2. Part I - Video for Linux API 867

Linux Media Documentation

Members
vals Sum of IPU3_UAPI_AE_COLORS in cell

Description
Each histogram contains IPU3_UAPI_AE_BINS bins. Each bin has 24 bit unsigned for counting
the number of the pixel.

struct ipu3_uapi_ae_raw_buffer_aligned
AE raw buffer

Definition

struct ipu3_uapi_ae_raw_buffer_aligned {
struct ipu3_uapi_ae_raw_buffer buff ;

};

Members
buff ipu3_uapi_ae_raw_buffer to hold full frame meta data.

struct ipu3_uapi_ae_grid_config
AE weight grid

Definition

struct ipu3_uapi_ae_grid_config {
__u8 width;
__u8 height;
__u8 block_width_log2:4;
__u8 block_height_log2:4;
__u8 reserved0:5;
__u8 ae_en:1;
__u8 rst_hist_array:1;
__u8 done_rst_hist_array:1;
__u16 x_start;
__u16 y_start;
__u16 x_end;
__u16 y_end;

};

Members
width Grid horizontal dimensions. Value: [16, 32], default 16.

height Grid vertical dimensions. Value: [16, 24], default 16.

block_width_log2 Log2 of the width of the grid cell, value: [3, 7].

block_height_log2 Log2 of the height of the grid cell, value: [3, 7]. default is 3 (cell size 8x8),
4 cell per grid.

reserved0 reserved

ae_en 0: does not write to ipu3_uapi_ae_raw_buffer_aligned array, 1: write normally.

rst_hist_array write 1 to trigger histogram array reset.

done_rst_hist_array flag for histogram array reset done.

x_start X value of top left corner of ROI, default 0.

868 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

y_start Y value of top left corner of ROI, default 0.

x_end X value of bottom right corner of ROI

y_end Y value of bottom right corner of ROI

Description
The AE block accumulates 4 global weighted histograms(R, G, B, Y) over a defined
ROI within the frame. The contribution of each pixel into the histogram, defined by
ipu3_uapi_ae_weight_elem LUT, is indexed by a grid.

struct ipu3_uapi_ae_weight_elem
AE weights LUT

Definition

struct ipu3_uapi_ae_weight_elem {
__u32 cell0:4;
__u32 cell1:4;
__u32 cell2:4;
__u32 cell3:4;
__u32 cell4:4;
__u32 cell5:4;
__u32 cell6:4;
__u32 cell7:4;

};

Members
cell0 weighted histogram grid value.

cell1 weighted histogram grid value.

cell2 weighted histogram grid value.

cell3 weighted histogram grid value.

cell4 weighted histogram grid value.

cell5 weighted histogram grid value.

cell6 weighted histogram grid value.

cell7 weighted histogram grid value.

Description
Use weighted grid value to give a different contribution factor to each cell. Precision u4, range
[0, 15].

struct ipu3_uapi_ae_ccm
AE coefficients for WB and CCM

Definition

struct ipu3_uapi_ae_ccm {
__u16 gain_gr;
__u16 gain_r;
__u16 gain_b;
__u16 gain_gb;
__s16 mat[16];

};

3.2. Part I - Video for Linux API 869

Linux Media Documentation

Members
gain_gr WB gain factor for the gr channels. Default 256.

gain_r WB gain factor for the r channel. Default 256.

gain_b WB gain factor for the b channel. Default 256.

gain_gb WB gain factor for the gb channels. Default 256.

mat 4x4 matrix that transforms Bayer quad output from WB to RGB+Y.

Description
Default: 128, 0, 0, 0, 0, 128, 0, 0, 0, 0, 128, 0, 0, 0, 0, 128,
As part of the raw frame pre-process stage, the WB and color conversion need to be applied to
expose the impact of these gain operations.

struct ipu3_uapi_ae_config
AE config

Definition

struct ipu3_uapi_ae_config {
struct ipu3_uapi_ae_grid_config grid_cfg ;
struct ipu3_uapi_ae_weight_elem weights[IPU3_UAPI_AE_WEIGHTS] ;
struct ipu3_uapi_ae_ccm ae_ccm ;

};

Members
grid_cfg config for auto exposure statistics grid. See struct ipu3_uapi_ae_grid_config, as

Imgu did not support output auto exposure statistics, so user can ignore this configuration
and use the RGB table in auto-whitebalance statistics instead.

weights IPU3_UAPI_AE_WEIGHTS is based on 32x24 blocks in the grid. Each grid cell has a
corresponding value in weights LUT called grid value, global histogram is updated based
on grid value and pixel value.

ae_ccm Color convert matrix pre-processing block.

Description
Calculate AE grid from image resolution, resample ae weights.

struct ipu3_uapi_af_filter_config
AF 2D filter for contrast measurements

Definition

struct ipu3_uapi_af_filter_config {
struct {
__u8 a1;
__u8 a2;
__u8 a3;
__u8 a4;

} y1_coeff_0;
struct {
__u8 a5;

870 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

__u8 a6;
__u8 a7;
__u8 a8;

} y1_coeff_1;
struct {
__u8 a9;
__u8 a10;
__u8 a11;
__u8 a12;

} y1_coeff_2;
__u32 y1_sign_vec;
struct {
__u8 a1;
__u8 a2;
__u8 a3;
__u8 a4;

} y2_coeff_0;
struct {
__u8 a5;
__u8 a6;
__u8 a7;
__u8 a8;

} y2_coeff_1;
struct {
__u8 a9;
__u8 a10;
__u8 a11;
__u8 a12;

} y2_coeff_2;
__u32 y2_sign_vec;
struct {
__u8 y_gen_rate_gr;
__u8 y_gen_rate_r;
__u8 y_gen_rate_b;
__u8 y_gen_rate_gb;

} y_calc;
struct {
__u32 reserved0:8;
__u32 y1_nf:4;
__u32 reserved1:4;
__u32 y2_nf:4;
__u32 reserved2:12;

} nf;
};

Members
y1_coeff_0 filter Y1, structure: 3x11, support both symmetry and anti-symmetry type. A12

is center, A1-A11 are neighbours. for analyzing low frequency content, used to calculate
sum of gradients in x direction.

y1_coeff_0.a1 filter1 coefficients A1, u8, default 0.

y1_coeff_0.a2 filter1 coefficients A2, u8, default 0.

y1_coeff_0.a3 filter1 coefficients A3, u8, default 0.

y1_coeff_0.a4 filter1 coefficients A4, u8, default 0.

3.2. Part I - Video for Linux API 871

Linux Media Documentation

y1_coeff_1 Struct

y1_coeff_1.a5 filter1 coefficients A5, u8, default 0.

y1_coeff_1.a6 filter1 coefficients A6, u8, default 0.

y1_coeff_1.a7 filter1 coefficients A7, u8, default 0.

y1_coeff_1.a8 filter1 coefficients A8, u8, default 0.

y1_coeff_2 Struct

y1_coeff_2.a9 filter1 coefficients A9, u8, default 0.

y1_coeff_2.a10 filter1 coefficients A10, u8, default 0.

y1_coeff_2.a11 filter1 coefficients A11, u8, default 0.

y1_coeff_2.a12 filter1 coefficients A12, u8, default 128.

y1_sign_vec Each bit corresponds to one coefficient sign bit, 0: positive, 1: negative, default
0.

y2_coeff_0 Y2, same structure as Y1. For analyzing high frequency content.

y2_coeff_0.a1 filter2 coefficients A1, u8, default 0.

y2_coeff_0.a2 filter2 coefficients A2, u8, default 0.

y2_coeff_0.a3 filter2 coefficients A3, u8, default 0.

y2_coeff_0.a4 filter2 coefficients A4, u8, default 0.

y2_coeff_1 Struct

y2_coeff_1.a5 filter2 coefficients A5, u8, default 0.

y2_coeff_1.a6 filter2 coefficients A6, u8, default 0.

y2_coeff_1.a7 filter2 coefficients A7, u8, default 0.

y2_coeff_1.a8 filter2 coefficients A8, u8, default 0.

y2_coeff_2 Struct

y2_coeff_2.a9 filter1 coefficients A9, u8, default 0.

y2_coeff_2.a10 filter1 coefficients A10, u8, default 0.

y2_coeff_2.a11 filter1 coefficients A11, u8, default 0.

y2_coeff_2.a12 filter1 coefficients A12, u8, default 128.

y2_sign_vec Each bit corresponds to one coefficient sign bit, 0: positive, 1: negative, default
0.

y_calc Pre-processing that converts Bayer quad to RGB+Y values to be used for building his-
togram. Range [0, 32], default 8. Rule: y_gen_rate_gr + y_gen_rate_r + y_gen_rate_b +
y_gen_rate_gb = 32 A single Y is calculated based on sum of Gr/R/B/Gb based on their
contribution ratio.

y_calc.y_gen_rate_gr Contribution ratio Gr for Y

y_calc.y_gen_rate_r Contribution ratio R for Y

y_calc.y_gen_rate_b Contribution ratio B for Y

872 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

y_calc.y_gen_rate_gb Contribution ratio Gb for Y

nf The shift right value that should be applied during the Y1/Y2 filter to make sure the total
memory needed is 2 bytes per grid cell.

nf.reserved0 reserved

nf.y1_nf Normalization factor for the convolution coeffs of y1, should be log2 of the sum of
the abs values of the filter coeffs, default 7 (2^7 = 128).

nf.reserved1 reserved

nf.y2_nf Normalization factor for y2, should be log2 of the sum of the abs values of the filter
coeffs.

nf.reserved2 reserved

struct ipu3_uapi_af_raw_buffer
AF meta data

Definition

struct ipu3_uapi_af_raw_buffer {
__u8 y_table[IPU3_UAPI_AF_Y_TABLE_MAX_SIZE] ;

};

Members
y_table Each color component will be convolved separately with filter1 and filter2 and the

result will be summed out and averaged for each cell.

struct ipu3_uapi_af_config_s
AF config

Definition

struct ipu3_uapi_af_config_s {
struct ipu3_uapi_af_filter_config filter_config ;
__u8 padding[4];
struct ipu3_uapi_grid_config grid_cfg ;

};

Members
filter_config AF uses Y1 and Y2 filters as configured in ipu3_uapi_af_filter_config

padding paddings

grid_cfg See ipu3_uapi_grid_config, default resolution 16x16. Use large grid size for large
image and vice versa.

struct ipu3_uapi_awb_fr_raw_buffer
AWB filter response meta data

Definition

struct ipu3_uapi_awb_fr_raw_buffer {
__u8 meta_data[IPU3_UAPI_AWB_FR_BAYER_TABLE_MAX_SIZE] ;

};

Members

3.2. Part I - Video for Linux API 873

Linux Media Documentation

meta_data Statistics output on the grid after convolving with 1D filter.

struct ipu3_uapi_awb_fr_config_s
AWB filter response config

Definition

struct ipu3_uapi_awb_fr_config_s {
struct ipu3_uapi_grid_config grid_cfg;
__u8 bayer_coeff[6];
__u16 reserved1;
__u32 bayer_sign;
__u8 bayer_nf;
__u8 reserved2[7];

};

Members
grid_cfg grid config, default 16x16.

bayer_coeff 1D Filter 1x11 center symmetry/anti-symmetry. coefficients defaults { 0, 0, 0, 0,
0, 128 }. Applied on whole image for each Bayer channel separately by a weighted sum of
its 11x1 neighbors.

reserved1 reserved

bayer_sign sign of filter coefficients, default 0.

bayer_nf normalization factor for the convolution coeffs, to make sure total memory needed
is within pre-determined range. NF should be the log2 of the sum of the abs values of the
filter coeffs, range [7, 14], default 7.

reserved2 reserved

struct ipu3_uapi_4a_config
4A config

Definition

struct ipu3_uapi_4a_config {
struct ipu3_uapi_awb_config_s awb_config ;
struct ipu3_uapi_ae_grid_config ae_grd_config;
__u8 padding[20];
struct ipu3_uapi_af_config_s af_config;
struct ipu3_uapi_awb_fr_config_s awb_fr_config ;

};

Members
awb_config ipu3_uapi_awb_config_s, default resolution 16x16

ae_grd_config auto exposure statistics ipu3_uapi_ae_grid_config

padding paddings

af_config auto focus config ipu3_uapi_af_config_s

awb_fr_config ipu3_uapi_awb_fr_config_s, default resolution 16x16

struct ipu3_uapi_bubble_info
Bubble info for host side debugging

874 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Definition

struct ipu3_uapi_bubble_info {
__u32 num_of_stripes ;
__u8 padding[28];
__u32 num_sets;
__u8 padding1[28];
__u32 size_of_set;
__u8 padding2[28];
__u32 bubble_size;
__u8 padding3[28];

};

Members
num_of_stripes A single frame is divided into several parts called stripes due to limitation on

line buffer memory. The separation between the stripes is vertical. Each such stripe is
processed as a single frame by the ISP pipe.

padding padding bytes.

num_sets number of sets.

padding1 padding bytes.

size_of_set set size.

padding2 padding bytes.

bubble_size is the amount of padding in the bubble expressed in “sets”.

padding3 padding bytes.

struct ipu3_uapi_ff_status
Enable bits for each 3A fixed function

Definition

struct ipu3_uapi_ff_status {
__u32 awb_en ;
__u8 padding[28];
__u32 ae_en;
__u8 padding1[28];
__u32 af_en;
__u8 padding2[28];
__u32 awb_fr_en;
__u8 padding3[28];

};

Members
awb_en auto white balance enable

padding padding config

ae_en auto exposure enable

padding1 padding config

af_en auto focus enable

padding2 padding config

3.2. Part I - Video for Linux API 875

Linux Media Documentation

awb_fr_en awb filter response enable bit

padding3 padding config

struct ipu3_uapi_stats_3a
3A statistics

Definition

struct ipu3_uapi_stats_3a {
struct ipu3_uapi_awb_raw_buffer awb_raw_buffer;
struct ipu3_uapi_ae_raw_buffer_aligned ae_raw_buffer[IPU3_UAPI_MAX_STRIPES];
struct ipu3_uapi_af_raw_buffer af_raw_buffer;
struct ipu3_uapi_awb_fr_raw_buffer awb_fr_raw_buffer;
struct ipu3_uapi_4a_config stats_4a_config;
__u32 ae_join_buffers;
__u8 padding[28];
struct ipu3_uapi_stats_3a_bubble_info_per_stripe stats_3a_bubble_per_stripe;
struct ipu3_uapi_ff_status stats_3a_status;

};

Members
awb_raw_buffer auto white balance meta data ipu3_uapi_awb_raw_buffer

ae_raw_buffer auto exposure raw data ipu3_uapi_ae_raw_buffer_aligned current Imgu
does not output the auto exposure statistics to ae_raw_buffer, the user such as 3A algo-
rithm can use the RGB table in ipu3_uapi_awb_raw_buffer to do auto-exposure.

af_raw_buffer ipu3_uapi_af_raw_buffer for auto focus meta data

awb_fr_raw_buffer value as specified by ipu3_uapi_awb_fr_raw_buffer

stats_4a_config 4a statistics config as defined by ipu3_uapi_4a_config.

ae_join_buffers 1 to use ae_raw_buffer.

padding padding config

stats_3a_bubble_per_stripe a ipu3_uapi_stats_3a_bubble_info_per_stripe

stats_3a_status 3a statistics status set in ipu3_uapi_ff_status

struct ipu3_uapi_bnr_static_config_wb_gains_config
White balance gains

Definition

struct ipu3_uapi_bnr_static_config_wb_gains_config {
__u16 gr;
__u16 r;
__u16 b;
__u16 gb;

};

Members
gr white balance gain for Gr channel.

r white balance gain for R channel.

b white balance gain for B channel.

876 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

gb white balance gain for Gb channel.

Description
Precision u3.13, range [0, 8). White balance correction is done by applying a multiplicative
gain to each color channels prior to BNR.

struct ipu3_uapi_bnr_static_config_wb_gains_thr_config
Threshold config

Definition

struct ipu3_uapi_bnr_static_config_wb_gains_thr_config {
__u8 gr;
__u8 r;
__u8 b;
__u8 gb;

};

Members
gr white balance threshold gain for Gr channel.

r white balance threshold gain for R channel.

b white balance threshold gain for B channel.

gb white balance threshold gain for Gb channel.

Description
Defines the threshold that specifies how different a defect pixel can be from its neighbors.(used
by dynamic defect pixel correction sub block) Precision u4.4 range [0, 8].

struct ipu3_uapi_bnr_static_config_thr_coeffs_config
Noise model coefficients that controls noise threshold

Definition

struct ipu3_uapi_bnr_static_config_thr_coeffs_config {
__u32 cf:13;
__u32 reserved0:3;
__u32 cg:5;
__u32 ci:5;
__u32 reserved1:1;
__u32 r_nf:5;

};

Members
cf Free coefficient for threshold calculation, range [0, 8191], default 0.

reserved0 reserved

cg Gain coefficient for threshold calculation, [0, 31], default 8.

ci Intensity coefficient for threshold calculation. range [0, 0x1f] default 6. format: u3.2 (3 most
significant bits represent whole number, 2 least significant bits represent the fractional
part with each count representing 0.25) e.g. 6 in binary format is 00110, that translates
to 1.5

reserved1 reserved

3.2. Part I - Video for Linux API 877

Linux Media Documentation

r_nf Normalization shift value for r^2 calculation, range [12, 20] where r is a radius of pixel
[row, col] from centor of sensor. default 14.

Description
Threshold used to distinguish between noise and details.

struct ipu3_uapi_bnr_static_config_thr_ctrl_shd_config
Shading config

Definition

struct ipu3_uapi_bnr_static_config_thr_ctrl_shd_config {
__u8 gr;
__u8 r;
__u8 b;
__u8 gb;

};

Members
gr Coefficient defines lens shading gain approximation for gr channel

r Coefficient defines lens shading gain approximation for r channel

b Coefficient defines lens shading gain approximation for b channel

gb Coefficient defines lens shading gain approximation for gb channel

Description
Parameters for noise model (NM) adaptation of BNR due to shading correction. All above have
precision of u3.3, default to 0.

struct ipu3_uapi_bnr_static_config_opt_center_config
Optical center config

Definition

struct ipu3_uapi_bnr_static_config_opt_center_config {
__s32 x_reset:13;
__u32 reserved0:3;
__s32 y_reset:13;
__u32 reserved2:3;

};

Members
x_reset Reset value of X (col start - X center). Precision s12.0.

reserved0 reserved

y_reset Reset value of Y (row start - Y center). Precision s12.0.

reserved2 reserved

Description
Distance from corner to optical center for NM adaptation due to shading correction (should be
calculated based on shading tables)

struct ipu3_uapi_bnr_static_config_lut_config
BNR square root lookup table

878 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Definition

struct ipu3_uapi_bnr_static_config_lut_config {
__u8 values[IPU3_UAPI_BNR_LUT_SIZE];

};

Members
values pre-calculated values of square root function.

Description
LUT implementation of square root operation.

struct ipu3_uapi_bnr_static_config_bp_ctrl_config
Detect bad pixels (bp)

Definition

struct ipu3_uapi_bnr_static_config_bp_ctrl_config {
__u32 bp_thr_gain:5;
__u32 reserved0:2;
__u32 defect_mode:1;
__u32 bp_gain:6;
__u32 reserved1:18;
__u32 w0_coeff:4;
__u32 reserved2:4;
__u32 w1_coeff:4;
__u32 reserved3:20;

};

Members
bp_thr_gain Defines the threshold that specifies how different a defect pixel can be from its

neighbors. Threshold is dependent on de-noise threshold calculated by algorithm. Range
[4, 31], default 4.

reserved0 reserved

defect_mode Mode of addressed defect pixels, 0 - single defect pixel is expected, 1 - 2 adjacent
defect pixels are expected, default 1.

bp_gain Defines how 2nd derivation that passes through a defect pixel is different from 2nd
derivations that pass through neighbor pixels. u4.2, range [0, 256], default 8.

reserved1 reserved

w0_coeff Blending coefficient of defect pixel correction. Precision u4, range [0, 8], default 8.

reserved2 reserved

w1_coeff Enable influence of incorrect defect pixel correction to be avoided. Precision u4,
range [1, 8], default 8.

reserved3 reserved

struct ipu3_uapi_bnr_static_config_dn_detect_ctrl_config
Denoising config

Definition

3.2. Part I - Video for Linux API 879

Linux Media Documentation

struct ipu3_uapi_bnr_static_config_dn_detect_ctrl_config {
__u32 alpha:4;
__u32 beta:4;
__u32 gamma:4;
__u32 reserved0:4;
__u32 max_inf:4;
__u32 reserved1:7;
__u32 gd_enable:1;
__u32 bpc_enable:1;
__u32 bnr_enable:1;
__u32 ff_enable:1;
__u32 reserved2:1;

};

Members
alpha Weight of central element of smoothing filter.

beta Weight of peripheral elements of smoothing filter, default 4.

gamma Weight of diagonal elements of smoothing filter, default 4.

reserved0 reserved

max_inf Maximum increase of peripheral or diagonal element influence relative to the pre-
defined value range: [0x5, 0xa]

reserved1 reserved

gd_enable Green disparity enable control, 0 - disable, 1 - enable.

bpc_enable Bad pixel correction enable control, 0 - disable, 1 - enable.

bnr_enable Bayer noise removal enable control, 0 - disable, 1 - enable.

ff_enable Fixed function enable, 0 - disable, 1 - enable.

reserved2 reserved

Description
beta and gamma parameter define the strength of the noise removal filter. All above

has precision u0.4, range [0, 0xf] format: u0.4 (no / zero bits represent whole number, 4
bits represent the fractional part with each count representing 0.0625) e.g. 0xf translates
to 0.0625x15 = 0.9375

struct ipu3_uapi_bnr_static_config_opt_center_sqr_config
BNR optical square

Definition

struct ipu3_uapi_bnr_static_config_opt_center_sqr_config {
__u32 x_sqr_reset;
__u32 y_sqr_reset;

};

Members
x_sqr_reset Reset value of X^2.

y_sqr_reset Reset value of Y^2.

880 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Description
Please note:

1. X and Y ref to ipu3_uapi_bnr_static_config_opt_center_config

2. Both structs are used in threshold formula to calculate r^2, where r is a radius of pixel
[row, col] from centor of sensor.

struct ipu3_uapi_bnr_static_config
BNR static config

Definition

struct ipu3_uapi_bnr_static_config {
struct ipu3_uapi_bnr_static_config_wb_gains_config wb_gains;
struct ipu3_uapi_bnr_static_config_wb_gains_thr_config wb_gains_thr;
struct ipu3_uapi_bnr_static_config_thr_coeffs_config thr_coeffs;
struct ipu3_uapi_bnr_static_config_thr_ctrl_shd_config thr_ctrl_shd;
struct ipu3_uapi_bnr_static_config_opt_center_config opt_center;
struct ipu3_uapi_bnr_static_config_lut_config lut;
struct ipu3_uapi_bnr_static_config_bp_ctrl_config bp_ctrl;
struct ipu3_uapi_bnr_static_config_dn_detect_ctrl_config dn_detect_ctrl;
__u32 column_size;
struct ipu3_uapi_bnr_static_config_opt_center_sqr_config opt_center_sqr;

};

Members
wb_gains white balance gains ipu3_uapi_bnr_static_config_wb_gains_config

wb_gains_thr white balance gains threshold as defined by ipu3_uapi_bnr_static_config_wb_gains_thr_config

thr_coeffs coefficients of threshold ipu3_uapi_bnr_static_config_thr_coeffs_config

thr_ctrl_shd control of shading threshold ipu3_uapi_bnr_static_config_thr_ctrl_shd_config

opt_center optical center ipu3_uapi_bnr_static_config_opt_center_config

lut lookup table ipu3_uapi_bnr_static_config_lut_config

bp_ctrl detect and remove bad pixels as defined in struct
ipu3_uapi_bnr_static_config_bp_ctrl_config

dn_detect_ctrl detect and remove noise. ipu3_uapi_bnr_static_config_dn_detect_ctrl_config

column_size The number of pixels in column.

opt_center_sqr Reset value of r^2 to optical center, see ipu3_uapi_bnr_static_config_opt_center_sqr_config.

Description
Above parameters and opt_center_sqr are used for white balance and shading.

struct ipu3_uapi_bnr_static_config_green_disparity
Correct green disparity

Definition

struct ipu3_uapi_bnr_static_config_green_disparity {
__u32 gd_red:6;
__u32 reserved0:2;
__u32 gd_green:6;

3.2. Part I - Video for Linux API 881

Linux Media Documentation

__u32 reserved1:2;
__u32 gd_blue:6;
__u32 reserved2:10;
__u32 gd_black:14;
__u32 reserved3:2;
__u32 gd_shading:7;
__u32 reserved4:1;
__u32 gd_support:2;
__u32 reserved5:1;
__u32 gd_clip:1;
__u32 gd_central_weight:4;

};

Members
gd_red Shading gain coeff for gr disparity level in bright red region. Precision u0.6, default

4(0.0625).

reserved0 reserved

gd_green Shading gain coeff for gr disparity level in bright green region. Precision u0.6, de-
fault 4(0.0625).

reserved1 reserved

gd_blue Shading gain coeff for gr disparity level in bright blue region. Precision u0.6, default
4(0.0625).

reserved2 reserved

gd_black Maximal green disparity level in dark region (stronger disparity assumed to be image
detail). Precision u14, default 80.

reserved3 reserved

gd_shading Change maximal green disparity level according to square distance from image
center.

reserved4 reserved

gd_support Lower bound for the number of second green color pixels in current pixel neigh-
borhood with less than threshold difference from it.

reserved5 reserved

gd_clip Turn green disparity clip on/off, [0, 1], default 1.

gd_central_weight Central pixel weight in 9 pixels weighted sum.

Description
The shading gain coeff of red, green, blue and black are used to calculate threshold given a
pixel’s color value and its coordinates in the image.

struct ipu3_uapi_dm_config
De-mosaic parameters

Definition

struct ipu3_uapi_dm_config {
__u32 dm_en:1;

882 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

__u32 ch_ar_en:1;
__u32 fcc_en:1;
__u32 reserved0:13;
__u32 frame_width:16;
__u32 gamma_sc:5;
__u32 reserved1:3;
__u32 lc_ctrl:5;
__u32 reserved2:3;
__u32 cr_param1:5;
__u32 reserved3:3;
__u32 cr_param2:5;
__u32 reserved4:3;
__u32 coring_param:5;
__u32 reserved5:27;

};

Members
dm_en de-mosaic enable.

ch_ar_en Checker artifacts removal enable flag. Default 0.

fcc_en False color correction (FCC) enable flag. Default 0.

reserved0 reserved

frame_width do not care

gamma_sc Sharpening coefficient (coefficient of 2-d derivation of complementary color in
Hamilton-Adams interpolation). u5, range [0, 31], default 8.

reserved1 reserved

lc_ctrl Parameter that controls weights of Chroma Homogeneity metric in calculation of final
homogeneity metric. u5, range [0, 31], default 7.

reserved2 reserved

cr_param1 First parameter that defines Checker artifact removal feature gain. Precision u5,
range [0, 31], default 8.

reserved3 reserved

cr_param2 Second parameter that defines Checker artifact removal feature gain. Precision u5,
range [0, 31], default 8.

reserved4 reserved

coring_param Defines power of false color correction operation. low for preserving edge col-
ors, high for preserving gray edge artifacts. Precision u1.4, range [0, 1.9375], default 4
(0.25).

reserved5 reserved

Description
The demosaic fixed function block is responsible to covert Bayer(mosaiced) images into color
images based on demosaicing algorithm.

struct ipu3_uapi_ccm_mat_config
Color correction matrix

3.2. Part I - Video for Linux API 883

Linux Media Documentation

Definition

struct ipu3_uapi_ccm_mat_config {
__s16 coeff_m11;
__s16 coeff_m12;
__s16 coeff_m13;
__s16 coeff_o_r;
__s16 coeff_m21;
__s16 coeff_m22;
__s16 coeff_m23;
__s16 coeff_o_g;
__s16 coeff_m31;
__s16 coeff_m32;
__s16 coeff_m33;
__s16 coeff_o_b;

};

Members
coeff_m11 CCM 3x3 coefficient, range [-65536, 65535]

coeff_m12 CCM 3x3 coefficient, range [-8192, 8191]

coeff_m13 CCM 3x3 coefficient, range [-32768, 32767]

coeff_o_r Bias 3x1 coefficient, range [-8191, 8181]

coeff_m21 CCM 3x3 coefficient, range [-32767, 32767]

coeff_m22 CCM 3x3 coefficient, range [-8192, 8191]

coeff_m23 CCM 3x3 coefficient, range [-32768, 32767]

coeff_o_g Bias 3x1 coefficient, range [-8191, 8181]

coeff_m31 CCM 3x3 coefficient, range [-32768, 32767]

coeff_m32 CCM 3x3 coefficient, range [-8192, 8191]

coeff_m33 CCM 3x3 coefficient, range [-32768, 32767]

coeff_o_b Bias 3x1 coefficient, range [-8191, 8181]

Description
Transform sensor specific color space to standard sRGB by applying 3x3 matrix and adding a
bias vector O. The transformation is basically a rotation and translation in the 3-dimensional
color spaces. Here are the defaults:

9775, -2671, 1087, 0 -1071, 8303, 815, 0 -23, -7887, 16103, 0

struct ipu3_uapi_gamma_corr_ctrl
Gamma correction

Definition

struct ipu3_uapi_gamma_corr_ctrl {
__u32 enable:1;
__u32 reserved:31;

};

Members

884 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

enable gamma correction enable.

reserved reserved

struct ipu3_uapi_gamma_corr_lut
Per-pixel tone mapping implemented as LUT.

Definition

struct ipu3_uapi_gamma_corr_lut {
__u16 lut[IPU3_UAPI_GAMMA_CORR_LUT_ENTRIES];

};

Members
lut 256 tabulated values of the gamma function. LUT[1].. LUT[256] format u13.0, range [0,

8191].

Description
The tone mapping operation is done by a Piece wise linear graph that is implemented as a
lookup table(LUT). The pixel component input intensity is the X-axis of the graph which is the
table entry.

struct ipu3_uapi_gamma_config
Gamma config

Definition

struct ipu3_uapi_gamma_config {
struct ipu3_uapi_gamma_corr_ctrl gc_ctrl ;
struct ipu3_uapi_gamma_corr_lut gc_lut ;

};

Members
gc_ctrl control of gamma correction ipu3_uapi_gamma_corr_ctrl

gc_lut lookup table of gamma correction ipu3_uapi_gamma_corr_lut

struct ipu3_uapi_csc_mat_config
Color space conversion matrix config

Definition

struct ipu3_uapi_csc_mat_config {
__s16 coeff_c11;
__s16 coeff_c12;
__s16 coeff_c13;
__s16 coeff_b1;
__s16 coeff_c21;
__s16 coeff_c22;
__s16 coeff_c23;
__s16 coeff_b2;
__s16 coeff_c31;
__s16 coeff_c32;
__s16 coeff_c33;
__s16 coeff_b3;

};

3.2. Part I - Video for Linux API 885

Linux Media Documentation

Members
coeff_c11 Conversion matrix value, format s0.14, range [-16384, 16383].

coeff_c12 Conversion matrix value, format s0.14, range [-8192, 8191].

coeff_c13 Conversion matrix value, format s0.14, range [-16384, 16383].

coeff_b1 Bias 3x1 coefficient, s13.0 range [-8192, 8191].

coeff_c21 Conversion matrix value, format s0.14, range [-16384, 16383].

coeff_c22 Conversion matrix value, format s0.14, range [-8192, 8191].

coeff_c23 Conversion matrix value, format s0.14, range [-16384, 16383].

coeff_b2 Bias 3x1 coefficient, s13.0 range [-8192, 8191].

coeff_c31 Conversion matrix value, format s0.14, range [-16384, 16383].

coeff_c32 Conversion matrix value, format s0.14, range [-8192, 8191].

coeff_c33 Conversion matrix value, format s0.14, range [-16384, 16383].

coeff_b3 Bias 3x1 coefficient, s13.0 range [-8192, 8191].

Description
To transform each pixel from RGB to YUV (Y - brightness/luminance, UV -chroma) by applying
the pixel’s values by a 3x3 matrix and adding an optional bias 3x1 vector. Here are the default
values for the matrix:

4898, 9617, 1867, 0, -2410, -4732, 7143, 0, 10076, -8437, -1638, 0,

(i.e. for real number 0.299, 0.299 * 2^14 becomes 4898.)

struct ipu3_uapi_cds_params
Chroma down-scaling

Definition

struct ipu3_uapi_cds_params {
__u32 ds_c00:2;
__u32 ds_c01:2;
__u32 ds_c02:2;
__u32 ds_c03:2;
__u32 ds_c10:2;
__u32 ds_c11:2;
__u32 ds_c12:2;
__u32 ds_c13:2;
__u32 ds_nf:5;
__u32 reserved0:3;
__u32 csc_en:1;
__u32 uv_bin_output:1;
__u32 reserved1:6;

};

Members
ds_c00 range [0, 3]

ds_c01 range [0, 3]

ds_c02 range [0, 3]

886 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

ds_c03 range [0, 3]

ds_c10 range [0, 3]

ds_c11 range [0, 3]

ds_c12 range [0, 3]

ds_c13 range [0, 3]

ds_nf Normalization factor for Chroma output downscaling filter, range 0,4, default 2.

reserved0 reserved

csc_en Color space conversion enable

uv_bin_output 0: output YUV 4.2.0, 1: output YUV 4.2.2(default).

reserved1 reserved

Description
In case user does not provide, above 4x2 filter will use following defaults: 1, 3, 3, 1, 1,

3, 3, 1,

struct ipu3_uapi_shd_grid_config
Bayer shading(darkening) correction

Definition

struct ipu3_uapi_shd_grid_config {
__u8 width;
__u8 height;
__u8 block_width_log2:3;
__u8 reserved0:1;
__u8 block_height_log2:3;
__u8 reserved1:1;
__u8 grid_height_per_slice;
__s16 x_start;
__s16 y_start;

};

Members
width Grid horizontal dimensions, u8, [8, 128], default 73

height Grid vertical dimensions, u8, [8, 128], default 56

block_width_log2 Log2 of the width of the grid cell in pixel count u4, [0, 15], default value 5.

reserved0 reserved

block_height_log2 Log2 of the height of the grid cell in pixel count u4, [0, 15], default value
6.

reserved1 reserved

grid_height_per_slice SHD_MAX_CELLS_PER_SET/width. (with
SHD_MAX_CELLS_PER_SET = 146).

x_start X value of top left corner of sensor relative to ROI s13, [-4096, 0], default 0, only
negative values.

3.2. Part I - Video for Linux API 887

Linux Media Documentation

y_start Y value of top left corner of sensor relative to ROI s13, [-4096, 0], default 0, only
negative values.

struct ipu3_uapi_shd_general_config
Shading general config

Definition

struct ipu3_uapi_shd_general_config {
__u32 init_set_vrt_offst_ul:8;
__u32 shd_enable:1;
__u32 gain_factor:2;
__u32 reserved:21;

};

Members
init_set_vrt_offst_ul set vertical offset, y_start >> block_height_log2 %

grid_height_per_slice.

shd_enable shading enable.

gain_factor Gain factor. Shift calculated anti shading value. Precision u2. 0x0 - gain factor
[1, 5], means no shift interpolated value. 0x1 - gain factor [1, 9], means shift interpolated
by 1. 0x2 - gain factor [1, 17], means shift interpolated by 2.

reserved reserved

Description
Correction is performed by multiplying a gain factor for each of the 4 Bayer channels as a
function of the pixel location in the sensor.

struct ipu3_uapi_shd_black_level_config
Black level correction

Definition

struct ipu3_uapi_shd_black_level_config {
__s16 bl_r;
__s16 bl_gr;
__s16 bl_gb;
__s16 bl_b;

};

Members
bl_r Bios values for green red. s11 range [-2048, 2047].

bl_gr Bios values for green blue. s11 range [-2048, 2047].

bl_gb Bios values for red. s11 range [-2048, 2047].

bl_b Bios values for blue. s11 range [-2048, 2047].

struct ipu3_uapi_shd_config_static
Shading config static

Definition

888 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

struct ipu3_uapi_shd_config_static {
struct ipu3_uapi_shd_grid_config grid;
struct ipu3_uapi_shd_general_config general;
struct ipu3_uapi_shd_black_level_config black_level;

};

Members
grid shading grid config ipu3_uapi_shd_grid_config

general shading general config ipu3_uapi_shd_general_config

black_level black level config for shading correction as defined by
ipu3_uapi_shd_black_level_config

struct ipu3_uapi_shd_lut
Shading gain factor lookup table.

Definition

struct ipu3_uapi_shd_lut {
struct {
struct {
__u16 r;
__u16 gr;

} r_and_gr[IPU3_UAPI_SHD_MAX_CELLS_PER_SET];
__u8 reserved1[24];
struct {
__u16 gb;
__u16 b;

} gb_and_b[IPU3_UAPI_SHD_MAX_CELLS_PER_SET];
__u8 reserved2[24];

} sets[IPU3_UAPI_SHD_MAX_CFG_SETS];
};

Members
sets array

sets.r_and_gr Red and GreenR Lookup table.

sets.r_and_gr.r Red shading factor.

sets.r_and_gr.gr GreenR shading factor.

sets.reserved1 reserved

sets.gb_and_b GreenB and Blue Lookup table.

sets.gb_and_b.gb GreenB shading factor.

sets.gb_and_b.b Blue shading factor.

sets.reserved2 reserved

Description
Map to shading correction LUT register set.

struct ipu3_uapi_shd_config
Shading config

3.2. Part I - Video for Linux API 889

Linux Media Documentation

Definition

struct ipu3_uapi_shd_config {
struct ipu3_uapi_shd_config_static shd ;
struct ipu3_uapi_shd_lut shd_lut ;

};

Members
shd shading static config, see ipu3_uapi_shd_config_static

shd_lut shading lookup table ipu3_uapi_shd_lut

struct ipu3_uapi_iefd_cux2
IEFd Config Unit 2 parameters

Definition

struct ipu3_uapi_iefd_cux2 {
__u32 x0:9;
__u32 x1:9;
__u32 a01:9;
__u32 b01:5;

};

Members
x0 X0 point of Config Unit, u9.0, default 0.

x1 X1 point of Config Unit, u9.0, default 0.

a01 Slope A of Config Unit, s4.4, default 0.

b01 Slope B, always 0.

Description
Calculate weight for blending directed and non-directed denoise elements

All CU inputs are unsigned, they will be converted to signed when written to regis-
ter, i.e. a01 will be written to 9 bit register in s4.4 format. The data precision
s4.4 means 4 bits for integer parts and 4 bits for the fractional part, the first bit in-
dicates positive or negative value. For userspace software (commonly the imaging li-
brary), the computation for the CU slope values should be based on the slope resolution
1/16 (binary 0.0001 - the minimal interval value), the slope value range is [-256, +255].
This applies to ipu3_uapi_iefd_cux6_ed, ipu3_uapi_iefd_cux2_1, ipu3_uapi_iefd_cux2_1,
ipu3_uapi_iefd_cux4 and ipu3_uapi_iefd_cux6_rad.

Note
Each instance of Config Unit needs X coordinate of n points and slope A factor between points
calculated by driver based on calibration parameters.

struct ipu3_uapi_iefd_cux6_ed
Calculate power of non-directed sharpening element, Config Unit 6 for edge detail (ED).

Definition

struct ipu3_uapi_iefd_cux6_ed {
__u32 x0:9;
__u32 x1:9;

890 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

__u32 x2:9;
__u32 reserved0:5;
__u32 x3:9;
__u32 x4:9;
__u32 x5:9;
__u32 reserved1:5;
__u32 a01:9;
__u32 a12:9;
__u32 a23:9;
__u32 reserved2:5;
__u32 a34:9;
__u32 a45:9;
__u32 reserved3:14;
__u32 b01:9;
__u32 b12:9;
__u32 b23:9;
__u32 reserved4:5;
__u32 b34:9;
__u32 b45:9;
__u32 reserved5:14;

};

Members
x0 X coordinate of point 0, u9.0, default 0.

x1 X coordinate of point 1, u9.0, default 0.

x2 X coordinate of point 2, u9.0, default 0.

reserved0 reserved

x3 X coordinate of point 3, u9.0, default 0.

x4 X coordinate of point 4, u9.0, default 0.

x5 X coordinate of point 5, u9.0, default 0.

reserved1 reserved

a01 slope A points 01, s4.4, default 0.

a12 slope A points 12, s4.4, default 0.

a23 slope A points 23, s4.4, default 0.

reserved2 reserved

a34 slope A points 34, s4.4, default 0.

a45 slope A points 45, s4.4, default 0.

reserved3 reserved

b01 slope B points 01, s4.4, default 0.

b12 slope B points 12, s4.4, default 0.

b23 slope B points 23, s4.4, default 0.

reserved4 reserved

b34 slope B points 34, s4.4, default 0.

3.2. Part I - Video for Linux API 891

Linux Media Documentation

b45 slope B points 45, s4.4, default 0.

reserved5 reserved.

struct ipu3_uapi_iefd_cux2_1
Calculate power of non-directed denoise element apply.

Definition

struct ipu3_uapi_iefd_cux2_1 {
__u32 x0:9;
__u32 x1:9;
__u32 a01:9;
__u32 reserved1:5;
__u32 b01:8;
__u32 reserved2:24;

};

Members
x0 X0 point of Config Unit, u9.0, default 0.

x1 X1 point of Config Unit, u9.0, default 0.

a01 Slope A of Config Unit, s4.4, default 0.

reserved1 reserved

b01 offset B0 of Config Unit, u7.0, default 0.

reserved2 reserved

struct ipu3_uapi_iefd_cux4
Calculate power of non-directed sharpening element.

Definition

struct ipu3_uapi_iefd_cux4 {
__u32 x0:9;
__u32 x1:9;
__u32 x2:9;
__u32 reserved0:5;
__u32 x3:9;
__u32 a01:9;
__u32 a12:9;
__u32 reserved1:5;
__u32 a23:9;
__u32 b01:8;
__u32 b12:8;
__u32 reserved2:7;
__u32 b23:8;
__u32 reserved3:24;

};

Members
x0 X0 point of Config Unit, u9.0, default 0.

x1 X1 point of Config Unit, u9.0, default 0.

x2 X2 point of Config Unit, u9.0, default 0.

892 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

reserved0 reserved

x3 X3 point of Config Unit, u9.0, default 0.

a01 Slope A0 of Config Unit, s4.4, default 0.

a12 Slope A1 of Config Unit, s4.4, default 0.

reserved1 reserved

a23 Slope A2 of Config Unit, s4.4, default 0.

b01 Offset B0 of Config Unit, s7.0, default 0.

b12 Offset B1 of Config Unit, s7.0, default 0.

reserved2 reserved

b23 Offset B2 of Config Unit, s7.0, default 0.

reserved3 reserved

struct ipu3_uapi_iefd_cux6_rad
Radial Config Unit (CU)

Definition

struct ipu3_uapi_iefd_cux6_rad {
__u32 x0:8;
__u32 x1:8;
__u32 x2:8;
__u32 x3:8;
__u32 x4:8;
__u32 x5:8;
__u32 reserved1:16;
__u32 a01:16;
__u32 a12:16;
__u32 a23:16;
__u32 a34:16;
__u32 a45:16;
__u32 reserved2:16;
__u32 b01:10;
__u32 b12:10;
__u32 b23:10;
__u32 reserved4:2;
__u32 b34:10;
__u32 b45:10;
__u32 reserved5:12;

};

Members
x0 x0 points of Config Unit radial, u8.0

x1 x1 points of Config Unit radial, u8.0

x2 x2 points of Config Unit radial, u8.0

x3 x3 points of Config Unit radial, u8.0

x4 x4 points of Config Unit radial, u8.0

x5 x5 points of Config Unit radial, u8.0

3.2. Part I - Video for Linux API 893

Linux Media Documentation

reserved1 reserved

a01 Slope A of Config Unit radial, s7.8

a12 Slope A of Config Unit radial, s7.8

a23 Slope A of Config Unit radial, s7.8

a34 Slope A of Config Unit radial, s7.8

a45 Slope A of Config Unit radial, s7.8

reserved2 reserved

b01 Slope B of Config Unit radial, s9.0

b12 Slope B of Config Unit radial, s9.0

b23 Slope B of Config Unit radial, s9.0

reserved4 reserved

b34 Slope B of Config Unit radial, s9.0

b45 Slope B of Config Unit radial, s9.0

reserved5 reserved

struct ipu3_uapi_yuvp1_iefd_cfg_units
IEFd Config Units parameters

Definition

struct ipu3_uapi_yuvp1_iefd_cfg_units {
struct ipu3_uapi_iefd_cux2 cu_1;
struct ipu3_uapi_iefd_cux6_ed cu_ed;
struct ipu3_uapi_iefd_cux2 cu_3;
struct ipu3_uapi_iefd_cux2_1 cu_5;
struct ipu3_uapi_iefd_cux4 cu_6;
struct ipu3_uapi_iefd_cux2 cu_7;
struct ipu3_uapi_iefd_cux4 cu_unsharp;
struct ipu3_uapi_iefd_cux6_rad cu_radial;
struct ipu3_uapi_iefd_cux2 cu_vssnlm;

};

Members
cu_1 calculate weight for blending directed and non-directed denoise elements. See

ipu3_uapi_iefd_cux2

cu_ed calculate power of non-directed sharpening element, see ipu3_uapi_iefd_cux6_ed

cu_3 calculate weight for blending directed and non-directed denoise elements. A
ipu3_uapi_iefd_cux2

cu_5 calculate power of non-directed denoise element apply, use ipu3_uapi_iefd_cux2_1

cu_6 calculate power of non-directed sharpening element. See ipu3_uapi_iefd_cux4

cu_7 calculate weight for blending directed and non-directed denoise elements. Use
ipu3_uapi_iefd_cux2

cu_unsharp Config Unit of unsharp ipu3_uapi_iefd_cux4

894 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

cu_radial Config Unit of radial ipu3_uapi_iefd_cux6_rad

cu_vssnlm Config Unit of vssnlm ipu3_uapi_iefd_cux2

struct ipu3_uapi_yuvp1_iefd_config_s
IEFd config

Definition

struct ipu3_uapi_yuvp1_iefd_config_s {
__u32 horver_diag_coeff:7;
__u32 reserved0:1;
__u32 clamp_stitch:6;
__u32 reserved1:2;
__u32 direct_metric_update:5;
__u32 reserved2:3;
__u32 ed_horver_diag_coeff:7;
__u32 reserved3:1;

};

Members
horver_diag_coeff Gradient compensation. Compared with vertical / horizontal (0 / 90 de-

gree), coefficient of diagonal (45 / 135 degree) direction should be corrected by approx.
1/sqrt(2).

reserved0 reserved

clamp_stitch Slope to stitch between clamped and unclamped edge values

reserved1 reserved

direct_metric_update Update coeff for direction metric

reserved2 reserved

ed_horver_diag_coeff Radial Coefficient that compensates for different distance for verti-
cal/horizontal and diagonal gradient calculation (approx. 1/sqrt(2))

reserved3 reserved

struct ipu3_uapi_yuvp1_iefd_control
IEFd control

Definition

struct ipu3_uapi_yuvp1_iefd_control {
__u32 iefd_en:1;
__u32 denoise_en:1;
__u32 direct_smooth_en:1;
__u32 rad_en:1;
__u32 vssnlm_en:1;
__u32 reserved:27;

};

Members
iefd_en Enable IEFd

denoise_en Enable denoise

direct_smooth_en Enable directional smooth

3.2. Part I - Video for Linux API 895

Linux Media Documentation

rad_en Enable radial update

vssnlm_en Enable VSSNLM output filter

reserved reserved

struct ipu3_uapi_sharp_cfg
Sharpening config

Definition

struct ipu3_uapi_sharp_cfg {
__u32 nega_lmt_txt:13;
__u32 reserved0:19;
__u32 posi_lmt_txt:13;
__u32 reserved1:19;
__u32 nega_lmt_dir:13;
__u32 reserved2:19;
__u32 posi_lmt_dir:13;
__u32 reserved3:19;

};

Members
nega_lmt_txt Sharpening limit for negative overshoots for texture.

reserved0 reserved

posi_lmt_txt Sharpening limit for positive overshoots for texture.

reserved1 reserved

nega_lmt_dir Sharpening limit for negative overshoots for direction (edge).

reserved2 reserved

posi_lmt_dir Sharpening limit for positive overshoots for direction (edge).

reserved3 reserved

Description
Fixed point type u13.0, range [0, 8191].

struct ipu3_uapi_far_w
Sharpening config for far sub-group

Definition

struct ipu3_uapi_far_w {
__u32 dir_shrp:7;
__u32 reserved0:1;
__u32 dir_dns:7;
__u32 reserved1:1;
__u32 ndir_dns_powr:7;
__u32 reserved2:9;

};

Members
dir_shrp Weight of wide direct sharpening, u1.6, range [0, 64], default 64.

reserved0 reserved

896 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

dir_dns Weight of wide direct denoising, u1.6, range [0, 64], default 0.

reserved1 reserved

ndir_dns_powr Power of non-direct denoising, Precision u1.6, range [0, 64], default 64.

reserved2 reserved

struct ipu3_uapi_unsharp_cfg
Unsharp config

Definition

struct ipu3_uapi_unsharp_cfg {
__u32 unsharp_weight:7;
__u32 reserved0:1;
__u32 unsharp_amount:9;
__u32 reserved1:15;

};

Members
unsharp_weight Unsharp mask blending weight. u1.6, range [0, 64], default 16. 0 - disabled,

64 - use only unsharp.

reserved0 reserved

unsharp_amount Unsharp mask amount, u4.5, range [0, 511], default 0.

reserved1 reserved

struct ipu3_uapi_yuvp1_iefd_shrp_cfg
IEFd sharpness config

Definition

struct ipu3_uapi_yuvp1_iefd_shrp_cfg {
struct ipu3_uapi_sharp_cfg cfg;
struct ipu3_uapi_far_w far_w;
struct ipu3_uapi_unsharp_cfg unshrp_cfg;

};

Members
cfg sharpness config ipu3_uapi_sharp_cfg

far_w wide range config, value as specified by ipu3_uapi_far_w: The 5x5 environment is sep-
arated into 2 sub-groups, the 3x3 nearest neighbors (8 pixels called Near), and the second
order neighborhood around them (16 pixels called Far).

unshrp_cfg unsharpness config. ipu3_uapi_unsharp_cfg

struct ipu3_uapi_unsharp_coef0
Unsharp mask coefficients

Definition

struct ipu3_uapi_unsharp_coef0 {
__u32 c00:9;
__u32 c01:9;
__u32 c02:9;

3.2. Part I - Video for Linux API 897

Linux Media Documentation

__u32 reserved:5;
};

Members
c00 Coeff11, s0.8, range [-255, 255], default 1.

c01 Coeff12, s0.8, range [-255, 255], default 5.

c02 Coeff13, s0.8, range [-255, 255], default 9.

reserved reserved

Description
Configurable registers for common sharpening support.

struct ipu3_uapi_unsharp_coef1
Unsharp mask coefficients

Definition

struct ipu3_uapi_unsharp_coef1 {
__u32 c11:9;
__u32 c12:9;
__u32 c22:9;
__u32 reserved:5;

};

Members
c11 Coeff22, s0.8, range [-255, 255], default 29.

c12 Coeff23, s0.8, range [-255, 255], default 55.

c22 Coeff33, s0.8, range [-255, 255], default 96.

reserved reserved

struct ipu3_uapi_yuvp1_iefd_unshrp_cfg
Unsharp mask config

Definition

struct ipu3_uapi_yuvp1_iefd_unshrp_cfg {
struct ipu3_uapi_unsharp_coef0 unsharp_coef0;
struct ipu3_uapi_unsharp_coef1 unsharp_coef1;

};

Members
unsharp_coef0 unsharp coefficient 0 config. See ipu3_uapi_unsharp_coef0

unsharp_coef1 unsharp coefficient 1 config. See ipu3_uapi_unsharp_coef1

struct ipu3_uapi_radial_reset_xy
Radial coordinate reset

Definition

898 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

struct ipu3_uapi_radial_reset_xy {
__s32 x:13;
__u32 reserved0:3;
__s32 y:13;
__u32 reserved1:3;

};

Members
x Radial reset of x coordinate. Precision s12, [-4095, 4095], default 0.

reserved0 reserved

y Radial center y coordinate. Precision s12, [-4095, 4095], default 0.

reserved1 reserved

struct ipu3_uapi_radial_reset_x2
Radial X^2 reset

Definition

struct ipu3_uapi_radial_reset_x2 {
__u32 x2:24;
__u32 reserved:8;

};

Members
x2 Radial reset of x^2 coordinate. Precision u24, default 0.

reserved reserved

struct ipu3_uapi_radial_reset_y2
Radial Y^2 reset

Definition

struct ipu3_uapi_radial_reset_y2 {
__u32 y2:24;
__u32 reserved:8;

};

Members
y2 Radial reset of y^2 coordinate. Precision u24, default 0.

reserved reserved

struct ipu3_uapi_radial_cfg
Radial config

Definition

struct ipu3_uapi_radial_cfg {
__u32 rad_nf:4;
__u32 reserved0:4;
__u32 rad_inv_r2:7;
__u32 reserved1:17;

};

3.2. Part I - Video for Linux API 899

Linux Media Documentation

Members
rad_nf Radial. R^2 normalization factor is scale down by 2^ - (15 + scale)

reserved0 reserved

rad_inv_r2 Radial R^-2 normelized to (0.5..1). Precision u7, range [0, 127].

reserved1 reserved

struct ipu3_uapi_rad_far_w
Radial FAR sub-group

Definition

struct ipu3_uapi_rad_far_w {
__u32 rad_dir_far_sharp_w:8;
__u32 rad_dir_far_dns_w:8;
__u32 rad_ndir_far_dns_power:8;
__u32 reserved:8;

};

Members
rad_dir_far_sharp_w Weight of wide direct sharpening, u1.6, range [0, 64], default 64.

rad_dir_far_dns_w Weight of wide direct denoising, u1.6, range [0, 64], default 0.

rad_ndir_far_dns_power power of non-direct sharpening, u1.6, range [0, 64], default 0.

reserved reserved

struct ipu3_uapi_cu_cfg0
Radius Config Unit cfg0 register

Definition

struct ipu3_uapi_cu_cfg0 {
__u32 cu6_pow:7;
__u32 reserved0:1;
__u32 cu_unsharp_pow:7;
__u32 reserved1:1;
__u32 rad_cu6_pow:7;
__u32 reserved2:1;
__u32 rad_cu_unsharp_pow:6;
__u32 reserved3:2;

};

Members
cu6_pow Power of CU6. Power of non-direct sharpening, u3.4.

reserved0 reserved

cu_unsharp_pow Power of unsharp mask, u2.4.

reserved1 reserved

rad_cu6_pow Radial/corner CU6. Directed sharpening power, u3.4.

reserved2 reserved

rad_cu_unsharp_pow Radial power of unsharp mask, u2.4.

900 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

reserved3 reserved

struct ipu3_uapi_cu_cfg1
Radius Config Unit cfg1 register

Definition

struct ipu3_uapi_cu_cfg1 {
__u32 rad_cu6_x1:9;
__u32 reserved0:1;
__u32 rad_cu_unsharp_x1:9;
__u32 reserved1:13;

};

Members
rad_cu6_x1 X1 point of Config Unit 6, precision u9.0.

reserved0 reserved

rad_cu_unsharp_x1 X1 point for Config Unit unsharp for radial/corner point precision u9.0.

reserved1 reserved

struct ipu3_uapi_yuvp1_iefd_rad_cfg
IEFd parameters changed radially over the picture plane.

Definition

struct ipu3_uapi_yuvp1_iefd_rad_cfg {
struct ipu3_uapi_radial_reset_xy reset_xy;
struct ipu3_uapi_radial_reset_x2 reset_x2;
struct ipu3_uapi_radial_reset_y2 reset_y2;
struct ipu3_uapi_radial_cfg cfg;
struct ipu3_uapi_rad_far_w rad_far_w;
struct ipu3_uapi_cu_cfg0 cu_cfg0;
struct ipu3_uapi_cu_cfg1 cu_cfg1;

};

Members
reset_xy reset xy value in radial calculation. ipu3_uapi_radial_reset_xy

reset_x2 reset x square value in radial calculation. See struct ipu3_uapi_radial_reset_x2

reset_y2 reset y square value in radial calculation. See struct ipu3_uapi_radial_reset_y2

cfg radial config defined in ipu3_uapi_radial_cfg

rad_far_w weight for wide range radial. ipu3_uapi_rad_far_w

cu_cfg0 configuration unit 0. See ipu3_uapi_cu_cfg0

cu_cfg1 configuration unit 1. See ipu3_uapi_cu_cfg1

struct ipu3_uapi_vss_lut_x
Vssnlm LUT x0/x1/x2

Definition

struct ipu3_uapi_vss_lut_x {
__u32 vs_x0:8;

3.2. Part I - Video for Linux API 901

Linux Media Documentation

__u32 vs_x1:8;
__u32 vs_x2:8;
__u32 reserved2:8;

};

Members
vs_x0 Vssnlm LUT x0, precision u8, range [0, 255], default 16.

vs_x1 Vssnlm LUT x1, precision u8, range [0, 255], default 32.

vs_x2 Vssnlm LUT x2, precision u8, range [0, 255], default 64.

reserved2 reserved

struct ipu3_uapi_vss_lut_y
Vssnlm LUT y0/y1/y2

Definition

struct ipu3_uapi_vss_lut_y {
__u32 vs_y1:4;
__u32 reserved0:4;
__u32 vs_y2:4;
__u32 reserved1:4;
__u32 vs_y3:4;
__u32 reserved2:12;

};

Members
vs_y1 Vssnlm LUT y1, precision u4, range [0, 8], default 1.

reserved0 reserved

vs_y2 Vssnlm LUT y2, precision u4, range [0, 8], default 3.

reserved1 reserved

vs_y3 Vssnlm LUT y3, precision u4, range [0, 8], default 8.

reserved2 reserved

struct ipu3_uapi_yuvp1_iefd_vssnlm_cfg
IEFd Vssnlm Lookup table

Definition

struct ipu3_uapi_yuvp1_iefd_vssnlm_cfg {
struct ipu3_uapi_vss_lut_x vss_lut_x;
struct ipu3_uapi_vss_lut_y vss_lut_y;

};

Members
vss_lut_x vss lookup table. See ipu3_uapi_vss_lut_x description

vss_lut_y vss lookup table. See ipu3_uapi_vss_lut_y description

struct ipu3_uapi_yuvp1_iefd_config
IEFd config

902 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Definition

struct ipu3_uapi_yuvp1_iefd_config {
struct ipu3_uapi_yuvp1_iefd_cfg_units units;
struct ipu3_uapi_yuvp1_iefd_config_s config;
struct ipu3_uapi_yuvp1_iefd_control control;
struct ipu3_uapi_yuvp1_iefd_shrp_cfg sharp;
struct ipu3_uapi_yuvp1_iefd_unshrp_cfg unsharp;
struct ipu3_uapi_yuvp1_iefd_rad_cfg rad;
struct ipu3_uapi_yuvp1_iefd_vssnlm_cfg vsslnm;

};

Members
units configuration unit setting, ipu3_uapi_yuvp1_iefd_cfg_units

config configuration, as defined by ipu3_uapi_yuvp1_iefd_config_s

control control setting, as defined by ipu3_uapi_yuvp1_iefd_control

sharp sharpness setting, as defined by ipu3_uapi_yuvp1_iefd_shrp_cfg

unsharp unsharpness setting, as defined by ipu3_uapi_yuvp1_iefd_unshrp_cfg

rad radial setting, as defined by ipu3_uapi_yuvp1_iefd_rad_cfg

vsslnm vsslnm setting, as defined by ipu3_uapi_yuvp1_iefd_vssnlm_cfg

struct ipu3_uapi_yuvp1_yds_config
Y Down-Sampling config

Definition

struct ipu3_uapi_yuvp1_yds_config {
__u32 c00:2;
__u32 c01:2;
__u32 c02:2;
__u32 c03:2;
__u32 c10:2;
__u32 c11:2;
__u32 c12:2;
__u32 c13:2;
__u32 norm_factor:5;
__u32 reserved0:4;
__u32 bin_output:1;
__u32 reserved1:6;

};

Members
c00 range [0, 3], default 0x0

c01 range [0, 3], default 0x1

c02 range [0, 3], default 0x1

c03 range [0, 3], default 0x0

c10 range [0, 3], default 0x0

c11 range [0, 3], default 0x1

3.2. Part I - Video for Linux API 903

Linux Media Documentation

c12 range [0, 3], default 0x1

c13 range [0, 3], default 0x0

norm_factor Normalization factor, range [0, 4], default 2 0 - divide by 1 1 - divide by 2 2 - divide
by 4 3 - divide by 8 4 - divide by 16

reserved0 reserved

bin_output Down sampling on Luma channel in two optional modes 0 - Bin output 4.2.0 (de-
fault), 1 output 4.2.2.

reserved1 reserved

Description
Above are 4x2 filter coefficients for chroma output downscaling.

struct ipu3_uapi_yuvp1_chnr_enable_config
Chroma noise reduction enable

Definition

struct ipu3_uapi_yuvp1_chnr_enable_config {
__u32 enable:1;
__u32 yuv_mode:1;
__u32 reserved0:14;
__u32 col_size:12;
__u32 reserved1:4;

};

Members
enable enable/disable chroma noise reduction

yuv_mode 0 - YUV420, 1 - YUV422

reserved0 reserved

col_size number of columns in the frame, max width is 2560

reserved1 reserved

struct ipu3_uapi_yuvp1_chnr_coring_config
Coring thresholds for UV

Definition

struct ipu3_uapi_yuvp1_chnr_coring_config {
__u32 u:13;
__u32 reserved0:3;
__u32 v:13;
__u32 reserved1:3;

};

Members
u U coring level, u0.13, range [0.0, 1.0], default 0.0

reserved0 reserved

v V coring level, u0.13, range [0.0, 1.0], default 0.0

904 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

reserved1 reserved

struct ipu3_uapi_yuvp1_chnr_sense_gain_config
Chroma noise reduction gains

Definition

struct ipu3_uapi_yuvp1_chnr_sense_gain_config {
__u32 vy:8;
__u32 vu:8;
__u32 vv:8;
__u32 reserved0:8;
__u32 hy:8;
__u32 hu:8;
__u32 hv:8;
__u32 reserved1:8;

};

Members
vy Sensitivity of horizontal edge of Y, default 100

vu Sensitivity of horizontal edge of U, default 100

vv Sensitivity of horizontal edge of V, default 100

reserved0 reserved

hy Sensitivity of vertical edge of Y, default 50

hu Sensitivity of vertical edge of U, default 50

hv Sensitivity of vertical edge of V, default 50

reserved1 reserved

Description
All sensitivity gain parameters have precision u13.0, range [0, 8191].

struct ipu3_uapi_yuvp1_chnr_iir_fir_config
Chroma IIR/FIR filter config

Definition

struct ipu3_uapi_yuvp1_chnr_iir_fir_config {
__u32 fir_0h:6;
__u32 reserved0:2;
__u32 fir_1h:6;
__u32 reserved1:2;
__u32 fir_2h:6;
__u32 dalpha_clip_val:9;
__u32 reserved2:1;

};

Members
fir_0h Value of center tap in horizontal FIR, range [0, 32], default 8.

reserved0 reserved

fir_1h Value of distance 1 in horizontal FIR, range [0, 32], default 12.

3.2. Part I - Video for Linux API 905

Linux Media Documentation

reserved1 reserved

fir_2h Value of distance 2 tap in horizontal FIR, range [0, 32], default 0.

dalpha_clip_val weight for previous row in IIR, range [1, 256], default 0.

reserved2 reserved

struct ipu3_uapi_yuvp1_chnr_config
Chroma noise reduction config

Definition

struct ipu3_uapi_yuvp1_chnr_config {
struct ipu3_uapi_yuvp1_chnr_enable_config enable;
struct ipu3_uapi_yuvp1_chnr_coring_config coring;
struct ipu3_uapi_yuvp1_chnr_sense_gain_config sense_gain;
struct ipu3_uapi_yuvp1_chnr_iir_fir_config iir_fir;

};

Members
enable chroma noise reduction enable, see ipu3_uapi_yuvp1_chnr_enable_config

coring coring config for chroma noise reduction, see ipu3_uapi_yuvp1_chnr_coring_config

sense_gain sensitivity config for chroma noise reduction, see
ipu3_uapi_yuvp1_chnr_sense_gain_config

iir_fir iir and fir config for chroma noise reduction, see ipu3_uapi_yuvp1_chnr_iir_fir_config

struct ipu3_uapi_yuvp1_y_ee_nr_lpf_config
Luma(Y) edge enhancement low-pass filter coefficients

Definition

struct ipu3_uapi_yuvp1_y_ee_nr_lpf_config {
__u32 a_diag:5;
__u32 reserved0:3;
__u32 a_periph:5;
__u32 reserved1:3;
__u32 a_cent:5;
__u32 reserved2:9;
__u32 enable:1;

};

Members
a_diag Smoothing diagonal coefficient, u5.0.

reserved0 reserved

a_periph Image smoothing perpherial, u5.0.

reserved1 reserved

a_cent Image Smoothing center coefficient, u5.0.

reserved2 reserved

enable 0: Y_EE_NR disabled, output = input; 1: Y_EE_NR enabled.

906 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

struct ipu3_uapi_yuvp1_y_ee_nr_sense_config
Luma(Y) edge enhancement noise reduction sensitivity gains

Definition

struct ipu3_uapi_yuvp1_y_ee_nr_sense_config {
__u32 edge_sense_0:13;
__u32 reserved0:3;
__u32 delta_edge_sense:13;
__u32 reserved1:3;
__u32 corner_sense_0:13;
__u32 reserved2:3;
__u32 delta_corner_sense:13;
__u32 reserved3:3;

};

Members
edge_sense_0 Sensitivity of edge in dark area. u13.0, default 8191.

reserved0 reserved

delta_edge_sense Difference in the sensitivity of edges between the bright and dark areas.
u13.0, default 0.

reserved1 reserved

corner_sense_0 Sensitivity of corner in dark area. u13.0, default 0.

reserved2 reserved

delta_corner_sense Difference in the sensitivity of corners between the bright and dark areas.
u13.0, default 8191.

reserved3 reserved

struct ipu3_uapi_yuvp1_y_ee_nr_gain_config
Luma(Y) edge enhancement noise reduction gain config

Definition

struct ipu3_uapi_yuvp1_y_ee_nr_gain_config {
__u32 gain_pos_0:5;
__u32 reserved0:3;
__u32 delta_gain_posi:5;
__u32 reserved1:3;
__u32 gain_neg_0:5;
__u32 reserved2:3;
__u32 delta_gain_neg:5;
__u32 reserved3:3;

};

Members
gain_pos_0 Gain for positive edge in dark area. u5.0, [0, 16], default 2.

reserved0 reserved

delta_gain_posi Difference in the gain of edges between the bright and dark areas for positive
edges. u5.0, [0, 16], default 0.

reserved1 reserved

3.2. Part I - Video for Linux API 907

Linux Media Documentation

gain_neg_0 Gain for negative edge in dark area. u5.0, [0, 16], default 8.

reserved2 reserved

delta_gain_neg Difference in the gain of edges between the bright and dark areas for negative
edges. u5.0, [0, 16], default 0.

reserved3 reserved

struct ipu3_uapi_yuvp1_y_ee_nr_clip_config
Luma(Y) edge enhancement noise reduction clipping config

Definition

struct ipu3_uapi_yuvp1_y_ee_nr_clip_config {
__u32 clip_pos_0:5;
__u32 reserved0:3;
__u32 delta_clip_posi:5;
__u32 reserved1:3;
__u32 clip_neg_0:5;
__u32 reserved2:3;
__u32 delta_clip_neg:5;
__u32 reserved3:3;

};

Members
clip_pos_0 Limit of positive edge in dark area u5, value [0, 16], default 8.

reserved0 reserved

delta_clip_posi Difference in the limit of edges between the bright and dark areas for positive
edges. u5, value [0, 16], default 8.

reserved1 reserved

clip_neg_0 Limit of negative edge in dark area u5, value [0, 16], default 8.

reserved2 reserved

delta_clip_neg Difference in the limit of edges between the bright and dark areas for negative
edges. u5, value [0, 16], default 8.

reserved3 reserved

struct ipu3_uapi_yuvp1_y_ee_nr_frng_config
Luma(Y) edge enhancement noise reduction fringe config

Definition

struct ipu3_uapi_yuvp1_y_ee_nr_frng_config {
__u32 gain_exp:4;
__u32 reserved0:28;
__u32 min_edge:13;
__u32 reserved1:3;
__u32 lin_seg_param:4;
__u32 reserved2:4;
__u32 t1:1;
__u32 t2:1;
__u32 reserved3:6;

};

908 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Members
gain_exp Common exponent of gains, u4, [0, 8], default 2.

reserved0 reserved

min_edge Threshold for edge and smooth stitching, u13.

reserved1 reserved

lin_seg_param Power of LinSeg, u4.

reserved2 reserved

t1 Parameter for enabling/disabling the edge enhancement, u1.0, [0, 1], default 1.

t2 Parameter for enabling/disabling the smoothing, u1.0, [0, 1], default 1.

reserved3 reserved

struct ipu3_uapi_yuvp1_y_ee_nr_diag_config
Luma(Y) edge enhancement noise reduction diagonal config

Definition

struct ipu3_uapi_yuvp1_y_ee_nr_diag_config {
__u32 diag_disc_g:4;
__u32 reserved0:4;
__u32 hvw_hor:4;
__u32 dw_hor:4;
__u32 hvw_diag:4;
__u32 dw_diag:4;
__u32 reserved1:8;

};

Members
diag_disc_g Coefficient that prioritize diagonal edge direction on horizontal or vertical for

final enhancement. u4.0, [1, 15], default 1.

reserved0 reserved

hvw_hor Weight of horizontal/vertical edge enhancement for hv edge. u2.2, [1, 15], default 4.

dw_hor Weight of diagonal edge enhancement for hv edge. u2.2, [1, 15], default 1.

hvw_diag Weight of horizontal/vertical edge enhancement for diagonal edge. u2.2, [1, 15],
default 1.

dw_diag Weight of diagonal edge enhancement for diagonal edge. u2.2, [1, 15], default 4.

reserved1 reserved

struct ipu3_uapi_yuvp1_y_ee_nr_fc_coring_config
Luma(Y) edge enhancement noise reduction false color correction (FCC) coring config

Definition

struct ipu3_uapi_yuvp1_y_ee_nr_fc_coring_config {
__u32 pos_0:13;
__u32 reserved0:3;
__u32 pos_delta:13;
__u32 reserved1:3;

3.2. Part I - Video for Linux API 909

Linux Media Documentation

__u32 neg_0:13;
__u32 reserved2:3;
__u32 neg_delta:13;
__u32 reserved3:3;

};

Members
pos_0 Gain for positive edge in dark, u13.0, [0, 16], default 0.

reserved0 reserved

pos_delta Gain for positive edge in bright, value: pos_0 + pos_delta <=16 u13.0, default 0.

reserved1 reserved

neg_0 Gain for negative edge in dark area, u13.0, range [0, 16], default 0.

reserved2 reserved

neg_delta Gain for negative edge in bright area. neg_0 + neg_delta <=16 u13.0, default 0.

reserved3 reserved

Description
Coring is a simple soft thresholding technique.

struct ipu3_uapi_yuvp1_y_ee_nr_config
Edge enhancement and noise reduction

Definition

struct ipu3_uapi_yuvp1_y_ee_nr_config {
struct ipu3_uapi_yuvp1_y_ee_nr_lpf_config lpf;
struct ipu3_uapi_yuvp1_y_ee_nr_sense_config sense;
struct ipu3_uapi_yuvp1_y_ee_nr_gain_config gain;
struct ipu3_uapi_yuvp1_y_ee_nr_clip_config clip;
struct ipu3_uapi_yuvp1_y_ee_nr_frng_config frng;
struct ipu3_uapi_yuvp1_y_ee_nr_diag_config diag;
struct ipu3_uapi_yuvp1_y_ee_nr_fc_coring_config fc_coring;

};

Members
lpf low-pass filter config. See ipu3_uapi_yuvp1_y_ee_nr_lpf_config

sense sensitivity config. See ipu3_uapi_yuvp1_y_ee_nr_sense_config

gain gain config as defined in ipu3_uapi_yuvp1_y_ee_nr_gain_config

clip clip config as defined in ipu3_uapi_yuvp1_y_ee_nr_clip_config

frng fringe config as defined in ipu3_uapi_yuvp1_y_ee_nr_frng_config

diag diagonal edge config. See ipu3_uapi_yuvp1_y_ee_nr_diag_config

fc_coring coring config for fringe control. See ipu3_uapi_yuvp1_y_ee_nr_fc_coring_config

struct ipu3_uapi_yuvp2_tcc_gen_control_static_config
Total color correction general control config

Definition

910 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

struct ipu3_uapi_yuvp2_tcc_gen_control_static_config {
__u32 en:1;
__u32 blend_shift:3;
__u32 gain_according_to_y_only:1;
__u32 reserved0:11;
__s32 gamma:5;
__u32 reserved1:3;
__s32 delta:5;
__u32 reserved2:3;

};

Members
en 0 - TCC disabled. Output = input 1 - TCC enabled.

blend_shift blend shift, Range[3, 4], default NA.

gain_according_to_y_only 0: Gain is calculated according to YUV, 1: Gain is calculated ac-
cording to Y only

reserved0 reserved

gamma Final blending coefficients. Values[-16, 16], default NA.

reserved1 reserved

delta Final blending coefficients. Values[-16, 16], default NA.

reserved2 reserved

struct ipu3_uapi_yuvp2_tcc_macc_elem_static_config
Total color correction multi-axis color control (MACC) config

Definition

struct ipu3_uapi_yuvp2_tcc_macc_elem_static_config {
__s32 a:12;
__u32 reserved0:4;
__s32 b:12;
__u32 reserved1:4;
__s32 c:12;
__u32 reserved2:4;
__s32 d:12;
__u32 reserved3:4;

};

Members
a a coefficient for 2x2 MACC conversion matrix.

reserved0 reserved

b b coefficient 2x2 MACC conversion matrix.

reserved1 reserved

c c coefficient for 2x2 MACC conversion matrix.

reserved2 reserved

d d coefficient for 2x2 MACC conversion matrix.

3.2. Part I - Video for Linux API 911

Linux Media Documentation

reserved3 reserved

struct ipu3_uapi_yuvp2_tcc_macc_table_static_config
Total color correction multi-axis color control (MACC) table array

Definition

struct ipu3_uapi_yuvp2_tcc_macc_table_static_config {
struct ipu3_uapi_yuvp2_tcc_macc_elem_static_config entries[IPU3_UAPI_YUVP2_TCC_MACC_

↪→TABLE_ELEMENTS];
};

Members
entries config for multi axis color correction, as specified by

ipu3_uapi_yuvp2_tcc_macc_elem_static_config

struct ipu3_uapi_yuvp2_tcc_inv_y_lut_static_config
Total color correction inverse y lookup table

Definition

struct ipu3_uapi_yuvp2_tcc_inv_y_lut_static_config {
__u16 entries[IPU3_UAPI_YUVP2_TCC_INV_Y_LUT_ELEMENTS];

};

Members
entries lookup table for inverse y estimation, and use it to estimate the ratio between luma

and chroma. Chroma by approximate the absolute value of the radius on the chroma plane
(R = sqrt(u^2+v^2)) and luma by approximate by 1/Y.

struct ipu3_uapi_yuvp2_tcc_gain_pcwl_lut_static_config
Total color correction lookup table for PCWL

Definition

struct ipu3_uapi_yuvp2_tcc_gain_pcwl_lut_static_config {
__u16 entries[IPU3_UAPI_YUVP2_TCC_GAIN_PCWL_LUT_ELEMENTS];

};

Members
entries lookup table for gain piece wise linear transformation (PCWL)

struct ipu3_uapi_yuvp2_tcc_r_sqr_lut_static_config
Total color correction lookup table for r square root

Definition

struct ipu3_uapi_yuvp2_tcc_r_sqr_lut_static_config {
__s16 entries[IPU3_UAPI_YUVP2_TCC_R_SQR_LUT_ELEMENTS];

};

Members
entries lookup table for r square root estimation

struct ipu3_uapi_yuvp2_tcc_static_config
Total color correction static

912 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Definition

struct ipu3_uapi_yuvp2_tcc_static_config {
struct ipu3_uapi_yuvp2_tcc_gen_control_static_config gen_control;
struct ipu3_uapi_yuvp2_tcc_macc_table_static_config macc_table;
struct ipu3_uapi_yuvp2_tcc_inv_y_lut_static_config inv_y_lut;
struct ipu3_uapi_yuvp2_tcc_gain_pcwl_lut_static_config gain_pcwl;
struct ipu3_uapi_yuvp2_tcc_r_sqr_lut_static_config r_sqr_lut;

};

Members
gen_control general config for Total Color Correction

macc_table config for multi axis color correction

inv_y_lut lookup table for inverse y estimation

gain_pcwl lookup table for gain PCWL

r_sqr_lut lookup table for r square root estimation.

struct ipu3_uapi_anr_transform_config
Advanced noise reduction transform

Definition

struct ipu3_uapi_anr_transform_config {
__u32 enable:1;
__u32 adaptive_treshhold_en:1;
__u32 reserved1:30;
__u8 reserved2[44];
struct ipu3_uapi_anr_alpha alpha[3];
struct ipu3_uapi_anr_beta beta[3];
struct ipu3_uapi_anr_plane_color color[3];
__u16 sqrt_lut[IPU3_UAPI_ANR_LUT_SIZE];
__s16 xreset:13;
__u16 reserved3:3;
__s16 yreset:13;
__u16 reserved4:3;
__u32 x_sqr_reset:24;
__u32 r_normfactor:5;
__u32 reserved5:3;
__u32 y_sqr_reset:24;
__u32 gain_scale:8;

};

Members
enable advanced noise reduction enabled.

adaptive_treshhold_en On IPU3, adaptive threshold is always enabled.

reserved1 reserved

reserved2 reserved

alpha using following defaults: 13, 13, 13, 13, 0, 0, 0, 0 11, 11, 11, 11, 0, 0, 0, 0 14, 14, 14, 14,
0, 0, 0, 0

beta use following defaults: 24, 24, 24, 24 21, 20, 20, 21 25, 25, 25, 25

3.2. Part I - Video for Linux API 913

Linux Media Documentation

color use defaults defined in driver/media/pci/intel/ipu3-tables.c

sqrt_lut 11 bits per element, values = [724 768 810 849 887 923 958 991 1024 1056 1116
1145 1173 1201 1086 1228 1254 1280 1305 1330 1355 1379 1402 1425 1448]

xreset Reset value of X for r^2 calculation Value: col_start-X_center Constraint: Xreset +
FrameWdith=4095 Xreset= -4095, default -1632.

reserved3 reserved

yreset Reset value of Y for r^2 calculation Value: row_start-Y_center Constraint: Yreset +
FrameHeight=4095 Yreset= -4095, default -1224.

reserved4 reserved

x_sqr_reset Reset value of X^2 for r^2 calculation Value = (Xreset)^2

r_normfactor Normalization factor for R. Default 14.

reserved5 reserved

y_sqr_reset Reset value of Y^2 for r^2 calculation Value = (Yreset)^2

gain_scale Parameter describing shading gain as a function of distance from the image center.
A single value per frame, loaded by the driver. Default 115.

struct ipu3_uapi_anr_stitch_pyramid
ANR stitch pyramid

Definition

struct ipu3_uapi_anr_stitch_pyramid {
__u32 entry0:6;
__u32 entry1:6;
__u32 entry2:6;
__u32 reserved:14;

};

Members
entry0 pyramid LUT entry0, range [0x0, 0x3f]

entry1 pyramid LUT entry1, range [0x0, 0x3f]

entry2 pyramid LUT entry2, range [0x0, 0x3f]

reserved reserved

struct ipu3_uapi_anr_stitch_config
ANR stitch config

Definition

struct ipu3_uapi_anr_stitch_config {
__u32 anr_stitch_en;
__u8 reserved[44];
struct ipu3_uapi_anr_stitch_pyramid pyramid[IPU3_UAPI_ANR_PYRAMID_SIZE];

};

Members
anr_stitch_en enable stitch. Enabled with 1.

914 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

reserved reserved

pyramid pyramid table as defined by ipu3_uapi_anr_stitch_pyramid default values: { 1, 3, 5
}, { 7, 7, 5 }, { 3, 1, 3 }, { 9, 15, 21 }, { 21, 15, 9 }, { 3, 5, 15 }, { 25, 35, 35 }, { 25, 15, 5
}, { 7, 21, 35 }, { 49, 49, 35 }, { 21, 7, 7 }, { 21, 35, 49 }, { 49, 35, 21 }, { 7, 5, 15 }, { 25,
35, 35 }, { 25, 15, 5 }, { 3, 9, 15 }, { 21, 21, 15 }, { 9, 3, 1 }, { 3, 5, 7 }, { 7, 5, 3}, { 1 }

struct ipu3_uapi_anr_config
ANR config

Definition

struct ipu3_uapi_anr_config {
struct ipu3_uapi_anr_transform_config transform ;
struct ipu3_uapi_anr_stitch_config stitch ;

};

Members
transform advanced noise reduction transform config as specified by

ipu3_uapi_anr_transform_config

stitch create 4x4 patch from 4 surrounding 8x8 patches.

struct ipu3_uapi_acc_param
Accelerator cluster parameters

Definition

struct ipu3_uapi_acc_param {
struct ipu3_uapi_bnr_static_config bnr;
struct ipu3_uapi_bnr_static_config_green_disparity green_disparity ;
struct ipu3_uapi_dm_config dm ;
struct ipu3_uapi_ccm_mat_config ccm ;
struct ipu3_uapi_gamma_config gamma ;
struct ipu3_uapi_csc_mat_config csc ;
struct ipu3_uapi_cds_params cds ;
struct ipu3_uapi_shd_config shd ;
struct ipu3_uapi_yuvp1_iefd_config iefd ;
struct ipu3_uapi_yuvp1_yds_config yds_c0 ;
struct ipu3_uapi_yuvp1_chnr_config chnr_c0 ;
struct ipu3_uapi_yuvp1_y_ee_nr_config y_ee_nr ;
struct ipu3_uapi_yuvp1_yds_config yds ;
struct ipu3_uapi_yuvp1_chnr_config chnr ;
struct ipu3_uapi_yuvp1_yds_config yds2 ;
struct ipu3_uapi_yuvp2_tcc_static_config tcc ;
struct ipu3_uapi_anr_config anr;
struct ipu3_uapi_awb_fr_config_s awb_fr;
struct ipu3_uapi_ae_config ae;
struct ipu3_uapi_af_config_s af;
struct ipu3_uapi_awb_config awb;

};

Members
bnr parameters for bayer noise reduction static config. See ipu3_uapi_bnr_static_config

green_disparity disparity static config between gr and gb channel. See
ipu3_uapi_bnr_static_config_green_disparity

3.2. Part I - Video for Linux API 915

Linux Media Documentation

dm de-mosaic config. See ipu3_uapi_dm_config

ccm color correction matrix. See ipu3_uapi_ccm_mat_config

gamma gamma correction config. See ipu3_uapi_gamma_config

csc color space conversion matrix. See ipu3_uapi_csc_mat_config

cds color down sample config. See ipu3_uapi_cds_params

shd lens shading correction config. See ipu3_uapi_shd_config

iefd Image enhancement filter and denoise config. ipu3_uapi_yuvp1_iefd_config

yds_c0 y down scaler config. ipu3_uapi_yuvp1_yds_config

chnr_c0 chroma noise reduction config. ipu3_uapi_yuvp1_chnr_config

y_ee_nr y edge enhancement and noise reduction config. ipu3_uapi_yuvp1_y_ee_nr_config

yds y down scaler config. See ipu3_uapi_yuvp1_yds_config

chnr chroma noise reduction config. See ipu3_uapi_yuvp1_chnr_config

yds2 y channel down scaler config. See ipu3_uapi_yuvp1_yds_config

tcc total color correction config as defined in struct ipu3_uapi_yuvp2_tcc_static_config

anr advanced noise reduction config.See ipu3_uapi_anr_config

awb_fr AWB filter response config. See ipu3_uapi_awb_fr_config

ae auto exposure config As specified by ipu3_uapi_ae_config

af auto focus config. As specified by ipu3_uapi_af_config

awb auto white balance config. As specified by ipu3_uapi_awb_config

Description
ACC refers to the HW cluster containing all Fixed Functions (FFs). Each FF implements a
specific algorithm.

struct ipu3_uapi_isp_lin_vmem_params
Linearization parameters

Definition

struct ipu3_uapi_isp_lin_vmem_params {
__s16 lin_lutlow_gr[IPU3_UAPI_LIN_LUT_SIZE];
__s16 lin_lutlow_r[IPU3_UAPI_LIN_LUT_SIZE];
__s16 lin_lutlow_b[IPU3_UAPI_LIN_LUT_SIZE];
__s16 lin_lutlow_gb[IPU3_UAPI_LIN_LUT_SIZE];
__s16 lin_lutdif_gr[IPU3_UAPI_LIN_LUT_SIZE];
__s16 lin_lutdif_r[IPU3_UAPI_LIN_LUT_SIZE];
__s16 lin_lutdif_b[IPU3_UAPI_LIN_LUT_SIZE];
__s16 lin_lutdif_gb[IPU3_UAPI_LIN_LUT_SIZE];

};

Members
lin_lutlow_gr linearization look-up table for GR channel interpolation.

lin_lutlow_r linearization look-up table for R channel interpolation.

916 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

lin_lutlow_b linearization look-up table for B channel interpolation.

lin_lutlow_gb linearization look-up table for GB channel interpolation. lin_lutlow_gr /
lin_lutlow_r / lin_lutlow_b / lin_lutlow_gb <= LIN_MAX_VALUE - 1.

lin_lutdif_gr lin_lutlow_gr[i+1] - lin_lutlow_gr[i].

lin_lutdif_r lin_lutlow_r[i+1] - lin_lutlow_r[i].

lin_lutdif_b lin_lutlow_b[i+1] - lin_lutlow_b[i].

lin_lutdif_gb lin_lutlow_gb[i+1] - lin_lutlow_gb[i].

struct ipu3_uapi_isp_tnr3_vmem_params
Temporal noise reduction vector memory parameters

Definition

struct ipu3_uapi_isp_tnr3_vmem_params {
__u16 slope[IPU3_UAPI_ISP_TNR3_VMEM_LEN];
__u16 reserved1[IPU3_UAPI_ISP_VEC_ELEMS - IPU3_UAPI_ISP_TNR3_VMEM_LEN];
__u16 sigma[IPU3_UAPI_ISP_TNR3_VMEM_LEN];
__u16 reserved2[IPU3_UAPI_ISP_VEC_ELEMS - IPU3_UAPI_ISP_TNR3_VMEM_LEN];

};

Members
slope slope setting in interpolation curve for temporal noise reduction.

reserved1 reserved

sigma knee point setting in interpolation curve for temporal noise reduction.

reserved2 reserved

struct ipu3_uapi_isp_tnr3_params
Temporal noise reduction v3 parameters

Definition

struct ipu3_uapi_isp_tnr3_params {
__u32 knee_y1;
__u32 knee_y2;
__u32 maxfb_y;
__u32 maxfb_u;
__u32 maxfb_v;
__u32 round_adj_y;
__u32 round_adj_u;
__u32 round_adj_v;
__u32 ref_buf_select;

};

Members
knee_y1 Knee point TNR3 assumes standard deviation of Y,U and V at Y1 are TnrY1_Sigma_Y,

U and V.

knee_y2 Knee point TNR3 assumes standard deviation of Y,U and V at Y2 are TnrY2_Sigma_Y,
U and V.

maxfb_y Max feedback gain for Y

3.2. Part I - Video for Linux API 917

Linux Media Documentation

maxfb_u Max feedback gain for U

maxfb_v Max feedback gain for V

round_adj_y rounding Adjust for Y

round_adj_u rounding Adjust for U

round_adj_v rounding Adjust for V

ref_buf_select selection of the reference frame buffer to be used.

struct ipu3_uapi_isp_xnr3_vmem_params
Extreme noise reduction v3 vector memory parameters

Definition

struct ipu3_uapi_isp_xnr3_vmem_params {
__u16 x[IPU3_UAPI_ISP_VEC_ELEMS];
__u16 a[IPU3_UAPI_ISP_VEC_ELEMS];
__u16 b[IPU3_UAPI_ISP_VEC_ELEMS];
__u16 c[IPU3_UAPI_ISP_VEC_ELEMS];

};

Members
x xnr3 parameters.

a xnr3 parameters.

b xnr3 parameters.

c xnr3 parameters.

struct ipu3_uapi_xnr3_alpha_params
Extreme noise reduction v3 alpha tuning parameters

Definition

struct ipu3_uapi_xnr3_alpha_params {
__u32 y0;
__u32 u0;
__u32 v0;
__u32 ydiff;
__u32 udiff;
__u32 vdiff;

};

Members
y0 Sigma for Y range similarity in dark area.

u0 Sigma for U range similarity in dark area.

v0 Sigma for V range similarity in dark area.

ydiff Sigma difference for Y between bright area and dark area.

udiff Sigma difference for U between bright area and dark area.

vdiff Sigma difference for V between bright area and dark area.

918 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

struct ipu3_uapi_xnr3_coring_params
Extreme noise reduction v3 coring parameters

Definition

struct ipu3_uapi_xnr3_coring_params {
__u32 u0;
__u32 v0;
__u32 udiff;
__u32 vdiff;

};

Members
u0 Coring Threshold of U channel in dark area.

v0 Coring Threshold of V channel in dark area.

udiff Threshold difference of U channel between bright and dark area.

vdiff Threshold difference of V channel between bright and dark area.

struct ipu3_uapi_xnr3_blending_params
Blending factor

Definition

struct ipu3_uapi_xnr3_blending_params {
__u32 strength;

};

Members
strength The factor for blending output with input. This is tuning parameterHigher values

lead to more aggressive XNR operation.

struct ipu3_uapi_isp_xnr3_params
Extreme noise reduction v3 parameters

Definition

struct ipu3_uapi_isp_xnr3_params {
struct ipu3_uapi_xnr3_alpha_params alpha;
struct ipu3_uapi_xnr3_coring_params coring;
struct ipu3_uapi_xnr3_blending_params blending;

};

Members
alpha parameters for xnr3 alpha. See ipu3_uapi_xnr3_alpha_params

coring parameters for xnr3 coring. See ipu3_uapi_xnr3_coring_params

blending parameters for xnr3 blending. See ipu3_uapi_xnr3_blending_params

struct ipu3_uapi_obgrid_param
Optical black level compensation parameters

Definition

3.2. Part I - Video for Linux API 919

Linux Media Documentation

struct ipu3_uapi_obgrid_param {
__u16 gr;
__u16 r;
__u16 b;
__u16 gb;

};

Members
gr Grid table values for color GR

r Grid table values for color R

b Grid table values for color B

gb Grid table values for color GB

Description
Black level is different for red, green, and blue channels. So black level compensation is differ-
ent per channel.

struct ipu3_uapi_flags
bits to indicate which pipeline needs update

Definition

struct ipu3_uapi_flags {
__u32 gdc:1;
__u32 obgrid:1;
__u32 reserved1:30;
__u32 acc_bnr:1;
__u32 acc_green_disparity:1;
__u32 acc_dm:1;
__u32 acc_ccm:1;
__u32 acc_gamma:1;
__u32 acc_csc:1;
__u32 acc_cds:1;
__u32 acc_shd:1;
__u32 reserved2:2;
__u32 acc_iefd:1;
__u32 acc_yds_c0:1;
__u32 acc_chnr_c0:1;
__u32 acc_y_ee_nr:1;
__u32 acc_yds:1;
__u32 acc_chnr:1;
__u32 acc_ytm:1;
__u32 acc_yds2:1;
__u32 acc_tcc:1;
__u32 acc_dpc:1;
__u32 acc_bds:1;
__u32 acc_anr:1;
__u32 acc_awb_fr:1;
__u32 acc_ae:1;
__u32 acc_af:1;
__u32 acc_awb:1;
__u32 reserved3:4;
__u32 lin_vmem_params:1;
__u32 tnr3_vmem_params:1;

920 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

__u32 xnr3_vmem_params:1;
__u32 tnr3_dmem_params:1;
__u32 xnr3_dmem_params:1;
__u32 reserved4:1;
__u32 obgrid_param:1;
__u32 reserved5:25;

};

Members
gdc 0 = no update, 1 = update.

obgrid 0 = no update, 1 = update.

reserved1 Not used.

acc_bnr 0 = no update, 1 = update.

acc_green_disparity 0 = no update, 1 = update.

acc_dm 0 = no update, 1 = update.

acc_ccm 0 = no update, 1 = update.

acc_gamma 0 = no update, 1 = update.

acc_csc 0 = no update, 1 = update.

acc_cds 0 = no update, 1 = update.

acc_shd 0 = no update, 1 = update.

reserved2 Not used.

acc_iefd 0 = no update, 1 = update.

acc_yds_c0 0 = no update, 1 = update.

acc_chnr_c0 0 = no update, 1 = update.

acc_y_ee_nr 0 = no update, 1 = update.

acc_yds 0 = no update, 1 = update.

acc_chnr 0 = no update, 1 = update.

acc_ytm 0 = no update, 1 = update.

acc_yds2 0 = no update, 1 = update.

acc_tcc 0 = no update, 1 = update.

acc_dpc 0 = no update, 1 = update.

acc_bds 0 = no update, 1 = update.

acc_anr 0 = no update, 1 = update.

acc_awb_fr 0 = no update, 1 = update.

acc_ae 0 = no update, 1 = update.

acc_af 0 = no update, 1 = update.

acc_awb 0 = no update, 1 = update.

3.2. Part I - Video for Linux API 921

Linux Media Documentation

reserved3 Not used.

lin_vmem_params 0 = no update, 1 = update.

tnr3_vmem_params 0 = no update, 1 = update.

xnr3_vmem_params 0 = no update, 1 = update.

tnr3_dmem_params 0 = no update, 1 = update.

xnr3_dmem_params 0 = no update, 1 = update.

reserved4 Not used.

obgrid_param 0 = no update, 1 = update.

reserved5 Not used.

struct ipu3_uapi_params
V4L2_META_FMT_IPU3_PARAMS

Definition

struct ipu3_uapi_params {
struct ipu3_uapi_flags use ;
struct ipu3_uapi_acc_param acc_param;
struct ipu3_uapi_isp_lin_vmem_params lin_vmem_params;
struct ipu3_uapi_isp_tnr3_vmem_params tnr3_vmem_params;
struct ipu3_uapi_isp_xnr3_vmem_params xnr3_vmem_params;
struct ipu3_uapi_isp_tnr3_params tnr3_dmem_params;
struct ipu3_uapi_isp_xnr3_params xnr3_dmem_params;
struct ipu3_uapi_obgrid_param obgrid_param;

};

Members
use select which parameters to apply, see ipu3_uapi_flags

acc_param ACC parameters, as specified by ipu3_uapi_acc_param

lin_vmem_params linearization VMEM, as specified by ipu3_uapi_isp_lin_vmem_params

tnr3_vmem_params tnr3 VMEM as specified by ipu3_uapi_isp_tnr3_vmem_params

xnr3_vmem_params xnr3 VMEM as specified by ipu3_uapi_isp_xnr3_vmem_params

tnr3_dmem_params tnr3 DMEM as specified by ipu3_uapi_isp_tnr3_params

xnr3_dmem_params xnr3 DMEM as specified by ipu3_uapi_isp_xnr3_params

obgrid_param obgrid parameters as specified by ipu3_uapi_obgrid_param

Description
The video queue “parameters” is of format V4L2_META_FMT_IPU3_PARAMS. This is a “single
plane” v4l2_meta_format using V4L2_BUF_TYPE_META_OUTPUT.

struct ipu3_uapi_params as defined below contains a lot of parameters and ipu3_uapi_flags
selects which parameters to apply.

922 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_META_FMT_RK_ISP1_PARAMS (‘rk1p’), V4L2_META_FMT_RK_ISP1_STAT_3A
(‘rk1s’)

Configuration parameters

The configuration parameters are passed to the rkisp1_params metadata output video node,
using the v4l2_meta_format interface. The buffer contains a single instance of the C structure
rkisp1_params_cfg defined in rkisp1-config.h. So the structure can be obtained from the
buffer by:

struct rkisp1_params_cfg *params = (struct rkisp1_params_cfg*) buffer;

3A and histogram statistics

The ISP1 device collects different statistics over an input Bayer frame. Those statistics are
obtained from the rkisp1_stats metadata capture video node, using the v4l2_meta_format in-
terface. The buffer contains a single instance of the C structure rkisp1_stat_buffer defined
in rkisp1-config.h. So the structure can be obtained from the buffer by:

struct rkisp1_stat_buffer *stats = (struct rkisp1_stat_buffer*) buffer;

The statistics collected are Exposure, AWB (Auto-white balance), Histogram and AF (Auto-
focus). See rkisp1_stat_buffer for details of the statistics.

The 3A statistics and configuration parameters described here are usually consumed and pro-
duced by dedicated user space libraries that comprise the important tuning tools using software
control loop.

rkisp1 uAPI data types

enum rkisp1_cif_isp_version
ISP variants

Constants
RKISP1_V10 used at least in rk3288 and rk3399

RKISP1_V11 declared in the original vendor code, but not used

RKISP1_V12 used at least in rk3326 and px30

RKISP1_V13 used at least in rk1808

enum rkisp1_cif_isp_exp_ctrl_autostop
stop modes

Constants
RKISP1_CIF_ISP_EXP_CTRL_AUTOSTOP_0 continuous measurement

RKISP1_CIF_ISP_EXP_CTRL_AUTOSTOP_1 stop measuring after a complete frame

enum rkisp1_cif_isp_exp_meas_mode
Exposure measure mode

3.2. Part I - Video for Linux API 923

Linux Media Documentation

Constants
RKISP1_CIF_ISP_EXP_MEASURING_MODE_0 Y = 16 + 0.25R + 0.5G + 0.1094B

RKISP1_CIF_ISP_EXP_MEASURING_MODE_1 Y = (R + G + B) x (85/256)

struct rkisp1_cif_isp_window
measurement window.

Definition

struct rkisp1_cif_isp_window {
__u16 h_offs;
__u16 v_offs;
__u16 h_size;
__u16 v_size;

};

Members
h_offs the horizontal offset of the window from the left of the frame in pixels.

v_offs the vertical offset of the window from the top of the frame in pixels.

h_size the horizontal size of the window in pixels

v_size the vertical size of the window in pixels.

Description
Measurements are calculated per window inside the frame. This struct represents a window
for a measurement.

struct rkisp1_cif_isp_bls_fixed_val
BLS fixed subtraction values

Definition

struct rkisp1_cif_isp_bls_fixed_val {
__s16 r;
__s16 gr;
__s16 gb;
__s16 b;

};

Members
r Fixed (signed!) subtraction value for Bayer pattern R

gr Fixed (signed!) subtraction value for Bayer pattern Gr

gb Fixed (signed!) subtraction value for Bayer pattern Gb

b Fixed (signed!) subtraction value for Bayer pattern B

Description
The values will be subtracted from the sensor values. Therefore a negative valuemeans addition
instead of subtraction!

struct rkisp1_cif_isp_bls_config
Configuration used by black level subtraction

924 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Definition

struct rkisp1_cif_isp_bls_config {
__u8 enable_auto;
__u8 en_windows;
struct rkisp1_cif_isp_window bls_window1;
struct rkisp1_cif_isp_window bls_window2;
__u8 bls_samples;
struct rkisp1_cif_isp_bls_fixed_val fixed_val;

};

Members
enable_auto Automatic mode activated means that the measured values are subtracted. Oth-

erwise the fixed subtraction values will be subtracted.

en_windows enabled window

bls_window1 Measurement window 1 size

bls_window2 Measurement window 2 size

bls_samples Set amount of measured pixels for each Bayer position (A, B,C and D) to
2^bls_samples.

fixed_val Fixed subtraction values

struct rkisp1_cif_isp_dpcc_methods_config
Methods Configuration used by DPCC

Definition

struct rkisp1_cif_isp_dpcc_methods_config {
__u32 method;
__u32 line_thresh;
__u32 line_mad_fac;
__u32 pg_fac;
__u32 rnd_thresh;
__u32 rg_fac;

};

Members
method Method enable bits

line_thresh Line threshold

line_mad_fac Line MAD factor

pg_fac Peak gradient factor

rnd_thresh Rank Neighbor Difference threshold

rg_fac Rank gradient factor

Description
Methods Configuration used by Defect Pixel Cluster Correction

struct rkisp1_cif_isp_dpcc_config
Configuration used by DPCC

Definition

3.2. Part I - Video for Linux API 925

Linux Media Documentation

struct rkisp1_cif_isp_dpcc_config {
__u32 mode;
__u32 output_mode;
__u32 set_use;
struct rkisp1_cif_isp_dpcc_methods_config methods[RKISP1_CIF_ISP_DPCC_METHODS_MAX];
__u32 ro_limits;
__u32 rnd_offs;

};

Members
mode dpcc output mode

output_mode whether use hard coded methods

set_use stage1 methods set

methods methods config

ro_limits rank order limits

rnd_offs differential rank offsets for rank neighbor difference

Description
Configuration used by Defect Pixel Cluster Correction

struct rkisp1_cif_isp_gamma_corr_curve
gamma curve point definition y-axis (output).

Definition

struct rkisp1_cif_isp_gamma_corr_curve {
__u16 gamma_y[RKISP1_CIF_ISP_DEGAMMA_CURVE_SIZE];

};

Members
gamma_y the values for the y-axis of gamma curve points. Each value is 12 bit.

Description
The reset values define a linear curve which has the same effect as bypass. Reset values are:
gamma_y[0] = 0x0000, gamma_y[1] = 0x0100, … gamma_y[15] = 0x0f00, gamma_y[16] = 0xfff

struct rkisp1_cif_isp_gamma_curve_x_axis_pnts
De-Gamma Curve definition x increments (sampling points). gamma_dx0 is for the lower
samples (1-8), gamma_dx1 is for the higher samples (9-16). The reset values for both fields
is 0x44444444. This means that each sample is 4 units away from the previous one on the
x-axis.

Definition

struct rkisp1_cif_isp_gamma_curve_x_axis_pnts {
__u32 gamma_dx0;
__u32 gamma_dx1;

};

Members

926 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

gamma_dx0 gamma curve sample points definitions. Bits 0:2 for sample 1. Bit 3 unused. Bits
4:6 for sample 2. bit 7 unused … Bits 28:30 for sample 8. Bit 31 unused

gamma_dx1 gamma curve sample points definitions. Bits 0:2 for sample 9. Bit 3 unused. Bits
4:6 for sample 10. bit 7 unused … Bits 28:30 for sample 16. Bit 31 unused

struct rkisp1_cif_isp_sdg_config
Configuration used by sensor degamma

Definition

struct rkisp1_cif_isp_sdg_config {
struct rkisp1_cif_isp_gamma_corr_curve curve_r;
struct rkisp1_cif_isp_gamma_corr_curve curve_g;
struct rkisp1_cif_isp_gamma_corr_curve curve_b;
struct rkisp1_cif_isp_gamma_curve_x_axis_pnts xa_pnts;

};

Members
curve_r gamma curve point definition axis for red

curve_g gamma curve point definition axis for green

curve_b gamma curve point definition axis for blue

xa_pnts x axis increments

struct rkisp1_cif_isp_lsc_config
Configuration used by Lens shading correction

Definition

struct rkisp1_cif_isp_lsc_config {
__u16 r_data_tbl[RKISP1_CIF_ISP_LSC_SAMPLES_MAX][RKISP1_CIF_ISP_LSC_SAMPLES_MAX];
__u16 gr_data_tbl[RKISP1_CIF_ISP_LSC_SAMPLES_MAX][RKISP1_CIF_ISP_LSC_SAMPLES_MAX];
__u16 gb_data_tbl[RKISP1_CIF_ISP_LSC_SAMPLES_MAX][RKISP1_CIF_ISP_LSC_SAMPLES_MAX];
__u16 b_data_tbl[RKISP1_CIF_ISP_LSC_SAMPLES_MAX][RKISP1_CIF_ISP_LSC_SAMPLES_MAX];
__u16 x_grad_tbl[RKISP1_CIF_ISP_LSC_SECTORS_TBL_SIZE];
__u16 y_grad_tbl[RKISP1_CIF_ISP_LSC_SECTORS_TBL_SIZE];
__u16 x_size_tbl[RKISP1_CIF_ISP_LSC_SECTORS_TBL_SIZE];
__u16 y_size_tbl[RKISP1_CIF_ISP_LSC_SECTORS_TBL_SIZE];
__u16 config_width;
__u16 config_height;

};

Members
r_data_tbl sample table red

gr_data_tbl sample table green (red)

gb_data_tbl sample table green (blue)

b_data_tbl sample table blue

x_grad_tbl gradient table x

y_grad_tbl gradient table y

x_size_tbl size table x

3.2. Part I - Video for Linux API 927

Linux Media Documentation

y_size_tbl size table y

config_width not used at the moment

config_height not used at the moment

struct rkisp1_cif_isp_ie_config
Configuration used by image effects

Definition

struct rkisp1_cif_isp_ie_config {
__u16 effect;
__u16 color_sel;
__u16 eff_mat_1;
__u16 eff_mat_2;
__u16 eff_mat_3;
__u16 eff_mat_4;
__u16 eff_mat_5;
__u16 eff_tint;

};

Members
effect values from ‘enum v4l2_colorfx’. Possible values are: V4L2_COLORFX_SEPIA,

V4L2_COLORFX_SET_CBCR, V4L2_COLORFX_AQUA, V4L2_COLORFX_EMBOSS,
V4L2_COLORFX_SKETCH, V4L2_COLORFX_BW, V4L2_COLORFX_NEGATIVE

color_sel bits 0:2 - colors bitmask (001 - blue, 010 - green, 100 - red). bits 8:15 - Threshold
value of the RGB colors for the color selection effect.

eff_mat_1 3x3 Matrix Coefficients for Emboss Effect 1

eff_mat_2 3x3 Matrix Coefficients for Emboss Effect 2

eff_mat_3 3x3 Matrix Coefficients for Emboss 3/Sketch 1

eff_mat_4 3x3 Matrix Coefficients for Sketch Effect 2

eff_mat_5 3x3 Matrix Coefficients for Sketch Effect 3

eff_tint Chrominance increment values of tint (used for sepia effect)

struct rkisp1_cif_isp_cproc_config
Configuration used by Color Processing

Definition

struct rkisp1_cif_isp_cproc_config {
__u8 c_out_range;
__u8 y_in_range;
__u8 y_out_range;
__u8 contrast;
__u8 brightness;
__u8 sat;
__u8 hue;

};

Members
c_out_range Chrominance pixel clipping range at output. (0 for limit, 1 for full)

928 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

y_in_range Luminance pixel clipping range at output.

y_out_range Luminance pixel clipping range at output.

contrast 00~ff, 0.0~1.992

brightness 80~7F, -128~+127

sat saturation, 00~FF, 0.0~1.992

hue 80~7F, -90~+87.188

struct rkisp1_cif_isp_awb_meas_config
Configuration for the AWB statistics

Definition

struct rkisp1_cif_isp_awb_meas_config {
struct rkisp1_cif_isp_window awb_wnd;
__u32 awb_mode;
__u8 max_y;
__u8 min_y;
__u8 max_csum;
__u8 min_c;
__u8 frames;
__u8 awb_ref_cr;
__u8 awb_ref_cb;
__u8 enable_ymax_cmp;

};

Members
awb_wnd white balance measurement window (in pixels)

awb_mode the awb meas mode. From enum rkisp1_cif_isp_awb_mode_type.

max_y only pixels values < max_y contribute to awb measurement, set to 0 to disable this fea-
ture

min_y only pixels values > min_y contribute to awb measurement

max_csum Chrominance sum maximum value, only consider pixels with Cb+Cr, smaller than
threshold for awb measurements

min_c Chrominance minimum value, only consider pixels with Cb/Cr each greater than thresh-
old value for awb measurements

frames number of frames - 1 used for mean value calculation (ucFrames=0 means 1 Frame)

awb_ref_cr reference Cr value for AWB regulation, target for AWB

awb_ref_cb reference Cb value for AWB regulation, target for AWB

enable_ymax_cmp enable Y_MAX compare (Not valid in RGB measurement mode.)

struct rkisp1_cif_isp_awb_gain_config
Configuration used by auto white balance gain

Definition

struct rkisp1_cif_isp_awb_gain_config {
__u16 gain_red;
__u16 gain_green_r;

3.2. Part I - Video for Linux API 929

Linux Media Documentation

__u16 gain_blue;
__u16 gain_green_b;

};

Members
gain_red gain value for red component.

gain_green_r gain value for green component in red line.

gain_blue gain value for blue component.

gain_green_b gain value for green component in blue line.

Description
All fields in this struct are 10 bit, where: 0x100h = 1, unsigned integer value, range 0 to 4 with
8 bit fractional part.

out_data_x = (AWB_GAIN_X * in_data + 128) >> 8

struct rkisp1_cif_isp_flt_config
Configuration used by ISP filtering

Definition

struct rkisp1_cif_isp_flt_config {
__u32 mode;
__u8 grn_stage1;
__u8 chr_h_mode;
__u8 chr_v_mode;
__u32 thresh_bl0;
__u32 thresh_bl1;
__u32 thresh_sh0;
__u32 thresh_sh1;
__u32 lum_weight;
__u32 fac_sh1;
__u32 fac_sh0;
__u32 fac_mid;
__u32 fac_bl0;
__u32 fac_bl1;

};

Members
mode ISP_FILT_MODE register fields (from enum rkisp1_cif_isp_flt_mode)

grn_stage1 Green filter stage 1 select (range 0x0…0x8)

chr_h_mode Chroma filter horizontal mode

chr_v_mode Chroma filter vertical mode

thresh_bl0 If thresh_bl1 < sum_grad < thresh_bl0 then fac_bl0 is selected (blurring th)

thresh_bl1 If sum_grad < thresh_bl1 then fac_bl1 is selected (blurring th)

thresh_sh0 If thresh_sh0 < sum_grad < thresh_sh1 then thresh_sh0 is selected (sharpening
th)

thresh_sh1 If thresh_sh1 < sum_grad then thresh_sh1 is selected (sharpening th)

930 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

lum_weight Parameters for luminance weight function.

fac_sh1 filter factor for sharp1 level

fac_sh0 filter factor for sharp0 level

fac_mid filter factor for mid level and for static filter mode

fac_bl0 filter factor for blur 0 level

fac_bl1 filter factor for blur 1 level (max blur)

Description
All 4 threshold fields (thresh_*) are 10 bits. All 6 factor fields (fac_*) are 6 bits.

struct rkisp1_cif_isp_bdm_config
Configuration used by Bayer DeMosaic

Definition

struct rkisp1_cif_isp_bdm_config {
__u8 demosaic_th;

};

Members
demosaic_th threshold for bayer demosaicing texture detection

struct rkisp1_cif_isp_ctk_config
Configuration used by Cross Talk correction

Definition

struct rkisp1_cif_isp_ctk_config {
__u16 coeff[3][3];
__u16 ct_offset[3];

};

Members
coeff color correction matrix. Values are 11-bit signed fixed-point numbers with 4 bit integer

and 7 bit fractional part, ranging from -8 (0x400) to +7.992 (0x3FF). 0 is represented by
0x000 and a coefficient value of 1 as 0x080.

ct_offset Red, Green, Blue offsets for the crosstalk correction matrix

struct rkisp1_cif_isp_goc_config
Configuration used by Gamma Out correction

Definition

struct rkisp1_cif_isp_goc_config {
__u32 mode;
__u16 gamma_y[RKISP1_CIF_ISP_GAMMA_OUT_MAX_SAMPLES];

};

Members
mode goc mode (from enum rkisp1_cif_isp_goc_mode)

gamma_y gamma out curve y-axis for all color components

3.2. Part I - Video for Linux API 931

Linux Media Documentation

Description
The number of entries of gamma_y depends on the hardware revision as is reported
by the hw_revision field of the struct media_device_info that is returned by ioctl ME-
DIA_IOC_DEVICE_INFO.

Versions <= V11 have RKISP1_CIF_ISP_GAMMA_OUT_MAX_SAMPLES_V10 entries, ver-
sions >= V12 have RKISP1_CIF_ISP_GAMMA_OUT_MAX_SAMPLES_V12 entries. RK-
ISP1_CIF_ISP_GAMMA_OUT_MAX_SAMPLES is equal to the maximum of the two.

struct rkisp1_cif_isp_hst_config
Configuration for Histogram statistics

Definition

struct rkisp1_cif_isp_hst_config {
__u32 mode;
__u8 histogram_predivider;
struct rkisp1_cif_isp_window meas_window;
__u8 hist_weight[RKISP1_CIF_ISP_HISTOGRAM_WEIGHT_GRIDS_SIZE];

};

Members
mode histogram mode (from enum rkisp1_cif_isp_histogram_mode)

histogram_predivider process every stepsize pixel, all other pixels are skipped

meas_window coordinates of the measure window

hist_weight weighting factor for sub-windows

Description
The number of entries of hist_weight depends on the hardware revision as is reported
by the hw_revision field of the struct media_device_info that is returned by ioctl ME-
DIA_IOC_DEVICE_INFO.

Versions <= V11 have RKISP1_CIF_ISP_HISTOGRAM_WEIGHT_GRIDS_SIZE_V10 entries, ver-
sions >= V12 have RKISP1_CIF_ISP_HISTOGRAM_WEIGHT_GRIDS_SIZE_V12 entries. RK-
ISP1_CIF_ISP_HISTOGRAM_WEIGHT_GRIDS_SIZE is equal to the maximum of the two.

struct rkisp1_cif_isp_aec_config
Configuration for Auto Exposure statistics

Definition

struct rkisp1_cif_isp_aec_config {
__u32 mode;
__u32 autostop;
struct rkisp1_cif_isp_window meas_window;

};

Members
mode Exposure measure mode (from enum rkisp1_cif_isp_exp_meas_mode)

autostop stop mode (from enum rkisp1_cif_isp_exp_ctrl_autostop)

meas_window coordinates of the measure window

932 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

struct rkisp1_cif_isp_afc_config
Configuration for the Auto Focus statistics

Definition

struct rkisp1_cif_isp_afc_config {
__u8 num_afm_win;
struct rkisp1_cif_isp_window afm_win[RKISP1_CIF_ISP_AFM_MAX_WINDOWS];
__u32 thres;
__u32 var_shift;

};

Members
num_afm_win max RKISP1_CIF_ISP_AFM_MAX_WINDOWS

afm_win coordinates of the meas window

thres threshold used for minimizing the influence of noise

var_shift the number of bits for the shift operation at the end of the calculation chain.

enum rkisp1_cif_isp_dpf_gain_usage
dpf gain usage

Constants
RKISP1_CIF_ISP_DPF_GAIN_USAGE_DISABLED don’t use any gains in preprocessing stage

RKISP1_CIF_ISP_DPF_GAIN_USAGE_NF_GAINS use only the noise function gains from registers
DPF_NF_GAIN_R, …

RKISP1_CIF_ISP_DPF_GAIN_USAGE_LSC_GAINS use only the gains from LSC module

RKISP1_CIF_ISP_DPF_GAIN_USAGE_NF_LSC_GAINS use the noise function gains and the gains
from LSC module

RKISP1_CIF_ISP_DPF_GAIN_USAGE_AWB_GAINS use only the gains from AWB module

RKISP1_CIF_ISP_DPF_GAIN_USAGE_AWB_LSC_GAINS use the gains from AWB and LSC module

RKISP1_CIF_ISP_DPF_GAIN_USAGE_MAX upper border (only for an internal evaluation)

enum rkisp1_cif_isp_dpf_rb_filtersize
Red and blue filter sizes

Constants
RKISP1_CIF_ISP_DPF_RB_FILTERSIZE_13x9 red and blue filter kernel size 13x9 (means 7x5

active pixel)

RKISP1_CIF_ISP_DPF_RB_FILTERSIZE_9x9 red and blue filter kernel size 9x9 (means 5x5 active
pixel)

enum rkisp1_cif_isp_dpf_nll_scale_mode
dpf noise level scale mode

Constants
RKISP1_CIF_ISP_NLL_SCALE_LINEAR use a linear scaling

RKISP1_CIF_ISP_NLL_SCALE_LOGARITHMIC use a logarithmic scaling

3.2. Part I - Video for Linux API 933

Linux Media Documentation

struct rkisp1_cif_isp_dpf_nll
Noise level lookup

Definition

struct rkisp1_cif_isp_dpf_nll {
__u16 coeff[RKISP1_CIF_ISP_DPF_MAX_NLF_COEFFS];
__u32 scale_mode;

};

Members
coeff Noise level Lookup coefficient

scale_mode dpf noise level scale mode (from enum rkisp1_cif_isp_dpf_nll_scale_mode)

struct rkisp1_cif_isp_dpf_rb_flt
Red blue filter config

Definition

struct rkisp1_cif_isp_dpf_rb_flt {
__u32 fltsize;
__u8 spatial_coeff[RKISP1_CIF_ISP_DPF_MAX_SPATIAL_COEFFS];
__u8 r_enable;
__u8 b_enable;

};

Members
fltsize The filter size for the red and blue pixels (from enum

rkisp1_cif_isp_dpf_rb_filtersize)

spatial_coeff Spatial weights

r_enable enable filter processing for red pixels

b_enable enable filter processing for blue pixels

struct rkisp1_cif_isp_dpf_g_flt
Green filter Configuration

Definition

struct rkisp1_cif_isp_dpf_g_flt {
__u8 spatial_coeff[RKISP1_CIF_ISP_DPF_MAX_SPATIAL_COEFFS];
__u8 gr_enable;
__u8 gb_enable;

};

Members
spatial_coeff Spatial weights

gr_enable enable filter processing for green pixels in green/red lines

gb_enable enable filter processing for green pixels in green/blue lines

struct rkisp1_cif_isp_dpf_gain
Noise function Configuration

Definition

934 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

struct rkisp1_cif_isp_dpf_gain {
__u32 mode;
__u16 nf_r_gain;
__u16 nf_b_gain;
__u16 nf_gr_gain;
__u16 nf_gb_gain;

};

Members
mode dpf gain usage (from enum rkisp1_cif_isp_dpf_gain_usage)

nf_r_gain Noise function Gain that replaces the AWB gain for red pixels

nf_b_gain Noise function Gain that replaces the AWB gain for blue pixels

nf_gr_gain Noise function Gain that replaces the AWB gain for green pixels in a red line

nf_gb_gain Noise function Gain that replaces the AWB gain for green pixels in a blue line

struct rkisp1_cif_isp_dpf_config
Configuration used by De-noising pre-filter

Definition

struct rkisp1_cif_isp_dpf_config {
struct rkisp1_cif_isp_dpf_gain gain;
struct rkisp1_cif_isp_dpf_g_flt g_flt;
struct rkisp1_cif_isp_dpf_rb_flt rb_flt;
struct rkisp1_cif_isp_dpf_nll nll;

};

Members
gain noise function gain

g_flt green filter config

rb_flt red blue filter config

nll noise level lookup

struct rkisp1_cif_isp_dpf_strength_config
strength of the filter

Definition

struct rkisp1_cif_isp_dpf_strength_config {
__u8 r;
__u8 g;
__u8 b;

};

Members
r filter strength of the RED filter

g filter strength of the GREEN filter

b filter strength of the BLUE filter

3.2. Part I - Video for Linux API 935

Linux Media Documentation

struct rkisp1_cif_isp_isp_other_cfg
Parameters for some blocks in rockchip isp1

Definition

struct rkisp1_cif_isp_isp_other_cfg {
struct rkisp1_cif_isp_dpcc_config dpcc_config;
struct rkisp1_cif_isp_bls_config bls_config;
struct rkisp1_cif_isp_sdg_config sdg_config;
struct rkisp1_cif_isp_lsc_config lsc_config;
struct rkisp1_cif_isp_awb_gain_config awb_gain_config;
struct rkisp1_cif_isp_flt_config flt_config;
struct rkisp1_cif_isp_bdm_config bdm_config;
struct rkisp1_cif_isp_ctk_config ctk_config;
struct rkisp1_cif_isp_goc_config goc_config;
struct rkisp1_cif_isp_dpf_config dpf_config;
struct rkisp1_cif_isp_dpf_strength_config dpf_strength_config;
struct rkisp1_cif_isp_cproc_config cproc_config;
struct rkisp1_cif_isp_ie_config ie_config;

};

Members
dpcc_config Defect Pixel Cluster Correction config

bls_config black level subtraction config

sdg_config sensor degamma config

lsc_config Lens Shade config

awb_gain_config Auto White balance gain config

flt_config filter config

bdm_config demosaic config

ctk_config cross talk config

goc_config gamma out config

dpf_config De-noising pre-filter config

dpf_strength_config dpf strength config

cproc_config color process config

ie_config image effects config

struct rkisp1_cif_isp_isp_meas_cfg
Rockchip ISP1 Measure Parameters

Definition

struct rkisp1_cif_isp_isp_meas_cfg {
struct rkisp1_cif_isp_awb_meas_config awb_meas_config;
struct rkisp1_cif_isp_hst_config hst_config;
struct rkisp1_cif_isp_aec_config aec_config;
struct rkisp1_cif_isp_afc_config afc_config;

};

Members

936 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

awb_meas_config auto white balance config

hst_config histogram config

aec_config auto exposure config

afc_config auto focus config

struct rkisp1_params_cfg
Rockchip ISP1 Input Parameters Meta Data

Definition

struct rkisp1_params_cfg {
__u32 module_en_update;
__u32 module_ens;
__u32 module_cfg_update;
struct rkisp1_cif_isp_isp_meas_cfg meas;
struct rkisp1_cif_isp_isp_other_cfg others;

};

Members
module_en_update mask the enable bits of which module should be updated

module_ens mask the enable value of each module, only update the module which correspond
bit was set in module_en_update

module_cfg_update mask the config bits of which module should be updated

meas measurement config

others other config

struct rkisp1_cif_isp_awb_meas
AWB measured values

Definition

struct rkisp1_cif_isp_awb_meas {
__u32 cnt;
__u8 mean_y_or_g;
__u8 mean_cb_or_b;
__u8 mean_cr_or_r;

};

Members
cnt White pixel count, number of “white pixels” found during last measurement

mean_y_or_g Mean value of Y within window and frames, Green if RGB is selected.

mean_cb_or_b Mean value of Cb within window and frames, Blue if RGB is selected.

mean_cr_or_r Mean value of Cr within window and frames, Red if RGB is selected.

struct rkisp1_cif_isp_awb_stat
statistics automatic white balance data

Definition

3.2. Part I - Video for Linux API 937

Linux Media Documentation

struct rkisp1_cif_isp_awb_stat {
struct rkisp1_cif_isp_awb_meas awb_mean[RKISP1_CIF_ISP_AWB_MAX_GRID];

};

Members
awb_mean Mean measured data

struct rkisp1_cif_isp_bls_meas_val
BLS measured values

Definition

struct rkisp1_cif_isp_bls_meas_val {
__u16 meas_r;
__u16 meas_gr;
__u16 meas_gb;
__u16 meas_b;

};

Members
meas_r Mean measured value for Bayer pattern R

meas_gr Mean measured value for Bayer pattern Gr

meas_gb Mean measured value for Bayer pattern Gb

meas_b Mean measured value for Bayer pattern B

struct rkisp1_cif_isp_ae_stat
statistics auto exposure data

Definition

struct rkisp1_cif_isp_ae_stat {
__u8 exp_mean[RKISP1_CIF_ISP_AE_MEAN_MAX];
struct rkisp1_cif_isp_bls_meas_val bls_val;

};

Members
exp_mean Mean luminance value of block xx

bls_val BLS measured values

Description
The number of entries of exp_mean depends on the hardware revision as is reported
by the hw_revision field of the struct media_device_info that is returned by ioctl ME-
DIA_IOC_DEVICE_INFO.

Versions <= V11 have RKISP1_CIF_ISP_AE_MEAN_MAX_V10 entries, versions >= V12 have
RKISP1_CIF_ISP_AE_MEAN_MAX_V12 entries. RKISP1_CIF_ISP_AE_MEAN_MAX is equal to
the maximum of the two.

Image is divided into 5x5 blocks on V10 and 9x9 blocks on V12.

struct rkisp1_cif_isp_af_meas_val
AF measured values

938 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Definition

struct rkisp1_cif_isp_af_meas_val {
__u32 sum;
__u32 lum;

};

Members
sum sharpness value

lum luminance value

struct rkisp1_cif_isp_af_stat
statistics auto focus data

Definition

struct rkisp1_cif_isp_af_stat {
struct rkisp1_cif_isp_af_meas_val window[RKISP1_CIF_ISP_AFM_MAX_WINDOWS];

};

Members
window AF measured value of window x

Description
The module measures the sharpness in 3 windows of selectable size via register set-
tings(ISP_AFM_*_A/B/C)

struct rkisp1_cif_isp_hist_stat
statistics histogram data

Definition

struct rkisp1_cif_isp_hist_stat {
__u32 hist_bins[RKISP1_CIF_ISP_HIST_BIN_N_MAX];

};

Members
hist_bins measured bin counters. Each bin is a 20 bits unsigned fixed point type. Bits 0-4 are

the fractional part and bits 5-19 are the integer part.

Description
The window of the measurements area is divided to 5x5 sub-windows for V10/V11 and to 9x9
sub-windows for V12. The histogram is then computed for each sub-window independently and
the final result is a weighted average of the histogram measurements on all sub-windows. The
window of the measurements area and the weight of each sub-window are configurable using
struct rkisp1_cif_isp_hst_config.
The histogram contains 16 bins in V10/V11 and 32 bins in V12/V13.

The number of entries of hist_bins depends on the hardware revision as is reported
by the hw_revision field of the struct media_device_info that is returned by ioctl ME-
DIA_IOC_DEVICE_INFO.

3.2. Part I - Video for Linux API 939

Linux Media Documentation

Versions <= V11 have RKISP1_CIF_ISP_HIST_BIN_N_MAX_V10 entries, versions >= V12 have
RKISP1_CIF_ISP_HIST_BIN_N_MAX_V12 entries. RKISP1_CIF_ISP_HIST_BIN_N_MAX is equal
to the maximum of the two.

struct rkisp1_cif_isp_stat
Rockchip ISP1 Statistics Data

Definition

struct rkisp1_cif_isp_stat {
struct rkisp1_cif_isp_awb_stat awb;
struct rkisp1_cif_isp_ae_stat ae;
struct rkisp1_cif_isp_af_stat af;
struct rkisp1_cif_isp_hist_stat hist;

};

Members
awb statistics data for automatic white balance

ae statistics data for auto exposure

af statistics data for auto focus

hist statistics histogram data

struct rkisp1_stat_buffer
Rockchip ISP1 Statistics Meta Data

Definition

struct rkisp1_stat_buffer {
__u32 meas_type;
__u32 frame_id;
struct rkisp1_cif_isp_stat params;

};

Members
meas_type measurement types (RKISP1_CIF_ISP_STAT_* definitions)

frame_id frame ID for sync

params statistics data

V4L2_META_FMT_UVC (‘UVCH’)

UVC Payload Header Data

940 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Description

This format describes standard UVC metadata, extracted from UVC packet headers and pro-
vided by the UVC driver through metadata video nodes. That data includes exact copies of the
standard part of UVC Payload Header contents and auxiliary timing information, required for
precise interpretation of timestamps, contained in those headers. See section “2.4.3.3 Video
and Still Image Payload Headers” of the “UVC 1.5 Class specification” for details.

Each UVC payload header can be between 2 and 12 bytes large. Buffers can contain multiple
headers, if multiple such headers have been transmitted by the camera for the respective frame.
However, the driver may drop headers when the buffer is full, when they contain no useful
information (e.g. those without the SCR field or with that field identical to the previous header),
or generally to perform rate limiting when the device sends a large number of headers.

Each individual block contains the following fields:

Table 79: UVC Metadata Block
Field Description
__u64 ts; system timestamp in host byte order, measured by the driver

upon reception of the payload
__u16 sof; USB Frame Number in host byte order, also obtained by the

driver as close as possible to the above timestamp to enable
correlation between them

The rest is an exact copy of the UVC payload header:
__u8 length; length of the rest of the block, including this field
__u8 flags; Flags, indicating presence of other standard UVC fields
__u8 buf[]; The rest of the header, possibly including UVC PTS and SCR

fields

V4L2_META_FMT_VSP1_HGO (‘VSPH’)

Renesas R-Car VSP1 1-D Histogram Data

Description

This format describes histogram data generated by the Renesas R-Car VSP1 1-D Histogram
(HGO) engine.

The VSP1 HGO is a histogram computation engine that can operate on RGB, YCrCb or HSV data.
It operates on a possibly cropped and subsampled input image and computes the minimum,
maximum and sum of all pixels as well as per-channel histograms.

The HGO can compute histograms independently per channel, on the maximum of the three
channels (RGB data only) or on the Y channel only (YCbCr only). It can additionally output the
histogram with 64 or 256 bins, resulting in four possible modes of operation.

• In 64 bins normal mode, the HGO operates on the three channels independently to compute
three 64-bins histograms. RGB, YCbCr and HSV image formats are supported.

• In 64 bins maximum mode, the HGO operates on the maximum of the (R, G, B) channels
to compute a single 64-bins histogram. Only the RGB image format is supported.

3.2. Part I - Video for Linux API 941

Linux Media Documentation

• In 256 bins normal mode, the HGO operates on the Y channel to compute a single 256-bins
histogram. Only the YCbCr image format is supported.

• In 256 bins maximum mode, the HGO operates on the maximum of the (R, G, B) channels
to compute a single 256-bins histogram. Only the RGB image format is supported.

Byte Order. All data is stored in memory in little endian format. Each cell in the tables contains
one byte.

Table 80: VSP1 HGO Data - 64 Bins, Normal Mode
(792 bytes)

Offset Memory
[31:24] [23:16] [15:8] [7:0]

0 R/Cr/H max [7:0] R/Cr/H min [7:0]
4 G/Y/S max [7:0] G/Y/S min [7:0]
8 B/Cb/V max [7:0] B/Cb/V min [7:0]
12 R/Cr/H sum [31:0]
16 G/Y/S sum [31:0]
20 B/Cb/V sum [31:0]
24 R/Cr/H bin 0 [31:0]

…
276 R/Cr/H bin 63 [31:0]
280 G/Y/S bin 0 [31:0]

…
532 G/Y/S bin 63 [31:0]
536 B/Cb/V bin 0 [31:0]

…
788 B/Cb/V bin 63 [31:0]

Table 81: VSP1 HGO Data - 64 Bins, Max Mode (264
bytes)

Offset Memory
[31:24] [23:16] [15:8] [7:0]

0 max(R,G,B) max [7:0] max(R,G,B) min [7:0]
4 max(R,G,B) sum [31:0]
8 max(R,G,B) bin 0 [31:0]

…
260 max(R,G,B) bin 63 [31:0]

Table 82: VSP1 HGO Data - 256 Bins, Normal Mode
(1032 bytes)
Offset Memory

[31:24] [23:16] [15:8] [7:0]
0 Y max [7:0] Y min [7:0]
4 Y sum [31:0]
8 Y bin 0 [31:0]

…
1028 Y bin 255 [31:0]

942 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 83: VSP1 HGO Data - 256 Bins, Max Mode
(1032 bytes)

Offset Memory
[31:24] [23:16] [15:8] [7:0]

0 max(R,G,B) max [7:0] max(R,G,B) min [7:0]
4 max(R,G,B) sum [31:0]
8 max(R,G,B) bin 0 [31:0]

…
1028 max(R,G,B) bin 255 [31:0]

V4L2_META_FMT_VSP1_HGT (‘VSPT’)

Renesas R-Car VSP1 2-D Histogram Data

Description

This format describes histogram data generated by the Renesas R-Car VSP1 2-D Histogram
(HGT) engine.

The VSP1 HGT is a histogram computation engine that operates on HSV data. It operates on
a possibly cropped and subsampled input image and computes the sum, maximum and min-
imum of the S component as well as a weighted frequency histogram based on the H and S
components.

The histogram is a matrix of 6 Hue and 32 Saturation buckets, 192 in total. Each HSV value
is added to one or more buckets with a weight between 1 and 16 depending on the Hue areas
configuration. Finding the corresponding buckets is done by inspecting the H and S value
independently.

The Saturation position n (0 - 31) of the bucket in the matrix is found by the expression:
n = S / 8

The Hue position m (0 - 5) of the bucket in the matrix depends on how the HGT Hue areas
are configured. There are 6 user configurable Hue Areas which can be configured to cover
overlapping Hue values:

Area 0 Area 1 Area 2 Area 3 Area 4 Area 5
________ ________ ________ ________ ________ ________

\ /| |\ /| |\ /| |\ /| |\ /| |\ /| |\ /
\ / | | \ / | | \ / | | \ / | | \ / | | \ / | | \ /
X | | X | | X | | X | | X | | X | | X

/ \ | | / \ | | / \ | | / \ | | / \ | | / \ | | / \
/ \| |/ \| |/ \| |/ \| |/ \| |/ \| |/ \

5U 0L 0U 1L 1U 2L 2U 3L 3U 4L 4U 5L 5U 0L
<0..............................Hue Value............................255>

When two consecutive areas don’t overlap (n+1L is equal to nU) the boundary value is consid-
ered as part of the lower area.

Pixels with a hue value included in the centre of an area (between nL and nU included) are
attributed to that single area and given a weight of 16. Pixels with a hue value included in

3.2. Part I - Video for Linux API 943

Linux Media Documentation

the overlapping region between two areas (between n+1L and nU excluded) are attributed to
both areas and given a weight for each of these areas proportional to their position along the
diagonal lines (rounded down).

The Hue area setup must match one of the following constrains:

0L <= 0U <= 1L <= 1U <= 2L <= 2U <= 3L <= 3U <= 4L <= 4U <= 5L <= 5U

0U <= 1L <= 1U <= 2L <= 2U <= 3L <= 3U <= 4L <= 4U <= 5L <= 5U <= 0L

Byte Order. All data is stored in memory in little endian format. Each cell in the tables contains
one byte.

Table 84: VSP1 HGT Data - (776 bytes)
Offset Memory

[31:24] [23:16] [15:8] [7:0]
0 • S max [7:0] • S min [7:0]

4 S sum [31:0]
8 Histogram bucket (m=0, n=0) [31:0]
12 Histogram bucket (m=0, n=1) [31:0]

…
132 Histogram bucket (m=0, n=31) [31:0]
136 Histogram bucket (m=1, n=0) [31:0]

…
264 Histogram bucket (m=2, n=0) [31:0]

…
392 Histogram bucket (m=3, n=0) [31:0]

…
520 Histogram bucket (m=4, n=0) [31:0]

…
648 Histogram bucket (m=5, n=0) [31:0]

…
772 Histogram bucket (m=5, n=31) [31:0]

V4L2_META_FMT_VIVID (‘VIVD’)

VIVID Metadata Format

Description

This describes metadata format used by the vivid driver.

It sets Brightness, Saturation, Contrast and Hue, each of which maps to corresponding controls
of the vivid driver with respect to the range and default values.

It contains the following fields:

944 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 85: VIVID Metadata
Field Description
u16 brightness; Image brightness, the value is in the range 0 to 255, with the default value

as 128.
u16 contrast; Image contrast, the value is in the range 0 to 255, with the default value

as 128.
u16 saturation; Image color saturation, the value is in the range 0 to 255, with the default

value as 128.
s16 hue; Image color balance, the value is in the range -128 to 128, with the default

value as 0.

3.2.2.14 Reserved Format Identifiers

These formats are not defined by this specification, they are just listed for reference and to
avoid naming conflicts. If you want to register your own format, send an e-mail to the linux-
media mailing list https://linuxtv.org/lists.php for inclusion in the videodev2.h file. If you want
to share your format with other developers add a link to your documentation and send a copy
to the linux-media mailing list for inclusion in this section. If you think your format should be
listed in a standard format section please make a proposal on the linux-media mailing list.

Table 86: Reserved Image Formats
Identifier Code Details
V4L2_PIX_FMT_DV ‘dvsd’ unknown
V4L2_PIX_FMT_ET61X251 ‘E625’ Compressed format of the ET61X251 driver.
V4L2_PIX_FMT_HI240 ‘HI24’ 8 bit RGB format used by the BTTV driver.
V4L2_PIX_FMT_CPIA1 ‘CPIA’ YUV format used by the gspca cpia1 driver.
V4L2_PIX_FMT_JPGL ‘JPGL’ JPEG-Light format (Pegasus Lossless JPEG)

used in Divio webcams NW 80x.
V4L2_PIX_FMT_SPCA501 ‘S501’ YUYV per line used by the gspca driver.
V4L2_PIX_FMT_SPCA505 ‘S505’ YYUV per line used by the gspca driver.
V4L2_PIX_FMT_SPCA508 ‘S508’ YUVY per line used by the gspca driver.
V4L2_PIX_FMT_SPCA561 ‘S561’ Compressed GBRG Bayer format used by the

gspca driver.
V4L2_PIX_FMT_PAC207 ‘P207’ Compressed BGGR Bayer format used by the

gspca driver.
V4L2_PIX_FMT_MR97310A ‘M310’ Compressed BGGR Bayer format used by the

gspca driver.
V4L2_PIX_FMT_JL2005BCD ‘JL20’ JPEG compressed RGGB Bayer format used by

the gspca driver.
V4L2_PIX_FMT_OV511 ‘O511’ OV511 JPEG format used by the gspca driver.
V4L2_PIX_FMT_OV518 ‘O518’ OV518 JPEG format used by the gspca driver.
V4L2_PIX_FMT_PJPG ‘PJPG’ Pixart 73xx JPEG format used by the gspca

driver.
V4L2_PIX_FMT_SE401 ‘S401’ Compressed RGB format used by the gspca

se401 driver
V4L2_PIX_FMT_SQ905C ‘905C’ Compressed RGGB bayer format used by the

gspca driver.
V4L2_PIX_FMT_MJPEG ‘MJPG’ Compressed format used by the Zoran driver
V4L2_PIX_FMT_PWC1 ‘PWC1’ Compressed format of the PWC driver.
V4L2_PIX_FMT_PWC2 ‘PWC2’ Compressed format of the PWC driver.
V4L2_PIX_FMT_SN9C10X ‘S910’ Compressed format of the SN9C102 driver.

Continued on next page

3.2. Part I - Video for Linux API 945

https://linuxtv.org/lists.php

Linux Media Documentation

Table 86 – continued from previous page
Identifier Code Details
V4L2_PIX_FMT_SN9C20X_I420 ‘S920’ YUV 4:2:0 format of the gspca sn9c20x driver.
V4L2_PIX_FMT_SN9C2028 ‘SONX’ Compressed GBRG bayer format of the gspca

sn9c2028 driver.
V4L2_PIX_FMT_STV0680 ‘S680’ Bayer format of the gspca stv0680 driver.
V4L2_PIX_FMT_WNVA ‘WNVA’ Used by the Winnov Videum driver, http://www.

thedirks.org/winnov/
V4L2_PIX_FMT_TM6000 ‘TM60’ Used by Trident tm6000
V4L2_PIX_FMT_CIT_YYVYUY ‘CITV’ Used by xirlink CIT, found at IBM webcams.

Uses one line of Y then 1 line of VYUY
V4L2_PIX_FMT_KONICA420 ‘KONI’ Used by Konica webcams.

YUV420 planar in blocks of 256 pixels.
V4L2_PIX_FMT_YYUV ‘YYUV’ unknown
V4L2_PIX_FMT_Y4 ‘Y04 ‘ Old 4-bit greyscale format. Only the most sig-

nificant 4 bits of each byte are used, the other
bits are set to 0.

V4L2_PIX_FMT_Y6 ‘Y06 ‘ Old 6-bit greyscale format. Only the most sig-
nificant 6 bits of each byte are used, the other
bits are set to 0.

V4L2_PIX_FMT_S5C_UYVY_JPG ‘S5CI’ Two-planar format used by Samsung S5C73MX
cameras. The first plane contains interleaved
JPEG and UYVY image data, followed by meta
data in form of an array of offsets to the UYVY
data blocks. The actual pointer array follows im-
mediately the interleaved JPEG/UYVY data, the
number of entries in this array equals the height
of the UYVY image. Each entry is a 4-byte un-
signed integer in big endian order and it’s an off-
set to a single pixel line of the UYVY image. The
first plane can start either with JPEG or UYVY
data chunk. The size of a single UYVY block
equals the UYVY image’s width multiplied by 2.
The size of a JPEG chunk depends on the image
and can vary with each line.
The second plane, at an offset of 4084 bytes,
contains a 4-byte offset to the pointer array in
the first plane. This offset is followed by a 4-
byte value indicating size of the pointer array.
All numbers in the second plane are also in big
endian order. Remaining data in the second
plane is undefined. The information in the sec-
ond plane allows to easily find location of the
pointer array, which can be different for each
frame. The size of the pointer array is constant
for given UYVY image height.
In order to extract UYVY and JPEG frames an
application can initially set a data pointer to the
start of first plane and then add an offset from
the first entry of the pointers table. Such a
pointer indicates start of an UYVY image pixel
line. Whole UYVY line can be copied to a sep-
arate buffer. These steps should be repeated
for each line, i.e. the number of entries in the
pointer array. Anything what’s in between the
UYVY lines is JPEG data and should be concate-
nated to form the JPEG stream.

Continued on next page

946 Chapter 3. Linux Media Infrastructure userspace API

http://www.thedirks.org/winnov/
http://www.thedirks.org/winnov/

Linux Media Documentation

Table 86 – continued from previous page
Identifier Code Details
V4L2_PIX_FMT_MT21C ‘MT21’ Compressed two-planar YVU420 format used

by Mediatek MT8173. The compression
is lossless. It is an opaque intermedi-
ate format and the MDP hardware must
be used to convert V4L2_PIX_FMT_MT21C to
V4L2_PIX_FMT_NV12M, V4L2_PIX_FMT_YUV420M
or V4L2_PIX_FMT_YVU420.

V4L2_PIX_FMT_MM21 ‘MM21’ Non-compressed, tiled two-planar format used
by Mediatek MT8183. This is an opaque inter-
mediate format and the MDP3 hardware can be
used to convert it to other formats.

3.2.2.15 Colorspaces

‘Color’ is a very complex concept and depends on physics, chemistry and biology. Just because
you have three numbers that describe the ‘red’, ‘green’ and ‘blue’ components of the color of
a pixel does not mean that you can accurately display that color. A colorspace defines what
it actually means to have an RGB value of e.g. (255, 0, 0). That is, which color should be
reproduced on the screen in a perfectly calibrated environment.

In order to do that we first need to have a good definition of color, i.e. some way to uniquely
and unambiguously define a color so that someone else can reproduce it. Human color vision
is trichromatic since the human eye has color receptors that are sensitive to three different
wavelengths of light. Hence the need to use three numbers to describe color. Be glad you are
not a mantis shrimp as those are sensitive to 12 different wavelengths, so instead of RGB we
would be using the ABCDEFGHIJKL colorspace…

Color exists only in the eye and brain and is the result of how strongly color receptors are
stimulated. This is based on the Spectral Power Distribution (SPD) which is a graph showing
the intensity (radiant power) of the light at wavelengths covering the visible spectrum as it
enters the eye. The science of colorimetry is about the relationship between the SPD and color
as perceived by the human brain.

Since the human eye has only three color receptors it is perfectly possible that different SPDs
will result in the same stimulation of those receptors and are perceived as the same color, even
though the SPD of the light is different.

In the 1920s experiments were devised to determine the relationship between SPDs and the
perceived color and that resulted in the CIE 1931 standard that defines spectral weighting func-
tions that model the perception of color. Specifically that standard defines functions that can
take an SPD and calculate the stimulus for each color receptor. After some further mathemati-
cal transforms these stimuli are known as the CIE XYZ tristimulus values and these X, Y and Z
values describe a color as perceived by a human unambiguously. These X, Y and Z values are
all in the range [0…1].

The Y value in the CIE XYZ colorspace corresponds to luminance. Often the CIE XYZ colorspace
is transformed to the normalized CIE xyY colorspace:

x = X / (X + Y + Z)

y = Y / (X + Y + Z)

The x and y values are the chromaticity coordinates and can be used to define a color without the
luminance component Y. It is very confusing to have such similar names for these colorspaces.

3.2. Part I - Video for Linux API 947

Linux Media Documentation

Just be aware that if colors are specified with lower case ‘x’ and ‘y’, then the CIE xyY colorspace
is used. Upper case ‘X’ and ‘Y’ refer to the CIE XYZ colorspace. Also, y has nothing to do with
luminance. Together x and y specify a color, and Y the luminance. That is really all you need
to remember from a practical point of view. At the end of this section you will find reading
resources that go into much more detail if you are interested.

A monitor or TV will reproduce colors by emitting light at three different wavelengths, the
combination of which will stimulate the color receptors in the eye and thus cause the perception
of color. Historically these wavelengths were defined by the red, green and blue phosphors used
in the displays. These color primaries are part of what defines a colorspace.

Different display devices will have different primaries and some primaries are more suitable for
some display technologies than others. This has resulted in a variety of colorspaces that are
used for different display technologies or uses. To define a colorspace you need to define the
three color primaries (these are typically defined as x, y chromaticity coordinates from the CIE
xyY colorspace) but also the white reference: that is the color obtained when all three primaries
are at maximum power. This determines the relative power or energy of the primaries. This is
usually chosen to be close to daylight which has been defined as the CIE D65 Illuminant.

To recapitulate: the CIE XYZ colorspace uniquely identifies colors. Other colorspaces are de-
fined by three chromaticity coordinates defined in the CIE xyY colorspace. Based on those a
3x3 matrix can be constructed that transforms CIE XYZ colors to colors in the new colorspace.

Both the CIE XYZ and the RGB colorspace that are derived from the specific chromaticity pri-
maries are linear colorspaces. But neither the eye, nor display technology is linear. Doubling
the values of all components in the linear colorspace will not be perceived as twice the intensity
of the color. So each colorspace also defines a transfer function that takes a linear color com-
ponent value and transforms it to the non-linear component value, which is a closer match to
the non-linear performance of both the eye and displays. Linear component values are denoted
RGB, non-linear are denoted as R’G’B’. In general colors used in graphics are all R’G’B’, except
in openGL which uses linear RGB. Special care should be taken when dealing with openGL to
provide linear RGB colors or to use the built-in openGL support to apply the inverse transfer
function.

The final piece that defines a colorspace is a function that transforms non-linear R’G’B’ to non-
linear Y’CbCr. This function is determined by the so-called luma coefficients. There may be
multiple possible Y’CbCr encodings allowed for the same colorspace. Many encodings of color
prefer to use luma (Y’) and chroma (CbCr) instead of R’G’B’. Since the human eye is more
sensitive to differences in luminance than in color this encoding allows one to reduce the amount
of color information compared to the luma data. Note that the luma (Y’) is unrelated to the Y in
the CIE XYZ colorspace. Also note that Y’CbCr is often called YCbCr or YUV even though these
are strictly speaking wrong.

Sometimes people confuse Y’CbCr as being a colorspace. This is not correct, it is just an encod-
ing of an R’G’B’ color into luma and chroma values. The underlying colorspace that is associated
with the R’G’B’ color is also associated with the Y’CbCr color.

The final step is how the RGB, R’G’B’ or Y’CbCr values are quantized. The CIE XYZ colorspace
where X, Y and Z are in the range [0…1] describes all colors that humans can perceive, but the
transform to another colorspace will produce colors that are outside the [0…1] range. Once
clamped to the [0…1] range those colors can no longer be reproduced in that colorspace. This
clamping is what reduces the extent or gamut of the colorspace. How the range of [0…1] is
translated to integer values in the range of [0…255] (or higher, depending on the color depth)
is called the quantization. This is not part of the colorspace definition. In practice RGB or
R’G’B’ values are full range, i.e. they use the full [0…255] range. Y’CbCr values on the other

948 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

hand are limited range with Y’ using [16…235] and Cb and Cr using [16…240].

Unfortunately, in some cases limited range RGB is also used where the components use the
range [16…235]. And full range Y’CbCr also exists using the [0…255] range.

In order to correctly interpret a color you need to know the quantization range, whether it is
R’G’B’ or Y’CbCr, the used Y’CbCr encoding and the colorspace. From that information you can
calculate the corresponding CIE XYZ color and map that again to whatever colorspace your
display device uses.

The colorspace definition itself consists of the three chromaticity primaries, the white reference
chromaticity, a transfer function and the luma coefficients needed to transform R’G’B’ to Y’CbCr.
While some colorspace standards correctly define all four, quite often the colorspace standard
only defines some, and you have to rely on other standards for the missing pieces. The fact that
colorspaces are often a mix of different standards also led to very confusing naming conventions
where the name of a standard was used to name a colorspace when in fact that standard was
part of various other colorspaces as well.

If you want to read more about colors and colorspaces, then the following resources are
useful: poynton is a good practical book for video engineers, colimg has a much broader
scope and describes many more aspects of color (physics, chemistry, biology, etc.). The
http://www.brucelindbloom.com website is an excellent resource, especially with respect to
the mathematics behind colorspace conversions. The wikipedia CIE 1931 colorspace article is
also very useful.

3.2.2.16 Defining Colorspaces in V4L2

In V4L2 colorspaces are defined by four values. The first is the colorspace identifier (enum
v4l2_colorspace) which defines the chromaticities, the default transfer function, the default
Y’CbCr encoding and the default quantization method. The second is the transfer function
identifier (enum v4l2_xfer_func) to specify non-standard transfer functions. The third is
the Y’CbCr encoding identifier (enum v4l2_ycbcr_encoding) to specify non-standard Y’CbCr
encodings and the fourth is the quantization identifier (enum v4l2_quantization) to spec-
ify non-standard quantization methods. Most of the time only the colorspace field of struct
v4l2_pix_format or struct v4l2_pix_format_mplane needs to be filled in.

OnHSV formats theHue is defined as the angle on the cylindrical color representation. Usually
this angle is measured in degrees, i.e. 0-360. When we map this angle value into 8 bits, there
are two basic ways to do it: Divide the angular value by 2 (0-179), or use the whole range, 0-255,
dividing the angular value by 1.41. The enum v4l2_hsv_encoding specifies which encoding is
used.

Note: The default R’G’B’ quantization is full range for all colorspaces. HSV formats are always
full range.

v4l2_colorspace

3.2. Part I - Video for Linux API 949

http://www.brucelindbloom.com
http://en.wikipedia.org/wiki/CIE_1931_color_space#CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space

Linux Media Documentation

Table 87: V4L2 Colorspaces
Identifier Details
V4L2_COLORSPACE_DEFAULT The default colorspace. This can be used by applications

to let the driver fill in the colorspace.
V4L2_COLORSPACE_SMPTE170M See Colorspace SMPTE 170M

(V4L2_COLORSPACE_SMPTE170M).
V4L2_COLORSPACE_REC709 See Colorspace Rec. 709

(V4L2_COLORSPACE_REC709).
V4L2_COLORSPACE_SRGB See Colorspace sRGB (V4L2_COLORSPACE_SRGB).
V4L2_COLORSPACE_OPRGB See Colorspace opRGB (V4L2_COLORSPACE_OPRGB).
V4L2_COLORSPACE_BT2020 SeeColorspace BT.2020 (V4L2_COLORSPACE_BT2020).
V4L2_COLORSPACE_DCI_P3 See Colorspace DCI-P3 (V4L2_COLORSPACE_DCI_P3).
V4L2_COLORSPACE_SMPTE240M See Colorspace SMPTE 240M

(V4L2_COLORSPACE_SMPTE240M).
V4L2_COLORSPACE_470_SYSTEM_M See Colorspace NTSC 1953

(V4L2_COLORSPACE_470_SYSTEM_M).
V4L2_COLORSPACE_470_SYSTEM_BG See Colorspace EBU Tech. 3213

(V4L2_COLORSPACE_470_SYSTEM_BG).
V4L2_COLORSPACE_JPEG See Colorspace JPEG (V4L2_COLORSPACE_JPEG).
V4L2_COLORSPACE_RAW The raw colorspace. This is used for raw image capture

where the image is minimally processed and is using
the internal colorspace of the device. The software that
processes an image using this ‘colorspace’ will have to
know the internals of the capture device.

v4l2_xfer_func

Table 88: V4L2 Transfer Function
Identifier Details
V4L2_XFER_FUNC_DEFAULT Use the default transfer function as defined by the colorspace.
V4L2_XFER_FUNC_709 Use the Rec. 709 transfer function.
V4L2_XFER_FUNC_SRGB Use the sRGB transfer function.
V4L2_XFER_FUNC_OPRGB Use the opRGB transfer function.
V4L2_XFER_FUNC_SMPTE240M Use the SMPTE 240M transfer function.
V4L2_XFER_FUNC_NONE Do not use a transfer function (i.e. use linear RGB values).
V4L2_XFER_FUNC_DCI_P3 Use the DCI-P3 transfer function.
V4L2_XFER_FUNC_SMPTE2084 Use the SMPTE 2084 transfer function. See Transfer Function

SMPTE 2084 (V4L2_XFER_FUNC_SMPTE2084).

v4l2_ycbcr_encoding

950 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 89: V4L2 Y’CbCr Encodings
Identifier Details
V4L2_YCBCR_ENC_DEFAULT Use the default Y’CbCr encoding as defined by the

colorspace.
V4L2_YCBCR_ENC_601 Use the BT.601 Y’CbCr encoding.
V4L2_YCBCR_ENC_709 Use the Rec. 709 Y’CbCr encoding.
V4L2_YCBCR_ENC_XV601 Use the extended gamut xvYCC BT.601 encoding.
V4L2_YCBCR_ENC_XV709 Use the extended gamut xvYCC Rec. 709 encoding.
V4L2_YCBCR_ENC_BT2020 Use the default non-constant luminance BT.2020

Y’CbCr encoding.
V4L2_YCBCR_ENC_BT2020_CONST_LUM Use the constant luminance BT.2020 Yc’CbcCrc en-

coding.
V4L2_YCBCR_ENC_SMPTE_240M Use the SMPTE 240M Y’CbCr encoding.

v4l2_hsv_encoding

Table 90: V4L2 HSV Encodings
Identifier Details
V4L2_HSV_ENC_180 For the Hue, each LSB is two degrees.
V4L2_HSV_ENC_256 For the Hue, the 360 degrees are mapped into 8 bits, i.e.

each LSB is roughly 1.41 degrees.

v4l2_quantization

Table 91: V4L2 Quantization Methods
Identifier Details
V4L2_QUANTIZATION_DEFAULT Use the default quantization encoding as defined by the

colorspace. This is always full range for R’G’B’ and HSV.
It is usually limited range for Y’CbCr.

V4L2_QUANTIZATION_FULL_RANGE Use the full range quantization encoding. I.e. the range
[0…1] is mapped to [0…255] (with possible clipping to
[1…254] to avoid the 0x00 and 0xff values). Cb and Cr
are mapped from [-0.5…0.5] to [0…255] (with possible
clipping to [1…254] to avoid the 0x00 and 0xff values).

V4L2_QUANTIZATION_LIM_RANGE Use the limited range quantization encoding. I.e. the
range [0…1] is mapped to [16…235]. Cb and Cr are
mapped from [-0.5…0.5] to [16…240]. Limited Range
cannot be used with HSV.

3.2. Part I - Video for Linux API 951

Linux Media Documentation

3.2.2.17 Detailed Colorspace Descriptions

Colorspace SMPTE 170M (V4L2_COLORSPACE_SMPTE170M)

The SMPTE 170M standard defines the colorspace used by NTSC and PAL and by SDTV in
general. The default transfer function is V4L2_XFER_FUNC_709. The default Y’CbCr encoding is
V4L2_YCBCR_ENC_601. The default Y’CbCr quantization is limited range. The chromaticities of
the primary colors and the white reference are:

Table 92: SMPTE 170M Chromaticities
Color x y
Red 0.630 0.340
Green 0.310 0.595
Blue 0.155 0.070
White Reference (D65) 0.3127 0.3290

The red, green and blue chromaticities are also often referred to as the SMPTE C set, so this
colorspace is sometimes called SMPTE C as well.

The transfer function defined for SMPTE 170M is the same as the one defined in Rec. 709.

L′ = −1.099(−L)0.45 + 0.099, for L ≤ −0.018

L′ = 4.5L, for − 0.018 < L < 0.018

L′ = 1.099L0.45 − 0.099, for L ≥ 0.018

Inverse Transfer function:

L = −
(
L′ − 0.099

−1.099

) 1
0.45

, for L′ ≤ −0.081

L =
L′

4.5
, for − 0.081 < L′ < 0.081

L =

(
L′ + 0.099

1.099

) 1
0.45

, for L′ ≥ 0.081

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following
V4L2_YCBCR_ENC_601 encoding:

Y ′ = 0.2990R′ + 0.5870G′ + 0.1140B′

Cb = −0.1687R′ − 0.3313G′ + 0.5B′

Cr = 0.5R′ − 0.4187G′ − 0.0813B′

Y’ is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. This con-
version to Y’CbCr is identical to the one defined in the ITU BT.601 standard and this colorspace
is sometimes called BT.601 as well, even though BT.601 does not mention any color primaries.

The default quantization is limited range, but full range is possible although rarely seen.

952 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Colorspace Rec. 709 (V4L2_COLORSPACE_REC709)

The ITU BT.709 standard defines the colorspace used by HDTV in general. The default transfer
function is V4L2_XFER_FUNC_709. The default Y’CbCr encoding is V4L2_YCBCR_ENC_709. The
default Y’CbCr quantization is limited range. The chromaticities of the primary colors and the
white reference are:

Table 93: Rec. 709 Chromaticities
Color x y
Red 0.640 0.330
Green 0.300 0.600
Blue 0.150 0.060
White Reference (D65) 0.3127 0.3290

The full name of this standard is Rec. ITU-R BT.709-5.

Transfer function. Normally L is in the range [0…1], but for the extended gamut xvYCC encoding
values outside that range are allowed.

L′ = −1.099(−L)0.45 + 0.099, for L ≤ −0.018

L′ = 4.5L, for − 0.018 < L < 0.018

L′ = 1.099L0.45 − 0.099, for L ≥ 0.018

Inverse Transfer function:

L = −
(
L′ − 0.099

−1.099

) 1
0.45

, for L′ ≤ −0.081

L =
L′

4.5
, for − 0.081 < L′ < 0.081

L =

(
L′ + 0.099

1.099

) 1
0.45

, for L′ ≥ 0.081

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following
V4L2_YCBCR_ENC_709 encoding:

Y ′ = 0.2126R′ + 0.7152G′ + 0.0722B′

Cb = −0.1146R′ − 0.3854G′ + 0.5B′

Cr = 0.5R′ − 0.4542G′ − 0.0458B′

Y’ is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5].

The default quantization is limited range, but full range is possible although rarely seen.

The V4L2_YCBCR_ENC_709 encoding described above is the default for this colorspace, but it can
be overridden with V4L2_YCBCR_ENC_601, in which case the BT.601 Y’CbCr encoding is used.

Two additional extended gamut Y’CbCr encodings are also possible with this colorspace:

The xvYCC 709 encoding (V4L2_YCBCR_ENC_XV709, xvYCC) is similar to the Rec. 709 encoding,
but it allows for R’, G’ and B’ values that are outside the range [0…1]. The resulting Y’, Cb and

3.2. Part I - Video for Linux API 953

Linux Media Documentation

Cr values are scaled and offset according to the limited range formula:

Y ′ =
219

256
∗ (0.2126R′ + 0.7152G′ + 0.0722B′) +

16

256

Cb =
224

256
∗ (−0.1146R′ − 0.3854G′ + 0.5B′)

Cr =
224

256
∗ (0.5R′ − 0.4542G′ − 0.0458B′)

The xvYCC 601 encoding (V4L2_YCBCR_ENC_XV601, xvYCC) is similar to the BT.601 encoding,
but it allows for R’, G’ and B’ values that are outside the range [0…1]. The resulting Y’, Cb and
Cr values are scaled and offset according to the limited range formula:

Y ′ =
219

256
∗ (0.2990R′ + 0.5870G′ + 0.1140B′) +

16

256

Cb =
224

256
∗ (−0.1687R′ − 0.3313G′ + 0.5B′)

Cr =
224

256
∗ (0.5R′ − 0.4187G′ − 0.0813B′)

Y’ is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5] and quan-
tized without further scaling or offsets. The non-standard xvYCC 709 or xvYCC 601 encodings
can be used by selecting V4L2_YCBCR_ENC_XV709 or V4L2_YCBCR_ENC_XV601. As seen by the
xvYCC formulas these encodings always use limited range quantization, there is no full range
variant. The whole point of these extended gamut encodings is that values outside the limited
range are still valid, although they map to R’, G’ and B’ values outside the [0…1] range and are
therefore outside the Rec. 709 colorspace gamut.

Colorspace sRGB (V4L2_COLORSPACE_SRGB)

The sRGB standard defines the colorspace used by most webcams and computer graph-
ics. The default transfer function is V4L2_XFER_FUNC_SRGB. The default Y’CbCr encoding is
V4L2_YCBCR_ENC_601. The default Y’CbCr quantization is limited range.

Note that the sYCC standard specifies full range quantization, however all current capture
hardware supported by the kernel convert R’G’B’ to limited range Y’CbCr. So choosing full
range as the default would break how applications interpret the quantization range.

The chromaticities of the primary colors and the white reference are:

Table 94: sRGB Chromaticities
Color x y
Red 0.640 0.330
Green 0.300 0.600
Blue 0.150 0.060
White Reference (D65) 0.3127 0.3290

These chromaticities are identical to the Rec. 709 colorspace.

954 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Transfer function. Note that negative values for L are only used by the Y’CbCr conversion.

L′ = −1.055(−L)
1
2.4 + 0.055, for L < −0.0031308

L′ = 12.92L, for − 0.0031308 ≤ L ≤ 0.0031308

L′ = 1.055L
1
2.4 − 0.055, for 0.0031308 < L ≤ 1

Inverse Transfer function:

L = −((−L′ + 0.055)/1.055)2.4, for L′ < −0.04045

L = L′/12.92, for − 0.04045 ≤ L′ ≤ 0.04045

L = ((L′ + 0.055)/1.055)2.4, for L′ > 0.04045

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following
V4L2_YCBCR_ENC_601 encoding as defined by sYCC:

Y ′ = 0.2990R′ + 0.5870G′ + 0.1140B′

Cb = −0.1687R′ − 0.3313G′ + 0.5B′

Cr = 0.5R′ − 0.4187G′ − 0.0813B′

Y’ is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. This
transform is identical to one defined in SMPTE 170M/BT.601. The Y’CbCr quantization is limited
range.

Colorspace opRGB (V4L2_COLORSPACE_OPRGB)

The opRGB standard defines the colorspace used by computer graphics that use the opRGB col-
orspace. The default transfer function is V4L2_XFER_FUNC_OPRGB. The default Y’CbCr encoding
is V4L2_YCBCR_ENC_601. The default Y’CbCr quantization is limited range.

Note that the opRGB standard specifies full range quantization, however all current capture
hardware supported by the kernel convert R’G’B’ to limited range Y’CbCr. So choosing full
range as the default would break how applications interpret the quantization range.

The chromaticities of the primary colors and the white reference are:

Table 95: opRGB Chromaticities
Color x y
Red 0.6400 0.3300
Green 0.2100 0.7100
Blue 0.1500 0.0600
White Reference (D65) 0.3127 0.3290

Transfer function:

L′ = L
1

2.19921875

Inverse Transfer function:

L = L′(2.19921875)

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following

3.2. Part I - Video for Linux API 955

Linux Media Documentation

V4L2_YCBCR_ENC_601 encoding:

Y ′ = 0.2990R′ + 0.5870G′ + 0.1140B′

Cb = −0.1687R′ − 0.3313G′ + 0.5B′

Cr = 0.5R′ − 0.4187G′ − 0.0813B′

Y’ is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. This
transform is identical to one defined in SMPTE 170M/BT.601. The Y’CbCr quantization is limited
range.

Colorspace BT.2020 (V4L2_COLORSPACE_BT2020)

The ITU BT.2020 standard defines the colorspace used by Ultra-high definition television
(UHDTV). The default transfer function is V4L2_XFER_FUNC_709. The default Y’CbCr encoding is
V4L2_YCBCR_ENC_BT2020. The default Y’CbCr quantization is limited range. The chromaticities
of the primary colors and the white reference are:

Table 96: BT.2020 Chromaticities
Color x y
Red 0.708 0.292
Green 0.170 0.797
Blue 0.131 0.046
White Reference (D65) 0.3127 0.3290

Transfer function (same as Rec. 709):

L′ = 4.5L, for 0 ≤ L < 0.018

L′ = 1.099L0.45 − 0.099, for 0.018 ≤ L ≤ 1

Inverse Transfer function:

L = L′/4.5, for L′ < 0.081

L =

(
L′ + 0.099

1.099

) 1
0.45

, for L′ ≥ 0.081

Please note that while Rec. 709 is defined as the default transfer function by the ITU BT.2020
standard, in practice this colorspace is often used with the Transfer Function SMPTE 2084
(V4L2_XFER_FUNC_SMPTE2084). In particular Ultra HD Blu-ray discs use this combination.

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following
V4L2_YCBCR_ENC_BT2020 encoding:

Y ′ = 0.2627R′ + 0.6780G′ + 0.0593B′

Cb = −0.1396R′ − 0.3604G′ + 0.5B′

Cr = 0.5R′ − 0.4598G′ − 0.0402B′

Y’ is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. The
Y’CbCr quantization is limited range.

There is also an alternate constant luminance R’G’B’ to Yc’CbcCrc
(V4L2_YCBCR_ENC_BT2020_CONST_LUM) encoding:

956 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Luma:

Y c′ = (0.2627R+ 0.6780G+ 0.0593B)′

B′ − Y c′ ≤ 0 :

Cbc = (B′ − Y c′)/1.9404

B′ − Y c′ > 0 :

Cbc = (B′ − Y c′)/1.5816

R′ − Y c′ ≤ 0 :

Crc = (R′ − Y ′)/1.7184

R′ − Y c′ > 0 :

Crc = (R′ − Y ′)/0.9936

Yc’ is clamped to the range [0…1] and Cbc and Crc are clamped to the range [-0.5…0.5]. The
Yc’CbcCrc quantization is limited range.

Colorspace DCI-P3 (V4L2_COLORSPACE_DCI_P3)

The SMPTE RP 431-2 standard defines the colorspace used by cinema projectors that use
the DCI-P3 colorspace. The default transfer function is V4L2_XFER_FUNC_DCI_P3. The default
Y’CbCr encoding is V4L2_YCBCR_ENC_709. The default Y’CbCr quantization is limited range.

Note: Note that this colorspace standard does not specify a Y’CbCr encoding since it is not
meant to be encoded to Y’CbCr. So this default Y’CbCr encoding was picked because it is the
HDTV encoding.

The chromaticities of the primary colors and the white reference are:

Table 97: DCI-P3 Chromaticities
Color x y
Red 0.6800 0.3200
Green 0.2650 0.6900
Blue 0.1500 0.0600
White Reference 0.3140 0.3510

Transfer function:

L′ = L
1
2.6

Inverse Transfer function:

L = L′(2.6)

Y’CbCr encoding is not specified. V4L2 defaults to Rec. 709.

3.2. Part I - Video for Linux API 957

Linux Media Documentation

Colorspace SMPTE 240M (V4L2_COLORSPACE_SMPTE240M)

The SMPTE 240M standard was an interim standard used during the early days of HDTV
(1988-1998). It has been superseded by Rec. 709. The default transfer function is
V4L2_XFER_FUNC_SMPTE240M. The default Y’CbCr encoding is V4L2_YCBCR_ENC_SMPTE240M. The
default Y’CbCr quantization is limited range. The chromaticities of the primary colors and the
white reference are:

Table 98: SMPTE 240M Chromaticities
Color x y
Red 0.630 0.340
Green 0.310 0.595
Blue 0.155 0.070
White Reference (D65) 0.3127 0.3290

These chromaticities are identical to the SMPTE 170M colorspace.

Transfer function:

L′ = 4L, for 0 ≤ L < 0.0228

L′ = 1.1115L0.45 − 0.1115, for 0.0228 ≤ L ≤ 1

Inverse Transfer function:

L =
L′

4
, for 0 ≤ L′ < 0.0913

L =

(
L′ + 0.1115

1.1115

) 1
0.45

, for L′ ≥ 0.0913

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following
V4L2_YCBCR_ENC_SMPTE240M encoding:

Y ′ = 0.2122R′ + 0.7013G′ + 0.0865B′

Cb = −0.1161R′ − 0.3839G′ + 0.5B′

Cr = 0.5R′ − 0.4451G′ − 0.0549B′

Y’ is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. The
Y’CbCr quantization is limited range.

Colorspace NTSC 1953 (V4L2_COLORSPACE_470_SYSTEM_M)

This standard defines the colorspace used by NTSC in 1953. In practice this colorspace
is obsolete and SMPTE 170M should be used instead. The default transfer function is
V4L2_XFER_FUNC_709. The default Y’CbCr encoding is V4L2_YCBCR_ENC_601. The default
Y’CbCr quantization is limited range. The chromaticities of the primary colors and the white
reference are:

958 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 99: NTSC 1953 Chromaticities
Color x y
Red 0.67 0.33
Green 0.21 0.71
Blue 0.14 0.08
White Reference (C) 0.310 0.316

Note: This colorspace uses Illuminant C instead of D65 as the white reference. To correctly
convert an image in this colorspace to another that uses D65 you need to apply a chromatic
adaptation algorithm such as the Bradford method.

The transfer function was never properly defined for NTSC 1953. The Rec. 709 transfer func-
tion is recommended in the literature:

L′ = 4.5L, for 0 ≤ L < 0.018

L′ = 1.099L0.45 − 0.099, for 0.018 ≤ L ≤ 1

Inverse Transfer function:

L =
L′

4.5
, for L′ < 0.081

L =

(
L′ + 0.099

1.099

) 1
0.45

, for L′ ≥ 0.081

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following
V4L2_YCBCR_ENC_601 encoding:

Y ′ = 0.2990R′ + 0.5870G′ + 0.1140B′

Cb = −0.1687R′ − 0.3313G′ + 0.5B′

Cr = 0.5R′ − 0.4187G′ − 0.0813B′

Y’ is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. The Y’CbCr
quantization is limited range. This transform is identical to one defined in SMPTE 170M/BT.601.

Colorspace EBU Tech. 3213 (V4L2_COLORSPACE_470_SYSTEM_BG)

The EBU Tech 3213 standard defines the colorspace used by PAL/SECAM in 1975. Note that this
colorspace is not supported by the HDMI interface. Instead EBU Tech 3321 recommends that
Rec. 709 is used instead for HDMI. The default transfer function is V4L2_XFER_FUNC_709. The
default Y’CbCr encoding is V4L2_YCBCR_ENC_601. The default Y’CbCr quantization is limited
range. The chromaticities of the primary colors and the white reference are:

Table 100: EBU Tech. 3213 Chromaticities
Color x y
Red 0.64 0.33
Green 0.29 0.60
Blue 0.15 0.06
White Reference (D65) 0.3127 0.3290

3.2. Part I - Video for Linux API 959

Linux Media Documentation

The transfer function was never properly defined for this colorspace. The Rec. 709 transfer
function is recommended in the literature:

L′ = 4.5L, for 0 ≤ L < 0.018

L′ = 1.099L0.45 − 0.099, for 0.018 ≤ L ≤ 1

Inverse Transfer function:

L =
L′

4.5
, for L′ < 0.081

L =

(
L′ + 0.099

1.099

) 1
0.45

, for L′ ≥ 0.081

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following
V4L2_YCBCR_ENC_601 encoding:

Y ′ = 0.2990R′ + 0.5870G′ + 0.1140B′

Cb = −0.1687R′ − 0.3313G′ + 0.5B′

Cr = 0.5R′ − 0.4187G′ − 0.0813B′

Y’ is clamped to the range [0…1] and Cb and Cr are clamped to the range [-0.5…0.5]. The Y’CbCr
quantization is limited range. This transform is identical to one defined in SMPTE 170M/BT.601.

Colorspace JPEG (V4L2_COLORSPACE_JPEG)

This colorspace defines the colorspace used by most (Motion-)JPEG formats. The chromaticities
of the primary colors and the white reference are identical to sRGB. The transfer function use
is V4L2_XFER_FUNC_SRGB. The Y’CbCr encoding is V4L2_YCBCR_ENC_601 with full range quanti-
zation where Y’ is scaled to [0…255] and Cb/Cr are scaled to [-128…128] and then clipped to
[-128…127].

Note: The JPEG standard does not actually store colorspace information. So if something
other than sRGB is used, then the driver will have to set that information explicitly. Effectively
V4L2_COLORSPACE_JPEG can be considered to be an abbreviation for V4L2_COLORSPACE_SRGB,
V4L2_XFER_FUNC_SRGB, V4L2_YCBCR_ENC_601 and V4L2_QUANTIZATION_FULL_RANGE.

3.2.2.18 Detailed Transfer Function Descriptions

Transfer Function SMPTE 2084 (V4L2_XFER_FUNC_SMPTE2084)

The SMPTE ST 2084 standard defines the transfer function used by High Dynamic Range con-
tent.

Constants: m1 = (2610 / 4096) / 4
m2 = (2523 / 4096) * 128

c1 = 3424 / 4096

c2 = (2413 / 4096) * 32

960 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

c3 = (2392 / 4096) * 32

Transfer function: L’ = ((c1 + c2 * Lm1) / (1 + c3 * Lm1))m2

Inverse Transfer function: L = (max(L’1/m2 - c1, 0) / (c2 - c3 * L’1/m2))1/m1

Take care when converting between this transfer function and non-HDR transfer functions: the
linear RGB values [0…1] of HDR content map to a luminance range of 0 to 10000 cd/m2 whereas
the linear RGB values of non-HDR (aka Standard Dynamic Range or SDR) map to a luminance
range of 0 to 100 cd/m2.

To go from SDR to HDR you will have to divide L by 100 first. To go in the other direction you
will have to multiply L by 100. Of course, this clamps all luminance values over 100 cd/m2 to
100 cd/m2.

There are better methods, see e.g. colimg for more in-depth information about this.

3.2.3 Input/Output

The V4L2 API defines several different methods to read from or write to a device. All drivers
exchanging data with applications must support at least one of them.

The classic I/O method using the read() and write() function is automatically selected after
opening a V4L2 device. When the driver does not support this method attempts to read or write
will fail at any time.

Other methods must be negotiated. To select the streaming I/Omethod with memory mapped or
user buffers applications call the ioctl VIDIOC_REQBUFS ioctl. The asynchronous I/O method
is not defined yet.

Video overlay can be considered another I/O method, although the application does not directly
receive the image data. It is selected by initiating video overlay with the VIDIOC_S_FMT ioctl.
For more information see Video Overlay Interface.

Generally exactly one I/O method, including overlay, is associated with each file descriptor. The
only exceptions are applications not exchanging data with a driver (“panel applications”, see
Opening and Closing Devices) and drivers permitting simultaneous video capturing and overlay
using the same file descriptor, for compatibility with V4L and earlier versions of V4L2.

VIDIOC_S_FMT and ioctl VIDIOC_REQBUFS would permit this to some degree, but for sim-
plicity drivers need not support switching the I/O method (after first switching away from
read/write) other than by closing and reopening the device.

The following sections describe the various I/O methods in more detail.

3.2.3.1 Read/Write

Input and output devices support the read() and write() function, respectively, when the
V4L2_CAP_READWRITE flag in the capabilities field of struct v4l2_capability returned by
the ioctl VIDIOC_QUERYCAP ioctl is set.

Drivers may need the CPU to copy the data, but they may also support DMA to or from user
memory, so this I/O method is not necessarily less efficient than other methods merely ex-
changing buffer pointers. It is considered inferior though because no meta-information like
frame counters or timestamps are passed. This information is necessary to recognize frame
dropping and to synchronize with other data streams. However this is also the simplest I/O

3.2. Part I - Video for Linux API 961

Linux Media Documentation

method, requiring little or no setup to exchange data. It permits command line stunts like this
(the vidctrl tool is fictitious):

$ vidctrl /dev/video --input=0 --format=YUYV --size=352x288
$ dd if=/dev/video of=myimage.422 bs=202752 count=1

To read from the device applications use the read() function, to write the write() function.
Drivers must implement one I/O method if they exchange data with applications, but it need
not be this.1 When reading or writing is supported, the driver must also support the select()
and poll() function.2

3.2.3.2 Streaming I/O (Memory Mapping)

Input and output devices support this I/O method when the V4L2_CAP_STREAMING flag in the
capabilities field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl
is set. There are two streaming methods, to determine if the memory mapping flavor is sup-
ported applications must call the ioctl VIDIOC_REQBUFS ioctl with the memory type set to
V4L2_MEMORY_MMAP.

Streaming is an I/O method where only pointers to buffers are exchanged between application
and driver, the data itself is not copied. Memory mapping is primarily intended to map buffers
in device memory into the application’s address space. Device memory can be for example
the video memory on a graphics card with a video capture add-on. However, being the most
efficient I/O method available for a long time, many other drivers support streaming as well,
allocating buffers in DMA-able main memory.

A driver can support many sets of buffers. Each set is identified by a unique buffer type value.
The sets are independent and each set can hold a different type of data. To access different sets
at the same time different file descriptors must be used.1

To allocate device buffers applications call the ioctl VIDIOC_REQBUFS ioctl with the desired
number of buffers and buffer type, for example V4L2_BUF_TYPE_VIDEO_CAPTURE. This ioctl can
also be used to change the number of buffers or to free the allocated memory, provided none
of the buffers are still mapped.

Before applications can access the buffers they must map them into their address space with the
mmap() function. The location of the buffers in device memory can be determined with the ioctl
VIDIOC_QUERYBUF ioctl. In the single-planar API case, the m.offset and length returned
in a struct v4l2_buffer are passed as sixth and second parameter to the mmap() function.
When using the multi-planar API, struct v4l2_buffer contains an array of struct v4l2_plane
structures, each containing its own m.offset and length. When using the multi-planar API,
every plane of every buffer has to be mapped separately, so the number of calls to mmap()
should be equal to number of buffers times number of planes in each buffer. The offset and
length values must not be modified. Remember, the buffers are allocated in physical memory,
as opposed to virtual memory, which can be swapped out to disk. Applications should free the
buffers as soon as possible with the munmap() function.

1 It would be desirable if applications could depend on drivers supporting all I/O interfaces, but as much as the
complex memory mapping I/O can be inadequate for some devices we have no reason to require this interface, which
is most useful for simple applications capturing still images.

2 At the driver level select() and poll() are the same, and select() is too important to be optional.
1 One could use one file descriptor and set the buffer type field accordingly when calling ioctl VIDIOC_QBUF,

VIDIOC_DQBUF etc., but it makes the select() function ambiguous. We also like the clean approach of one file
descriptor per logical stream. Video overlay for example is also a logical stream, although the CPU is not needed
for continuous operation.

962 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Example: Mapping buffers in the single-planar API

struct v4l2_requestbuffers reqbuf;
struct {

void *start;
size_t length;

} *buffers;
unsigned int i;

memset(&reqbuf, 0, sizeof(reqbuf));
reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
reqbuf.memory = V4L2_MEMORY_MMAP;
reqbuf.count = 20;

if (-1 == ioctl (fd, VIDIOC_REQBUFS, &reqbuf)) {
if (errno == EINVAL)

printf("Video capturing or mmap-streaming is not supported\\n");
else

perror("VIDIOC_REQBUFS");

exit(EXIT_FAILURE);
}

/* We want at least five buffers. */

if (reqbuf.count < 5) {
/* You may need to free the buffers here. */
printf("Not enough buffer memory\\n");
exit(EXIT_FAILURE);

}

buffers = calloc(reqbuf.count, sizeof(*buffers));
assert(buffers != NULL);

for (i = 0; i < reqbuf.count; i++) {
struct v4l2_buffer buffer;

memset(&buffer, 0, sizeof(buffer));
buffer.type = reqbuf.type;
buffer.memory = V4L2_MEMORY_MMAP;
buffer.index = i;

if (-1 == ioctl (fd, VIDIOC_QUERYBUF, &buffer)) {
perror("VIDIOC_QUERYBUF");
exit(EXIT_FAILURE);

}

buffers[i].length = buffer.length; /* remember for munmap() */

buffers[i].start = mmap(NULL, buffer.length,
PROT_READ | PROT_WRITE, /* recommended */
MAP_SHARED, /* recommended */
fd, buffer.m.offset);

if (MAP_FAILED == buffers[i].start) {
/* If you do not exit here you should unmap() and free()

the buffers mapped so far. */

3.2. Part I - Video for Linux API 963

Linux Media Documentation

perror("mmap");
exit(EXIT_FAILURE);

}
}

/* Cleanup. */

for (i = 0; i < reqbuf.count; i++)
munmap(buffers[i].start, buffers[i].length);

Example: Mapping buffers in the multi-planar API

struct v4l2_requestbuffers reqbuf;
/* Our current format uses 3 planes per buffer */
#define FMT_NUM_PLANES = 3

struct {
void *start[FMT_NUM_PLANES];
size_t length[FMT_NUM_PLANES];

} *buffers;
unsigned int i, j;

memset(&reqbuf, 0, sizeof(reqbuf));
reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
reqbuf.memory = V4L2_MEMORY_MMAP;
reqbuf.count = 20;

if (ioctl(fd, VIDIOC_REQBUFS, &reqbuf) < 0) {
if (errno == EINVAL)

printf("Video capturing or mmap-streaming is not supported\\n");
else

perror("VIDIOC_REQBUFS");

exit(EXIT_FAILURE);
}

/* We want at least five buffers. */

if (reqbuf.count < 5) {
/* You may need to free the buffers here. */
printf("Not enough buffer memory\\n");
exit(EXIT_FAILURE);

}

buffers = calloc(reqbuf.count, sizeof(*buffers));
assert(buffers != NULL);

for (i = 0; i < reqbuf.count; i++) {
struct v4l2_buffer buffer;
struct v4l2_plane planes[FMT_NUM_PLANES];

memset(&buffer, 0, sizeof(buffer));
buffer.type = reqbuf.type;
buffer.memory = V4L2_MEMORY_MMAP;
buffer.index = i;

964 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

/* length in struct v4l2_buffer in multi-planar API stores the size
* of planes array. */

buffer.length = FMT_NUM_PLANES;
buffer.m.planes = planes;

if (ioctl(fd, VIDIOC_QUERYBUF, &buffer) < 0) {
perror("VIDIOC_QUERYBUF");
exit(EXIT_FAILURE);

}

/* Every plane has to be mapped separately */
for (j = 0; j < FMT_NUM_PLANES; j++) {

buffers[i].length[j] = buffer.m.planes[j].length; /* remember for munmap() */

buffers[i].start[j] = mmap(NULL, buffer.m.planes[j].length,
PROT_READ | PROT_WRITE, /* recommended */
MAP_SHARED, /* recommended */
fd, buffer.m.planes[j].m.offset);

if (MAP_FAILED == buffers[i].start[j]) {
/* If you do not exit here you should unmap() and free()

the buffers and planes mapped so far. */
perror("mmap");
exit(EXIT_FAILURE);

}
}

}

/* Cleanup. */

for (i = 0; i < reqbuf.count; i++)
for (j = 0; j < FMT_NUM_PLANES; j++)

munmap(buffers[i].start[j], buffers[i].length[j]);

Conceptually streaming drivers maintain two buffer queues, an incoming and an outgoing
queue. They separate the synchronous capture or output operation locked to a video clock
from the application which is subject to random disk or network delays and preemption by
other processes, thereby reducing the probability of data loss. The queues are organized as
FIFOs, buffers will be output in the order enqueued in the incoming FIFO, and were captured
in the order dequeued from the outgoing FIFO.

The driver may require a minimum number of buffers enqueued at all times to function, apart of
this no limit exists on the number of buffers applications can enqueue in advance, or dequeue
and process. They can also enqueue in a different order than buffers have been dequeued, and
the driver can fill enqueued empty buffers in any order.2 The index number of a buffer (struct
v4l2_buffer index) plays no role here, it only identifies the buffer.

Initially all mapped buffers are in dequeued state, inaccessible by the driver. For capturing
applications it is customary to first enqueue all mapped buffers, then to start capturing and
enter the read loop. Here the application waits until a filled buffer can be dequeued, and re-
enqueues the buffer when the data is no longer needed. Output applications fill and enqueue
buffers, when enough buffers are stacked up the output is started with VIDIOC_STREAMON. In

2 Random enqueue order permits applications processing images out of order (such as video codecs) to return
buffers earlier, reducing the probability of data loss. Random fill order allows drivers to reuse buffers on a LIFO-
basis, taking advantage of caches holding scatter-gather lists and the like.

3.2. Part I - Video for Linux API 965

Linux Media Documentation

the write loop, when the application runs out of free buffers, it must wait until an empty buffer
can be dequeued and reused.

To enqueue and dequeue a buffer applications use the VIVIOC_QBUF and VIDIOC_DQBUF ioctl.
The status of a buffer being mapped, enqueued, full or empty can be determined at any time
using the ioctl VIDIOC_QUERYBUF ioctl. Two methods exist to suspend execution of the appli-
cation until one or more buffers can be dequeued. By default VIDIOC_DQBUF blocks when no
buffer is in the outgoing queue. When the O_NONBLOCK flag was given to the open() function,
VIDIOC_DQBUF returns immediately with an EAGAIN error code when no buffer is available.
The select() or poll() functions are always available.

To start and stop capturing or output applications call the VIDIOC_STREAMON and VID-
IOC_STREAMOFF ioctl.

Drivers implementing memory mapping I/O must support the VIDIOC_REQBUFS,
VIDIOC_QUERYBUF, VIDIOC_QBUF, VIDIOC_DQBUF, VIDIOC_STREAMON and VID-
IOC_STREAMOFF ioctls, the mmap(), munmap(), select() and poll() function.3

[capture example]

3.2.3.3 Streaming I/O (User Pointers)

Input and output devices support this I/O method when the V4L2_CAP_STREAMING flag in
the capabilities field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP
ioctl is set. If the particular user pointer method (not only memory mapping) is supported
must be determined by calling the ioctl VIDIOC_REQBUFS ioctl with the memory type set to
V4L2_MEMORY_USERPTR.

This I/O method combines advantages of the read/write and memory mapping methods. Buffers
(planes) are allocated by the application itself, and can reside for example in virtual or shared
memory. Only pointers to data are exchanged, these pointers and meta-information are passed
in struct v4l2_buffer (or in struct v4l2_plane in the multi-planar API case). The driver must
be switched into user pointer I/O mode by calling the ioctl VIDIOC_REQBUFS with the desired
buffer type. No buffers (planes) are allocated beforehand, consequently they are not indexed
and cannot be queried like mapped buffers with the VIDIOC_QUERYBUF ioctl.

Example: Initiating streaming I/O with user pointers

struct v4l2_requestbuffers reqbuf;

memset (&reqbuf, 0, sizeof (reqbuf));
reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
reqbuf.memory = V4L2_MEMORY_USERPTR;

if (ioctl (fd, VIDIOC_REQBUFS, &reqbuf) == -1) {
if (errno == EINVAL)

printf ("Video capturing or user pointer streaming is not supported\\n");
else

perror ("VIDIOC_REQBUFS");

3 At the driver level select() and poll() are the same, and select() is too important to be optional. The rest
should be evident.

966 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

exit (EXIT_FAILURE);
}

Buffer (plane) addresses and sizes are passed on the fly with the VIDIOC_QBUF ioctl. Although
buffers are commonly cycled, applications can pass different addresses and sizes at each VID-
IOC_QBUF call. If required by the hardware the driver swaps memory pages within physical
memory to create a continuous area of memory. This happens transparently to the application
in the virtual memory subsystem of the kernel. When buffer pages have been swapped out to
disk they are brought back and finally locked in physical memory for DMA.1

Filled or displayed buffers are dequeued with the VIDIOC_DQBUF ioctl. The driver can unlock
the memory pages at any time between the completion of the DMA and this ioctl. The memory
is also unlocked when VIDIOC_STREAMOFF is called, ioctl VIDIOC_REQBUFS, or when the
device is closed. Applications must take care not to free buffers without dequeuing. Firstly,
the buffers remain locked for longer, wasting physical memory. Secondly the driver will not be
notified when the memory is returned to the application’s free list and subsequently reused for
other purposes, possibly completing the requested DMA and overwriting valuable data.

For capturing applications it is customary to enqueue a number of empty buffers, to start cap-
turing and enter the read loop. Here the application waits until a filled buffer can be dequeued,
and re-enqueues the buffer when the data is no longer needed. Output applications fill and
enqueue buffers, when enough buffers are stacked up output is started. In the write loop, when
the application runs out of free buffers it must wait until an empty buffer can be dequeued and
reused. Two methods exist to suspend execution of the application until one or more buffers
can be dequeued. By default VIDIOC_DQBUF blocks when no buffer is in the outgoing queue.
When the O_NONBLOCK flag was given to the open() function, VIDIOC_DQBUF returns immedi-
ately with an EAGAIN error code when no buffer is available. The select() or poll() function are
always available.

To start and stop capturing or output applications call the VIDIOC_STREAMON and VID-
IOC_STREAMOFF ioctl.

Note: VIDIOC_STREAMOFF removes all buffers from both queues and unlocks all buffers as
a side effect. Since there is no notion of doing anything “now” on a multitasking system, if an
application needs to synchronize with another event it should examine the struct v4l2_buffer
timestamp of captured or outputted buffers.

Drivers implementing user pointer I/O must support the VIDIOC_REQBUFS, VIDIOC_QBUF,
VIDIOC_DQBUF, VIDIOC_STREAMON and VIDIOC_STREAMOFF ioctls, the select() and
poll() function.2

1 We expect that frequently used buffers are typically not swapped out. Anyway, the process of swapping, locking
or generating scatter-gather lists may be time consuming. The delay can be masked by the depth of the incoming
buffer queue, and perhaps by maintaining caches assuming a buffer will be soon enqueued again. On the other
hand, to optimize memory usage drivers can limit the number of buffers locked in advance and recycle the most
recently used buffers first. Of course, the pages of empty buffers in the incoming queue need not be saved to disk.
Output buffers must be saved on the incoming and outgoing queue because an application may share them with
other processes.

2 At the driver level select() and poll() are the same, and select() is too important to be optional. The rest
should be evident.

3.2. Part I - Video for Linux API 967

Linux Media Documentation

3.2.3.4 Streaming I/O (DMA buffer importing)

The DMABUF framework provides a generic method for sharing buffers between multiple de-
vices. Device drivers that support DMABUF can export a DMA buffer to userspace as a file
descriptor (known as the exporter role), import a DMA buffer from userspace using a file de-
scriptor previously exported for a different or the same device (known as the importer role), or
both. This section describes the DMABUF importer role API in V4L2.

Refer to DMABUF exporting for details about exporting V4L2 buffers as DMABUF file descrip-
tors.

Input and output devices support the streaming I/O method when the V4L2_CAP_STREAMING flag
in the capabilities field of struct v4l2_capability returned by the VIDIOC_QUERYCAP ioctl
is set. Whether importing DMA buffers through DMABUF file descriptors is supported is deter-
mined by calling the VIDIOC_REQBUFS ioctl with the memory type set to V4L2_MEMORY_DMABUF.

This I/O method is dedicated to sharing DMA buffers between different devices, which may
be V4L devices or other video-related devices (e.g. DRM). Buffers (planes) are allocated by
a driver on behalf of an application. Next, these buffers are exported to the application as
file descriptors using an API which is specific for an allocator driver. Only such file descriptor
are exchanged. The descriptors and meta-information are passed in struct v4l2_buffer (or in
struct v4l2_plane in the multi-planar API case). The driver must be switched into DMABUF
I/O mode by calling the VIDIOC_REQBUFS with the desired buffer type.

Example: Initiating streaming I/O with DMABUF file descriptors

struct v4l2_requestbuffers reqbuf;

memset(&reqbuf, 0, sizeof (reqbuf));
reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
reqbuf.memory = V4L2_MEMORY_DMABUF;
reqbuf.count = 1;

if (ioctl(fd, VIDIOC_REQBUFS, &reqbuf) == -1) {
if (errno == EINVAL)

printf("Video capturing or DMABUF streaming is not supported\\n");
else

perror("VIDIOC_REQBUFS");

exit(EXIT_FAILURE);
}

The buffer (plane) file descriptor is passed on the fly with the VIDIOC_QBUF ioctl. In case of
multiplanar buffers, every plane can be associated with a different DMABUF descriptor. Al-
though buffers are commonly cycled, applications can pass a different DMABUF descriptor at
each VIDIOC_QBUF call.

968 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Example: Queueing DMABUF using single plane API

int buffer_queue(int v4lfd, int index, int dmafd)
{

struct v4l2_buffer buf;

memset(&buf, 0, sizeof buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_DMABUF;
buf.index = index;
buf.m.fd = dmafd;

if (ioctl(v4lfd, VIDIOC_QBUF, &buf) == -1) {
perror("VIDIOC_QBUF");
return -1;

}

return 0;
}

Example 3.6. Queueing DMABUF using multi plane API

int buffer_queue_mp(int v4lfd, int index, int dmafd[], int n_planes)
{

struct v4l2_buffer buf;
struct v4l2_plane planes[VIDEO_MAX_PLANES];
int i;

memset(&buf, 0, sizeof buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
buf.memory = V4L2_MEMORY_DMABUF;
buf.index = index;
buf.m.planes = planes;
buf.length = n_planes;

memset(&planes, 0, sizeof planes);

for (i = 0; i < n_planes; ++i)
buf.m.planes[i].m.fd = dmafd[i];

if (ioctl(v4lfd, VIDIOC_QBUF, &buf) == -1) {
perror("VIDIOC_QBUF");
return -1;

}

return 0;
}

Captured or displayed buffers are dequeued with the VIDIOC_DQBUF ioctl. The driver can
unlock the buffer at any time between the completion of the DMA and this ioctl. The memory
is also unlocked when VIDIOC_STREAMOFF is called, VIDIOC_REQBUFS, or when the device
is closed.

For capturing applications it is customary to enqueue a number of empty buffers, to start cap-
turing and enter the read loop. Here the application waits until a filled buffer can be dequeued,

3.2. Part I - Video for Linux API 969

Linux Media Documentation

and re-enqueues the buffer when the data is no longer needed. Output applications fill and
enqueue buffers, when enough buffers are stacked up output is started. In the write loop, when
the application runs out of free buffers it must wait until an empty buffer can be dequeued and
reused. Two methods exist to suspend execution of the application until one or more buffers
can be dequeued. By default VIDIOC_DQBUF blocks when no buffer is in the outgoing queue.
When the O_NONBLOCK flag was given to the open() function, VIDIOC_DQBUF returns immedi-
ately with an EAGAIN error code when no buffer is available. The select() and poll() functions
are always available.

To start and stop capturing or displaying applications call the VIDIOC_STREAMON and VID-
IOC_STREAMOFF ioctls.

Note: VIDIOC_STREAMOFF removes all buffers from both queues and unlocks all buffers as
a side effect. Since there is no notion of doing anything “now” on a multitasking system, if an
application needs to synchronize with another event it should examine the struct v4l2_buffer
timestamp of captured or outputted buffers.

Drivers implementing DMABUF importing I/O must support the VIDIOC_REQBUFS, VID-
IOC_QBUF, VIDIOC_DQBUF, VIDIOC_STREAMON and VIDIOC_STREAMOFF ioctls, and the
select() and poll() functions.

3.2.3.5 Asynchronous I/O

This method is not defined yet.

3.2.3.6 Buffers

A buffer contains data exchanged by application and driver using one of the Streaming I/O
methods. In the multi-planar API, the data is held in planes, while the buffer structure acts
as a container for the planes. Only pointers to buffers (planes) are exchanged, the data it-
self is not copied. These pointers, together with meta-information like timestamps or field
parity, are stored in a struct v4l2_buffer, argument to the ioctl VIDIOC_QUERYBUF, VID-
IOC_QBUF and VIDIOC_DQBUF ioctl. In the multi-planar API, some plane-specific members of
struct v4l2_buffer, such as pointers and sizes for each plane, are stored in struct v4l2_plane
instead. In that case, struct v4l2_buffer contains an array of plane structures.

Dequeued video buffers come with timestamps. The driver decides at which part of
the frame and with which clock the timestamp is taken. Please see flags in the masks
V4L2_BUF_FLAG_TIMESTAMP_MASK and V4L2_BUF_FLAG_TSTAMP_SRC_MASK in Buffer Flags. These
flags are always valid and constant across all buffers during the whole video stream. Changes in
these flags may take place as a side effect of VIDIOC_S_INPUT or VIDIOC_S_OUTPUT however.
The V4L2_BUF_FLAG_TIMESTAMP_COPY timestamp type which is used by e.g. on mem-to-mem de-
vices is an exception to the rule: the timestamp source flags are copied from the OUTPUT video
buffer to the CAPTURE video buffer.

970 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Interactions between formats, controls and buffers

V4L2 exposes parameters that influence the buffer size, or the way data is laid out in the buffer.
Those parameters are exposed through both formats and controls. One example of such a
control is the V4L2_CID_ROTATE control that modifies the direction in which pixels are stored
in the buffer, as well as the buffer size when the selected format includes padding at the end of
lines.

The set of information needed to interpret the content of a buffer (e.g. the pixel format, the line
stride, the tiling orientation or the rotation) is collectively referred to in the rest of this section
as the buffer layout.

Controls that can modify the buffer layout shall set the V4L2_CTRL_FLAG_MODIFY_LAYOUT flag.

Modifying formats or controls that influence the buffer size or layout require the stream
to be stopped. Any attempt at such a modification while the stream is active shall cause
the ioctl setting the format or the control to return the EBUSY error code. In that case
drivers shall also set the V4L2_CTRL_FLAG_GRABBED flag when calling VIDIOC_QUERYCTRL() or
VIDIOC_QUERY_EXT_CTRL() for such a control while the stream is active.

Note: The VIDIOC_S_SELECTION() ioctl can, depending on the hardware (for instance if the de-
vice doesn’t include a scaler), modify the format in addition to the selection rectangle. Similarly,
the VIDIOC_S_INPUT(), VIDIOC_S_OUTPUT(), VIDIOC_S_STD() and VIDIOC_S_DV_TIMINGS()
ioctls can also modify the format and selection rectangles. When those ioctls result in a
buffer size or layout change, drivers shall handle that condition as they would handle it in
the VIDIOC_S_FMT() ioctl in all cases described in this section.

Controls that only influence the buffer layout can be modified at any time when the stream is
stopped. As they don’t influence the buffer size, no special handling is needed to synchronize
those controls with buffer allocation and the V4L2_CTRL_FLAG_GRABBED flag is cleared once the
stream is stopped.

Formats and controls that influence the buffer size interact with buffer allocation. The sim-
plest way to handle this is for drivers to always require buffers to be reallocated in order to
change those formats or controls. In that case, to perform such changes, userspace applica-
tions shall first stop the video stream with the VIDIOC_STREAMOFF() ioctl if it is running and free
all buffers with the VIDIOC_REQBUFS() ioctl if they are allocated. After freeing all buffers the
V4L2_CTRL_FLAG_GRABBED flag for controls is cleared. The format or controls can then be mod-
ified, and buffers shall then be reallocated and the stream restarted. A typical ioctl sequence
is

1. VIDIOC_STREAMOFF

2. VIDIOC_REQBUFS(0)

3. VIDIOC_S_EXT_CTRLS

4. VIDIOC_S_FMT

5. VIDIOC_REQBUFS(n)

6. VIDIOC_QBUF

7. VIDIOC_STREAMON

3.2. Part I - Video for Linux API 971

Linux Media Documentation

The second VIDIOC_REQBUFS() call will take the new format and control value into account
to compute the buffer size to allocate. Applications can also retrieve the size by calling the
VIDIOC_G_FMT() ioctl if needed.

Note: The API doesn’t mandate the above order for control (3.) and format (4.) changes.
Format and controls can be set in a different order, or even interleaved, depending on the
device and use case. For instance some controls might behave differently for different pixel
formats, in which case the format might need to be set first.

When reallocation is required, any attempt to modify format or controls that influences the
buffer size while buffers are allocated shall cause the format or control set ioctl to return the
EBUSY error. Any attempt to queue a buffer too small for the current format or controls shall
cause the VIDIOC_QBUF() ioctl to return a EINVAL error.

Buffer reallocation is an expensive operation. To avoid that cost, drivers can (and are encour-
aged to) allow format or controls that influence the buffer size to be changed with buffers
allocated. In that case, a typical ioctl sequence to modify format and controls is

1. VIDIOC_STREAMOFF

2. VIDIOC_S_EXT_CTRLS

3. VIDIOC_S_FMT

4. VIDIOC_QBUF

5. VIDIOC_STREAMON

For this sequence to operate correctly, queued buffers need to be large enough for the
new format or controls. Drivers shall return a ENOSPC error in response to format change
(VIDIOC_S_FMT()) or control changes (VIDIOC_S_CTRL() or VIDIOC_S_EXT_CTRLS()) if buffers
too small for the new format are currently queued. As a simplification, drivers are allowed to
return a EBUSY error from these ioctls if any buffer is currently queued, without checking the
queued buffers sizes.

Additionally, drivers shall return a EINVAL error from the VIDIOC_QBUF() ioctl if the buffer being
queued is too small for the current format or controls. Together, these requirements ensure that
queued buffers will always be large enough for the configured format and controls.

Userspace applications can query the buffer size required for a given format and controls by first
setting the desired control values and then trying the desired format. The VIDIOC_TRY_FMT()
ioctl will return the required buffer size.

1. VIDIOC_S_EXT_CTRLS(x)

2. VIDIOC_TRY_FMT()

3. VIDIOC_S_EXT_CTRLS(y)

4. VIDIOC_TRY_FMT()

The VIDIOC_CREATE_BUFS() ioctl can then be used to allocate buffers based on the queried sizes
(for instance by allocating a set of buffers large enough for all the desired formats and controls,
or by allocating separate set of appropriately sized buffers for each use case).

v4l2_buffer

972 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

struct v4l2_buffer

Table 101: struct v4l2_buffer
__u32 index Number of the buffer, set by the application except

when calling VIDIOC_DQBUF, then it is set by the driver.
This field can range from zero to the number of buffers
allocated with the ioctl VIDIOC_REQBUFS ioctl (struct
v4l2_requestbuffers count), plus any buffers allocated with
ioctl VIDIOC_CREATE_BUFS minus one.

__u32 type Type of the buffer, same as struct v4l2_format type or
struct v4l2_requestbuffers type, set by the application. See
v4l2_buf_type

__u32 bytesused The number of bytes occupied by the data in the buffer. It
depends on the negotiated data format and may change with
each buffer for compressed variable size data like JPEG im-
ages. Drivers must set this field when type refers to a capture
stream, applications when it refers to an output stream. If the
application sets this to 0 for an output stream, then bytesused
will be set to the size of the buffer (see the length field of this
struct) by the driver. For multiplanar formats this field is ig-
nored and the planes pointer is used instead.

__u32 flags Flags set by the application or driver, see Buffer Flags.
__u32 field Indicates the field order of the image in the buffer, see

v4l2_field. This field is not used when the buffer contains
VBI data. Drivers must set it when type refers to a capture
stream, applications when it refers to an output stream.

struct timeval timestamp For capture streams this is time when the first data byte
was captured, as returned by the clock_gettime() function
for the relevant clock id; see V4L2_BUF_FLAG_TIMESTAMP_* in
Buffer Flags. For output streams the driver stores the time at
which the last data byte was actually sent out in the timestamp
field. This permits applications to monitor the drift between
the video and system clock. For output streams that use
V4L2_BUF_FLAG_TIMESTAMP_COPY the application has to fill in
the timestamp which will be copied by the driver to the cap-
ture stream.

struct
v4l2_timecode

timecode When the V4L2_BUF_FLAG_TIMECODE flag is set in
flags, this structure contains a frame timecode. In
V4L2_FIELD_ALTERNATE mode the top and bottom field
contain the same timecode. Timecodes are intended to help
video editing and are typically recorded on video tapes, but
also embedded in compressed formats like MPEG. This field
is independent of the timestamp and sequence fields.

__u32 sequence Set by the driver, counting the frames (not fields!) in se-
quence. This field is set for both input and output devices.

Continued on next page

3.2. Part I - Video for Linux API 973

Linux Media Documentation

Table 101 – continued from previous page
In V4L2_FIELD_ALTERNATE mode the top and bottom field have the same sequence number.
The count starts at zero and includes dropped or repeated frames. A dropped frame was
received by an input device but could not be stored due to lack of free buffer space. A repeated
frame was displayed again by an output device because the application did not pass new data
in time.

Note: This may count the frames received e.g. over USB, without taking into account the
frames dropped by the remote hardware due to limited compression throughput or bus band-
width. These devices identify by not enumerating any video standards, see Video Standards.

__u32 memory This field must be set by applications and/or drivers in accor-
dance with the selected I/O method. See v4l2_memory

union { m
__u32 offset For the single-planar API and when memory is

V4L2_MEMORY_MMAP this is the offset of the buffer from
the start of the device memory. The value is returned by the
driver and apart of serving as parameter to the mmap() func-
tion not useful for applications. See Streaming I/O (Memory
Mapping) for details

unsigned long userptr For the single-planar API and when memory is
V4L2_MEMORY_USERPTR this is a pointer to the buffer (casted to
unsigned long type) in virtual memory, set by the application.
See Streaming I/O (User Pointers) for details.

struct
v4l2_plane

*planes When using themulti-planar API, contains a userspace pointer
to an array of struct v4l2_plane. The size of the array should
be put in the length field of this struct v4l2_buffer structure.

int fd For the single-plane API and when memory is
V4L2_MEMORY_DMABUF this is the file descriptor associated
with a DMABUF buffer.

}
__u32 length Size of the buffer (not the payload) in bytes for the single-

planar API. This is set by the driver based on the calls to ioctl
VIDIOC_REQBUFS and/or ioctl VIDIOC_CREATE_BUFS. For
the multi-planar API the application sets this to the number of
elements in the planes array. The driver will fill in the actual
number of valid elements in that array.

__u32 reserved2 A place holder for future extensions. Drivers and applications
must set this to 0.

Continued on next page

974 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 101 – continued from previous page
__u32 request_fd The file descriptor of the request to queue the buffer to. If the

flag V4L2_BUF_FLAG_REQUEST_FD is set, then the buffer will be
queued to this request. If the flag is not set, then this field will
be ignored.
The V4L2_BUF_FLAG_REQUEST_FD flag and this field are only
used by ioctl VIDIOC_QBUF and ignored by other ioctls that
take a v4l2_buffer as argument.
Applications should not set V4L2_BUF_FLAG_REQUEST_FD for
any ioctls other than VIDIOC_QBUF.
If the device does not support requests, then EBADR will be
returned. If requests are supported but an invalid request file
descriptor is given, then EINVAL will be returned.

v4l2_plane

struct v4l2_plane

__u32 bytesused The number of bytes occupied by data in the plane (its
payload). Drivers must set this field when type refers
to a capture stream, applications when it refers to an
output stream. If the application sets this to 0 for an
output stream, then bytesused will be set to the size
of the plane (see the length field of this struct) by the
driver.

Note: Note that the actual image data starts at
data_offset which may not be 0.

__u32 length Size in bytes of the plane (not its payload). This
is set by the driver based on the calls to ioctl VID-
IOC_REQBUFS and/or ioctl VIDIOC_CREATE_BUFS.

union { m
__u32 mem_offset When the memory type in the containing struct

v4l2_buffer is V4L2_MEMORY_MMAP, this is the value
that should be passed to mmap(), similar to the offset
field in struct v4l2_buffer.

unsigned long userptr When the memory type in the containing struct
v4l2_buffer is V4L2_MEMORY_USERPTR, this is a
userspace pointer to the memory allocated for this
plane by an application.

int fd When the memory type in the containing struct
v4l2_buffer is V4L2_MEMORY_DMABUF, this is a file de-
scriptor associated with a DMABUF buffer, similar to
the fd field in struct v4l2_buffer.

}
Continued on next page

3.2. Part I - Video for Linux API 975

Linux Media Documentation

Table 102 – continued from previous page
__u32 data_offset Offset in bytes to video data in the plane. Drivers

must set this field when type refers to a capture
stream, applications when it refers to an output
stream.

Note: That data_offset is included in bytesused.
So the size of the image in the plane is bytesused-
data_offset at offset data_offset from the start of
the plane.

__u32 reserved[11] Reserved for future use. Should be zeroed by drivers
and applications.

v4l2_buf_type

enum v4l2_buf_type

V4L2_BUF_TYPE_VIDEO_CAPTURE 1 Buffer of a single-planar video capture stream,
see Video Capture Interface.

V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE 9 Buffer of a multi-planar video capture stream,
see Video Capture Interface.

V4L2_BUF_TYPE_VIDEO_OUTPUT 2 Buffer of a single-planar video output stream,
see Video Output Interface.

V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE 10 Buffer of a multi-planar video output stream,
see Video Output Interface.

V4L2_BUF_TYPE_VIDEO_OVERLAY 3 Buffer for video overlay, see Video Overlay In-
terface.

V4L2_BUF_TYPE_VBI_CAPTURE 4 Buffer of a raw VBI capture stream, see Raw
VBI Data Interface.

V4L2_BUF_TYPE_VBI_OUTPUT 5 Buffer of a raw VBI output stream, see Raw
VBI Data Interface.

V4L2_BUF_TYPE_SLICED_VBI_CAPTURE 6 Buffer of a sliced VBI capture stream, see
Sliced VBI Data Interface.

V4L2_BUF_TYPE_SLICED_VBI_OUTPUT 7 Buffer of a sliced VBI output stream, see
Sliced VBI Data Interface.

V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY 8 Buffer for video output overlay (OSD), see
Video Output Overlay Interface.

V4L2_BUF_TYPE_SDR_CAPTURE 11 Buffer for Software Defined Radio (SDR) cap-
ture stream, see Software Defined Radio In-
terface (SDR).

V4L2_BUF_TYPE_SDR_OUTPUT 12 Buffer for Software Defined Radio (SDR) out-
put stream, see Software Defined Radio Inter-
face (SDR).

V4L2_BUF_TYPE_META_CAPTURE 13 Buffer for metadata capture, seeMetadata In-
terface.

V4L2_BUF_TYPE_META_OUTPUT 14 Buffer for metadata output, see Metadata In-
terface.

976 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Buffer Flags

V4L2_BUF_FLAG_MAPPED
0x00000001

The buffer resides in device memory and has been
mapped into the application’s address space, see
Streaming I/O (Memory Mapping) for details. Drivers
set or clear this flag when the ioctl VIDIOC_QUERYBUF,
ioctl VIDIOC_QBUF, VIDIOC_DQBUF or VIDIOC_DQBUF
ioctl is called. Set by the driver.

V4L2_BUF_FLAG_QUEUED
0x00000002

Internally drivers maintain two buffer queues, an in-
coming and outgoing queue. When this flag is set,
the buffer is currently on the incoming queue. It
automatically moves to the outgoing queue after the
buffer has been filled (capture devices) or displayed
(output devices). Drivers set or clear this flag when
the VIDIOC_QUERYBUF ioctl is called. After (successful)
calling the VIDIOC_QBUFioctl it is always set and after
VIDIOC_DQBUF always cleared.

V4L2_BUF_FLAG_DONE
0x00000004

When this flag is set, the buffer is currently on the outgo-
ing queue, ready to be dequeued from the driver. Drivers
set or clear this flag when the VIDIOC_QUERYBUF ioctl is
called. After calling the VIDIOC_QBUF or VIDIOC_DQBUF
it is always cleared. Of course a buffer cannot be on both
queues at the same time, the V4L2_BUF_FLAG_QUEUED
and V4L2_BUF_FLAG_DONE flag are mutually exclusive.
They can be both cleared however, then the buffer is in
“dequeued” state, in the application domain so to say.

V4L2_BUF_FLAG_ERROR
0x00000040

When this flag is set, the buffer has been dequeued suc-
cessfully, although the data might have been corrupted.
This is recoverable, streaming may continue as normal
and the buffer may be reused normally. Drivers set this
flag when the VIDIOC_DQBUF ioctl is called.

V4L2_BUF_FLAG_IN_REQUEST
0x00000080

This buffer is part of a request that hasn’t been queued
yet.

V4L2_BUF_FLAG_KEYFRAME
0x00000008

Drivers set or clear this flag when calling the
VIDIOC_DQBUF ioctl. It may be set by video capture
devices when the buffer contains a compressed image
which is a key frame (or field), i. e. can be decompressed
on its own. Also known as an I-frame. Applications can
set this bit when type refers to an output stream.

V4L2_BUF_FLAG_PFRAME
0x00000010

Similar to V4L2_BUF_FLAG_KEYFRAME this flags predicted
frames or fields which contain only differences to a pre-
vious key frame. Applications can set this bit when type
refers to an output stream.

V4L2_BUF_FLAG_BFRAME
0x00000020

Similar to V4L2_BUF_FLAG_KEYFRAME this flags a bi-
directional predicted frame or field which contains only
the differences between the current frame and both the
preceding and following key frames to specify its con-
tent. Applications can set this bit when type refers to an
output stream.

V4L2_BUF_FLAG_TIMECODE
0x00000100

The timecode field is valid. Drivers set or clear this flag
when the VIDIOC_DQBUF ioctl is called. Applications can
set this bit and the corresponding timecode structure
when type refers to an output stream.

V4L2_BUF_FLAG_PREPARED
0x00000400

The buffer has been prepared for I/O and can be queued
by the application. Drivers set or clear this flag when the
ioctl VIDIOC_QUERYBUF, VIDIOC_PREPARE_BUF, ioctl
VIDIOC_QBUF, VIDIOC_DQBUF or VIDIOC_DQBUF ioctl
is called.

Continued on next page

3.2. Part I - Video for Linux API 977

Linux Media Documentation

Table 103 – continued from previous page
V4L2_BUF_FLAG_NO_CACHE_INVALIDATE

0x00000800
Caches do not have to be invalidated for this buffer.
Typically applications shall use this flag if the data cap-
tured in the buffer is not going to be touched by the
CPU, instead the buffer will, probably, be passed on
to a DMA-capable hardware unit for further process-
ing or output. This flag is ignored unless the queue
is used for memory mapping streaming I/O and reports
V4L2_BUF_CAP_SUPPORTS_MMAP_CACHE_HINTS ca-
pability.

V4L2_BUF_FLAG_NO_CACHE_CLEAN
0x00001000

Caches do not have to be cleaned for this buffer. Typi-
cally applications shall use this flag for output buffers if
the data in this buffer has not been created by the CPU
but by some DMA-capable unit, in which case caches
have not been used. This flag is ignored unless the queue
is used for memory mapping streaming I/O and reports
V4L2_BUF_CAP_SUPPORTS_MMAP_CACHE_HINTS ca-
pability.

V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF
0x00000200

Only valid if struct v4l2_requestbuffers flag
V4L2_BUF_CAP_SUPPORTS_M2M_HOLD_CAPTURE_BUF is
set. It is typically used with stateless decoders where
multiple output buffers each decode to a slice of the
decoded frame. Applications can set this flag when
queueing the output buffer to prevent the driver from
dequeueing the capture buffer after the output buffer
has been decoded (i.e. the capture buffer is ‘held’). If
the timestamp of this output buffer differs from that of
the previous output buffer, then that indicates the start
of a new frame and the previously held capture buffer is
dequeued.

V4L2_BUF_FLAG_LAST
0x00100000

Last buffer produced by the hardware. mem2mem
codec drivers set this flag on the capture queue for the
last buffer when the ioctl VIDIOC_QUERYBUF or VID-
IOC_DQBUF ioctl is called. Due to hardware limitations,
the last buffer may be empty. In this case the driver will
set the bytesused field to 0, regardless of the format.
Any subsequent call to the VIDIOC_DQBUF ioctl will not
block anymore, but return an EPIPE error code.

V4L2_BUF_FLAG_REQUEST_FD
0x00800000

The request_fd field contains a valid file descriptor.

V4L2_BUF_FLAG_TIMESTAMP_MASK
0x0000e000

Mask for timestamp types below. To test the timestamp
type, mask out bits not belonging to timestamp type by
performing a logical and operation with buffer flags and
timestamp mask.

V4L2_BUF_FLAG_TIMESTAMP_UNKNOWN
0x00000000

Unknown timestamp type. This type is used by drivers
before Linux 3.9 and may be either monotonic (see be-
low) or realtime (wall clock). Monotonic clock has been
favoured in embedded systems whereas most of the
drivers use the realtime clock. Either kinds of times-
tamps are available in user space via clock_gettime()
using clock IDs CLOCK_MONOTONIC and CLOCK_REALTIME,
respectively.

V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC
0x00002000

The buffer timestamp has been taken from the
CLOCK_MONOTONIC clock. To access the same clock out-
side V4L2, use clock_gettime().

V4L2_BUF_FLAG_TIMESTAMP_COPY
0x00004000

The CAPTURE buffer timestamp has been taken from
the corresponding OUTPUT buffer. This flag applies only
to mem2mem devices.

Continued on next page

978 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 103 – continued from previous page
V4L2_BUF_FLAG_TSTAMP_SRC_MASK

0x00070000
Mask for timestamp sources below. The timestamp
source defines the point of time the timestamp is taken
in relation to the frame. Logical ‘and’ operation between
the flags field and V4L2_BUF_FLAG_TSTAMP_SRC_MASK
produces the value of the timestamp source. Applica-
tions must set the timestamp source when type refers to
an output stream and V4L2_BUF_FLAG_TIMESTAMP_COPY
is set.

V4L2_BUF_FLAG_TSTAMP_SRC_EOF
0x00000000

End Of Frame. The buffer timestamp has been taken
when the last pixel of the frame has been received or
the last pixel of the frame has been transmitted. In
practice, software generated timestamps will typically
be read from the clock a small amount of time after the
last pixel has been received or transmitten, depending
on the system and other activity in it.

V4L2_BUF_FLAG_TSTAMP_SRC_SOE
0x00010000

Start Of Exposure. The buffer timestamp has been taken
when the exposure of the frame has begun. This is only
valid for the V4L2_BUF_TYPE_VIDEO_CAPTURE buffer type.

enum v4l2_memory

V4L2_MEMORY_MMAP 1 The buffer is used for memory mapping I/O.
V4L2_MEMORY_USERPTR 2 The buffer is used for user pointer I/O.
V4L2_MEMORY_OVERLAY 3 [to do]
V4L2_MEMORY_DMABUF 4 The buffer is used for DMA shared buffer I/O.

Memory Consistency Flags

V4L2_MEMORY_FLAG_NON_COHERENT
0x00000001

A buffer is allocated either in coherent (it
will be automatically coherent between the
CPU and the bus) or non-coherent memory.
The latter can provide performance gains, for
instance the CPU cache sync/flush operations
can be avoided if the buffer is accessed by the
corresponding device only and the CPU does
not read/write to/from that buffer. However,
this requires extra care from the driver – it
must guarantee memory consistency by issuing
a cache flush/sync when consistency is needed.
If this flag is set V4L2 will attempt to allo-
cate the buffer in non-coherent memory. The
flag takes effect only if the buffer is used for
memory mapping I/O and the queue reports the
V4L2_BUF_CAP_SUPPORTS_MMAP_CACHE_HINTS
capability.

3.2. Part I - Video for Linux API 979

Linux Media Documentation

Timecodes

The v4l2_buffer_timecode structure is designed to hold a SMPTE 12M or similar timecode.
(struct timeval timestamps are stored in the struct v4l2_buffer timestamp field.)

v4l2_timecode

struct v4l2_timecode

__u32 type Frame rate the timecodes are based on, see Timecode Types.
__u32 flags Timecode flags, see Timecode Flags.
__u8 frames Frame count, 0 … 23/24/29/49/59, depending on the type of time-

code.
__u8 seconds Seconds count, 0 … 59. This is a binary, not BCD number.
__u8 minutes Minutes count, 0 … 59. This is a binary, not BCD number.
__u8 hours Hours count, 0 … 29. This is a binary, not BCD number.
__u8 userbits[4] The “user group” bits from the timecode.

Timecode Types

V4L2_TC_TYPE_24FPS 1 24 frames per second, i. e. film.
V4L2_TC_TYPE_25FPS 2 25 frames per second, i. e. PAL or SECAM video.
V4L2_TC_TYPE_30FPS 3 30 frames per second, i. e. NTSC video.
V4L2_TC_TYPE_50FPS 4
V4L2_TC_TYPE_60FPS 5

Timecode Flags

V4L2_TC_FLAG_DROPFRAME 0x0001 Indicates “drop frame” semantics for counting
frames in 29.97 fps material. When set, frame
numbers 0 and 1 at the start of each minute,
except minutes 0, 10, 20, 30, 40, 50 are omitted
from the count.

V4L2_TC_FLAG_COLORFRAME 0x0002 The “color frame” flag.
V4L2_TC_USERBITS_field 0x000C Field mask for the “binary group flags”.
V4L2_TC_USERBITS_USERDEFINED 0x0000 Unspecified format.
V4L2_TC_USERBITS_8BITCHARS 0x0008 8-bit ISO characters.

980 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

3.2.3.7 Field Order

We have to distinguish between progressive and interlaced video. Progressive video transmits
all lines of a video image sequentially. Interlaced video divides an image into two fields, con-
taining only the odd and even lines of the image, respectively. Alternating the so called odd and
even field are transmitted, and due to a small delay between fields a cathode ray TV displays the
lines interleaved, yielding the original frame. This curious technique was invented because at
refresh rates similar to film the image would fade out too quickly. Transmitting fields reduces
the flicker without the necessity of doubling the frame rate and with it the bandwidth required
for each channel.

It is important to understand a video camera does not expose one frame at a time, merely
transmitting the frames separated into fields. The fields are in fact captured at two different
instances in time. An object on screen may well move between one field and the next. For
applications analysing motion it is of paramount importance to recognize which field of a frame
is older, the temporal order.

When the driver provides or accepts images field by field rather than interleaved, it is also
important applications understand how the fields combine to frames. We distinguish between
top (aka odd) and bottom (aka even) fields, the spatial order: The first line of the top field is
the first line of an interlaced frame, the first line of the bottom field is the second line of that
frame.

However because fields were captured one after the other, arguing whether a frame commences
with the top or bottom field is pointless. Any two successive top and bottom, or bottom and top
fields yield a valid frame. Only when the source was progressive to begin with, e. g. when
transferring film to video, two fields may come from the same frame, creating a natural order.

Counter to intuition the top field is not necessarily the older field. Whether the older field
contains the top or bottom lines is a convention determined by the video standard. Hence the
distinction between temporal and spatial order of fields. The diagrams below should make this
clearer.

In V4L it is assumed that all video cameras transmit fields on the media bus in the same order
they were captured, so if the top field was captured first (is the older field), the top field is also
transmitted first on the bus.

All video capture and output devices must report the current field order. Some drivers may
permit the selection of a different order, to this end applications initialize the field field of
struct v4l2_pix_format before calling the VIDIOC_S_FMT ioctl. If this is not desired it should
have the value V4L2_FIELD_ANY (0).

enum v4l2_field

v4l2_field

3.2. Part I - Video for Linux API 981

Linux Media Documentation

V4L2_FIELD_ANY 0 Applications request this field order when any field for-
mat is acceptable. Drivers choose depending on hard-
ware capabilities or e.g. the requested image size, and
return the actual field order. Drivers must never return
V4L2_FIELD_ANY. If multiple field orders are possible
the driver must choose one of the possible field orders
during VIDIOC_S_FMT or VIDIOC_TRY_FMT. struct
v4l2_buffer field can never be V4L2_FIELD_ANY.

V4L2_FIELD_NONE 1 Images are in progressive (frame-based) format, not in-
terlaced (field-based).

V4L2_FIELD_TOP 2 Images consist of the top (aka odd) field only.
V4L2_FIELD_BOTTOM 3 Images consist of the bottom (aka even) field only. Ap-

plications may wish to prevent a device from captur-
ing interlaced images because they will have “comb” or
“feathering” artefacts around moving objects.

V4L2_FIELD_INTERLACED 4 Images contain both fields, interleaved line by line. The
temporal order of the fields (whether the top or bottom
field is older) depends on the current video standard. In
M/NTSC the bottom field is the older field. In all other
standards the top field is the older field.

V4L2_FIELD_SEQ_TB 5 Images contain both fields, the top field lines are stored
first inmemory, immediately followed by the bottom field
lines. Fields are always stored in temporal order, the
older one first in memory. Image sizes refer to the frame,
not fields.

V4L2_FIELD_SEQ_BT 6 Images contain both fields, the bottom field lines are
stored first in memory, immediately followed by the top
field lines. Fields are always stored in temporal order,
the older one first in memory. Image sizes refer to the
frame, not fields.

V4L2_FIELD_ALTERNATE 7 The two fields of a frame are passed in separate buffers,
in temporal order, i. e. the older one first. To indi-
cate the field parity (whether the current field is a top
or bottom field) the driver or application, depending on
data direction, must set struct v4l2_buffer field to
V4L2_FIELD_TOP or V4L2_FIELD_BOTTOM. Any two suc-
cessive fields pair to build a frame. If fields are succes-
sive, without any dropped fields between them (fields
can drop individually), can be determined from the
struct v4l2_buffer sequence field. This format cannot
be selected when using the read/write I/O method since
there is no way to communicate if a field was a top or
bottom field.

V4L2_FIELD_INTERLACED_TB 8 Images contain both fields, interleaved line by line, top
field first. The top field is the older field.

V4L2_FIELD_INTERLACED_BT 9 Images contain both fields, interleaved line by line, top
field first. The bottom field is the older field.

982 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Field Order, Top Field First Transmitted

Field Order, Bottom Field First Transmitted

3.2.4 Interfaces

3.2.4.1 Video Capture Interface

Video capture devices sample an analog video signal and store the digitized images in mem-
ory. Today nearly all devices can capture at full 25 or 30 frames/second. With this interface
applications can control the capture process and move images from the driver into user space.

Conventionally V4L2 video capture devices are accessed through character device special files
named /dev/video and /dev/video0 to /dev/video63 with major number 81 and minor num-
bers 0 to 63. /dev/video is typically a symbolic link to the preferred video device.

Note: The same device file names are used for video output devices.

Querying Capabilities

Devices supporting the video capture interface set the V4L2_CAP_VIDEO_CAPTURE or
V4L2_CAP_VIDEO_CAPTURE_MPLANE flag in the capabilities field of struct v4l2_capability
returned by the ioctl VIDIOC_QUERYCAP ioctl. As secondary device functions they
may also support the video overlay (V4L2_CAP_VIDEO_OVERLAY) and the raw VBI capture
(V4L2_CAP_VBI_CAPTURE) interface. At least one of the read/write or streaming I/O methods
must be supported. Tuners and audio inputs are optional.

Supplemental Functions

Video capture devices shall support audio input, Tuners andModulators, controls, cropping and
scaling and streaming parameter ioctls as needed. The video input ioctls must be supported by
all video capture devices.

Image Format Negotiation

The result of a capture operation is determined by cropping and image format parameters.
The former select an area of the video picture to capture, the latter how images are stored in
memory, i. e. in RGB or YUV format, the number of bits per pixel or width and height. Together
they also define how images are scaled in the process.

As usual these parameters are not reset at open() time to permit Unix tool chains, programming
a device and then reading from it as if it was a plain file. Well written V4L2 applications ensure
they really get what they want, including cropping and scaling.

Cropping initialization at minimum requires to reset the parameters to defaults. An example is
given in Image Cropping, Insertion and Scaling – the CROP API.

3.2. Part I - Video for Linux API 983

Linux Media Documentation

Fig. 6: Field Order, Top Field First Transmitted

984 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Fig. 7: Field Order, Bottom Field First Transmitted

3.2. Part I - Video for Linux API 985

Linux Media Documentation

To query the current image format applications set the type field of a struct v4l2_format to
V4L2_BUF_TYPE_VIDEO_CAPTURE or V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE and call the VID-
IOC_G_FMT ioctl with a pointer to this structure. Drivers fill the struct v4l2_pix_format pix
or the struct v4l2_pix_format_mplane pix_mp member of the fmt union.

To request different parameters applications set the type field of a struct v4l2_format as above
and initialize all fields of the struct v4l2_pix_format vbi member of the fmt union, or better
just modify the results of VIDIOC_G_FMT, and call the VIDIOC_S_FMT ioctl with a pointer to
this structure. Drivers may adjust the parameters and finally return the actual parameters as
VIDIOC_G_FMT does.

Like VIDIOC_S_FMT the VIDIOC_TRY_FMT ioctl can be used to learn about hardware limita-
tions without disabling I/O or possibly time consuming hardware preparations.

The contents of struct v4l2_pix_format and struct v4l2_pix_format_mplane are discussed
in Image Formats. See also the specification of the VIDIOC_G_FMT, VIDIOC_S_FMT and
VIDIOC_TRY_FMT ioctls for details. Video capture devices must implement both the VID-
IOC_G_FMT and VIDIOC_S_FMT ioctl, even if VIDIOC_S_FMT ignores all requests and always
returns default parameters as VIDIOC_G_FMT does. VIDIOC_TRY_FMT is optional.

Reading Images

A video capture device may support the read() function and/or streaming (memory mapping or
user pointer) I/O. See Input/Output for details.

3.2.4.2 Video Overlay Interface

Also known as Framebuffer Overlay or Previewing.
Video overlay devices have the ability to genlock (TV-)video into the (VGA-)video signal of a
graphics card, or to store captured images directly in video memory of a graphics card, typically
with clipping. This can be considerable more efficient than capturing images and displaying
them by other means. In the old days when only nuclear power plants needed cooling towers
this used to be the only way to put live video into a window.

Video overlay devices are accessed through the same character special files as video capture
devices.

Note: The default function of a /dev/video device is video capturing. The overlay function is
only available after calling the VIDIOC_S_FMT ioctl.

The driver may support simultaneous overlay and capturing using the read/write and streaming
I/O methods. If so, operation at the nominal frame rate of the video standard is not guaranteed.
Frames may be directed away from overlay to capture, or one field may be used for overlay and
the other for capture if the capture parameters permit this.

Applications should use different file descriptors for capturing and overlay. This must be sup-
ported by all drivers capable of simultaneous capturing and overlay. Optionally these drivers
may also permit capturing and overlay with a single file descriptor for compatibility with V4L
and earlier versions of V4L2.1

1 In the opinion of the designers of this API, no driver writer taking the efforts to support simultaneous capturing

986 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

A common application of two file descriptors is the X11 Xv/V4L interface driver and a V4L2
application. While the X server controls video overlay, the application can take advantage of
memory mapping and DMA.

Querying Capabilities

Devices supporting the video overlay interface set the V4L2_CAP_VIDEO_OVERLAY flag in the
capabilities field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl.
The overlay I/O method specified below must be supported. Tuners and audio inputs are op-
tional.

Supplemental Functions

Video overlay devices shall support audio input, Tuners and Modulators, controls, cropping and
scaling and streaming parameter ioctls as needed. The video input and video standard ioctls
must be supported by all video overlay devices.

Setup

Before overlay can commence applications must program the driver with frame buffer param-
eters, namely the address and size of the frame buffer and the image format, for example RGB
5:6:5. The VIDIOC_G_FBUF and VIDIOC_S_FBUF ioctls are available to get and set these pa-
rameters, respectively. The VIDIOC_S_FBUF ioctl is privileged because it allows to set up DMA
into physical memory, bypassing the memory protection mechanisms of the kernel. Only the
superuser can change the frame buffer address and size. Users are not supposed to run TV
applications as root or with SUID bit set. A small helper application with suitable privileges
should query the graphics system and program the V4L2 driver at the appropriate time.

Some devices add the video overlay to the output signal of the graphics card. In this case the
frame buffer is not modified by the video device, and the frame buffer address and pixel format
are not needed by the driver. The VIDIOC_S_FBUF ioctl is not privileged. An application can
check for this type of device by calling the VIDIOC_G_FBUF ioctl.

A driver may support any (or none) of five clipping/blending methods:

1. Chroma-keying displays the overlaid image only where pixels in the primary graphics sur-
face assume a certain color.

2. A bitmap can be specified where each bit corresponds to a pixel in the overlaid image.
When the bit is set, the corresponding video pixel is displayed, otherwise a pixel of the
graphics surface.

3. A list of clipping rectangles can be specified. In these regions no video is displayed, so the
graphics surface can be seen here.

4. The framebuffer has an alpha channel that can be used to clip or blend the framebuffer
with the video.

and overlay will restrict this ability by requiring a single file descriptor, as in V4L and earlier versions of V4L2.
Making this optional means applications depending on two file descriptors need backup routines to be compatible
with all drivers, which is considerable more work than using two fds in applications which do not. Also two fd’s
fit the general concept of one file descriptor for each logical stream. Hence as a complexity trade-off drivers must
support two file descriptors and may support single fd operation.

3.2. Part I - Video for Linux API 987

Linux Media Documentation

5. A global alpha value can be specified to blend the framebuffer contents with video images.

When simultaneous capturing and overlay is supported and the hardware prohibits different
image and frame buffer formats, the format requested first takes precedence. The attempt to
capture (VIDIOC_S_FMT) or overlay (VIDIOC_S_FBUF) may fail with an EBUSY error code or
return accordingly modified parameters..

Overlay Window

The overlaid image is determined by cropping and overlay window parameters. The former
select an area of the video picture to capture, the latter how images are overlaid and clipped.
Cropping initialization at minimum requires to reset the parameters to defaults. An example is
given in Image Cropping, Insertion and Scaling – the CROP API.

The overlay window is described by a struct v4l2_window. It defines the size of the image, its
position over the graphics surface and the clipping to be applied. To get the current parameters
applications set the type field of a struct v4l2_format to V4L2_BUF_TYPE_VIDEO_OVERLAY and
call the VIDIOC_G_FMT ioctl. The driver fills the struct v4l2_window substructure named win.
It is not possible to retrieve a previously programmed clipping list or bitmap.

To program the overlay window applications set the type field of a struct v4l2_format to
V4L2_BUF_TYPE_VIDEO_OVERLAY, initialize the win substructure and call the VIDIOC_S_FMT
ioctl. The driver adjusts the parameters against hardware limits and returns the actual param-
eters as VIDIOC_G_FMT does. Like VIDIOC_S_FMT, the VIDIOC_TRY_FMT ioctl can be used to
learn about driver capabilities without actually changing driver state. Unlike VIDIOC_S_FMT
this also works after the overlay has been enabled.

The scaling factor of the overlaid image is implied by the width and height given in struct
v4l2_window and the size of the cropping rectangle. For more information see Image Cropping,
Insertion and Scaling – the CROP API.

When simultaneous capturing and overlay is supported and the hardware prohibits different
image and window sizes, the size requested first takes precedence. The attempt to capture
or overlay as well (VIDIOC_S_FMT) may fail with an EBUSY error code or return accordingly
modified parameters.

v4l2_window

struct v4l2_window

struct v4l2_rect w Size and position of the window relative to the top, left corner of the
frame buffer defined with VIDIOC_S_FBUF. The window can extend the frame buffer width
and height, the x and y coordinates can be negative, and it can lie completely outside the
frame buffer. The driver clips the window accordingly, or if that is not possible, modifies
its size and/or position.

enum v4l2_field field Applications set this field to determine which video field shall be
overlaid, typically one of V4L2_FIELD_ANY (0), V4L2_FIELD_TOP, V4L2_FIELD_BOTTOM or
V4L2_FIELD_INTERLACED. Drivers may have to choose a different field order and return
the actual setting here.

__u32 chromakey When chroma-keying has been negotiated with VIDIOC_S_FBUF applica-
tions set this field to the desired pixel value for the chroma key. The format is the same

988 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

as the pixel format of the framebuffer (struct v4l2_framebuffer fmt.pixelformat field),
with bytes in host order. E. g. for V4L2_PIX_FMT_BGR24 the value should be 0xRRGGBB
on a little endian, 0xBBGGRR on a big endian host.

struct v4l2_clip * clips When chroma-keying has not been negotiated and VID-
IOC_G_FBUF indicated this capability, applications can set this field to point to an
array of clipping rectangles.

Like the window coordinates w, clipping rectangles are defined relative to the top, left
corner of the frame buffer. However clipping rectangles must not extend the frame buffer
width and height, and they must not overlap. If possible applications should merge adja-
cent rectangles. Whether this must create x-y or y-x bands, or the order of rectangles, is
not defined. When clip lists are not supported the driver ignores this field. Its contents
after calling VIDIOC_S_FMT are undefined.

__u32 clipcount When the application set the clips field, this field must contain the number
of clipping rectangles in the list. When clip lists are not supported the driver ignores this
field, its contents after callingVIDIOC_S_FMT are undefined. When clip lists are supported
but no clipping is desired this field must be set to zero.

void * bitmap When chroma-keying has not been negotiated and VIDIOC_G_FBUF indicated
this capability, applications can set this field to point to a clipping bit mask.

It must be of the same size as the window, w.width and w.height. Each bit corresponds to
a pixel in the overlaid image, which is displayed only when the bit is set. Pixel coordinates
translate to bits like:

((__u8 *) bitmap)[w.width * y + x / 8] & (1 << (x & 7))

where 0 ≤ x < w.width and 0 ≤ y <w.height.2

When a clipping bit mask is not supported the driver ignores this field, its contents after calling
VIDIOC_S_FMT are undefined. When a bit mask is supported but no clipping is desired this
field must be set to NULL.

Applications need not create a clip list or bit mask. When they pass both, or despite negotiat-
ing chroma-keying, the results are undefined. Regardless of the chosen method, the clipping
abilities of the hardware may be limited in quantity or quality. The results when these limits
are exceeded are undefined.3

__u8 global_alpha The global alpha value used to blend the framebuffer with video images,
if global alpha blending has been negotiated (V4L2_FBUF_FLAG_GLOBAL_ALPHA, see VID-
IOC_S_FBUF, Frame Buffer Flags).

Note: This field was added in Linux 2.6.23, extending the structure. However the VID-
IOC_[G|S|TRY]_FMT ioctls, which take a pointer to a v4l2_format parent structure with
padding bytes at the end, are not affected.

v4l2_clip
2 Should we require w.width to be a multiple of eight?
3 When the image is written into frame buffer memory it will be undesirable if the driver clips out less pixels

than expected, because the application and graphics system are not aware these regions need to be refreshed. The
driver should clip out more pixels or not write the image at all.

3.2. Part I - Video for Linux API 989

Linux Media Documentation

struct v4l2_clip4

struct v4l2_rect c Coordinates of the clipping rectangle, relative to the top, left corner of
the frame buffer. Only window pixels outside all clipping rectangles are displayed.

struct v4l2_clip * next Pointer to the next clipping rectangle, NULL when this is the last
rectangle. Drivers ignore this field, it cannot be used to pass a linked list of clipping
rectangles.

v4l2_rect

struct v4l2_rect

__s32 left Horizontal offset of the top, left corner of the rectangle, in pixels.

__s32 top Vertical offset of the top, left corner of the rectangle, in pixels. Offsets increase to
the right and down.

__u32 width Width of the rectangle, in pixels.

__u32 height Height of the rectangle, in pixels.

Enabling Overlay

To start or stop the frame buffer overlay applications call the ioctl VIDIOC_OVERLAY ioctl.

3.2.4.3 Video Output Interface

Video output devices encode stills or image sequences as analog video signal. With this inter-
face applications can control the encoding process and move images from user space to the
driver.

Conventionally V4L2 video output devices are accessed through character device special files
named /dev/video and /dev/video0 to /dev/video63 with major number 81 and minor num-
bers 0 to 63. /dev/video is typically a symbolic link to the preferred video device.

Note: The same device file names are used also for video capture devices.

4 The XWindow system defines “regions” which are vectors of struct BoxRec { short x1, y1, x2, y2; }with
width = x2 - x1 and height = y2 - y1, so one cannot pass X11 clip lists directly.

990 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Querying Capabilities

Devices supporting the video output interface set the V4L2_CAP_VIDEO_OUTPUT or
V4L2_CAP_VIDEO_OUTPUT_MPLANE flag in the capabilities field of struct v4l2_capability
returned by the ioctl VIDIOC_QUERYCAP ioctl. As secondary device functions they may also
support the raw VBI output (V4L2_CAP_VBI_OUTPUT) interface. At least one of the read/write
or streaming I/O methods must be supported. Modulators and audio outputs are optional.

Supplemental Functions

Video output devices shall support audio output,modulator, controls, cropping and scaling and
streaming parameter ioctls as needed. The video output ioctls must be supported by all video
output devices.

Image Format Negotiation

The output is determined by cropping and image format parameters. The former select an area
of the video picture where the image will appear, the latter how images are stored in memory,
i. e. in RGB or YUV format, the number of bits per pixel or width and height. Together they
also define how images are scaled in the process.

As usual these parameters are not reset at open() time to permit Unix tool chains, programming
a device and then writing to it as if it was a plain file. Well written V4L2 applications ensure
they really get what they want, including cropping and scaling.

Cropping initialization at minimum requires to reset the parameters to defaults. An example is
given in Image Cropping, Insertion and Scaling – the CROP API.

To query the current image format applications set the type field of a struct v4l2_format
to V4L2_BUF_TYPE_VIDEO_OUTPUT or V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE and call the VID-
IOC_G_FMT ioctl with a pointer to this structure. Drivers fill the struct v4l2_pix_format pix
or the struct v4l2_pix_format_mplane pix_mp member of the fmt union.

To request different parameters applications set the type field of a struct v4l2_format as above
and initialize all fields of the struct v4l2_pix_format vbi member of the fmt union, or better
just modify the results of VIDIOC_G_FMT, and call the VIDIOC_S_FMT ioctl with a pointer to
this structure. Drivers may adjust the parameters and finally return the actual parameters as
VIDIOC_G_FMT does.

Like VIDIOC_S_FMT the VIDIOC_TRY_FMT ioctl can be used to learn about hardware limita-
tions without disabling I/O or possibly time consuming hardware preparations.

The contents of struct v4l2_pix_format and struct v4l2_pix_format_mplane are discussed
in Image Formats. See also the specification of the VIDIOC_G_FMT, VIDIOC_S_FMT and VID-
IOC_TRY_FMT ioctls for details. Video output devices must implement both the VIDIOC_G_FMT
and VIDIOC_S_FMT ioctl, even if VIDIOC_S_FMT ignores all requests and always returns de-
fault parameters as VIDIOC_G_FMT does. VIDIOC_TRY_FMT is optional.

3.2. Part I - Video for Linux API 991

Linux Media Documentation

Writing Images

A video output device may support the write() function and/or streaming (memory mapping or
user pointer) I/O. See Input/Output for details.

3.2.4.4 Video Output Overlay Interface

Also known as On-Screen Display (OSD)
Some video output devices can overlay a framebuffer image onto the outgoing video signal.
Applications can set up such an overlay using this interface, which borrows structures and
ioctls of the Video Overlay interface.

The OSD function is accessible through the same character special file as the Video Output
function.

Note: The default function of such a /dev/video device is video capturing or output. The OSD
function is only available after calling the VIDIOC_S_FMT ioctl.

Querying Capabilities

Devices supporting the Video Output Overlay interface set the
V4L2_CAP_VIDEO_OUTPUT_OVERLAY flag in the capabilities field of struct v4l2_capability
returned by the ioctl VIDIOC_QUERYCAP ioctl.

Framebuffer

Contrary to the Video Overlay interface the framebuffer is normally implemented on the TV
card and not the graphics card. On Linux it is accessible as a framebuffer device (/dev/
fbN). Given a V4L2 device, applications can find the corresponding framebuffer device by
calling the VIDIOC_G_FBUF ioctl. It returns, amongst other information, the physical ad-
dress of the framebuffer in the base field of struct v4l2_framebuffer. The framebuffer de-
vice ioctl FBIOGET_FSCREENINFO returns the same address in the smem_start field of struct
fb_fix_screeninfo. The FBIOGET_FSCREENINFO ioctl and struct fb_fix_screeninfo are de-
fined in the linux/fb.h header file.

The width and height of the framebuffer depends on the current video standard. A V4L2 driver
may reject attempts to change the video standard (or any other ioctl which would imply a frame-
buffer size change) with an EBUSY error code until all applications closed the framebuffer device.

992 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Example: Finding a framebuffer device for OSD

#include <linux/fb.h>

struct v4l2_framebuffer fbuf;
unsigned int i;
int fb_fd;

if (-1 == ioctl(fd, VIDIOC_G_FBUF, &fbuf)) {
perror("VIDIOC_G_FBUF");
exit(EXIT_FAILURE);

}

for (i = 0; i < 30; i++) {
char dev_name[16];
struct fb_fix_screeninfo si;

snprintf(dev_name, sizeof(dev_name), "/dev/fb%u", i);

fb_fd = open(dev_name, O_RDWR);
if (-1 == fb_fd) {

switch (errno) {
case ENOENT: /* no such file */
case ENXIO: /* no driver */

continue;

default:
perror("open");
exit(EXIT_FAILURE);

}
}

if (0 == ioctl(fb_fd, FBIOGET_FSCREENINFO, &si)) {
if (si.smem_start == (unsigned long)fbuf.base)

break;
} else {

/* Apparently not a framebuffer device. */
}

close(fb_fd);
fb_fd = -1;

}

/* fb_fd is the file descriptor of the framebuffer device
for the video output overlay, or -1 if no device was found. */

3.2. Part I - Video for Linux API 993

Linux Media Documentation

Overlay Window and Scaling

The overlay is controlled by source and target rectangles. The source rectangle selects a sub-
section of the framebuffer image to be overlaid, the target rectangle an area in the outgoing
video signal where the image will appear. Drivers may or may not support scaling, and arbi-
trary sizes and positions of these rectangles. Further drivers may support any (or none) of the
clipping/blending methods defined for the Video Overlay interface.

A struct v4l2_window defines the size of the source rectangle, its position in the framebuffer
and the clipping/blending method to be used for the overlay. To get the current parameters ap-
plications set the type field of a struct v4l2_format to V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY
and call the VIDIOC_G_FMT ioctl. The driver fills the struct v4l2_window substructure named
win. It is not possible to retrieve a previously programmed clipping list or bitmap.

To program the source rectangle applications set the type field of a struct v4l2_format
to V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY, initialize the win substructure and call the VID-
IOC_S_FMT ioctl. The driver adjusts the parameters against hardware limits and returns the
actual parameters as VIDIOC_G_FMT does. Like VIDIOC_S_FMT, the VIDIOC_TRY_FMT ioctl
can be used to learn about driver capabilities without actually changing driver state. Unlike
VIDIOC_S_FMT this also works after the overlay has been enabled.

A struct v4l2_crop defines the size and position of the target rectangle. The scaling factor of the
overlay is implied by the width and height given in struct v4l2_window and struct v4l2_crop.
The cropping API applies to Video Output and Video Output Overlay devices in the same way
as to Video Capture and Video Overlay devices, merely reversing the direction of the data flow.
For more information see Image Cropping, Insertion and Scaling – the CROP API.

Enabling Overlay

There is no V4L2 ioctl to enable or disable the overlay, however the framebuffer interface of
the driver may support the FBIOBLANK ioctl.

3.2.4.5 Video Memory-To-Memory Interface

A V4L2 memory-to-memory device can compress, decompress, transform, or otherwise convert
video data from one format into another format, in memory. Such memory-to-memory devices
set the V4L2_CAP_VIDEO_M2M or V4L2_CAP_VIDEO_M2M_MPLANE capability. Examples of memory-
to-memory devices are codecs, scalers, deinterlacers or format converters (i.e. converting from
YUV to RGB).

A memory-to-memory video node acts just like a normal video node, but it supports both output
(sending frames from memory to the hardware) and capture (receiving the processed frames
from the hardware into memory) stream I/O. An application will have to setup the stream I/O
for both sides and finally call VIDIOC_STREAMON for both capture and output to start the
hardware.

Memory-to-memory devices function as a shared resource: you can open the video node mul-
tiple times, each application setting up their own properties that are local to the file handle,
and each can use it independently from the others. The driver will arbitrate access to the hard-
ware and reprogram it whenever another file handler gets access. This is different from the
usual video node behavior where the video properties are global to the device (i.e. changing
something through one file handle is visible through another file handle).

994 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

One of the most common memory-to-memory device is the codec. Codecs are more complicated
than most and require additional setup for their codec parameters. This is done through codec
controls. See Codec Control Reference. More details on how to use codec memory-to-memory
devices are given in the following sections.

Memory-to-Memory Stateful Video Decoder Interface

A stateful video decoder takes complete chunks of the bytestream (e.g. Annex-B H.264/HEVC
stream, raw VP8/9 stream) and decodes them into raw video frames in display order. The
decoder is expected not to require any additional information from the client to process these
buffers.

Performing software parsing, processing etc. of the stream in the driver in order to support
this interface is strongly discouraged. In case such operations are needed, use of the Stateless
Video Decoder Interface (in development) is strongly advised.

Conventions and Notations Used in This Document

1. The general V4L2 API rules apply if not specified in this document otherwise.

2. The meaning of words “must”, “may”, “should”, etc. is as per RFC 2119.

3. All steps not marked “optional” are required.

4. VIDIOC_G_EXT_CTRLS() and VIDIOC_S_EXT_CTRLS() may be used interchangeably with
VIDIOC_G_CTRL() and VIDIOC_S_CTRL(), unless specified otherwise.

5. Single-planar API (see Single- and multi-planar APIs) and applicable structures may be
used interchangeably with multi-planar API, unless specified otherwise, depending on de-
coder capabilities and following the general V4L2 guidelines.

6. i = [a..b]: sequence of integers from a to b, inclusive, i.e. i = [0..2]: i = 0, 1, 2.

7. Given an OUTPUT buffer A, then A’ represents a buffer on the CAPTURE queue containing
data that resulted from processing buffer A.

Glossary

CAPTURE the destination buffer queue; for decoders, the queue of buffers containing de-
coded frames; for encoders, the queue of buffers containing an encoded bytestream;
V4L2_BUF_TYPE_VIDEO_CAPTURE or V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE; data is cap-
tured from the hardware into CAPTURE buffers.

client the application communicating with the decoder or encoder implementing this interface.
coded format encoded/compressed video bytestream format (e.g. H.264, VP8, etc.); see also:

raw format.

coded height height for given coded resolution.
coded resolution stream resolution in pixels aligned to codec and hardware requirements;

typically visible resolution rounded up to full macroblocks; see also: visible resolution.

coded width width for given coded resolution.

3.2. Part I - Video for Linux API 995

https://tools.ietf.org/html/rfc2119

Linux Media Documentation

decode order the order in which frames are decoded; may differ from display order if the
coded format includes a feature of frame reordering; for decoders, OUTPUT buffers must
be queued by the client in decode order; for encoders CAPTURE buffers must be returned
by the encoder in decode order.

destination data resulting from the decode process; see CAPTURE.

display order the order in which frames must be displayed; for encoders, OUTPUT buffers must
be queued by the client in display order; for decoders, CAPTURE buffers must be returned
by the decoder in display order.

DPB Decoded Picture Buffer; an H.264/HEVC term for a buffer that stores a decoded raw frame
available for reference in further decoding steps.

EOS end of stream.
IDR Instantaneous Decoder Refresh; a type of a keyframe in an H.264/HEVC-encoded stream,

which clears the list of earlier reference frames (DPBs).

keyframe an encoded frame that does not reference frames decoded earlier, i.e. can be de-
coded fully on its own.

macroblock a processing unit in image and video compression formats based on linear block
transforms (e.g. H.264, VP8, VP9); codec-specific, but for most of popular codecs the size
is 16x16 samples (pixels).

OUTPUT the source buffer queue; for decoders, the queue of buffers containing an
encoded bytestream; for encoders, the queue of buffers containing raw frames;
V4L2_BUF_TYPE_VIDEO_OUTPUT or V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE; the hardware is
fed with data from OUTPUT buffers.

PPS Picture Parameter Set; a type of metadata entity in an H.264/HEVC bytestream.
raw format uncompressed format containing raw pixel data (e.g. YUV, RGB formats).
resume point a point in the bytestream from which decoding may start/continue, without

any previous state/data present, e.g.: a keyframe (VP8/VP9) or SPS/PPS/IDR sequence
(H.264/HEVC); a resume point is required to start decode of a new stream, or to resume
decoding after a seek.

source data fed to the decoder or encoder; see OUTPUT.
source height height in pixels for given source resolution; relevant to encoders only.
source resolution resolution in pixels of source frames being source to the encoder and sub-

ject to further cropping to the bounds of visible resolution; relevant to encoders only.

source width width in pixels for given source resolution; relevant to encoders only.
SPS Sequence Parameter Set; a type of metadata entity in an H.264/HEVC bytestream.
stream metadata additional (non-visual) information contained inside encoded bytestream;

for example: coded resolution, visible resolution, codec profile.

visible height height for given visible resolution; display height.
visible resolution stream resolution of the visible picture, in pixels, to be used for display

purposes; must be smaller or equal to coded resolution; display resolution.

visible width width for given visible resolution; display width.

996 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

State Machine

Decoding

Dynamic
Resolution

Change

Stream
resolution

change

Stopped

VIDIOC_STREAMOFF(CAPTURE)

Drain

V4L2_DEC_CMD_STOP

Seek

VIDIOC_STREAMOFF(OUTPUT)

End of Stream

EoS mark
in the stream

Initialization

Capture
setup

CAPTURE
format

established

CAPTURE
buffers
ready

CAPTURE
format

established

VIDIOC_STREAMOFF(OUTPUT)

V4L2_DEC_CMD_START
or

VIDIOC_STREAMON(CAPTURE)

VIDIOC_STREAMOFF(OUTPUT)

All CAPTURE
buffers dequeued

or
VIDIOC_STREAMOFF(CAPTURE)

VIDIOC_STREAMOFF(OUTPUT)

VIDIOC_STREAMON(OUTPUT)

VIDIOC_REQBUFS(OUTPUT, 0)

Implicit
drain

open()

Fig. 8: Decoder State Machine

Querying Capabilities

1. To enumerate the set of coded formats supported by the decoder, the client may call
VIDIOC_ENUM_FMT() on OUTPUT.

• The full set of supported formats will be returned, regardless of the format set on
CAPTURE.

• Check the flags field of v4l2_fmtdesc for more information about the decoder’s capa-
bilities with respect to each coded format. In particular whether or not the decoder
has a full-fledged bytestream parser and if the decoder supports dynamic resolution
changes.

2. To enumerate the set of supported raw formats, the client may call VIDIOC_ENUM_FMT() on
CAPTURE.

• Only the formats supported for the format currently active on OUTPUTwill be returned.

3.2. Part I - Video for Linux API 997

Linux Media Documentation

• In order to enumerate raw formats supported by a given coded format, the client must
first set that coded format on OUTPUT and then enumerate formats on CAPTURE.

3. The client may use VIDIOC_ENUM_FRAMESIZES() to detect supported resolutions for a given
format, passing desired pixel format in v4l2_frmsizeenum pixel_format.

• Values returned by VIDIOC_ENUM_FRAMESIZES() for a coded pixel format will include
all possible coded resolutions supported by the decoder for given coded pixel format.

• Values returned by VIDIOC_ENUM_FRAMESIZES() for a raw pixel format will include all
possible frame buffer resolutions supported by the decoder for given raw pixel format
and the coded format currently set on OUTPUT.

4. Supported profiles and levels for the coded format currently set on OUTPUT, if applicable,
may be queried using their respective controls via VIDIOC_QUERYCTRL().

Initialization

1. Set the coded format on OUTPUT via VIDIOC_S_FMT().

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

pixelformat a coded pixel format.

width, height coded resolution of the stream; required only if it cannot be parsed
from the stream for the given coded format; otherwise the decoder will use this
resolution as a placeholder resolution that will likely change as soon as it can parse
the actual coded resolution from the stream.

sizeimage desired size of OUTPUT buffers; the decoder may adjust it to match hard-
ware requirements.

other fields follow standard semantics.
• Return fields:
sizeimage adjusted size of OUTPUT buffers.

• The CAPTURE format will be updated with an appropriate frame buffer resolution in-
stantly based on the width and height returned by VIDIOC_S_FMT(). However, for
coded formats that include stream resolution information, after the decoder is done
parsing the information from the stream, it will update the CAPTURE format with new
values and signal a source change event, regardless of whether they match the values
set by the client or not.

Important: Changing the OUTPUT format may change the currently set CAPTURE format.
How the new CAPTURE format is determined is up to the decoder and the client must ensure
it matches its needs afterwards.

2. Allocate source (bytestream) buffers via VIDIOC_REQBUFS() on OUTPUT.

• Required fields:
count requested number of buffers to allocate; greater than zero.

998 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

memory follows standard semantics.

• Return fields:
count the actual number of buffers allocated.

Warning: The actual number of allocated buffers may differ from the count given.
The client must check the updated value of count after the call returns.

Alternatively, VIDIOC_CREATE_BUFS() on the OUTPUT queue can be used to have more con-
trol over buffer allocation.

• Required fields:
count requested number of buffers to allocate; greater than zero.

type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

memory follows standard semantics.

format follows standard semantics.

• Return fields:
count adjusted to the number of allocated buffers.

Warning: The actual number of allocated buffers may differ from the count given.
The client must check the updated value of count after the call returns.

3. Start streaming on the OUTPUT queue via VIDIOC_STREAMON().

4. This step only applies to coded formats that contain resolution information in the
stream. Continue queuing/dequeuing bytestream buffers to/from the OUTPUT queue via
VIDIOC_QBUF() and VIDIOC_DQBUF(). The buffers will be processed and returned to the
client in order, until required metadata to configure the CAPTURE queue are found. This is
indicated by the decoder sending a V4L2_EVENT_SOURCE_CHANGE event with changes set to
V4L2_EVENT_SRC_CH_RESOLUTION.

• It is not an error if the first buffer does not contain enough data for this to occur.
Processing of the buffers will continue as long as more data is needed.

• If data in a buffer that triggers the event is required to decode the first frame, it will
not be returned to the client, until the initialization sequence completes and the frame
is decoded.

• If the client has not set the coded resolution of the stream on its
own, calling VIDIOC_G_FMT(), VIDIOC_S_FMT(), VIDIOC_TRY_FMT() or
VIDIOC_REQBUFS() on the CAPTURE queue will not return the real values for
the stream until a V4L2_EVENT_SOURCE_CHANGE event with changes set to
V4L2_EVENT_SRC_CH_RESOLUTION is signaled.

Important: Any client query issued after the decoder queues the event will return val-
ues applying to the just parsed stream, including queue formats, selection rectangles and

3.2. Part I - Video for Linux API 999

Linux Media Documentation

controls.

Note: A client capable of acquiring stream parameters from the bytestream on its own
may attempt to set the width and height of the OUTPUT format to non-zero values matching
the coded size of the stream, skip this step and continue with the Capture Setup sequence.
However, it must not rely on any driver queries regarding stream parameters, such as
selection rectangles and controls, since the decoder has not parsed them from the stream
yet. If the values configured by the client do not match those parsed by the decoder, a
Dynamic Resolution Change will be triggered to reconfigure them.

Note: No decoded frames are produced during this phase.

5. Continue with the Capture Setup sequence.

Capture Setup

1. Call VIDIOC_G_FMT() on the CAPTURE queue to get format for the destination buffers
parsed/decoded from the bytestream.

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

• Return fields:
width, height frame buffer resolution for the decoded frames.
pixelformat pixel format for decoded frames.

num_planes (for _MPLANE type only) number of planes for pixelformat.
sizeimage, bytesperline as per standard semantics; matching frame buffer format.

Note: The value of pixelformat may be any pixel format supported by the decoder for
the current stream. The decoder should choose a preferred/optimal format for the default
configuration. For example, a YUV format may be preferred over an RGB format if an
additional conversion step would be required for the latter.

2. Optional. Acquire the visible resolution via VIDIOC_G_SELECTION().
• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

target set to V4L2_SEL_TGT_COMPOSE.

• Return fields:
r.left, r.top, r.width, r.height the visible rectangle; it must fit within the frame

buffer resolution returned by VIDIOC_G_FMT() on CAPTURE.

• The following selection targets are supported on CAPTURE:

1000 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_SEL_TGT_CROP_BOUNDS corresponds to the coded resolution of the stream.

V4L2_SEL_TGT_CROP_DEFAULT the rectangle covering the part of the CAPTURE buffer
that contains meaningful picture data (visible area); width and height will be equal
to the visible resolution of the stream.

V4L2_SEL_TGT_CROP the rectangle within the coded resolution to be output to
CAPTURE; defaults to V4L2_SEL_TGT_CROP_DEFAULT; read-only on hardware with-
out additional compose/scaling capabilities.

V4L2_SEL_TGT_COMPOSE_BOUNDS the maximum rectangle within a CAPTURE buffer,
which the cropped frame can be composed into; equal to V4L2_SEL_TGT_CROP if
the hardware does not support compose/scaling.

V4L2_SEL_TGT_COMPOSE_DEFAULT equal to V4L2_SEL_TGT_CROP.

V4L2_SEL_TGT_COMPOSE the rectangle inside a CAPTURE buffer into which the cropped
frame is written; defaults to V4L2_SEL_TGT_COMPOSE_DEFAULT; read-only on hard-
ware without additional compose/scaling capabilities.

V4L2_SEL_TGT_COMPOSE_PADDED the rectangle inside a CAPTURE buffer which is over-
written by the hardware; equal to V4L2_SEL_TGT_COMPOSE if the hardware does
not write padding pixels.

Warning: The values are guaranteed to be meaningful only after the decoder suc-
cessfully parses the stream metadata. The client must not rely on the query before that
happens.

3. Optional. Enumerate CAPTURE formats via VIDIOC_ENUM_FMT() on the CAPTURE queue.
Once the stream information is parsed and known, the client may use this ioctl to dis-
cover which raw formats are supported for given stream and select one of them via
VIDIOC_S_FMT().

Important: The decoder will return only formats supported for the currently established
coded format, as per the OUTPUT format and/or streammetadata parsed in this initialization
sequence, even if more formats may be supported by the decoder in general. In other
words, the set returned will be a subset of the initial query mentioned in the Querying
Capabilities section.

For example, a decoder may support YUV and RGB formats for resolutions 1920x1088 and
lower, but only YUV for higher resolutions (due to hardware limitations). After parsing a
resolution of 1920x1088 or lower, VIDIOC_ENUM_FMT() may return a set of YUV and RGB
pixel formats, but after parsing resolution higher than 1920x1088, the decoder will not
return RGB, unsupported for this resolution.

However, subsequent resolution change event triggered after discovering a resolution
change within the same stream may switch the stream into a lower resolution and
VIDIOC_ENUM_FMT() would return RGB formats again in that case.

4. Optional. Set the CAPTURE format via VIDIOC_S_FMT() on the CAPTURE queue. The client
may choose a different format than selected/suggested by the decoder in VIDIOC_G_FMT().

• Required fields:

3.2. Part I - Video for Linux API 1001

Linux Media Documentation

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

pixelformat a raw pixel format.

width, height frame buffer resolution of the decoded stream; typically unchanged
from what was returned with VIDIOC_G_FMT(), but it may be different if the hard-
ware supports composition and/or scaling.

• Setting the CAPTURE format will reset the compose selection rectangles to their default
values, based on the new resolution, as described in the previous step.

5. Optional. Set the compose rectangle via VIDIOC_S_SELECTION() on the CAPTURE queue if
it is desired and if the decoder has compose and/or scaling capabilities.

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

target set to V4L2_SEL_TGT_COMPOSE.

r.left, r.top, r.width, r.height the rectangle inside a CAPTURE buffer into which
the cropped frame is written; defaults to V4L2_SEL_TGT_COMPOSE_DEFAULT; read-
only on hardware without additional compose/scaling capabilities.

• Return fields:
r.left, r.top, r.width, r.height the visible rectangle; it must fit within the frame

buffer resolution returned by VIDIOC_G_FMT() on CAPTURE.

Warning: The decoder may adjust the compose rectangle to the nearest supported
one to meet codec and hardware requirements. The client needs to check the adjusted
rectangle returned by VIDIOC_S_SELECTION().

6. If all the following conditions are met, the client may resume the decoding instantly:

• sizeimage of the new format (determined in previous steps) is less than or equal to
the size of currently allocated buffers,

• the number of buffers currently allocated is greater than or equal to the minimum
number of buffers acquired in previous steps. To fulfill this requirement, the client
may use VIDIOC_CREATE_BUFS() to add new buffers.

In that case, the remaining steps do not apply and the client may resume the decoding by
one of the following actions:

• if the CAPTURE queue is streaming, call VIDIOC_DECODER_CMD() with the
V4L2_DEC_CMD_START command,

• if the CAPTURE queue is not streaming, call VIDIOC_STREAMON() on the CAPTURE queue.

However, if the client intends to change the buffer set, to lower memory usage or for any
other reasons, it may be achieved by following the steps below.

7. If the CAPTURE queue is streaming, keep queuing and dequeuing buffers on the CAPTURE
queue until a buffer marked with the V4L2_BUF_FLAG_LAST flag is dequeued.

8. If the CAPTURE queue is streaming, call VIDIOC_STREAMOFF() on the CAPTURE queue to
stop streaming.

1002 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Warning: The OUTPUT queue must remain streaming. Calling VIDIOC_STREAMOFF()
on it would abort the sequence and trigger a seek.

9. If the CAPTURE queue has buffers allocated, free the CAPTURE buffers using
VIDIOC_REQBUFS().

• Required fields:
count set to 0.

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

memory follows standard semantics.

10. Allocate CAPTURE buffers via VIDIOC_REQBUFS() on the CAPTURE queue.

• Required fields:
count requested number of buffers to allocate; greater than zero.

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

memory follows standard semantics.

• Return fields:
count actual number of buffers allocated.

Warning: The actual number of allocated buffers may differ from the count given.
The client must check the updated value of count after the call returns.

Note: To allocate more than the minimum number of buffers (for pipeline depth), the
client may query the V4L2_CID_MIN_BUFFERS_FOR_CAPTURE control to get the minimum
number of buffers required, and pass the obtained value plus the number of additional
buffers needed in the count field to VIDIOC_REQBUFS().

Alternatively, VIDIOC_CREATE_BUFS() on the CAPTURE queue can be used to have more
control over buffer allocation. For example, by allocating buffers larger than the current
CAPTURE format, future resolution changes can be accommodated.

• Required fields:
count requested number of buffers to allocate; greater than zero.

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

memory follows standard semantics.

format a format representing the maximum framebuffer resolution to be accommo-
dated by newly allocated buffers.

• Return fields:
count adjusted to the number of allocated buffers.

3.2. Part I - Video for Linux API 1003

Linux Media Documentation

Warning: The actual number of allocated buffers may differ from the count given.
The client must check the updated value of count after the call returns.

Note: To allocate buffers for a format different than parsed from the stream metadata,
the client must proceed as follows, before the metadata parsing is initiated:

• set width and height of the OUTPUT format to desired coded resolution to let the de-
coder configure the CAPTURE format appropriately,

• query the CAPTURE format using VIDIOC_G_FMT() and save it until this step.

The format obtained in the query may be then used with VIDIOC_CREATE_BUFS() in this
step to allocate the buffers.

11. Call VIDIOC_STREAMON() on the CAPTURE queue to start decoding frames.

Decoding

This state is reached after the Capture Setup sequence finishes successfully. In this state, the
client queues and dequeues buffers to both queues via VIDIOC_QBUF() and VIDIOC_DQBUF(),
following the standard semantics.

The content of the source OUTPUT buffers depends on the active coded pixel format and may be
affected by codec-specific extended controls, as stated in the documentation of each format.

Both queues operate independently, following the standard behavior of V4L2 buffer queues
and memory-to-memory devices. In addition, the order of decoded frames dequeued from the
CAPTURE queue may differ from the order of queuing coded frames to the OUTPUT queue, due to
properties of the selected coded format, e.g. frame reordering.

The client must not assume any direct relationship between CAPTURE and OUTPUT buffers and
any specific timing of buffers becoming available to dequeue. Specifically:

• a buffer queued to OUTPUT may result in no buffers being produced on CAPTURE (e.g. if it
does not contain encoded data, or if only metadata syntax structures are present in it),

• a buffer queued to OUTPUT may result in more than one buffer produced on CAPTURE (if
the encoded data contained more than one frame, or if returning a decoded frame allowed
the decoder to return a frame that preceded it in decode, but succeeded it in the display
order),

• a buffer queued to OUTPUT may result in a buffer being produced on CAPTURE later into
decode process, and/or after processing further OUTPUT buffers, or be returned out of order,
e.g. if display reordering is used,

• buffers may become available on the CAPTURE queue without additional buffers queued to
OUTPUT (e.g. during drain or EOS), because of the OUTPUT buffers queued in the past whose
decoding results are only available at later time, due to specifics of the decoding process.

Note: To allow matching decoded CAPTURE buffers with OUTPUT buffers they originated from,
the client can set the timestamp field of the v4l2_buffer struct when queuing an OUTPUT

1004 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

buffer. The CAPTURE buffer(s), which resulted from decoding that OUTPUT buffer will have their
timestamp field set to the same value when dequeued.

In addition to the straightforward case of one OUTPUT buffer producing one CAPTURE buffer, the
following cases are defined:

• one OUTPUT buffer generates multiple CAPTURE buffers: the same OUTPUT timestamp will
be copied to multiple CAPTURE buffers.

• multiple OUTPUT buffers generate one CAPTURE buffer: timestamp of the OUTPUT buffer
queued first will be copied.

• the decoding order differs from the display order (i.e. the CAPTURE buffers are out-of-order
compared to the OUTPUT buffers): CAPTURE timestamps will not retain the order of OUTPUT
timestamps.

During the decoding, the decoder may initiate one of the special sequences, as listed below.
The sequences will result in the decoder returning all the CAPTURE buffers that originated from
all the OUTPUT buffers processed before the sequence started. Last of the buffers will have the
V4L2_BUF_FLAG_LAST flag set. To determine the sequence to follow, the client must check if
there is any pending event and:

• if a V4L2_EVENT_SOURCE_CHANGE event with changes set to
V4L2_EVENT_SRC_CH_RESOLUTION is pending, the Dynamic Resolution Change sequence
needs to be followed,

• if a V4L2_EVENT_EOS event is pending, the End of Stream sequence needs to be followed.

Some of the sequences can be intermixed with each other and need to be handled as they
happen. The exact operation is documented for each sequence.

Should a decoding error occur, it will be reported to the client with the level of details depending
on the decoder capabilities. Specifically:

• the CAPTURE buffer that contains the results of the failed decode operation will be re-
turned with the V4L2_BUF_FLAG_ERROR flag set,

• if the decoder is able to precisely report the OUTPUT buffer that triggered the error, such
buffer will be returned with the V4L2_BUF_FLAG_ERROR flag set.

In case of a fatal failure that does not allow the decoding to continue, any further operations
on corresponding decoder file handle will return the -EIO error code. The client may close the
file handle and open a new one, or alternatively reinitialize the instance by stopping streaming
on both queues, releasing all buffers and performing the Initialization sequence again.

Seek

Seek is controlled by the OUTPUT queue, as it is the source of coded data. The seek does not
require any specific operation on the CAPTURE queue, but it may be affected as per normal
decoder operation.

1. Stop the OUTPUT queue to begin the seek sequence via VIDIOC_STREAMOFF().

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

3.2. Part I - Video for Linux API 1005

Linux Media Documentation

• The decoder will drop all the pending OUTPUT buffers and they must be treated as
returned to the client (following standard semantics).

2. Restart the OUTPUT queue via VIDIOC_STREAMON().

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

• The decoder will start accepting new source bytestream buffers after the call returns.

3. Start queuing buffers containing coded data after the seek to the OUTPUT queue until a
suitable resume point is found.

Note: There is no requirement to begin queuing coded data starting exactly from a re-
sume point (e.g. SPS or a keyframe). Any queued OUTPUT buffers will be processed and
returned to the client until a suitable resume point is found. While looking for a resume
point, the decoder should not produce any decoded frames into CAPTURE buffers.

Some hardware is known to mishandle seeks to a non-resume point. Such an operation
may result in an unspecified number of corrupted decoded frames being made available
on the CAPTURE queue. Drivers must ensure that no fatal decoding errors or crashes occur,
and implement any necessary handling and workarounds for hardware issues related to
seek operations.

Warning: In case of the H.264/HEVC codec, the client must take care not to seek
over a change of SPS/PPS. Even though the target frame could be a keyframe, the stale
SPS/PPS inside decoder state would lead to undefined results when decoding. Although
the decoder must handle that case without a crash or a fatal decode error, the client
must not expect a sensible decode output.

If the hardware can detect such corrupted decoded frames, then corresponding buffers
will be returned to the client with the V4L2_BUF_FLAG_ERROR set. See the Decoding
section for further description of decode error reporting.

4. After a resume point is found, the decoder will start returning CAPTURE buffers containing
decoded frames.

Important: A seekmay result in theDynamic Resolution Change sequence being initiated, due
to the seek target having decoding parameters different from the part of the stream decoded
before the seek. The sequence must be handled as per normal decoder operation.

Warning: It is not specified when the CAPTURE queue starts producing buffers containing
decoded data from the OUTPUT buffers queued after the seek, as it operates independently
from the OUTPUT queue.

The decoder may return a number of remaining CAPTURE buffers containing decoded frames
originating from the OUTPUT buffers queued before the seek sequence is performed.

1006 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

The VIDIOC_STREAMOFF operation discards any remaining queued OUTPUT buffers, which
means that not all of the OUTPUT buffers queued before the seek sequence may have match-
ing CAPTURE buffers produced. For example, given the sequence of operations on the OUTPUT
queue:

QBUF(A), QBUF(B), STREAMOFF(), STREAMON(), QBUF(G), QBUF(H),

any of the following results on the CAPTURE queue is allowed:

{A’, B’, G’, H’}, {A’, G’, H’}, {G’, H’}.

To determine the CAPTURE buffer containing the first decoded frame after the seek, the
client may observe the timestamps to match the CAPTURE and OUTPUT buffers or use
V4L2_DEC_CMD_STOP and V4L2_DEC_CMD_START to drain the decoder.

Note: To achieve instantaneous seek, the client may restart streaming on the CAPTURE queue
too to discard decoded, but not yet dequeued buffers.

Dynamic Resolution Change

Streams that include resolution metadata in the bytestreammay require switching to a different
resolution during the decoding.

Note: Not all decoders can detect resolution changes. Those that do set the
V4L2_FMT_FLAG_DYN_RESOLUTION flag for the coded format when VIDIOC_ENUM_FMT() is called.

The sequence starts when the decoder detects a coded frame with one or more of the follow-
ing parameters different from those previously established (and reflected by corresponding
queries):

• coded resolution (OUTPUT width and height),

• visible resolution (selection rectangles),

• the minimum number of buffers needed for decoding,

• bit-depth of the bitstream has been changed.

Whenever that happens, the decoder must proceed as follows:

1. After encountering a resolution change in the stream, the decoder sends a
V4L2_EVENT_SOURCE_CHANGE event with changes set to V4L2_EVENT_SRC_CH_RESOLUTION.

Important: Any client query issued after the decoder queues the event will return values
applying to the stream after the resolution change, including queue formats, selection
rectangles and controls.

2. The decoder will then process and decode all remaining buffers from before the resolution
change point.

3.2. Part I - Video for Linux API 1007

Linux Media Documentation

• The last buffer from before the change must be marked with the V4L2_BUF_FLAG_LAST
flag, similarly to the Drain sequence above.

Warning: The last buffer may be empty (with v4l2_buffer bytesused = 0) and in that
case it must be ignored by the client, as it does not contain a decoded frame.

Note: Any attempt to dequeue more CAPTURE buffers beyond the buffer marked with
V4L2_BUF_FLAG_LAST will result in a -EPIPE error from VIDIOC_DQBUF().

The client must continue the sequence as described below to continue the decoding process.

1. Dequeue the source change event.

Important: A source change triggers an implicit decoder drain, similar to the explicit
Drain sequence. The decoder is stopped after it completes. The decoding process must
be resumed with either a pair of calls to VIDIOC_STREAMOFF() and VIDIOC_STREAMON()
on the CAPTURE queue, or a call to VIDIOC_DECODER_CMD() with the V4L2_DEC_CMD_START
command.

2. Continue with the Capture Setup sequence.

Note: During the resolution change sequence, the OUTPUT queue must remain streaming.
Calling VIDIOC_STREAMOFF() on the OUTPUT queue would abort the sequence and initiate a
seek.

In principle, the OUTPUT queue operates separately from the CAPTURE queue and this remains
true for the duration of the entire resolution change sequence as well.

The client should, for best performance and simplicity, keep queuing/dequeuing buffers to/from
the OUTPUT queue even while processing this sequence.

Drain

To ensure that all queued OUTPUT buffers have been processed and related CAPTURE buffers are
given to the client, the client must follow the drain sequence described below. After the drain
sequence ends, the client has received all decoded frames for all OUTPUT buffers queued before
the sequence was started.

1. Begin drain by issuing VIDIOC_DECODER_CMD().

• Required fields:
cmd set to V4L2_DEC_CMD_STOP.

flags set to 0.

pts set to 0.

1008 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Warning: The sequence can be only initiated if both OUTPUT and CAPTURE queues are
streaming. For compatibility reasons, the call to VIDIOC_DECODER_CMD() will not fail
even if any of the queues is not streaming, but at the same time it will not initiate the
Drain sequence and so the steps described below would not be applicable.

2. Any OUTPUT buffers queued by the client before the VIDIOC_DECODER_CMD() was issued
will be processed and decoded as normal. The client must continue to handle both queues
independently, similarly to normal decode operation. This includes:

• handling any operations triggered as a result of processing those buffers, such as the
Dynamic Resolution Change sequence, before continuing with the drain sequence,

• queuing and dequeuing CAPTURE buffers, until a buffer marked with the
V4L2_BUF_FLAG_LAST flag is dequeued,

Warning: The last buffer may be empty (with v4l2_buffer bytesused = 0) and in
that case it must be ignored by the client, as it does not contain a decoded frame.

Note: Any attempt to dequeue more CAPTURE buffers beyond the buffer marked with
V4L2_BUF_FLAG_LAST will result in a -EPIPE error from VIDIOC_DQBUF().

• dequeuing processed OUTPUT buffers, until all the buffers queued before the
V4L2_DEC_CMD_STOP command are dequeued,

• dequeuing the V4L2_EVENT_EOS event, if the client subscribed to it.

Note: For backwards compatibility, the decoder will signal a V4L2_EVENT_EOS event when
the last frame has been decoded and all frames are ready to be dequeued. It is a deprecated
behavior and the client must not rely on it. The V4L2_BUF_FLAG_LAST buffer flag should be
used instead.

3. Once all the OUTPUT buffers queued before the V4L2_DEC_CMD_STOP call are dequeued and
the last CAPTURE buffer is dequeued, the decoder is stopped and it will accept, but not
process, any newly queued OUTPUT buffers until the client issues any of the following op-
erations:

• V4L2_DEC_CMD_START - the decoder will not be reset and will resume operation nor-
mally, with all the state from before the drain,

• a pair of VIDIOC_STREAMOFF() and VIDIOC_STREAMON() on the CAPTURE queue - the
decoder will resume the operation normally, however any CAPTURE buffers still in the
queue will be returned to the client,

• a pair of VIDIOC_STREAMOFF() and VIDIOC_STREAMON() on the OUTPUT queue - any
pending source buffers will be returned to the client and the Seek sequence will be
triggered.

Note: Once the drain sequence is initiated, the client needs to drive it to completion, as

3.2. Part I - Video for Linux API 1009

Linux Media Documentation

described by the steps above, unless it aborts the process by issuing VIDIOC_STREAMOFF() on
any of the OUTPUT or CAPTURE queues. The client is not allowed to issue V4L2_DEC_CMD_START
or V4L2_DEC_CMD_STOP again while the drain sequence is in progress and they will fail with
-EBUSY error code if attempted.

Although not mandatory, the availability of decoder commands may be queried using
VIDIOC_TRY_DECODER_CMD().

End of Stream

If the decoder encounters an end of stream marking in the stream, the decoder will initiate
the Drain sequence, which the client must handle as described above, skipping the initial
VIDIOC_DECODER_CMD().

Commit Points

Setting formats and allocating buffers trigger changes in the behavior of the decoder.

1. Setting the format on the OUTPUT queue may change the set of formats sup-
ported/advertised on the CAPTURE queue. In particular, it also means that the CAPTURE
format may be reset and the client must not rely on the previously set format being pre-
served.

2. Enumerating formats on the CAPTURE queue always returns only formats supported for the
current OUTPUT format.

3. Setting the format on the CAPTURE queue does not change the list of formats available on
the OUTPUT queue. An attempt to set a CAPTURE format that is not supported for the cur-
rently selected OUTPUT format will result in the decoder adjusting the requested CAPTURE
format to a supported one.

4. Enumerating formats on the OUTPUT queue always returns the full set of supported coded
formats, irrespectively of the current CAPTURE format.

5. While buffers are allocated on any of the OUTPUT or CAPTURE queues, the client must not
change the format on the OUTPUT queue. Drivers will return the -EBUSY error code for any
such format change attempt.

To summarize, setting formats and allocation must always start with the OUTPUT queue and the
OUTPUT queue is the master that governs the set of supported formats for the CAPTURE queue.

Memory-to-Memory Stateful Video Encoder Interface

A stateful video encoder takes raw video frames in display order and encodes them into a
bytestream. It generates complete chunks of the bytestream, including all metadata, headers,
etc. The resulting bytestream does not require any further post-processing by the client.

Performing software stream processing, header generation etc. in the driver in order to support
this interface is strongly discouraged. In case such operations are needed, use of the Stateless
Video Encoder Interface (in development) is strongly advised.

1010 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Conventions and Notations Used in This Document

1. The general V4L2 API rules apply if not specified in this document otherwise.

2. The meaning of words “must”, “may”, “should”, etc. is as per RFC 2119.

3. All steps not marked “optional” are required.

4. VIDIOC_G_EXT_CTRLS() and VIDIOC_S_EXT_CTRLS() may be used interchangeably with
VIDIOC_G_CTRL() and VIDIOC_S_CTRL(), unless specified otherwise.

5. Single-planar API (see Single- and multi-planar APIs) and applicable structures may be
used interchangeably with multi-planar API, unless specified otherwise, depending on en-
coder capabilities and following the general V4L2 guidelines.

6. i = [a..b]: sequence of integers from a to b, inclusive, i.e. i = [0..2]: i = 0, 1, 2.

7. Given an OUTPUT buffer A, then A’ represents a buffer on the CAPTURE queue containing
data that resulted from processing buffer A.

Glossary

Refer to Glossary.

State Machine

Encoding

Stopped

VIDIOC_STREAMOFF(OUTPUT) Drain

V4L2_ENC_CMD_STOP

Reset

VIDIOC_STREAMOFF(CAPTURE)

Initialization

Both queues streaming

V4L2_ENC_CMD_START
or

VIDIOC_STREAMON(OUTPUT)

VIDIOC_STREAMOFF(CAPTURE)

All CAPTURE
buffers dequeued

or
VIDIOC_STREAMOFF(OUTPUT)

VIDIOC_STREAMOFF(CAPTURE)

VIDIOC_STREAMON(CAPTURE)

VIDIOC_REQBUFS(OUTPUT, 0) open()

Fig. 9: Encoder State Machine

3.2. Part I - Video for Linux API 1011

https://tools.ietf.org/html/rfc2119

Linux Media Documentation

Querying Capabilities

1. To enumerate the set of coded formats supported by the encoder, the client may call
VIDIOC_ENUM_FMT() on CAPTURE.

• The full set of supported formats will be returned, regardless of the format set on
OUTPUT.

2. To enumerate the set of supported raw formats, the client may call VIDIOC_ENUM_FMT() on
OUTPUT.

• Only the formats supported for the format currently active on CAPTURE will be re-
turned.

• In order to enumerate raw formats supported by a given coded format, the client must
first set that coded format on CAPTURE and then enumerate the formats on OUTPUT.

3. The client may use VIDIOC_ENUM_FRAMESIZES() to detect supported resolutions for a given
format, passing the desired pixel format in v4l2_frmsizeenum pixel_format.

• Values returned by VIDIOC_ENUM_FRAMESIZES() for a coded pixel format will include
all possible coded resolutions supported by the encoder for the given coded pixel for-
mat.

• Values returned by VIDIOC_ENUM_FRAMESIZES() for a raw pixel format will include all
possible frame buffer resolutions supported by the encoder for the given raw pixel
format and coded format currently set on CAPTURE.

4. The client may use VIDIOC_ENUM_FRAMEINTERVALS() to detect supported frame intervals
for a given format and resolution, passing the desired pixel format in v4l2_frmsizeenum
pixel_format and the resolution in v4l2_frmsizeenum width and v4l2_frmsizeenum
height.

• Values returned by VIDIOC_ENUM_FRAMEINTERVALS() for a coded pixel format and
coded resolution will include all possible frame intervals supported by the encoder
for the given coded pixel format and resolution.

• Values returned by VIDIOC_ENUM_FRAMEINTERVALS() for a raw pixel format and reso-
lution will include all possible frame intervals supported by the encoder for the given
raw pixel format and resolution and for the coded format, coded resolution and coded
frame interval currently set on CAPTURE.

• Support for VIDIOC_ENUM_FRAMEINTERVALS() is optional. If it is not implemented, then
there are no special restrictions other than the limits of the codec itself.

5. Supported profiles and levels for the coded format currently set on CAPTURE, if applicable,
may be queried using their respective controls via VIDIOC_QUERYCTRL().

6. Any additional encoder capabilities may be discovered by querying their respective con-
trols.

1012 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Initialization

1. Set the coded format on the CAPTURE queue via VIDIOC_S_FMT().

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

pixelformat the coded format to be produced.

sizeimage desired size of CAPTURE buffers; the encoder may adjust it to match hard-
ware requirements.

width, height ignored (read-only).
other fields follow standard semantics.

• Return fields:
sizeimage adjusted size of CAPTURE buffers.

width, height the coded size selected by the encoder based on current state, e.g.
OUTPUT format, selection rectangles, etc. (read-only).

Important: Changing the CAPTURE format may change the currently set OUTPUT format.
How the new OUTPUT format is determined is up to the encoder and the client must ensure
it matches its needs afterwards.

2. Optional. Enumerate supported OUTPUT formats (raw formats for source) for the selected
coded format via VIDIOC_ENUM_FMT().

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

other fields follow standard semantics.
• Return fields:
pixelformat raw format supported for the coded format currently selected on the

CAPTURE queue.

other fields follow standard semantics.
3. Set the raw source format on the OUTPUT queue via VIDIOC_S_FMT().

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

pixelformat raw format of the source.

width, height source resolution.
other fields follow standard semantics.

• Return fields:
width, height may be adjusted to match encoder minimums, maximums and align-

ment requirements, as required by the currently selected formats, as reported by
VIDIOC_ENUM_FRAMESIZES().

3.2. Part I - Video for Linux API 1013

Linux Media Documentation

other fields follow standard semantics.
• Setting the OUTPUT format will reset the selection rectangles to their default values,
based on the new resolution, as described in the next step.

4. Set the raw frame interval on the OUTPUT queue via VIDIOC_S_PARM(). This also sets the
coded frame interval on the CAPTURE queue to the same value.

• ** Required fields:**

type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

parm.output set all fields except parm.output.timeperframe to 0.

parm.output.timeperframe the desired frame interval; the encoder may adjust it to
match hardware requirements.

• Return fields:
parm.output.timeperframe the adjusted frame interval.

Important: Changing the OUTPUT frame interval also sets the framerate that the encoder
uses to encode the video. So setting the frame interval to 1/24 (or 24 frames per second)
will produce a coded video stream that can be played back at that speed. The frame interval
for the OUTPUT queue is just a hint, the application may provide raw frames at a different
rate. It can be used by the driver to help schedule multiple encoders running in parallel.

In the next step the CAPTURE frame interval can optionally be changed to a different value.
This is useful for off-line encoding were the coded frame interval can be different from the
rate at which raw frames are supplied.

Important: timeperframe deals with frames, not fields. So for interlaced formats this is
the time per two fields, since a frame consists of a top and a bottom field.

Note: It is due to historical reasons that changing the OUTPUT frame interval also changes
the coded frame interval on the CAPTURE queue. Ideally these would be independent set-
tings, but that would break the existing API.

5. Optional Set the coded frame interval on the CAPTURE queue via VIDIOC_S_PARM(). This
is only necessary if the coded frame interval is different from the raw frame interval,
which is typically the case for off-line encoding. Support for this feature is signalled by the
V4L2_FMT_FLAG_ENC_CAP_FRAME_INTERVAL format flag.

• ** Required fields:**

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

parm.capture set all fields except parm.capture.timeperframe to 0.

parm.capture.timeperframe the desired coded frame interval; the encoder may ad-
just it to match hardware requirements.

• Return fields:
parm.capture.timeperframe the adjusted frame interval.

1014 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Important: Changing the CAPTURE frame interval sets the framerate for the coded video.
It does not set the rate at which buffers arrive on the CAPTURE queue, that depends on how
fast the encoder is and how fast raw frames are queued on the OUTPUT queue.

Important: timeperframe deals with frames, not fields. So for interlaced formats this is
the time per two fields, since a frame consists of a top and a bottom field.

Note: Not all drivers support this functionality, in that case just set the desired coded
frame interval for the OUTPUT queue.

However, drivers that can schedule multiple encoders based on the OUTPUT frame interval
must support this optional feature.

6. Optional. Set the visible resolution for the stream metadata via VIDIOC_S_SELECTION()
on the OUTPUT queue if it is desired to be different than the full OUTPUT resolution.

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

target set to V4L2_SEL_TGT_CROP.

r.left, r.top, r.width, r.height visible rectangle; this must fit within the
V4L2_SEL_TGT_CROP_BOUNDS rectangle and may be subject to adjustment to
match codec and hardware constraints.

• Return fields:
r.left, r.top, r.width, r.height visible rectangle adjusted by the encoder.

• The following selection targets are supported on OUTPUT:

V4L2_SEL_TGT_CROP_BOUNDS equal to the full source frame, matching the active
OUTPUT format.

V4L2_SEL_TGT_CROP_DEFAULT equal to V4L2_SEL_TGT_CROP_BOUNDS.

V4L2_SEL_TGT_CROP rectangle within the source buffer to be encoded into the
CAPTURE stream; defaults to V4L2_SEL_TGT_CROP_DEFAULT.

Note: A common use case for this selection target is encoding a source video with
a resolution that is not a multiple of a macroblock, e.g. the common 1920x1080
resolution may require the source buffers to be aligned to 1920x1088 for codecs
with 16x16 macroblock size. To avoid encoding the padding, the client needs to
explicitly configure this selection target to 1920x1080.

Warning: The encoder may adjust the crop/compose rectangles to the nearest sup-
ported ones to meet codec and hardware requirements. The client needs to check the
adjusted rectangle returned by VIDIOC_S_SELECTION().

3.2. Part I - Video for Linux API 1015

Linux Media Documentation

7. Allocate buffers for both OUTPUT and CAPTURE via VIDIOC_REQBUFS(). This may be per-
formed in any order.

• Required fields:
count requested number of buffers to allocate; greater than zero.

type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT or CAPTURE.

other fields follow standard semantics.
• Return fields:
count actual number of buffers allocated.

Warning: The actual number of allocated buffers may differ from the count given.
The client must check the updated value of count after the call returns.

Note: To allocatemore than theminimum number of OUTPUT buffers (for pipeline depth),
the client may query the V4L2_CID_MIN_BUFFERS_FOR_OUTPUT control to get the minimum
number of buffers required, and pass the obtained value plus the number of additional
buffers needed in the count field to VIDIOC_REQBUFS().

Alternatively, VIDIOC_CREATE_BUFS() can be used to have more control over buffer alloca-
tion.

• Required fields:
count requested number of buffers to allocate; greater than zero.

type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

other fields follow standard semantics.
• Return fields:
count adjusted to the number of allocated buffers.

8. Begin streaming on both OUTPUT and CAPTURE queues via VIDIOC_STREAMON(). This may
be performed in any order. The actual encoding process starts when both queues start
streaming.

Note: If the client stops the CAPTURE queue during the encode process and then restarts it
again, the encoder will begin generating a stream independent from the stream generated be-
fore the stop. The exact constraints depend on the coded format, but may include the following
implications:

• encoded frames produced after the restart must not reference any frames produced before
the stop, e.g. no long term references for H.264/HEVC,

• any headers that must be included in a standalone stream must be produced again, e.g.
SPS and PPS for H.264/HEVC.

1016 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Encoding

This state is reached after the Initialization sequence finishes successfully. In this state, the
client queues and dequeues buffers to both queues via VIDIOC_QBUF() and VIDIOC_DQBUF(),
following the standard semantics.

The content of encoded CAPTURE buffers depends on the active coded pixel format and may be
affected by codec-specific extended controls, as stated in the documentation of each format.

Both queues operate independently, following standard behavior of V4L2 buffer queues and
memory-to-memory devices. In addition, the order of encoded frames dequeued from the
CAPTURE queue may differ from the order of queuing raw frames to the OUTPUT queue, due
to properties of the selected coded format, e.g. frame reordering.

The client must not assume any direct relationship between CAPTURE and OUTPUT buffers and
any specific timing of buffers becoming available to dequeue. Specifically:

• a buffer queued to OUTPUT may result in more than one buffer produced on CAPTURE (for
example, if returning an encoded frame allowed the encoder to return a frame that pre-
ceded it in display, but succeeded it in the decode order; however, there may be other
reasons for this as well),

• a buffer queued to OUTPUT may result in a buffer being produced on CAPTURE later into
encode process, and/or after processing further OUTPUT buffers, or be returned out of order,
e.g. if display reordering is used,

• buffers may become available on the CAPTURE queue without additional buffers queued to
OUTPUT (e.g. during drain or EOS), because of the OUTPUT buffers queued in the past whose
encoding results are only available at later time, due to specifics of the encoding process,

• buffers queued to OUTPUT may not become available to dequeue instantly after being en-
coded into a corresponding CAPTURE buffer, e.g. if the encoder needs to use the frame as
a reference for encoding further frames.

Note: To allow matching encoded CAPTURE buffers with OUTPUT buffers they originated from,
the client can set the timestamp field of the v4l2_buffer struct when queuing an OUTPUT
buffer. The CAPTURE buffer(s), which resulted from encoding that OUTPUT buffer will have their
timestamp field set to the same value when dequeued.

In addition to the straightforward case of one OUTPUT buffer producing one CAPTURE buffer, the
following cases are defined:

• one OUTPUT buffer generates multiple CAPTURE buffers: the same OUTPUT timestamp will
be copied to multiple CAPTURE buffers,

• the encoding order differs from the presentation order (i.e. the CAPTURE buffers are out-
of-order compared to the OUTPUT buffers): CAPTURE timestamps will not retain the order of
OUTPUT timestamps.

Note: To let the client distinguish between frame types (keyframes, intermediate frames;
the exact list of types depends on the coded format), the CAPTURE buffers will have corre-
sponding flag bits set in their v4l2_buffer struct when dequeued. See the documentation
of v4l2_buffer and each coded pixel format for exact list of flags and their meanings.

3.2. Part I - Video for Linux API 1017

Linux Media Documentation

Should an encoding error occur, it will be reported to the client with the level of details de-
pending on the encoder capabilities. Specifically:

• the CAPTURE buffer (if any) that contains the results of the failed encode operation will be
returned with the V4L2_BUF_FLAG_ERROR flag set,

• if the encoder is able to precisely report the OUTPUT buffer(s) that triggered the error, such
buffer(s) will be returned with the V4L2_BUF_FLAG_ERROR flag set.

Note: If a CAPTURE buffer is too small then it is just returned with the V4L2_BUF_FLAG_ERROR
flag set. More work is needed to detect that this error occurred because the buffer was too
small, and to provide support to free existing buffers that were too small.

In case of a fatal failure that does not allow the encoding to continue, any further operations
on corresponding encoder file handle will return the -EIO error code. The client may close the
file handle and open a new one, or alternatively reinitialize the instance by stopping streaming
on both queues, releasing all buffers and performing the Initialization sequence again.

Encoding Parameter Changes

The client is allowed to use VIDIOC_S_CTRL() to change encoder parameters at any time. The
availability of parameters is encoder-specific and the client must query the encoder to find the
set of available controls.

The ability to change each parameter during encoding is encoder-specific, as per the standard
semantics of the V4L2 control interface. The client may attempt to set a control during encoding
and if the operation fails with the -EBUSY error code, the CAPTURE queue needs to be stopped
for the configuration change to be allowed. To do this, it may follow the Drain sequence to avoid
losing the already queued/encoded frames.

The timing of parameter updates is encoder-specific, as per the standard semantics of the V4L2
control interface. If the client needs to apply the parameters exactly at specific frame, using
the Request API (Request API) should be considered, if supported by the encoder.

Drain

To ensure that all the queued OUTPUT buffers have been processed and the related CAPTURE
buffers are given to the client, the client must follow the drain sequence described below. After
the drain sequence ends, the client has received all encoded frames for all OUTPUT buffers
queued before the sequence was started.

1. Begin the drain sequence by issuing VIDIOC_ENCODER_CMD().

• Required fields:
cmd set to V4L2_ENC_CMD_STOP.

flags set to 0.

pts set to 0.

1018 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Warning: The sequence can be only initiated if both OUTPUT and CAPTURE queues are
streaming. For compatibility reasons, the call to VIDIOC_ENCODER_CMD() will not fail
even if any of the queues is not streaming, but at the same time it will not initiate the
Drain sequence and so the steps described below would not be applicable.

2. Any OUTPUT buffers queued by the client before the VIDIOC_ENCODER_CMD() was issued
will be processed and encoded as normal. The client must continue to handle both queues
independently, similarly to normal encode operation. This includes:

• queuing and dequeuing CAPTURE buffers, until a buffer marked with the
V4L2_BUF_FLAG_LAST flag is dequeued,

Warning: The last buffer may be empty (with v4l2_buffer bytesused = 0) and in
that case it must be ignored by the client, as it does not contain an encoded frame.

Note: Any attempt to dequeue more CAPTURE buffers beyond the buffer marked with
V4L2_BUF_FLAG_LAST will result in a -EPIPE error from VIDIOC_DQBUF().

• dequeuing processed OUTPUT buffers, until all the buffers queued before the
V4L2_ENC_CMD_STOP command are dequeued,

• dequeuing the V4L2_EVENT_EOS event, if the client subscribes to it.

Note: For backwards compatibility, the encoder will signal a V4L2_EVENT_EOS event when
the last frame has been encoded and all frames are ready to be dequeued. It is deprecated
behavior and the client must not rely on it. The V4L2_BUF_FLAG_LAST buffer flag should be
used instead.

3. Once all OUTPUT buffers queued before the V4L2_ENC_CMD_STOP call are dequeued and the
last CAPTURE buffer is dequeued, the encoder is stopped and it will accept, but not process
any newly queued OUTPUT buffers until the client issues any of the following operations:

• V4L2_ENC_CMD_START - the encoder will not be reset and will resume operation nor-
mally, with all the state from before the drain,

• a pair of VIDIOC_STREAMOFF() and VIDIOC_STREAMON() on the CAPTURE queue - the
encoder will be reset (see the Reset sequence) and then resume encoding,

• a pair of VIDIOC_STREAMOFF() and VIDIOC_STREAMON() on the OUTPUT queue - the
encoder will resume operation normally, however any source frames queued to the
OUTPUT queue between V4L2_ENC_CMD_STOP and VIDIOC_STREAMOFF() will be dis-
carded.

Note: Once the drain sequence is initiated, the client needs to drive it to completion, as
described by the steps above, unless it aborts the process by issuing VIDIOC_STREAMOFF() on
any of the OUTPUT or CAPTURE queues. The client is not allowed to issue V4L2_ENC_CMD_START
or V4L2_ENC_CMD_STOP again while the drain sequence is in progress and they will fail with
-EBUSY error code if attempted.

3.2. Part I - Video for Linux API 1019

Linux Media Documentation

For reference, handling of various corner cases is described below:

• In case of no buffer in the OUTPUT queue at the time the V4L2_ENC_CMD_STOP command
was issued, the drain sequence completes immediately and the encoder returns an empty
CAPTURE buffer with the V4L2_BUF_FLAG_LAST flag set.

• In case of no buffer in the CAPTURE queue at the time the drain sequence completes, the
next time the client queues a CAPTURE buffer it is returned at once as an empty buffer with
the V4L2_BUF_FLAG_LAST flag set.

• If VIDIOC_STREAMOFF() is called on the CAPTURE queue in the middle of the drain sequence,
the drain sequence is canceled and all CAPTURE buffers are implicitly returned to the client.

• If VIDIOC_STREAMOFF() is called on the OUTPUT queue in the middle of the drain sequence,
the drain sequence completes immediately and next CAPTURE buffer will be returned empty
with the V4L2_BUF_FLAG_LAST flag set.

Although not mandatory, the availability of encoder commands may be queried using
VIDIOC_TRY_ENCODER_CMD().

Reset

The client may want to request the encoder to reinitialize the encoding, so that the following
stream data becomes independent from the stream data generated before. Depending on the
coded format, that may imply that:

• encoded frames produced after the restart must not reference any frames produced before
the stop, e.g. no long term references for H.264/HEVC,

• any headers that must be included in a standalone stream must be produced again, e.g.
SPS and PPS for H.264/HEVC.

This can be achieved by performing the reset sequence.

1. Perform the Drain sequence to ensure all the in-flight encoding finishes and respective
buffers are dequeued.

2. Stop streaming on the CAPTURE queue via VIDIOC_STREAMOFF(). This will return all cur-
rently queued CAPTURE buffers to the client, without valid frame data.

3. Start streaming on the CAPTURE queue via VIDIOC_STREAMON() and continue with regular
encoding sequence. The encoded frames produced into CAPTURE buffers from now on will
contain a standalone stream that can be decoded without the need for frames encoded
before the reset sequence, starting at the first OUTPUT buffer queued after issuing the
V4L2_ENC_CMD_STOP of the Drain sequence.

This sequence may be also used to change encoding parameters for encoders without the ability
to change the parameters on the fly.

1020 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Commit Points

Setting formats and allocating buffers triggers changes in the behavior of the encoder.

1. Setting the format on the CAPTURE queue may change the set of formats sup-
ported/advertised on the OUTPUT queue. In particular, it also means that the OUTPUT format
may be reset and the client must not rely on the previously set format being preserved.

2. Enumerating formats on the OUTPUT queue always returns only formats supported for the
current CAPTURE format.

3. Setting the format on the OUTPUT queue does not change the list of formats available on the
CAPTURE queue. An attempt to set the OUTPUT format that is not supported for the currently
selected CAPTURE format will result in the encoder adjusting the requested OUTPUT format
to a supported one.

4. Enumerating formats on the CAPTURE queue always returns the full set of supported coded
formats, irrespective of the current OUTPUT format.

5. While buffers are allocated on any of the OUTPUT or CAPTURE queues, the client must not
change the format on the CAPTURE queue. Drivers will return the -EBUSY error code for
any such format change attempt.

To summarize, setting formats and allocation must always start with the CAPTURE queue and the
CAPTURE queue is the master that governs the set of supported formats for the OUTPUT queue.

Memory-to-memory Stateless Video Decoder Interface

A stateless decoder is a decoder that works without retaining any kind of state between pro-
cessed frames. This means that each frame is decoded independently of any previous and future
frames, and that the client is responsible for maintaining the decoding state and providing it
to the decoder with each decoding request. This is in contrast to the stateful video decoder
interface, where the hardware and driver maintain the decoding state and all the client has to
do is to provide the raw encoded stream and dequeue decoded frames in display order.

This section describes how user-space (“the client”) is expected to communicate with stateless
decoders in order to successfully decode an encoded stream. Compared to stateful codecs,
the decoder/client sequence is simpler, but the cost of this simplicity is extra complexity in the
client which is responsible for maintaining a consistent decoding state.

Stateless decoders make use of the Request API. A stateless decoder must expose the
V4L2_BUF_CAP_SUPPORTS_REQUESTS capability on its OUTPUT queue when VIDIOC_REQBUFS() or
VIDIOC_CREATE_BUFS() are invoked.

Depending on the encoded formats supported by the decoder, a single decoded frame
may be the result of several decode requests (for instance, H.264 streams with mul-
tiple slices per frame). Decoders that support such formats must also expose the
V4L2_BUF_CAP_SUPPORTS_M2M_HOLD_CAPTURE_BUF capability on their OUTPUT queue.

3.2. Part I - Video for Linux API 1021

Linux Media Documentation

Querying capabilities

1. To enumerate the set of coded formats supported by the decoder, the client calls
VIDIOC_ENUM_FMT() on the OUTPUT queue.

• The driver must always return the full set of supported OUTPUT formats, irrespective
of the format currently set on the CAPTURE queue.

• Simultaneously, the driver must restrain the set of values returned by codec-specific
capability controls (such as H.264 profiles) to the set actually supported by the hard-
ware.

2. To enumerate the set of supported raw formats, the client calls VIDIOC_ENUM_FMT() on the
CAPTURE queue.

• The driver must return only the formats supported for the format currently active on
the OUTPUT queue.

• Depending on the currently set OUTPUT format, the set of supported raw formats may
depend on the value of some codec-dependent controls. The client is responsible for
making sure that these controls are set before querying the CAPTURE queue. Failure
to do so will result in the default values for these controls being used, and a returned
set of formats that may not be usable for the media the client is trying to decode.

3. The client may use VIDIOC_ENUM_FRAMESIZES() to detect supported resolutions for a given
format, passing desired pixel format in v4l2_frmsizeenum’s pixel_format.

4. Supported profiles and levels for the current OUTPUT format, if applicable, may be queried
using their respective controls via VIDIOC_QUERYCTRL().

Initialization

1. Set the coded format on the OUTPUT queue via VIDIOC_S_FMT().

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

pixelformat a coded pixel format.

width, height coded width and height parsed from the stream.

other fields follow standard semantics.

Note: Changing the OUTPUT format may change the currently set CAPTURE format. The
driver will derive a new CAPTURE format from the OUTPUT format being set, including reso-
lution, colorimetry parameters, etc. If the client needs a specific CAPTURE format, it must
adjust it afterwards.

2. Call VIDIOC_S_EXT_CTRLS() to set all the controls (parsed headers, etc.) required by the
OUTPUT format to enumerate the CAPTURE formats.

3. Call VIDIOC_G_FMT() for CAPTURE queue to get the format for the destination buffers
parsed/decoded from the bytestream.

• Required fields:

1022 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

• Returned fields:
width, height frame buffer resolution for the decoded frames.
pixelformat pixel format for decoded frames.

num_planes (for _MPLANE type only) number of planes for pixelformat.
sizeimage, bytesperline as per standard semantics; matching frame buffer format.

Note: The value of pixelformat may be any pixel format supported for the OUTPUT for-
mat, based on the hardware capabilities. It is suggested that the driver chooses the pre-
ferred/optimal format for the current configuration. For example, a YUV format may be
preferred over an RGB format, if an additional conversion step would be required for RGB.

4. [optional] Enumerate CAPTURE formats via VIDIOC_ENUM_FMT() on the CAPTURE queue. The
client may use this ioctl to discover which alternative raw formats are supported for the
current OUTPUT format and select one of them via VIDIOC_S_FMT().

Note: The driver will return only formats supported for the currently selected OUTPUT
format and currently set controls, even if more formats may be supported by the decoder
in general.

For example, a decoder may support YUV and RGB formats for resolutions 1920x1088 and
lower, but only YUV for higher resolutions (due to hardware limitations). After setting a
resolution of 1920x1088 or lower as the OUTPUT format, VIDIOC_ENUM_FMT() may return a
set of YUV and RGB pixel formats, but after setting a resolution higher than 1920x1088,
the driver will not return RGB pixel formats, since they are unsupported for this resolution.

5. [optional] Choose a different CAPTURE format than suggested via VIDIOC_S_FMT() on
CAPTURE queue. It is possible for the client to choose a different format than se-
lected/suggested by the driver in VIDIOC_G_FMT().

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

pixelformat a raw pixel format.

width, height frame buffer resolution of the decoded stream; typically unchanged
from what was returned with VIDIOC_G_FMT(), but it may be different if the hard-
ware supports composition and/or scaling.

After performing this step, the client must perform step 3 again in order to obtain up-to-
date information about the buffers size and layout.

6. Allocate source (bytestream) buffers via VIDIOC_REQBUFS() on OUTPUT queue.

• Required fields:
count requested number of buffers to allocate; greater than zero.

type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

memory follows standard semantics.

3.2. Part I - Video for Linux API 1023

Linux Media Documentation

• Return fields:
count actual number of buffers allocated.

• If required, the driver will adjust count to be equal or bigger to the minimum of re-
quired number of OUTPUT buffers for the given format and requested count. The client
must check this value after the ioctl returns to get the actual number of buffers allo-
cated.

7. Allocate destination (raw format) buffers via VIDIOC_REQBUFS() on the CAPTURE queue.

• Required fields:
count requested number of buffers to allocate; greater than zero. The client is re-

sponsible for deducing the minimum number of buffers required for the stream to
be properly decoded (taking e.g. reference frames into account) and pass an equal
or bigger number.

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

memory follows standard semantics. V4L2_MEMORY_USERPTR is not supported for
CAPTURE buffers.

• Return fields:
count adjusted to allocated number of buffers, in case the codec requires more buffers

than requested.

• The driver must adjust count to the minimum of required number of CAPTURE buffers
for the current format, stream configuration and requested count. The client must
check this value after the ioctl returns to get the number of buffers allocated.

8. Allocate requests (likely one per OUTPUT buffer) via MEDIA_IOC_REQUEST_ALLOC() on
the media device.

9. Start streaming on both OUTPUT and CAPTURE queues via VIDIOC_STREAMON().

Decoding

For each frame, the client is responsible for submitting at least one request to which the fol-
lowing is attached:

• The amount of encoded data expected by the codec for its current configuration, as a buffer
submitted to the OUTPUT queue. Typically, this corresponds to one frame worth of encoded
data, but some formats may allow (or require) different amounts per unit.

• All the metadata needed to decode the submitted encoded data, in the form of controls
relevant to the format being decoded.

The amount of data and contents of the source OUTPUT buffer, as well as the controls that must
be set on the request, depend on the active coded pixel format and might be affected by codec-
specific extended controls, as stated in documentation of each format.

If there is a possibility that the decoded frame will require one or more decode re-
quests after the current one in order to be produced, then the client must set the
V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF flag on the OUTPUT buffer. This will result in the (po-
tentially partially) decoded CAPTURE buffer not beingmade available for dequeueing, and reused
for the next decode request if the timestamp of the next OUTPUT buffer has not changed.

1024 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

A typical frame would thus be decoded using the following sequence:

1. Queue an OUTPUT buffer containing one unit of encoded bytestream data for the decoding
request, using VIDIOC_QBUF().

• Required fields:
index index of the buffer being queued.

type type of the buffer.

bytesused number of bytes taken by the encoded data frame in the buffer.

flags the V4L2_BUF_FLAG_REQUEST_FD flag must be set. Additionally, if we are not
sure that the current decode request is the last one needed to produce a fully
decoded frame, then V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF must also be set.

request_fd must be set to the file descriptor of the decoding request.

timestamp must be set to a unique value per frame. This value will be propagated into
the decoded frame’s buffer and can also be used to use this frame as the reference
of another. If using multiple decode requests per frame, then the timestamps of all
the OUTPUT buffers for a given frame must be identical. If the timestamp changes,
then the currently held CAPTURE buffer will be made available for dequeuing and
the current request will work on a new CAPTURE buffer.

2. Set the codec-specific controls for the decoding request, using VIDIOC_S_EXT_CTRLS().

• Required fields:
which must be V4L2_CTRL_WHICH_REQUEST_VAL.

request_fd must be set to the file descriptor of the decoding request.

other fields other fields are set as usual when setting controls. The controls array
must contain all the codec-specific controls required to decode a frame.

Note: It is possible to specify the controls in different invocations of
VIDIOC_S_EXT_CTRLS(), or to overwrite a previously set control, as long as request_fd
and which are properly set. The controls state at the moment of request submission is the
one that will be considered.

Note: The order in which steps 1 and 2 take place is interchangeable.

3. Submit the request by invoking MEDIA_REQUEST_IOC_QUEUE() on the request FD.

If the request is submitted without an OUTPUT buffer, or if some of the required con-
trols are missing from the request, then MEDIA_REQUEST_IOC_QUEUE() will return
-ENOENT. If more than one OUTPUT buffer is queued, then it will return -EINVAL.
MEDIA_REQUEST_IOC_QUEUE() returning non-zero means that no CAPTURE buffer
will be produced for this request.

CAPTURE buffers must not be part of the request, and are queued independently. They are
returned in decode order (i.e. the same order as coded frames were submitted to the OUTPUT
queue).

3.2. Part I - Video for Linux API 1025

Linux Media Documentation

Runtime decoding errors are signaled by the dequeued CAPTURE buffers carrying the
V4L2_BUF_FLAG_ERROR flag. If a decoded reference frame has an error, then all following de-
coded frames that refer to it also have the V4L2_BUF_FLAG_ERROR flag set, although the decoder
will still try to produce (likely corrupted) frames.

Buffer management while decoding

Contrary to stateful decoders, a stateless decoder does not perform any kind of buffer manage-
ment: it only guarantees that dequeued CAPTURE buffers can be used by the client for as long
as they are not queued again. “Used” here encompasses using the buffer for compositing or
display.

A dequeued capture buffer can also be used as the reference frame of another buffer.

A frame is specified as reference by converting its timestamp into nanoseconds, and storing it
into the relevant member of a codec-dependent control structure. The v4l2_timeval_to_ns()
function must be used to perform that conversion. The timestamp of a frame can be used to
reference it as soon as all its units of encoded data are successfully submitted to the OUTPUT
queue.

A decoded buffer containing a reference frame must not be reused as a decoding target until all
the frames referencing it have been decoded. The safest way to achieve this is to refrain from
queueing a reference buffer until all the decoded frames referencing it have been dequeued.
However, if the driver can guarantee that buffers queued to the CAPTURE queue are processed
in queued order, then user-space can take advantage of this guarantee and queue a reference
buffer when the following conditions are met:

1. All the requests for frames affected by the reference frame have been queued, and

2. A sufficient number of CAPTURE buffers to cover all the decoded referencing frames have
been queued.

When queuing a decoding request, the driver will increase the reference count of all the re-
sources associated with reference frames. This means that the client can e.g. close the
DMABUF file descriptors of reference frame buffers if it won’t need them afterwards.

Seeking

In order to seek, the client just needs to submit requests using input buffers corresponding
to the new stream position. It must however be aware that resolution may have changed and
follow the dynamic resolution change sequence in that case. Also depending on the codec used,
picture parameters (e.g. SPS/PPS for H.264) may have changed and the client is responsible
for making sure that a valid state is sent to the decoder.

The client is then free to ignore any returned CAPTURE buffer that comes from the pre-seek
position.

1026 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Pausing

In order to pause, the client can just cease queuing buffers onto the OUTPUT queue. Without
source bytestream data, there is no data to process and the codec will remain idle.

Dynamic resolution change

If the client detects a resolution change in the stream, it will need to perform the initialization
sequence again with the new resolution:

1. If the last submitted request resulted in a CAPTURE buffer being held by the use of the
V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF flag, then the last frame is not available on the
CAPTURE queue. In this case, a V4L2_DEC_CMD_FLUSH command shall be sent. This will
make the driver dequeue the held CAPTURE buffer.

2. Wait until all submitted requests have completed and dequeue the corresponding output
buffers.

3. Call VIDIOC_STREAMOFF() on both the OUTPUT and CAPTURE queues.

4. Free all CAPTURE buffers by calling VIDIOC_REQBUFS() on the CAPTURE queue with a buffer
count of zero.

5. Perform the initialization sequence again (minus the allocation of OUTPUT buffers), with
the new resolution set on the OUTPUT queue. Note that due to resolution constraints, a
different format may need to be picked on the CAPTURE queue.

Drain

If the last submitted request resulted in a CAPTURE buffer being held by the use of the
V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF flag, then the last frame is not available on the CAPTURE
queue. In this case, a V4L2_DEC_CMD_FLUSH command shall be sent. This will make the driver
dequeue the held CAPTURE buffer.

After that, in order to drain the stream on a stateless decoder, the client just needs to wait until
all the submitted requests are completed.

3.2.4.6 Raw VBI Data Interface

VBI is an abbreviation of Vertical Blanking Interval, a gap in the sequence of lines of an analog
video signal. During VBI no picture information is transmitted, allowing some time while the
electron beam of a cathode ray tube TV returns to the top of the screen. Using an oscilloscope
you will find here the vertical synchronization pulses and short data packages ASK modulated1
onto the video signal. These are transmissions of services such as Teletext or Closed Caption.

Subject of this interface type is raw VBI data, as sampled off a video signal, or to be added to a
signal for output. The data format is similar to uncompressed video images, a number of lines
times a number of samples per line, we call this a VBI image.

Conventionally V4L2 VBI devices are accessed through character device special files named
/dev/vbi and /dev/vbi0 to /dev/vbi31 with major number 81 and minor numbers 224 to 255.

1 ASK: Amplitude-Shift Keying. A high signal level represents a ‘1’ bit, a low level a ‘0’ bit.

3.2. Part I - Video for Linux API 1027

Linux Media Documentation

/dev/vbi is typically a symbolic link to the preferred VBI device. This convention applies to
both input and output devices.

To address the problems of finding related video and VBI devices VBI capturing and output is
also available as device function under /dev/video. To capture or output raw VBI data with
these devices applications must call the VIDIOC_S_FMT ioctl. Accessed as /dev/vbi, raw VBI
capturing or output is the default device function.

Querying Capabilities

Devices supporting the raw VBI capturing or output API set the V4L2_CAP_VBI_CAPTURE or
V4L2_CAP_VBI_OUTPUT flags, respectively, in the capabilities field of struct v4l2_capability
returned by the ioctl VIDIOC_QUERYCAP ioctl. At least one of the read/write, streaming or
asynchronous I/O methods must be supported. VBI devices may or may not have a tuner or
modulator.

Supplemental Functions

VBI devices shall support video input or output, tuner or modulator, and controls ioctls as
needed. The video standard ioctls provide information vital to program a VBI device, therefore
must be supported.

Raw VBI Format Negotiation

Raw VBI sampling abilities can vary, in particular the sampling frequency. To properly interpret
the data V4L2 specifies an ioctl to query the sampling parameters. Moreover, to allow for some
flexibility applications can also suggest different parameters.

As usual these parameters are not reset at open() time to permit Unix tool chains, program-
ming a device and then reading from it as if it was a plain file. Well written V4L2 applications
should always ensure they really get what they want, requesting reasonable parameters and
then checking if the actual parameters are suitable.

To query the current raw VBI capture parameters applications set the type field of a struct
v4l2_format to V4L2_BUF_TYPE_VBI_CAPTURE or V4L2_BUF_TYPE_VBI_OUTPUT, and call the VID-
IOC_G_FMT ioctl with a pointer to this structure. Drivers fill the struct v4l2_vbi_format vbi
member of the fmt union.

To request different parameters applications set the type field of a struct v4l2_format as above
and initialize all fields of the struct v4l2_vbi_format vbi member of the fmt union, or better
just modify the results of VIDIOC_G_FMT, and call the VIDIOC_S_FMT ioctl with a pointer
to this structure. Drivers return an EINVAL error code only when the given parameters are
ambiguous, otherwise they modify the parameters according to the hardware capabilities and
return the actual parameters. When the driver allocates resources at this point, it may return
an EBUSY error code to indicate the returned parameters are valid but the required resources
are currently not available. That may happen for instance when the video and VBI areas to
capture would overlap, or when the driver supports multiple opens and another process already
requested VBI capturing or output. Anyway, applications must expect other resource allocation
points which may return EBUSY, at the ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF ioctl
and the first read() , write() and select() calls.

1028 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

VBI devices must implement both the VIDIOC_G_FMT and VIDIOC_S_FMT ioctl, even if VID-
IOC_S_FMT ignores all requests and always returns default parameters as VIDIOC_G_FMT
does. VIDIOC_TRY_FMT is optional.

v4l2_vbi_format

Table 106: struct v4l2_vbi_format
__u32 sampling_rate Samples per second, i. e. unit 1 Hz.
__u32 offset Horizontal offset of the VBI image, relative to the lead-

ing edge of the line synchronization pulse and counted in
samples: The first sample in the VBI image will be lo-
cated offset / sampling_rate seconds following the lead-
ing edge. See also Figure 4.1. Line synchronization.

__u32 samples_per_line
__u32 sample_format Defines the sample format as in Image Formats, a four-

character-code.2 Usually this is V4L2_PIX_FMT_GREY, i. e.
each sample consists of 8 bits with lower values oriented to-
wards the black level. Do not assume any other correlation
of values with the signal level. For example, the MSB does
not necessarily indicate if the signal is ‘high’ or ‘low’ be-
cause 128 may not be the mean value of the signal. Drivers
shall not convert the sample format by software.

__u32 start2 This is the scanning system line number associated with the
first line of the VBI image, of the first and the second field
respectively. See Figure 4.2. ITU-R 525 line numbering
(M/NTSC and M/PAL) and Figure 4.3. ITU-R 625 line num-
bering for valid values. The V4L2_VBI_ITU_525_F1_START,
V4L2_VBI_ITU_525_F2_START, V4L2_VBI_ITU_625_F1_START
and V4L2_VBI_ITU_625_F2_START defines give the start
line numbers for each field for each 525 or 625 line format
as a convenience. Don’t forget that ITU line numbering
starts at 1, not 0. VBI input drivers can return start values
0 if the hardware cannot reliable identify scanning lines,
VBI acquisition may not require this information.

__u32 count2 The number of lines in the first and second field image, re-
spectively.

Drivers should be as flexibility as possible. For example, it may be possible to extend or move
the VBI capture window down to the picture area, implementing a ‘full field mode’ to capture
data service transmissions embedded in the picture.
An application can set the first or second count value to zero if no data is required from the
respective field; count[1] if the scanning system is progressive, i. e. not interlaced. The
corresponding start value shall be ignored by the application and driver. Anyway, drivers may
not support single field capturing and return both count values non-zero.
Both count values set to zero, or line numbers are outside the bounds depicted4, or a field
image covering lines of two fields, are invalid and shall not be returned by the driver.
To initialize the start and count fields, applications must first determine the current video
standard selection. The v4l2_std_id or the framelines field of struct v4l2_standard can be
evaluated for this purpose.
__u32 flags See Raw VBI Format Flags below. Currently only drivers

set flags, applications must set this field to zero.
Continued on next page

3.2. Part I - Video for Linux API 1029

Linux Media Documentation

Table 106 – continued from previous page
__u32 reserved2 This array is reserved for future extensions. Drivers and

applications must set it to zero.

Table 107: Raw VBI Format Flags
V4L2_VBI_UNSYNC 0x0001 This flag indicates hardware which does not properly dis-

tinguish between fields. Normally the VBI image stores the
first field (lower scanning line numbers) first in memory.
This may be a top or bottom field depending on the video
standard. When this flag is set the first or second field may
be stored first, however the fields are still in correct tem-
poral order with the older field first in memory.3

V4L2_VBI_INTERLACED 0x0002 By default the two field images will be passed sequen-
tially; all lines of the first field followed by all lines of
the second field (compare Field Order V4L2_FIELD_SEQ_TB
and V4L2_FIELD_SEQ_BT, whether the top or bottom field
is first in memory depends on the video standard).
When this flag is set, the two fields are interlaced (cf.
V4L2_FIELD_INTERLACED). The first line of the first field fol-
lowed by the first line of the second field, then the two sec-
ond lines, and so on. Such a layout may be necessary when
the hardware has been programmed to capture or output
interlaced video images and is unable to separate the fields
for VBI capturing at the same time. For simplicity setting
this flag implies that both count values are equal and non-
zero.

Remember the VBI image format depends on the selected video standard, therefore the applica-
tion must choose a new standard or query the current standard first. Attempts to read or write
data ahead of format negotiation, or after switching the video standard which may invalidate
the negotiated VBI parameters, should be refused by the driver. A format change during active
I/O is not permitted.

Reading and writing VBI images

To assure synchronization with the field number and easier implementation, the smallest unit of
data passed at a time is one frame, consisting of two fields of VBI images immediately following
in memory.

The total size of a frame computes as follows:

(count[0] + count[1]) * samples_per_line * sample size in bytes

The sample size is most likely always one byte, applications must check the sample_format
field though, to function properly with other drivers.

2 A few devices may be unable to sample VBI data at all but can extend the video capture window to the VBI
region.

4 The valid values ar shown at Figure 4.2. ITU-R 525 line numbering (M/NTSC and M/PAL) and Figure 4.3. ITU-R
625 line numbering.

3 Most VBI services transmit on both fields, but some have different semantics depending on the field number.
These cannot be reliable decoded or encoded when V4L2_VBI_UNSYNC is set.

1030 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Fig. 10: Figure 4.1. Line synchronization

Fig. 11: Figure 4.2. ITU-R 525 line numbering (M/NTSC and M/PAL)

3.2. Part I - Video for Linux API 1031

Linux Media Documentation

Fig. 12: Figure 4.3. ITU-R 625 line numbering

A VBI device may support read/write and/or streaming (memory mapping or user pointer) I/O.
The latter bears the possibility of synchronizing video and VBI data by using buffer timestamps.

Remember the VIDIOC_STREAMON ioctl and the first read(), write() and select() call can
be resource allocation points returning an EBUSY error code if the required hardware resources
are temporarily unavailable, for example the device is already in use by another process.

3.2.4.7 Sliced VBI Data Interface

VBI stands for Vertical Blanking Interval, a gap in the sequence of lines of an analog video signal.
During VBI no picture information is transmitted, allowing some time while the electron beam
of a cathode ray tube TV returns to the top of the screen.

Sliced VBI devices use hardware to demodulate data transmitted in the VBI. V4L2 drivers shall
not do this by software, see also the raw VBI interface. The data is passed as short packets of
fixed size, covering one scan line each. The number of packets per video frame is variable.

Sliced VBI capture and output devices are accessed through the same character special files
as raw VBI devices. When a driver supports both interfaces, the default function of a /dev/
vbi device is raw VBI capturing or output, and the sliced VBI function is only available after
calling the VIDIOC_S_FMT ioctl as defined below. Likewise a /dev/video device may support
the sliced VBI API, however the default function here is video capturing or output. Different file
descriptors must be used to pass raw and sliced VBI data simultaneously, if this is supported
by the driver.

Querying Capabilities

Devices supporting the sliced VBI capturing or output API set the
V4L2_CAP_SLICED_VBI_CAPTURE or V4L2_CAP_SLICED_VBI_OUTPUT flag respectively, in the
capabilities field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl.
At least one of the read/write, streaming or asynchronous I/O methods must be supported.
Sliced VBI devices may have a tuner or modulator.

1032 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Supplemental Functions

Sliced VBI devices shall support video input or output and tuner or modulator ioctls if they have
these capabilities, and they may support User Controls ioctls. The video standard ioctls provide
information vital to program a sliced VBI device, therefore must be supported.

Sliced VBI Format Negotiation

To find out which data services are supported by the hardware applications can call the VID-
IOC_G_SLICED_VBI_CAP ioctl. All drivers implementing the sliced VBI interface must support
this ioctl. The results may differ from those of the VIDIOC_S_FMT ioctl when the number of VBI
lines the hardware can capture or output per frame, or the number of services it can identify
on a given line are limited. For example on PAL line 16 the hardware may be able to look for a
VPS or Teletext signal, but not both at the same time.

To determine the currently selected services applications set the type field of struct
v4l2_format to V4L2_BUF_TYPE_SLICED_VBI_CAPTURE or V4L2_BUF_TYPE_SLICED_VBI_OUTPUT,
and the VIDIOC_G_FMT ioctl fills the fmt.sliced member, a struct v4l2_sliced_vbi_format.

Applications can request different parameters by initializing or modifying the fmt.slicedmem-
ber and calling the VIDIOC_S_FMT ioctl with a pointer to the struct v4l2_format structure.

The sliced VBI API is more complicated than the raw VBI API because the hardware must be
told which VBI service to expect on each scan line. Not all services may be supported by the
hardware on all lines (this is especially true for VBI output where Teletext is often unsupported
and other services can only be inserted in one specific line). In many cases, however, it is
sufficient to just set the service_set field to the required services and let the driver fill the
service_lines array according to hardware capabilities. Only if more precise control is needed
should the programmer set the service_lines array explicitly.

The VIDIOC_S_FMT ioctl modifies the parameters according to hardware capabilities. When
the driver allocates resources at this point, it may return an EBUSY error code if the required re-
sources are temporarily unavailable. Other resource allocation points which may return EBUSY
can be the ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF ioctl and the first read(), write()
and select() call.

v4l2_sliced_vbi_format

struct v4l2_sliced_vbi_format

__u16 service_set If service_set is non-zero when passed with VIDIOC_S_FMT or VIDIOC_TRY_FMT, the
service_lines array will be filled by the driver according to the services specified in
this field. For example, if service_set is initialized with V4L2_SLICED_TELETEXT_B |
V4L2_SLICED_WSS_625, a driver for the cx25840 video decoder sets lines 7-22 of both fields1 to
V4L2_SLICED_TELETEXT_B and line 23 of the first field to V4L2_SLICED_WSS_625. If service_set
is set to zero, then the values of service_lines will be used instead.
On return the driver sets this field to the union of all elements of the returned service_lines
array. It may contain less services than requested, perhaps just one, if the hardware cannot
handle more services simultaneously. It may be empty (zero) if none of the requested services
are supported by the hardware.

Continued on next page

3.2. Part I - Video for Linux API 1033

Linux Media Documentation

Table 108 – continued from previous page
__u16 service_lines[2][24] Applications initialize this array with sets of data services the driver shall look for or insert on

the respective scan line. Subject to hardware capabilities drivers return the requested set, a
subset, which may be just a single service, or an empty set. When the hardware cannot handle
multiple services on the same line the driver shall choose one. No assumptions can be made on
which service the driver chooses.
Data services are defined in Sliced VBI services. Array indices map to ITU-R line numbers2 as
follows:
Element 525 line systems 625 line systems
service_lines[0][1] 1 1
service_lines[0][23] 23 23
service_lines[1][1] 264 314
service_lines[1][23] 286 336
Drivers must set service_lines [0][0] and service_lines[1][0] to zero. The
V4L2_VBI_ITU_525_F1_START, V4L2_VBI_ITU_525_F2_START, V4L2_VBI_ITU_625_F1_START
and V4L2_VBI_ITU_625_F2_START defines give the start line numbers for each field for each 525
or 625 line format as a convenience. Don’t forget that ITU line numbering starts at 1, not 0.

__u32 io_size Maximum number of bytes passed by one read() or write() call, and the buffer size in bytes
for the ioctl VIDIOC_QBUF, VIDIOC_DQBUF and VIDIOC_DQBUF ioctl. Drivers set this field to
the size of struct v4l2_sliced_vbi_data times the number of non-zero elements in the returned
service_lines array (that is the number of lines potentially carrying data).

__u32 reserved[2] This array is reserved for future extensions.
Applications and drivers must set it to zero.

Sliced VBI services

Symbol Value Reference Lines, usu-
ally

Payload

V4L2_SLICED_TELETEXT_B
(Teletext System B)

0x0001 ETS 300
706,
ITU BT.653

PAL/SECAM
line 7-22,
320-335
(second
field 7-22)

Last 42 of the 45 byte Teletext packet,
that is without clock run-in and framing
code, lsb first transmitted.

V4L2_SLICED_VPS 0x0400 ETS 300 231 PAL line 16 Byte number 3 to 15 according to Figure
9 of ETS 300 231, lsb first transmitted.

V4L2_SLICED_CAPTION_525 0x1000 CEA 608-E NTSC line
21, 284
(second
field 21)

Two bytes in transmission order, includ-
ing parity bit, lsb first transmitted.

V4L2_SLICED_WSS_625 0x4000 ITU BT.1119,
EN 300 294

PAL/SECAM
line 23

See V4L2_SLICED_WSS_625 payload be-
low.

V4L2_SLICED_VBI_525 0x1000 Set of services applicable to 525 line systems.
V4L2_SLICED_VBI_625 0x4401 Set of services applicable to 625 line systems.

Drivers may return an EINVAL error code when applications attempt to read or write data with-
out prior format negotiation, after switching the video standard (which may invalidate the ne-
gotiated VBI parameters) and after switching the video input (which may change the video stan-
dard as a side effect). The VIDIOC_S_FMT ioctl may return an EBUSY error code when applica-
tions attempt to change the format while i/o is in progress (between a ioctl VIDIOC_STREAMON,
VIDIOC_STREAMOFF and VIDIOC_STREAMOFF call, and after the first read() or write()
call).

1 According to ETS 300 706 lines 6-22 of the first field and lines 5-22 of the second field may carry Teletext data.
2 See also Figure 4.2. ITU-R 525 line numbering (M/NTSC and M/PAL) and Figure 4.3. ITU-R 625 line numbering.

1034 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_SLICED_WSS_625 payload

The payload for V4L2_SLICED_WSS_625 is:

Byte 0 1
Bit msb lsb msb lsb

7 6 5 4 3 2 1 0 x x 13 12 11 10 9 8

Reading and writing sliced VBI data

A single read() or write() call must pass all data belonging to one video frame. That is an
array of struct v4l2_sliced_vbi_data structures with one or more elements and a total size
not exceeding io_size bytes. Likewise in streaming I/O mode one buffer of io_size bytes must
contain data of one video frame. The id of unused struct v4l2_sliced_vbi_data elements must
be zero.

v4l2_sliced_vbi_data

struct v4l2_sliced_vbi_data

__u32 id A flag from Sliced VBI services identifying the type of data in this packet.
Only a single bit must be set. When the id of a captured packet is zero,
the packet is empty and the contents of other fields are undefined. Appli-
cations shall ignore empty packets. When the id of a packet for output
is zero the contents of the data field are undefined and the driver must
no longer insert data on the requested field and line.

__u32 field The video field number this data has been captured from, or shall be
inserted at. 0 for the first field, 1 for the second field.

__u32 line The field (as opposed to frame) line number this data has been captured
from, or shall be inserted at. See Figure 4.2. ITU-R 525 line numbering
(M/NTSC and M/PAL) and Figure 4.3. ITU-R 625 line numbering for
valid values. Sliced VBI capture devices can set the line number of all
packets to 0 if the hardware cannot reliably identify scan lines. The field
number must always be valid.

__u32 reserved This field is reserved for future extensions. Applications and drivers
must set it to zero.

__u8 data[48] The packet payload. See Sliced VBI services for the contents and num-
ber of bytes passed for each data type. The contents of padding bytes at
the end of this array are undefined, drivers and applications shall ignore
them.

Packets are always passed in ascending line number order, without duplicate line numbers. The
write() function and the ioctl VIDIOC_QBUF, VIDIOC_DQBUF ioctl must return an EINVAL
error code when applications violate this rule. They must also return an EINVAL error code
when applications pass an incorrect field or line number, or a combination of field, line and
id which has not been negotiated with the VIDIOC_G_FMT or VIDIOC_S_FMT ioctl. When the
line numbers are unknown the driver must pass the packets in transmitted order. The driver
can insert empty packets with id set to zero anywhere in the packet array.

3.2. Part I - Video for Linux API 1035

Linux Media Documentation

To assure synchronization and to distinguish from frame dropping, when a captured frame does
not carry any of the requested data services driversmust pass one ormore empty packets. When
an application fails to pass VBI data in time for output, the driver must output the last VPS and
WSS packet again, and disable the output of Closed Caption and Teletext data, or output data
which is ignored by Closed Caption and Teletext decoders.

A sliced VBI device may support read/write and/or streaming (memory mapping and/or user
pointer) I/O. The latter bears the possibility of synchronizing video and VBI data by using buffer
timestamps.

Sliced VBI Data in MPEG Streams

If a device can produce an MPEG output stream, it may be capable of providing negotiated
sliced VBI services as data embedded in the MPEG stream. Users or applications control this
sliced VBI data insertion with the V4L2_CID_MPEG_STREAM_VBI_FMT control.

If the driver does not provide the V4L2_CID_MPEG_STREAM_VBI_FMT control, or only allows
that control to be set to V4L2_MPEG_STREAM_VBI_FMT_NONE, then the device cannot embed
sliced VBI data in the MPEG stream.

The V4L2_CID_MPEG_STREAM_VBI_FMT control does not implicitly set the device driver to
capture nor cease capturing sliced VBI data. The control only indicates to embed sliced VBI
data in the MPEG stream, if an application has negotiated sliced VBI service be captured.

It may also be the case that a device can embed sliced VBI data in only certain types of MPEG
streams: for example in an MPEG-2 PS but not an MPEG-2 TS. In this situation, if sliced VBI
data insertion is requested, the sliced VBI data will be embedded in MPEG stream types when
supported, and silently omitted from MPEG stream types where sliced VBI data insertion is not
supported by the device.

The following subsections specify the format of the embedded sliced VBI data.

MPEG Stream Embedded, Sliced VBI Data Format: NONE

The V4L2_MPEG_STREAM_VBI_FMT_NONE embedded sliced VBI format shall be interpreted
by drivers as a control to cease embedding sliced VBI data in MPEG streams. Neither the device
nor driver shall insert “empty” embedded sliced VBI data packets in the MPEG stream when
this format is set. No MPEG stream data structures are specified for this format.

MPEG Stream Embedded, Sliced VBI Data Format: IVTV

The V4L2_MPEG_STREAM_VBI_FMT_IVTV embedded sliced VBI format, when supported, in-
dicates to the driver to embed up to 36 lines of sliced VBI data per frame in an MPEG-2 Private
Stream 1 PES packet encapsulated in an MPEG-2 Program Pack in the MPEG stream.

Historical context: This format specification originates from a custom, embedded, sliced VBI
data format used by the ivtv driver. This format has already been informally specified in the
kernel sources in the file Documentation/userspace-api/media/drivers/cx2341x-uapi.rst
. The maximum size of the payload and other aspects of this format are driven by the CX23415
MPEG decoder’s capabilities and limitations with respect to extracting, decoding, and display-
ing sliced VBI data embedded within an MPEG stream.

1036 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

This format’s use is not exclusive to the ivtv driver nor exclusive to CX2341x devices, as the
sliced VBI data packet insertion into the MPEG stream is implemented in driver software. At
least the cx18 driver provides sliced VBI data insertion into an MPEG-2 PS in this format as
well.

The following definitions specify the payload of the MPEG-2 Private Stream 1 PES packets
that contain sliced VBI data when V4L2_MPEG_STREAM_VBI_FMT_IVTV is set. (The MPEG-2
Private Stream 1 PES packet header and encapsulating MPEG-2 Program Pack header are not
detailed here. Please refer to the MPEG-2 specifications for details on those packet headers.)

The payload of the MPEG-2 Private Stream 1 PES packets that contain sliced VBI data is spec-
ified by struct v4l2_mpeg_vbi_fmt_ivtv. The payload is variable length, depending on the
actual number of lines of sliced VBI data present in a video frame. The payload may be padded
at the end with unspecified fill bytes to align the end of the payload to a 4-byte boundary. The
payload shall never exceed 1552 bytes (2 fields with 18 lines/field with 43 bytes of data/line and
a 4 byte magic number).

v4l2_mpeg_vbi_fmt_ivtv

struct v4l2_mpeg_vbi_fmt_ivtv

__u8 magic[4] A “magic” constant from Magic Constants for struct
v4l2_mpeg_vbi_fmt_ivtv magic field that indicates this is
a valid sliced VBI data payload and also indicates which
member of the anonymous union, itv0 or ITV0, to use for
the payload data.

union { (anonymous)
struct
v4l2_mpeg_vbi_itv0

itv0 The primary form of the sliced VBI data payload that con-
tains anywhere from 1 to 35 lines of sliced VBI data. Line
masks are provided in this form of the payload indicating
which VBI lines are provided.

struct
v4l2_mpeg_vbi_ITV0

ITV0 An alternate form of the sliced VBI data payload used
when 36 lines of sliced VBI data are present. No line
masks are provided in this form of the payload; all valid
line mask bits are implcitly set.

}

Magic Constants for struct v4l2_mpeg_vbi_fmt_ivtv magic field

Defined Symbol Value Description
V4L2_MPEG_VBI_IVTV_MAGIC0 “itv0” Indicates the itv0 member of the union in

struct v4l2_mpeg_vbi_fmt_ivtv is valid.
V4L2_MPEG_VBI_IVTV_MAGIC1 “ITV0” Indicates the ITV0 member of the union

in struct v4l2_mpeg_vbi_fmt_ivtv is valid
and that 36 lines of sliced VBI data are
present.

v4l2_mpeg_vbi_itv0

3.2. Part I - Video for Linux API 1037

Linux Media Documentation

v4l2_mpeg_vbi_ITV0

structs v4l2_mpeg_vbi_itv0 and v4l2_mpeg_vbi_ITV0

__le32 linemask[2] Bitmasks indicating the VBI service lines present. These linemask
values are stored in little endian byte order in the MPEG stream.
Some reference linemask bit positions with their corresponding
VBI line number and video field are given below. b0 indicates the
least significant bit of a linemask value:

linemask[0] b0: line 6 first field
linemask[0] b17: line 23 first field
linemask[0] b18: line 6 second field
linemask[0] b31: line 19 second field
linemask[1] b0: line 20 second field
linemask[1] b3: line 23 second field
linemask[1] b4-b31: unused and set to 0

struct
v4l2_mpeg_vbi_itv0_line

line[35] This is a variable length array that holds from 1 to 35 lines of
sliced VBI data. The sliced VBI data lines present correspond to the
bits set in the linemask array, starting from b0 of linemask[0] up
through b31 of linemask[0], and from b0 of linemask[1] up through
b3 of linemask[1]. line[0] corresponds to the first bit found set in
the linemask array, line[1] corresponds to the second bit found
set in the linemask array, etc. If no linemask array bits are set,
then line[0] may contain one line of unspecified data that should
be ignored by applications.

struct v4l2_mpeg_vbi_ITV0

struct
v4l2_mpeg_vbi_itv0_line

line[36] A fixed length array of 36 lines of sliced VBI data.
line[0] through line[17] correspond to lines 6
through 23 of the first field. line[18] through
line[35] corresponds to lines 6 through 23 of the
second field.

v4l2_mpeg_vbi_itv0_line

struct v4l2_mpeg_vbi_itv0_line

__u8 id A line identifier value from Line Identifiers
for struct v4l2_mpeg_vbi_itv0_line id field
that indicates the type of sliced VBI data
stored on this line.

__u8 data[42] The sliced VBI data for the line.

1038 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Line Identifiers for struct v4l2_mpeg_vbi_itv0_line id field

Defined Symbol Value Description
V4L2_MPEG_VBI_IVTV_TELETEXT_B 1 Refer to Sliced VBI services for a descrip-

tion of the line payload.
V4L2_MPEG_VBI_IVTV_CAPTION_525 4 Refer to Sliced VBI services for a descrip-

tion of the line payload.
V4L2_MPEG_VBI_IVTV_WSS_625 5 Refer to Sliced VBI services for a descrip-

tion of the line payload.
V4L2_MPEG_VBI_IVTV_VPS 7 Refer to Sliced VBI services for a descrip-

tion of the line payload.

3.2.4.8 Radio Interface

This interface is intended for AM and FM (analog) radio receivers and transmitters.

Conventionally V4L2 radio devices are accessed through character device special files named
/dev/radio and /dev/radio0 to /dev/radio63 with major number 81 and minor numbers 64
to 127.

Querying Capabilities

Devices supporting the radio interface set the V4L2_CAP_RADIO and V4L2_CAP_TUNER or
V4L2_CAP_MODULATOR flag in the capabilities field of struct v4l2_capability returned by the
ioctl VIDIOC_QUERYCAP ioctl. Other combinations of capability flags are reserved for future
extensions.

Supplemental Functions

Radio devices can support controls, and must support the tuner or modulator ioctls.

They do not support the video input or output, audio input or output, video standard, cropping
and scaling, compression and streaming parameter, or overlay ioctls. All other ioctls and I/O
methods are reserved for future extensions.

Programming

Radio devices may have a couple audio controls (as discussed inUser Controls) such as a volume
control, possibly custom controls. Further all radio devices have one tuner or modulator (these
are discussed in Tuners and Modulators) with index number zero to select the radio frequency
and to determine if a monaural or FM stereo program is received/emitted. Drivers switch au-
tomatically between AM and FM depending on the selected frequency. The VIDIOC_G_TUNER
or VIDIOC_G_MODULATOR ioctl reports the supported frequency range.

3.2. Part I - Video for Linux API 1039

Linux Media Documentation

3.2.4.9 RDS Interface

The Radio Data System transmits supplementary information in binary format, for example the
station name or travel information, on an inaudible audio subcarrier of a radio program. This
interface is aimed at devices capable of receiving and/or transmitting RDS information.

For more information see the core RDS standard IEC 62106 and the RBDS standard NRSC-4-B.

Note: Note that the RBDS standard as is used in the USA is almost identical to the RDS
standard. Any RDS decoder/encoder can also handle RBDS. Only some of the fields have slightly
different meanings. See the RBDS standard for more information.

The RBDS standard also specifies support for MMBS (Modified Mobile Search). This is a propri-
etary format which seems to be discontinued. The RDS interface does not support this format.
Should support for MMBS (or the so-called ‘E blocks’ in general) be needed, then please contact
the linux-media mailing list: https://linuxtv.org/lists.php.

Querying Capabilities

Devices supporting the RDS capturing API set the V4L2_CAP_RDS_CAPTURE flag in the
capabilities field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl.
Any tuner that supports RDS will set the V4L2_TUNER_CAP_RDS flag in the capability field
of struct v4l2_tuner. If the driver only passes RDS blocks without interpreting the data the
V4L2_TUNER_CAP_RDS_BLOCK_IO flag has to be set, see Reading RDS data. For future use the
flag V4L2_TUNER_CAP_RDS_CONTROLS has also been defined. However, a driver for a radio tuner
with this capability does not yet exist, so if you are planning to write such a driver you should
discuss this on the linux-media mailing list: https://linuxtv.org/lists.php.

Whether an RDS signal is present can be detected by looking at the rxsubchans field of struct
v4l2_tuner: the V4L2_TUNER_SUB_RDS will be set if RDS data was detected.

Devices supporting the RDS output API set the V4L2_CAP_RDS_OUTPUT flag in the capabilities
field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl. Any mod-
ulator that supports RDS will set the V4L2_TUNER_CAP_RDS flag in the capability field
of struct v4l2_modulator. In order to enable the RDS transmission one must set the
V4L2_TUNER_SUB_RDS bit in the txsubchans field of struct v4l2_modulator. If the driver only
passes RDS blocks without interpreting the data the V4L2_TUNER_CAP_RDS_BLOCK_IO flag has
to be set. If the tuner is capable of handling RDS entities like program identification codes and
radio text, the flag V4L2_TUNER_CAP_RDS_CONTROLS should be set, see Writing RDS data and
FM Transmitter Control Reference.

1040 Chapter 3. Linux Media Infrastructure userspace API

https://linuxtv.org/lists.php
https://linuxtv.org/lists.php

Linux Media Documentation

Reading RDS data

RDS data can be read from the radio device with the read() function. The data is packed in
groups of three bytes.

Writing RDS data

RDS data can be written to the radio device with the write() function. The data is packed in
groups of three bytes, as follows:

RDS datastructures

v4l2_rds_data

Table 109: struct v4l2_rds_data
__u8 lsb Least Significant Byte of RDS Block
__u8 msb Most Significant Byte of RDS Block
__u8 block Block description

Table 110: Block description
Bits 0-2 Block (aka offset) of the received data.
Bits 3-5 Deprecated. Currently identical to bits 0-2. Do not use these bits.
Bit 6 Corrected bit. Indicates that an error was corrected for this data block.
Bit 7 Error bit. Indicates that an uncorrectable error occurred during reception

of this block.

Table 111: Block defines
V4L2_RDS_BLOCK_MSK 7 Mask for bits 0-2 to get the block ID.
V4L2_RDS_BLOCK_A 0 Block A.
V4L2_RDS_BLOCK_B 1 Block B.
V4L2_RDS_BLOCK_C 2 Block C.
V4L2_RDS_BLOCK_D 3 Block D.
V4L2_RDS_BLOCK_C_ALT 4 Block C’.
V4L2_RDS_BLOCK_INVALID read-only 7 An invalid block.
V4L2_RDS_BLOCK_CORRECTED read-only 0x40 A bit error was detected but cor-

rected.
V4L2_RDS_BLOCK_ERROR read-only 0x80 An uncorrectable error occurred.

3.2. Part I - Video for Linux API 1041

Linux Media Documentation

3.2.4.10 Software Defined Radio Interface (SDR)

SDR is an abbreviation of Software Defined Radio, the radio device which uses application
software for modulation or demodulation. This interface is intended for controlling and data
streaming of such devices.

SDR devices are accessed through character device special files named /dev/swradio0 to /
dev/swradio255 with major number 81 and dynamically allocated minor numbers 0 to 255.

Querying Capabilities

Devices supporting the SDR receiver interface set the V4L2_CAP_SDR_CAPTURE and
V4L2_CAP_TUNER flag in the capabilities field of struct v4l2_capability returned by the ioctl
VIDIOC_QUERYCAP ioctl. That flag means the device has an Analog to Digital Converter (ADC),
which is a mandatory element for the SDR receiver.

Devices supporting the SDR transmitter interface set the V4L2_CAP_SDR_OUTPUT and
V4L2_CAP_MODULATOR flag in the capabilities field of struct v4l2_capability returned by the
ioctl VIDIOC_QUERYCAP ioctl. That flag means the device has an Digital to Analog Converter
(DAC), which is a mandatory element for the SDR transmitter.

At least one of the read/write, streaming or asynchronous I/O methods must be supported.

Supplemental Functions

SDR devices can support controls, and must support the Tuners and Modulators ioctls. Tuner
ioctls are used for setting the ADC/DAC sampling rate (sampling frequency) and the possible
radio frequency (RF).

The V4L2_TUNER_SDR tuner type is used for setting SDR device ADC/DAC frequency, and the
V4L2_TUNER_RF tuner type is used for setting radio frequency. The tuner index of the RF tuner
(if any) must always follow the SDR tuner index. Normally the SDR tuner is #0 and the RF
tuner is #1.

The ioctl VIDIOC_S_HW_FREQ_SEEK ioctl is not supported.

Data Format Negotiation

The SDR device uses the Data Formats ioctls to select the capture and output format. Both
the sampling resolution and the data streaming format are bound to that selectable format. In
addition to the basic Data Formats ioctls, the ioctl VIDIOC_ENUM_FMT ioctl must be supported
as well.

To use the Data Formats ioctls applications set the type field of a struct v4l2_format
to V4L2_BUF_TYPE_SDR_CAPTURE or V4L2_BUF_TYPE_SDR_OUTPUT and use the struct
v4l2_sdr_format sdrmember of the fmt union as needed per the desired operation. Currently
there are two fields, pixelformat and buffersize, of struct v4l2_sdr_format which are used.
Content of the pixelformat is V4L2 FourCC code of the data format. The buffersize field is
maximum buffer size in bytes required for data transfer, set by the driver in order to inform
application.

v4l2_sdr_format

1042 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 112: struct v4l2_sdr_format
__u32 pixelformat The data format or type of compression, set

by the application. This is a little endian
four character code. V4L2 defines SDR for-
mats in SDR Formats.

__u32 buffersize Maximum size in bytes required for data.
Value is set by the driver.

__u8 reserved[24] This array is reserved for future extensions.
Drivers and applications must set it to zero.

An SDR device may support read/write and/or streaming (memory mapping or user pointer)
I/O.

3.2.4.11 Touch Devices

Touch devices are accessed through character device special files named /dev/v4l-touch0 to
/dev/v4l-touch255 with major number 81 and dynamically allocated minor numbers 0 to 255.

Overview

Sensors may be Optical, or Projected Capacitive touch (PCT).

Processing is required to analyse the raw data and produce input events. In some systems,
this may be performed on the ASIC and the raw data is purely a side-channel for diagnostics or
tuning. In other systems, the ASIC is a simple analogue front end device which delivers touch
data at high rate, and any touch processing must be done on the host.

For capacitive touch sensing, the touchscreen is composed of an array of horizontal and vertical
conductors (alternatively called rows/columns, X/Y lines, or tx/rx). Mutual Capacitance mea-
sured is at the nodes where the conductors cross. Alternatively, Self Capacitance measures the
signal from each column and row independently.

A touch input may be determined by comparing the raw capacitance measurement to a no-touch
reference (or “baseline”) measurement:

Delta = Raw - Reference

The reference measurement takes account of variations in the capacitance across the touch
sensor matrix, for example manufacturing irregularities, environmental or edge effects.

Querying Capabilities

Devices supporting the touch interface set the V4L2_CAP_VIDEO_CAPTURE flag and the
V4L2_CAP_TOUCH flag in the capabilities field of v4l2_capability returned by the ioctl VID-
IOC_QUERYCAP ioctl.

At least one of the read/write or streaming I/O methods must be supported.

The formats supported by touch devices are documented in Touch Formats.

3.2. Part I - Video for Linux API 1043

Linux Media Documentation

Data Format Negotiation

A touch device may support any I/O method.

3.2.4.12 Event Interface

The V4L2 event interface provides a means for a user to get immediately notified on certain
conditions taking place on a device. This might include start of frame or loss of signal events,
for example. Changes in the value or state of a V4L2 control can also be reported through
events.

To receive events, the events the user is interested in first must be subscribed using the ioctl
VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT ioctl. Once an event is sub-
scribed, the events of subscribed types are dequeueable using the ioctl VIDIOC_DQEVENT
ioctl. Events may be unsubscribed using VIDIOC_UNSUBSCRIBE_EVENT ioctl. The special
event type V4L2_EVENT_ALL may be used to unsubscribe all the events the driver supports.

The event subscriptions and event queues are specific to file handles. Subscribing an event on
one file handle does not affect other file handles.

The information on dequeueable events is obtained by using select or poll system calls on video
devices. The V4L2 events use POLLPRI events on poll system call and exceptions on select
system call.

Starting with kernel 3.1 certain guarantees can be given with regards to events:

1. Each subscribed event has its own internal dedicated event queue. This means that flood-
ing of one event type will not interfere with other event types.

2. If the internal event queue for a particular subscribed event becomes full, then the oldest
event in that queue will be dropped.

3. Where applicable, certain event types can ensure that the payload of the oldest event
that is about to be dropped will be merged with the payload of the next oldest event.
Thus ensuring that no information is lost, but only an intermediate step leading up to that
information. See the documentation for the event you want to subscribe to whether this
is applicable for that event or not.

3.2.4.13 Sub-device Interface

The complex nature of V4L2 devices, where hardware is often made of several integrated cir-
cuits that need to interact with each other in a controlled way, leads to complex V4L2 drivers.
The drivers usually reflect the hardware model in software, and model the different hardware
components as software blocks called sub-devices.

V4L2 sub-devices are usually kernel-only objects. If the V4L2 driver implements the media
device API, they will automatically inherit from media entities. Applications will be able to
enumerate the sub-devices and discover the hardware topology using the media entities, pads
and links enumeration API.

In addition to make sub-devices discoverable, drivers can also choose to make them directly
configurable by applications. When both the sub-device driver and the V4L2 device driver
support this, sub-devices will feature a character device node on which ioctls can be called to

• query, read and write sub-devices controls

1044 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

• subscribe and unsubscribe to events and retrieve them

• negotiate image formats on individual pads

Sub-device character device nodes, conventionally named /dev/v4l-subdev*, use major num-
ber 81.

Drivers may opt to limit the sub-device character devices to only expose operations that do not
modify the device state. In such a case the sub-devices are referred to as read-only in the rest
of this documentation, and the related restrictions are documented in individual ioctls.

Controls

Most V4L2 controls are implemented by sub-device hardware. Drivers usually merge all con-
trols and expose them through video device nodes. Applications can control all sub-devices
through a single interface.

Complex devices sometimes implement the same control in different pieces of hardware. This
situation is common in embedded platforms, where both sensors and image processing hard-
ware implement identical functions, such as contrast adjustment, white balance or faulty pixels
correction. As the V4L2 controls API doesn’t support several identical controls in a single de-
vice, all but one of the identical controls are hidden.

Applications can access those hidden controls through the sub-device node with the V4L2 con-
trol API described inUser Controls. The ioctls behave identically as when issued on V4L2 device
nodes, with the exception that they deal only with controls implemented in the sub-device.

Depending on the driver, those controls might also be exposed through one (or several) V4L2
device nodes.

Events

V4L2 sub-devices can notify applications of events as described in Event Interface. The API
behaves identically as when used on V4L2 device nodes, with the exception that it only deals
with events generated by the sub-device. Depending on the driver, those events might also be
reported on one (or several) V4L2 device nodes.

Pad-level Formats

Warning: Pad-level formats are only applicable to very complex devices that need to expose
low-level format configuration to user space. Generic V4L2 applications do not need to use
the API described in this section.

Note: For the purpose of this section, the term format means the combination of media bus
data format, frame width and frame height.

3.2. Part I - Video for Linux API 1045

Linux Media Documentation

Image formats are typically negotiated on video capture and output devices using the format
and selection ioctls. The driver is responsible for configuring every block in the video pipeline
according to the requested format at the pipeline input and/or output.

For complex devices, such as often found in embedded systems, identical image sizes at the
output of a pipeline can be achieved using different hardware configurations. One such example
is shown on Image Format Negotiation on Pipelines, where image scaling can be performed on
both the video sensor and the host image processing hardware.

0 Host
Scaler 1

0 V4L I/O

HQ: 1280x720
HS: 1280x720

0 Host
Frontend 1

HQ: 2592x1968
HS: 1296x984

Sensor 0

HQ: 2592x1968
HS: 1296x984

Fig. 13: Image Format Negotiation on Pipelines
High quality and high speed pipeline configuration

The sensor scaler is usually of less quality than the host scaler, but scaling on the sensor is
required to achieve higher frame rates. Depending on the use case (quality vs. speed), the
pipeline must be configured differently. Applications need to configure the formats at every
point in the pipeline explicitly.

Drivers that implement the media API can expose pad-level image format configuration to
applications. When they do, applications can use the VIDIOC_SUBDEV_G_FMT and VID-
IOC_SUBDEV_S_FMT ioctls. to negotiate formats on a per-pad basis.

1046 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Applications are responsible for configuring coherent parameters on the whole pipeline and
making sure that connected pads have compatible formats. The pipeline is checked for for-
mats mismatch at VIDIOC_STREAMON time, and an EPIPE error code is then returned if the
configuration is invalid.

Pad-level image format configuration support can be tested by calling the ioctl VID-
IOC_SUBDEV_G_FMT, VIDIOC_SUBDEV_S_FMT ioctl on pad 0. If the driver returns an EINVAL
error code pad-level format configuration is not supported by the sub-device.

Format Negotiation

Acceptable formats on pads can (and usually do) depend on a number of external parameters,
such as formats on other pads, active links, or even controls. Finding a combination of formats
on all pads in a video pipeline, acceptable to both application and driver, can’t rely on formats
enumeration only. A format negotiation mechanism is required.

Central to the format negotiation mechanism are the get/set format operations. When called
with the which argument set to V4L2_SUBDEV_FORMAT_TRY, the VIDIOC_SUBDEV_G_FMT
and VIDIOC_SUBDEV_S_FMT ioctls operate on a set of formats parameters that are not con-
nected to the hardware configuration. Modifying those ‘try’ formats leaves the device state
untouched (this applies to both the software state stored in the driver and the hardware state
stored in the device itself).

While not kept as part of the device state, try formats are stored in the sub-device file han-
dles. A VIDIOC_SUBDEV_G_FMT call will return the last try format set on the same sub-device
file handle. Several applications querying the same sub-device at the same time will thus not
interact with each other.

To find out whether a particular format is supported by the device, applications use the VID-
IOC_SUBDEV_S_FMT ioctl. Drivers verify and, if needed, change the requested format based
on device requirements and return the possibly modified value. Applications can then choose
to try a different format or accept the returned value and continue.

Formats returned by the driver during a negotiation iteration are guaranteed to be supported by
the device. In particular, drivers guarantee that a returned format will not be further changed
if passed to an VIDIOC_SUBDEV_S_FMT call as-is (as long as external parameters, such as
formats on other pads or links’ configuration are not changed).

Drivers automatically propagate formats inside sub-devices. When a try or active format is set
on a pad, corresponding formats on other pads of the same sub-device can be modified by the
driver. Drivers are free to modify formats as required by the device. However, they should
comply with the following rules when possible:

• Formats should be propagated from sink pads to source pads. Modifying a format on a
source pad should not modify the format on any sink pad.

• Sub-devices that scale frames using variable scaling factors should reset the scale factors
to default values when sink pads formats are modified. If the 1:1 scaling ratio is supported,
this means that source pads formats should be reset to the sink pads formats.

Formats are not propagated across links, as that would involve propagating them from one
sub-device file handle to another. Applications must then take care to configure both ends of
every link explicitly with compatible formats. Identical formats on the two ends of a link are
guaranteed to be compatible. Drivers are free to accept different formats matching device
requirements as being compatible.

3.2. Part I - Video for Linux API 1047

Linux Media Documentation

Sample Pipeline Configuration shows a sample configuration sequence for the pipeline de-
scribed in Image Format Negotiation on Pipelines (table columns list entity names and pad
numbers).

Table 113: Sample Pipeline Configuration
Sensor/0
format

Frontend/0
format

Frontend/1
format

Scaler/0
format

Scaler/0
compose
selection rect-
angle

Scaler/1
format

Initial state 2048x1536
SGRBG8_1X8

(default) (default) (default) (default) (default)

Configure
frontend sink
format

2048x1536
SGRBG8_1X8

2048x1536
SGRBG8_1X8

2046x1534
SGRBG8_1X8

(default) (default) (default)

Configure
scaler sink
format

2048x1536
SGRBG8_1X8

2048x1536
SGRBG8_1X8

2046x1534
SGRBG8_1X8

2046x1534
SGRBG8_1X8

0,0/2046x1534 2046x1534
SGRBG8_1X8

Configure
scaler sink
compose
selection

2048x1536
SGRBG8_1X8

2048x1536
SGRBG8_1X8

2046x1534
SGRBG8_1X8

2046x1534
SGRBG8_1X8

0,0/1280x960 1280x960
SGRBG8_1X8

1. Initial state. The sensor source pad format is set to its native 3MP size and
V4L2_MBUS_FMT_SGRBG8_1X8 media bus code. Formats on the host frontend and scaler
sink and source pads have the default values, as well as the compose rectangle on the
scaler’s sink pad.

2. The application configures the frontend sink pad format’s size to 2048x1536 and its me-
dia bus code to V4L2_MBUS_FMT_SGRBG_1X8. The driver propagates the format to the
frontend source pad.

3. The application configures the scaler sink pad format’s size to 2046x1534 and the media
bus code to V4L2_MBUS_FMT_SGRBG_1X8 to match the frontend source size and media
bus code. The media bus code on the sink pad is set to V4L2_MBUS_FMT_SGRBG_1X8.
The driver propagates the size to the compose selection rectangle on the scaler’s sink pad,
and the format to the scaler source pad.

4. The application configures the size of the compose selection rectangle of the scaler’s sink
pad 1280x960. The driver propagates the size to the scaler’s source pad format.

When satisfied with the try results, applications can set the active formats by setting the which
argument to V4L2_SUBDEV_FORMAT_ACTIVE. Active formats are changed exactly as try formats
by drivers. To avoid modifying the hardware state during format negotiation, applications
should negotiate try formats first and then modify the active settings using the try formats
returned during the last negotiation iteration. This guarantees that the active format will be
applied as-is by the driver without being modified.

Selections: cropping, scaling and composition

Many sub-devices support cropping frames on their input or output pads (or possible even on
both). Cropping is used to select the area of interest in an image, typically on an image sensor
or a video decoder. It can also be used as part of digital zoom implementations to select the
area of the image that will be scaled up.

Crop settings are defined by a crop rectangle and represented in a struct v4l2_rect by the
coordinates of the top left corner and the rectangle size. Both the coordinates and sizes are
expressed in pixels.

1048 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

As for pad formats, drivers store try and active rectangles for the selection targets Common
selection definitions.

On sink pads, cropping is applied relative to the current pad format. The pad format represents
the image size as received by the sub-device from the previous block in the pipeline, and the
crop rectangle represents the sub-image that will be transmitted further inside the sub-device
for processing.

The scaling operation changes the size of the image by scaling it to new dimensions. The scaling
ratio isn’t specified explicitly, but is implied from the original and scaled image sizes. Both sizes
are represented by struct v4l2_rect.

Scaling support is optional. When supported by a subdev, the crop rectangle on the subdev’s
sink pad is scaled to the size configured using the VIDIOC_SUBDEV_S_SELECTION IOCTL
using V4L2_SEL_TGT_COMPOSE selection target on the same pad. If the subdev supports scaling
but not composing, the top and left values are not used and must always be set to zero.

On source pads, cropping is similar to sink pads, with the exception that the source size from
which the cropping is performed, is the COMPOSE rectangle on the sink pad. In both sink and
source pads, the crop rectangle must be entirely contained inside the source image size for the
crop operation.

The drivers should always use the closest possible rectangle the user requests on all selection
targets, unless specifically told otherwise. V4L2_SEL_FLAG_GE and V4L2_SEL_FLAG_LE flagsmay
be used to round the image size either up or down. Selection flags

Types of selection targets

Actual targets

Actual targets (without a postfix) reflect the actual hardware configuration at any point of time.
There is a BOUNDS target corresponding to every actual target.

BOUNDS targets

BOUNDS targets is the smallest rectangle that contains all valid actual rectangles. It may not
be possible to set the actual rectangle as large as the BOUNDS rectangle, however. This may be
because e.g. a sensor’s pixel array is not rectangular but cross-shaped or round. The maximum
size may also be smaller than the BOUNDS rectangle.

Order of configuration and format propagation

Inside subdevs, the order of image processing steps will always be from the sink pad towards the
source pad. This is also reflected in the order in which the configuration must be performed by
the user: the changesmadewill be propagated to any subsequent stages. If this behaviour is not
desired, the user must set V4L2_SEL_FLAG_KEEP_CONFIG flag. This flag causes no propagation
of the changes are allowed in any circumstances. This may also cause the accessed rectangle
to be adjusted by the driver, depending on the properties of the underlying hardware.

3.2. Part I - Video for Linux API 1049

Linux Media Documentation

The coordinates to a step always refer to the actual size of the previous step. The exception to
this rule is the sink compose rectangle, which refers to the sink compose bounds rectangle —
if it is supported by the hardware.

1. Sink pad format. The user configures the sink pad format. This format defines the param-
eters of the image the entity receives through the pad for further processing.

2. Sink pad actual crop selection. The sink pad crop defines the crop performed to the sink
pad format.

3. Sink pad actual compose selection. The size of the sink pad compose rectangle defines
the scaling ratio compared to the size of the sink pad crop rectangle. The location of the
compose rectangle specifies the location of the actual sink compose rectangle in the sink
compose bounds rectangle.

4. Source pad actual crop selection. Crop on the source pad defines crop performed to the
image in the sink compose bounds rectangle.

5. Source pad format. The source pad format defines the output pixel format of the subdev,
as well as the other parameters with the exception of the image width and height. Width
and height are defined by the size of the source pad actual crop selection.

Accessing any of the above rectangles not supported by the subdev will return EINVAL. Any
rectangle referring to a previous unsupported rectangle coordinates will instead refer to the
previous supported rectangle. For example, if sink crop is not supported, the compose selection
will refer to the sink pad format dimensions instead.

Fig. 14: Figure 4.5. Image processing in subdevs: simple crop example

In the above example, the subdev supports cropping on its sink pad. To configure it, the user
sets the media bus format on the subdev’s sink pad. Now the actual crop rectangle can be
set on the sink pad — the location and size of this rectangle reflect the location and size of a
rectangle to be cropped from the sink format. The size of the sink crop rectangle will also be
the size of the format of the subdev’s source pad.

In this example, the subdev is capable of first cropping, then scaling and finally cropping for
two source pads individually from the resulting scaled image. The location of the scaled image
in the cropped image is ignored in sink compose target. Both of the locations of the source
crop rectangles refer to the sink scaling rectangle, independently cropping an area at location
specified by the source crop rectangle from it.

The subdev driver supports two sink pads and two source pads. The images from both of the sink
pads are individually cropped, then scaled and further composed on the composition bounds
rectangle. From that, two independent streams are cropped and sent out of the subdev from
the source pads.

1050 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Fig. 15: Figure 4.6. Image processing in subdevs: scaling with multiple sources

Fig. 16: Figure 4.7. Image processing in subdevs: scaling and composition with multi-
ple sinks and sources

3.2. Part I - Video for Linux API 1051

Linux Media Documentation

Media Bus Formats

v4l2_mbus_framefmt

Table 114: struct v4l2_mbus_framefmt
__u32 width Image width in pixels.
__u32 height Image height in pixels. If field is one of V4L2_FIELD_TOP,

V4L2_FIELD_BOTTOM or V4L2_FIELD_ALTERNATE then
height refers to the number of lines in the field, otherwise
it refers to the number of lines in the frame (which is
twice the field height for interlaced formats).

__u32 code Format code, from enum v4l2_mbus_pixelcode.
__u32 field Field order, from enum v4l2_field. See Field Order for

details.
__u32 colorspace Image colorspace, from enum v4l2_colorspace. Must be

set by the driver for subdevices. If the application sets
the flag V4L2_MBUS_FRAMEFMT_SET_CSC then the applica-
tion can set this field on the source pad to request a spe-
cific colorspace for the media bus data. If the driver can-
not handle the requested conversion, it will return an-
other supported colorspace. The driver indicates that
colorspace conversion is supported by setting the flag
V4L2_SUBDEV_MBUS_CODE_CSC_COLORSPACE in the
corresponding struct v4l2_subdev_mbus_code_enum dur-
ing enumeration. See Subdev Media Bus Code Enumerate
Flags.

union { (anonymous)
__u16 ycbcr_enc Y’CbCr encoding, from enum v4l2_ycbcr_encoding. This

information supplements the colorspace and must be set
by the driver for subdevices, see Colorspaces. If the ap-
plication sets the flag V4L2_MBUS_FRAMEFMT_SET_CSC then
the application can set this field on a source pad to re-
quest a specific Y’CbCr encoding for the media bus data.
If the driver cannot handle the requested conversion, it
will return another supported encoding. This field is ig-
nored for HSV media bus formats. The driver indicates
that ycbcr_enc conversion is supported by setting the
flag V4L2_SUBDEV_MBUS_CODE_CSC_YCBCR_ENC in
the corresponding struct v4l2_subdev_mbus_code_enum
during enumeration. See Subdev Media Bus Code Enu-
merate Flags.

Continued on next page

1052 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 114 – continued from previous page
__u16 hsv_enc HSV encoding, from enum v4l2_hsv_encoding. This in-

formation supplements the colorspace and must be set
by the driver for subdevices, see Colorspaces. If the ap-
plication sets the flag V4L2_MBUS_FRAMEFMT_SET_CSC then
the application can set this field on a source pad to re-
quest a specific HSV encoding for the media bus data.
If the driver cannot handle the requested conversion, it
will return another supported encoding. This field is ig-
nored for Y’CbCr media bus formats. The driver indi-
cates that hsv_enc conversion is supported by setting the
flag V4L2_SUBDEV_MBUS_CODE_CSC_HSV_ENC in the
corresponding struct v4l2_subdev_mbus_code_enum dur-
ing enumeration. See Subdev Media Bus Code Enumerate
Flags

}
__u16 quantization Quantization range, from enum v4l2_quantization. This

information supplements the colorspace and must be set
by the driver for subdevices, see Colorspaces. If the ap-
plication sets the flag V4L2_MBUS_FRAMEFMT_SET_CSC then
the application can set this field on a source pad to request
a specific quantization for the media bus data. If the driver
cannot handle the requested conversion, it will return
another supported quantization. The driver indicates that
quantization conversion is supported by setting the flag
V4L2_SUBDEV_MBUS_CODE_CSC_QUANTIZATION in
the corresponding struct v4l2_subdev_mbus_code_enum
during enumeration. See Subdev Media Bus Code
Enumerate Flags.

__u16 xfer_func Transfer function, from enum v4l2_xfer_func. This in-
formation supplements the colorspace and must be set
by the driver for subdevices, see Colorspaces. If the
application sets the flag V4L2_MBUS_FRAMEFMT_SET_CSC
then the application can set this field on a source
pad to request a specific transfer function for the me-
dia bus data. If the driver cannot handle the re-
quested conversion, it will return another supported
transfer function. The driver indicates that the trans-
fer function conversion is supported by setting the
flag V4L2_SUBDEV_MBUS_CODE_CSC_XFER_FUNC in
the corresponding struct v4l2_subdev_mbus_code_enum
during enumeration. See Subdev Media Bus Code Enu-
merate Flags.

__u16 flags flags See: :ref:v4l2-mbus-framefmt-flags
__u16 reserved[10] Reserved for future extensions. Applications and drivers

must set the array to zero.

3.2. Part I - Video for Linux API 1053

Linux Media Documentation

Table 115: v4l2_mbus_framefmt Flags

V4L2_MBUS_FRAMEFMT_SET_CSC 0x0001 Set by the application. It is only used for
source pads and is ignored for sink pads. If set,
then request the subdevice to do colorspace
conversion from the received colorspace to the
requested colorspace values. If the colorimetry
field (colorspace, xfer_func, ycbcr_enc,
hsv_enc or quantization) is set to *_DEFAULT,
then that colorimetry setting will remain
unchanged from what was received. So in
order to change the quantization, only the
quantization field shall be set to non default
value (V4L2_QUANTIZATION_FULL_RANGE or
V4L2_QUANTIZATION_LIM_RANGE) and all other
colorimetry fields shall be set to *_DEFAULT.
To check which conversions are supported by
the hardware for the current media bus frame
format, see SubdevMedia Bus Code Enumerate
Flags.

Media Bus Pixel Codes

The media bus pixel codes describe image formats as flowing over physical buses (both be-
tween separate physical components and inside SoC devices). This should not be confused
with the V4L2 pixel formats that describe, using four character codes, image formats as stored
in memory.

While there is a relationship between image formats on buses and image formats in memory (a
raw Bayer image won’t be magically converted to JPEG just by storing it to memory), there is
no one-to-one correspondence between them.

The media bus pixel codes document parallel formats. Should the pixel data be transported
over a serial bus, the media bus pixel code that describes a parallel format that transfers a
sample on a single clock cycle is used. For instance, both MEDIA_BUS_FMT_BGR888_1X24
and MEDIA_BUS_FMT_BGR888_3X8 are used on parallel busses for transferring an 8 bits per
sample BGR data, whereas on serial busses the data in this format is only referred to using ME-
DIA_BUS_FMT_BGR888_1X24. This is because there is effectively only a single way to transport
that format on the serial busses.

Packed RGB Formats

Those formats transfer pixel data as red, green and blue components. The format code is made
of the following information.

• The red, green and blue components order code, as encoded in a pixel sample. Possible
values are RGB and BGR.

• The number of bits per component, for each component. The values can be different for
all components. Common values are 555 and 565.

1054 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

• The number of bus samples per pixel. Pixels that are wider than the bus width must be
transferred in multiple samples. Common values are 1 and 2.

• The bus width.

• For formats where the total number of bits per pixel is smaller than the number of bus
samples per pixel times the bus width, a padding value stating if the bytes are padded
in their most high order bits (PADHI) or low order bits (PADLO). A “C” prefix is used for
component-wise padding in the most high order bits (CPADHI) or low order bits (CPADLO)
of each separate component.

• For formats where the number of bus samples per pixel is larger than 1, an endianness
value stating if the pixel is transferred MSB first (BE) or LSB first (LE).

For instance, a format where pixels are encoded as 5-bits red, 5-bits green and 5-bit blue
values padded on the high bit, transferred as 2 8-bit samples per pixel with the most sig-
nificant bits (padding, red and half of the green value) transferred first will be named
MEDIA_BUS_FMT_RGB555_2X8_PADHI_BE.
The following tables list existing packed RGB formats.

Table 116: RGB formats
Identifier Code Data organization

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MEDIA_BUS_FMT_RGB444_1X12

0x1016 r3 r2 r1 r0 g3 g2 g1 g0 b3 b2 b1 b0
MEDIA_BUS_FMT_RGB444_2X8_PADHI_BE

0x1001
0 0 0 0

r3 r2 r1 r0
g3 g2 g1 g0 b3 b2 b1 b0

MEDIA_BUS_FMT_RGB444_2X8_PADHI_LE
0x1002 g3 g2 g1 g0 b3 b2 b1 b0

0 0 0 0 r3 r2 r1 r0
MEDIA_BUS_FMT_RGB555_2X8_PADHI_BE

0x1003
0
r4 r3 r2 r1 r0 g4 g3

g2 g1 g0 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_RGB555_2X8_PADHI_LE

0x1004 g2 g1 g0 b4 b3 b2 b1 b0
0 r4 r3 r2 r1 r0 g4 g3

MEDIA_BUS_FMT_RGB565_1X16
0x1017 r4 r3 r2 r1 r0 g5 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_BGR565_2X8_BE
0x1005 b4 b3 b2 b1 b0 g5 g4 g3

g2 g1 g0 r4 r3 r2 r1 r0
MEDIA_BUS_FMT_BGR565_2X8_LE

0x1006 g2 g1 g0 r4 r3 r2 r1 r0
b4 b3 b2 b1 b0 g5 g4 g3

MEDIA_BUS_FMT_RGB565_2X8_BE
0x1007 r4 r3 r2 r1 r0 g5 g4 g3

g2 g1 g0 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_RGB565_2X8_LE

0x1008 g2 g1 g0 b4 b3 b2 b1 b0
r4 r3 r2 r1 r0 g5 g4 g3

MEDIA_BUS_FMT_RGB666_1X18
0x1009 r5 r4 r3 r2 r1 r0 g5 g4 g3 g2 g1 g0 b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_RBG888_1X24
0x100e r7 r6 r5 r4 r3 r2 r1 r0 b7 b6 b5 b4 b3 b2 b1 b0 g7 g6 g5 g4 g3 g2 g1 g0

MEDIA_BUS_FMT_RGB666_1X24_CPADHI
0x1015

0 0
r5 r4 r3 r2 r1 r0

0 0
g5 g4 g3 g2 g1 g0

0 0
b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_BGR888_1X24
0x1013 b7 b6 b5 b4 b3 b2 b1 b0 g7 g6 g5 g4 g3 g2 g1 g0 r7 r6 r5 r4 r3 r2 r1 r0

MEDIA_BUS_FMT_BGR888_3X8
0x101b b7 b6 b5 b4 b3 b2 b1 b0

g7 g6 g5 g4 g3 g2 g1 g0
r7 r6 r5 r4 r3 r2 r1 r0

MEDIA_BUS_FMT_GBR888_1X24
0x1014 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0 r7 r6 r5 r4 r3 r2 r1 r0

MEDIA_BUS_FMT_RGB888_1X24
0x100a r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_RGB888_2X12_BE
0x100b r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4

g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_RGB888_2X12_LE

0x100c g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0
r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4

MEDIA_BUS_FMT_RGB888_3X8
0x101c r7 r6 r5 r4 r3 r2 r1 r0

g7 g6 g5 g4 g3 g2 g1 g0
b7 b6 b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_ARGB888_1X32
0x100d a7 a6 a5 a4 a3 a2 a1 a0 r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_RGB888_1X32_PADHI
0x100f

0 0 0 0 0 0 0 0
r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0

Continued on next page

3.2. Part I - Video for Linux API 1055

Linux Media Documentation

Table 116 – continued from previous page
Identifier Code Data organization

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MEDIA_BUS_FMT_RGB101010_1X30

0x1018 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0 g9 g8 g7 g6 g5 g4 g3 g2 g1 g0 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

The following table list existing packed 36bit wide RGB formats.

Table 117: 36bit RGB formats
Identifier Code Data organization

Bit 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEDIA_BUS_FMT_RGB121212_1X36 0x1019 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0 g11g10g9 g8 g7 g6 g5 g4 g3 g2 g1 g0 b11b10b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

The following table list existing packed 48bit wide RGB formats.

Table 118: 48bit RGB formats
Identifier Code Data organization

Bit 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEDIA_BUS_FMT_RGB161616_1X48 0x101a r15 r14 r13 r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0
g15g14g13g12g11g10g9 g8 g7 g6 g5 g4 g3 g2 g1 g0 b15b14b13b12b11b10b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

On LVDS buses, usually each sample is transferred serialized in seven time slots per pixel clock,
on three (18-bit) or four (24-bit) differential data pairs at the same time. The remaining bits
are used for control signals as defined by SPWG/PSWG/VESA or JEIDA standards. The 24-bit
RGB format serialized in seven time slots on four lanes using JEIDA defined bit mapping will be
named MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA, for example.

Table 119: LVDS RGB formats
Identifier Code Data organization

Timeslot Lane 3 2 1 0

MEDIA_BUS_FMT_RGB666_1X7X3_SPWG 0x1010 0 d b1 g0
1 d b0 r5
2 d g5 r4
3 b5 g4 r3
4 b4 g3 r2
5 b3 g2 r1
6 b2 g1 r0

MEDIA_BUS_FMT_RGB888_1X7X4_SPWG 0x1011 0 d d b1 g0
1 b7 d b0 r5
2 b6 d g5 r4
3 g7 b5 g4 r3
4 g6 b4 g3 r2
5 r7 b3 g2 r1
6 r6 b2 g1 r0

MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA 0x1012 0 d d b3 g2
1 b1 d b2 r7
2 b0 d g7 r6
3 g1 b7 g6 r5
4 g0 b6 g5 r4
5 r1 b5 g4 r3
6 r0 b4 g3 r2

1056 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Bayer Formats

Those formats transfer pixel data as red, green and blue components. The format code is made
of the following information.

• The red, green and blue components order code, as encoded in a pixel sample. The possible
values are shown in Figure 4.8 Bayer Patterns.

• The number of bits per pixel component. All components are transferred on the same
number of bits. Common values are 8, 10 and 12.

• The compression (optional). If the pixel components are ALAW- or DPCM-compressed, a
mention of the compression scheme and the number of bits per compressed pixel compo-
nent.

• The number of bus samples per pixel. Pixels that are wider than the bus width must be
transferred in multiple samples. Common values are 1 and 2.

• The bus width.

• For formats where the total number of bits per pixel is smaller than the number of bus
samples per pixel times the bus width, a padding value stating if the bytes are padded in
their most high order bits (PADHI) or low order bits (PADLO).

• For formats where the number of bus samples per pixel is larger than 1, an endianness
value stating if the pixel is transferred MSB first (BE) or LSB first (LE).

For instance, a format with uncompressed 10-bit Bayer components arranged in a red, green,
green, blue pattern transferred as 2 8-bit samples per pixel with the least significant bits trans-
ferred first will be named MEDIA_BUS_FMT_SRGGB10_2X8_PADHI_LE.

Fig. 17: Figure 4.8 Bayer Patterns

The following table lists existing packed Bayer formats. The data organization is given as an
example for the first pixel only.

Table 120: Bayer Formats
Identifier Code Data organization

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MEDIA_BUS_FMT_SBGGR8_1X8

0x3001 b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_SGBRG8_1X8

0x3013 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SGRBG8_1X8

0x3002 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SRGGB8_1X8

0x3014 r7 r6 r5 r4 r3 r2 r1 r0
MEDIA_BUS_FMT_SBGGR10_ALAW8_1X8

0x3015 b7 b6 b5 b4 b3 b2 b1 b0
Continued on next page

3.2. Part I - Video for Linux API 1057

Linux Media Documentation

Table 120 – continued from previous page
Identifier Code Data organization

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MEDIA_BUS_FMT_SGBRG10_ALAW8_1X8

0x3016 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SGRBG10_ALAW8_1X8

0x3017 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SRGGB10_ALAW8_1X8

0x3018 r7 r6 r5 r4 r3 r2 r1 r0
MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8

0x300b b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8

0x300c g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8

0x3009 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8

0x300d r7 r6 r5 r4 r3 r2 r1 r0
MEDIA_BUS_FMT_SBGGR10_2X8_PADHI_BE

0x3003
0 0 0 0 0 0

b9 b8
b7 b6 b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_SBGGR10_2X8_PADHI_LE
0x3004 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 b9 b8
MEDIA_BUS_FMT_SBGGR10_2X8_PADLO_BE

0x3005 b9 b8 b7 b6 b5 b4 b3 b2
b1 b0 0 0 0 0 0 0

MEDIA_BUS_FMT_SBGGR10_2X8_PADLO_LE
0x3006 b1 b0

0 0 0 0 0 0

b9 b8 b7 b6 b5 b4 b3 b2
MEDIA_BUS_FMT_SBGGR10_1X10

0x3007 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_SGBRG10_1X10

0x300e g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SGRBG10_1X10

0x300a g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SRGGB10_1X10

0x300f r9 r8 r7 r6 r5 r4 r3 r2 r1 r0
MEDIA_BUS_FMT_SBGGR12_1X12

0x3008 b11b10b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_SGBRG12_1X12

0x3010 g11g10g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SGRBG12_1X12

0x3011 g11g10g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SRGGB12_1X12

0x3012 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0
MEDIA_BUS_FMT_SBGGR14_1X14

0x3019 b13b12b11b10b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_SGBRG14_1X14

0x301a g13g12g11g10g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SGRBG14_1X14

0x301b g13g12g11g10g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SRGGB14_1X14

0x301c r13 r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0
MEDIA_BUS_FMT_SBGGR16_1X16

0x301d b15b14b13b12b11b10b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_SGBRG16_1X16

0x301e g15g14g13g12g11g10g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SGRBG16_1X16

0x301f g15g14g13g12g11g10g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SRGGB16_1X16

0x3020 r15 r14 r13 r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0

Packed YUV Formats

Those data formats transfer pixel data as (possibly downsampled) Y, U and V components. Some
formats include dummy bits in some of their samples and are collectively referred to as “YDYC”
(Y-Dummy-Y-Chroma) formats. One cannot rely on the values of these dummy bits as those are
undefined.

The format code is made of the following information.

• The Y, U and V components order code, as transferred on the bus. Possible values are
YUYV, UYVY, YVYU and VYUY for formats with no dummy bit, and YDYUYDYV, YDYVYDYU,
YUYDYVYD and YVYDYUYD for YDYC formats.

• The number of bits per pixel component. All components are transferred on the same
number of bits. Common values are 8, 10 and 12.

• The number of bus samples per pixel. Pixels that are wider than the bus width must be
transferred in multiple samples. Common values are 0.5 (encoded as 0_5; in this case two
pixels are transferred per bus sample), 1, 1.5 (encoded as 1_5) and 2.

1058 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

• The bus width. When the bus width is larger than the number of bits per pixel component,
several components are packed in a single bus sample. The components are ordered as
specified by the order code, with components on the left of the code transferred in the
high order bits. Common values are 8 and 16.

For instance, a format where pixels are encoded as 8-bit YUV values downsampled to 4:2:2
and transferred as 2 8-bit bus samples per pixel in the U, Y, V, Y order will be named
MEDIA_BUS_FMT_UYVY8_2X8.

YUV Formats lists existing packed YUV formats and describes the organization of each pixel
data in each sample. When a format pattern is split across multiple samples each of the samples
in the pattern is described.

The role of each bit transferred over the bus is identified by one of the following codes.

• yx for luma component bit number x

• ux for blue chroma component bit number x

• vx for red chroma component bit number x

• ax for alpha component bit number x

• for non-available bits (for positions higher than the bus width)

• d for dummy bits
Table 121: YUV Formats

Identifier Code Data organization
Bit 31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEDIA_BUS_FMT_Y8_1X8
0x2001 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_UV8_1X8
0x2015 u7 u6 u5 u4 u3 u2 u1 u0

v7 v6 v5 v4 v3 v2 v1 v0
MEDIA_BUS_FMT_UYVY8_1_5X8

0x2002 u7 u6 u5 u4 u3 u2 u1 u0
y7 y6 y5 y4 y3 y2 y1 y0
y7 y6 y5 y4 y3 y2 y1 y0
v7 v6 v5 v4 v3 v2 v1 v0
y7 y6 y5 y4 y3 y2 y1 y0
y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_VYUY8_1_5X8
0x2003 v7 v6 v5 v4 v3 v2 v1 v0

y7 y6 y5 y4 y3 y2 y1 y0
y7 y6 y5 y4 y3 y2 y1 y0
u7 u6 u5 u4 u3 u2 u1 u0
y7 y6 y5 y4 y3 y2 y1 y0
y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUYV8_1_5X8
0x2004 y7 y6 y5 y4 y3 y2 y1 y0

y7 y6 y5 y4 y3 y2 y1 y0
u7 u6 u5 u4 u3 u2 u1 u0
y7 y6 y5 y4 y3 y2 y1 y0
y7 y6 y5 y4 y3 y2 y1 y0
v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_YVYU8_1_5X8
0x2005 y7 y6 y5 y4 y3 y2 y1 y0

y7 y6 y5 y4 y3 y2 y1 y0
v7 v6 v5 v4 v3 v2 v1 v0
y7 y6 y5 y4 y3 y2 y1 y0
y7 y6 y5 y4 y3 y2 y1 y0
u7 u6 u5 u4 u3 u2 u1 u0

MEDIA_BUS_FMT_UYVY8_2X8
0x2006 u7 u6 u5 u4 u3 u2 u1 u0

y7 y6 y5 y4 y3 y2 y1 y0
v7 v6 v5 v4 v3 v2 v1 v0
y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_VYUY8_2X8
0x2007 v7 v6 v5 v4 v3 v2 v1 v0

y7 y6 y5 y4 y3 y2 y1 y0
u7 u6 u5 u4 u3 u2 u1 u0
y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUYV8_2X8
0x2008 y7 y6 y5 y4 y3 y2 y1 y0

u7 u6 u5 u4 u3 u2 u1 u0
y7 y6 y5 y4 y3 y2 y1 y0
v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_YVYU8_2X8
0x2009 y7 y6 y5 y4 y3 y2 y1 y0

Continued on next page

3.2. Part I - Video for Linux API 1059

Linux Media Documentation

Table 121 – continued from previous page
Identifier Code Data organization

Bit 31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
v7 v6 v5 v4 v3 v2 v1 v0
y7 y6 y5 y4 y3 y2 y1 y0
u7 u6 u5 u4 u3 u2 u1 u0

MEDIA_BUS_FMT_Y10_1X10
0x200a y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_Y10_2X8_PADHI_LE
0x202c y7 y6 y5 y4 y3 y2 y1 y0

0 0 0 0 0 0 y9 y8
MEDIA_BUS_FMT_UYVY10_2X10

0x2018 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_VYUY10_2X10
0x2019 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUYV10_2X10
0x200b y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_YVYU10_2X10
0x200c y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

MEDIA_BUS_FMT_Y12_1X12
0x2013 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_UYVY12_2X12
0x201c u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_VYUY12_2X12
0x201d v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUYV12_2X12
0x201e y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_YVYU12_2X12
0x201f y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

MEDIA_BUS_FMT_Y14_1X14
0x202d y13y12y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_UYVY8_1X16
0x200f u7 u6 u5 u4 u3 u2 u1 u0 y7 y6 y5 y4 y3 y2 y1 y0

v7 v6 v5 v4 v3 v2 v1 v0 y7 y6 y5 y4 y3 y2 y1 y0
MEDIA_BUS_FMT_VYUY8_1X16

0x2010 v7 v6 v5 v4 v3 v2 v1 v0 y7 y6 y5 y4 y3 y2 y1 y0
u7 u6 u5 u4 u3 u2 u1 u0 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUYV8_1X16
0x2011 y7 y6 y5 y4 y3 y2 y1 y0 u7 u6 u5 u4 u3 u2 u1 u0

y7 y6 y5 y4 y3 y2 y1 y0 v7 v6 v5 v4 v3 v2 v1 v0
MEDIA_BUS_FMT_YVYU8_1X16

0x2012 y7 y6 y5 y4 y3 y2 y1 y0 v7 v6 v5 v4 v3 v2 v1 v0
y7 y6 y5 y4 y3 y2 y1 y0 u7 u6 u5 u4 u3 u2 u1 u0

MEDIA_BUS_FMT_YDYUYDYV8_1X16
0x2014 y7 y6 y5 y4 y3 y2 y1 y0

d d d d d d d d

y7 y6 y5 y4 y3 y2 y1 y0 u7 u6 u5 u4 u3 u2 u1 u0
y7 y6 y5 y4 y3 y2 y1 y0 d d d d d d d d
y7 y6 y5 y4 y3 y2 y1 y0 v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_UYVY10_1X20
0x201a u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
MEDIA_BUS_FMT_VYUY10_1X20

0x201b v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUYV10_1X20
0x200d y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
MEDIA_BUS_FMT_YVYU10_1X20

0x200e y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

MEDIA_BUS_FMT_VUY8_1X24
0x201a v7 v6 v5 v4 v3 v2 v1 v0 u7 u6 u5 u4 u3 u2 u1 u0 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUV8_1X24
0x2025 y7 y6 y5 y4 y3 y2 y1 y0 u7 u6 u5 u4 u3 u2 u1 u0 v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_UYYVYY8_0_5X24
0x2026 u7 u6 u5 u4 u3 u2 u1 u0 y7 y6 y5 y4 y3 y2 y1 y0 y7 y6 y5 y4 y3 y2 y1 y0

v7 v6 v5 v4 v3 v2 v1 v0 y7 y6 y5 y4 y3 y2 y1 y0 y7 y6 y5 y4 y3 y2 y1 y0
MEDIA_BUS_FMT_UYVY12_1X24

0x2020 u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

Continued on next page

1060 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 121 – continued from previous page
Identifier Code Data organization

Bit 31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MEDIA_BUS_FMT_VYUY12_1X24

0x2021 v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUYV12_1X24
0x2022 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
MEDIA_BUS_FMT_YVYU12_1X24

0x2023 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

MEDIA_BUS_FMT_YUV10_1X30
0x2016 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_UYYVYY10_0_5X30
0x2027 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
MEDIA_BUS_FMT_AYUV8_1X32

0x2017 a7 a6 a5 a4 a3 a2 a1 a0 y7 y6 y5 y4 y3 y2 y1 y0 u7 u6 u5 u4 u3 u2 u1 u0 v7 v6 v5 v4 v3 v2 v1 v0

The following table list existing packed 36bit wide YUV formats.

Table 122: 36bit YUV Formats
Identifier Code Data organization

Bit 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEDIA_BUS_FMT_UYYVYY12_0_5X36 0x2028 u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUV12_1X36 0x2029 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

The following table list existing packed 48bit wide YUV formats.

Table 123: 48bit YUV Formats
Identifier Code Data organization

Bit 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEDIA_BUS_FMT_YUV16_1X48 0x202a y15y14y13y12y11y10y8 y8 y7 y6 y5 y4 y3 y2 y1 y0
u15u14u13u12u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 v15v14v13v12v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_UYYVYY16_0_5X48 0x202b u15u14u13u12u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
y15y14y13y12y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y15y14y13y12y11y10y8 y8 y7 y6 y5 y4 y3 y2 y1 y0

v15v14v13v12v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
y15y14y13y12y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y15y14y13y12y11y10y8 y8 y7 y6 y5 y4 y3 y2 y1 y0

HSV/HSL Formats

Those formats transfer pixel data as RGB values in a cylindrical-coordinate system using Hue-
Saturation-Value or Hue-Saturation-Lightness components. The format code is made of the
following information.

• The hue, saturation, value or lightness and optional alpha components order code, as en-
coded in a pixel sample. The only currently supported value is AHSV.

• The number of bits per component, for each component. The values can be different for
all components. The only currently supported value is 8888.

• The number of bus samples per pixel. Pixels that are wider than the bus width must be
transferred in multiple samples. The only currently supported value is 1.

• The bus width.

• For formats where the total number of bits per pixel is smaller than the number of bus
samples per pixel times the bus width, a padding value stating if the bytes are padded in
their most high order bits (PADHI) or low order bits (PADLO).

• For formats where the number of bus samples per pixel is larger than 1, an endianness
value stating if the pixel is transferred MSB first (BE) or LSB first (LE).

The following table lists existing HSV/HSL formats.

3.2. Part I - Video for Linux API 1061

Linux Media Documentation

Table 124: HSV/HSL formats
Identifier Code Data organization

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEDIA_BUS_FMT_AHSV8888_1X32 0x6001 a7 a6 a5 a4 a3 a2 a1 a0 h7 h6 h5 h4 h3 h2 h1 h0 s7 s6 s5 s4 s3 s2 s1 s0 v7 v6 v5 v4 v3 v2 v1 v0

JPEG Compressed Formats

Those data formats consist of an ordered sequence of 8-bit bytes obtained from JPEG com-
pression process. Additionally to the _JPEG postfix the format code is made of the following
information.

• The number of bus samples per entropy encoded byte.

• The bus width.

For instance, for a JPEG baseline process and an 8-bit bus width the format will be named
MEDIA_BUS_FMT_JPEG_1X8.

The following table lists existing JPEG compressed formats.

Table 125: JPEG Formats
Identifier Code Remarks

MEDIA_BUS_FMT_JPEG_1X8 0x4001 Besides of its usage for the parallel bus this format
is recommended for transmission of JPEG data over
MIPI CSI bus using the User Defined 8-bit Data
types.

Vendor and Device Specific Formats

This section lists complex data formats that are either vendor or device specific.

The following table lists the existing vendor and device specific formats.

Table 126: Vendor and device specific formats
Identifier Code Comments

MEDIA_BUS_FMT_S5C_UYVY_JPEG_1X8 0x5001 Interleaved raw UYVY and JPEG image
format with embedded meta-data used
by Samsung S3C73MX camera sensors.

Metadata Formats

This section lists all metadata formats.

The following table lists the existing metadata formats.

1062 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 127: Metadata formats
Identifier Code Comments

MEDIA_BUS_FMT_METADATA_FIXED 0x7001 This format should be used when the
same driver handles both sides of the
link and the bus format is a fixed meta-
data format that is not configurable from
userspace. Width and height will be set
to 0 for this format.

3.2.4.14 Metadata Interface

Metadata refers to any non-image data that supplements video frames with additional informa-
tion. This may include statistics computed over the image, frame capture parameters supplied
by the image source or device specific parameters for specifying how the device processes
images. This interface is intended for transfer of metadata between the userspace and the
hardware and control of that operation.

The metadata interface is implemented on video device nodes. The device can be dedicated to
metadata or can support both video and metadata as specified in its reported capabilities.

Querying Capabilities

Device nodes supporting the metadata capture interface set the V4L2_CAP_META_CAPTURE flag
in the device_caps field of the v4l2_capability structure returned by the VIDIOC_QUERYCAP()
ioctl. That flag means the device can capture metadata to memory. Similarly, device nodes sup-
porting metadata output interface set the V4L2_CAP_META_OUTPUT flag in the device_caps field
of v4l2_capability structure. That flag means the device can read metadata from memory.

At least one of the read/write or streaming I/O methods must be supported.

Data Format Negotiation

The metadata device uses the Data Formats ioctls to select the capture format. The metadata
buffer content format is bound to that selected format. In addition to the basic Data Formats
ioctls, the VIDIOC_ENUM_FMT() ioctl must be supported as well.

To use the Data Formats ioctls applications set the type field of the v4l2_format
structure to V4L2_BUF_TYPE_META_CAPTURE or to V4L2_BUF_TYPE_META_OUTPUT and use the
v4l2_meta_format meta member of the fmt union as needed per the desired operation. Both
drivers and applications must set the remainder of the v4l2_format structure to 0.

v4l2_meta_format

Table 128: struct v4l2_meta_format
__u32 dataformat The data format, set by the application. This is a little endian four

character code. V4L2 defines metadata formats inMetadata Formats.
__u32 buffersize Maximum buffer size in bytes required for data. The value is set by

the driver.

3.2. Part I - Video for Linux API 1063

Linux Media Documentation

3.2.5 Libv4l Userspace Library

3.2.5.1 Introduction

libv4l is a collection of libraries which adds a thin abstraction layer on top of video4linux2
devices. The purpose of this (thin) layer is to make it easy for application writers to support a
wide variety of devices without having to write separate code for different devices in the same
class.

An example of using libv4l is provided by v4l2grab.

libv4l consists of 3 different libraries:

libv4lconvert

libv4lconvert is a library that converts several different pixelformats found in V4L2 drivers into
a few common RGB and YUY formats.

It currently accepts the following V4L2 driver formats: V4L2_PIX_FMT_BGR24,
V4L2_PIX_FMT_HM12, V4L2_PIX_FMT_JPEG, V4L2_PIX_FMT_MJPEG,
V4L2_PIX_FMT_MR97310A, V4L2_PIX_FMT_OV511, V4L2_PIX_FMT_OV518,
V4L2_PIX_FMT_PAC207, V4L2_PIX_FMT_PJPG, V4L2_PIX_FMT_RGB24,
V4L2_PIX_FMT_SBGGR8, V4L2_PIX_FMT_SGBRG8, V4L2_PIX_FMT_SGRBG8,
V4L2_PIX_FMT_SN9C10X, V4L2_PIX_FMT_SN9C20X_I420, V4L2_PIX_FMT_SPCA501,
V4L2_PIX_FMT_SPCA505, V4L2_PIX_FMT_SPCA508, V4L2_PIX_FMT_SPCA561,
V4L2_PIX_FMT_SQ905C, V4L2_PIX_FMT_SRGGB8, V4L2_PIX_FMT_UYVY,
V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_YUYV, V4L2_PIX_FMT_YVU420, and
V4L2_PIX_FMT_YVYU.

Later on libv4lconvert was expanded to also be able to do various video processing functions to
improve webcam video quality. The video processing is split in to 2 parts: libv4lconvert/control
and libv4lconvert/processing.

The control part is used to offer video controls which can be used to control the video processing
functions made available by libv4lconvert/processing. These controls are stored application
wide (until reboot) by using a persistent shared memory object.

libv4lconvert/processing offers the actual video processing functionality.

libv4l1

This library offers functions that can be used to quickly make v4l1 applications work with v4l2
devices. These functions work exactly like the normal open/close/etc, except that libv4l1 does
full emulation of the v4l1 api on top of v4l2 drivers, in case of v4l1 drivers it will just pass calls
through.

Since those functions are emulations of the old V4L1 API, it shouldn’t be used for new applica-
tions.

1064 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

libv4l2

This library should be used for all modern V4L2 applications.

It provides handles to call V4L2 open/ioctl/close/poll methods. Instead of just providing the raw
output of the device, it enhances the calls in the sense that it will use libv4lconvert to provide
more video formats and to enhance the image quality.

In most cases, libv4l2 just passes the calls directly through to the v4l2 driver, in-
tercepting the calls to VIDIOC_TRY_FMT, VIDIOC_G_FMT, VIDIOC_S_FMT, VID-
IOC_ENUM_FRAMESIZES and VIDIOC_ENUM_FRAMEINTERVALS in order to emulate
the formats V4L2_PIX_FMT_BGR24, V4L2_PIX_FMT_RGB24, V4L2_PIX_FMT_YUV420, and
V4L2_PIX_FMT_YVU420, if they aren’t available in the driver. VIDIOC_ENUM_FMT keeps
enumerating the hardware supported formats, plus the emulated formats offered by libv4l at
the end.

Libv4l device control functions

The common file operation methods are provided by libv4l.

Those functions operate just like the gcc function dup() and V4L2 functions open(), close(),
ioctl(), read(), mmap() and munmap():

int v4l2_open(const char *file, int oflag, ...)
operates like the open() function.

int v4l2_close(int fd)
operates like the close() function.

int v4l2_dup(int fd)
operates like the libc dup() function, duplicating a file handler.

int v4l2_ioctl(int fd, unsigned long int request, ...)
operates like the ioctl() function.

int v4l2_read(int fd, void* buffer, size_t n)
operates like the read() function.

void v4l2_mmap(void *start, size_t length, int prot, int flags, int fd, int64_t offset);
operates like the munmap() function.

int v4l2_munmap(void *_start, size_t length);
operates like the munmap() function.

Those functions provide additional control:

int v4l2_fd_open(int fd, int v4l2_flags)
opens an already opened fd for further use through v4l2lib and possibly modify libv4l2’s
default behavior through the v4l2_flags argument. Currently, v4l2_flags can be
V4L2_DISABLE_CONVERSION, to disable format conversion.

int v4l2_set_control(int fd, int cid, int value)
This function takes a value of 0 - 65535, and then scales that range to the actual range
of the given v4l control id, and then if the cid exists and is not locked sets the cid to the
scaled value.

3.2. Part I - Video for Linux API 1065

Linux Media Documentation

int v4l2_get_control(int fd, int cid)
This function returns a value of 0 - 65535, scaled to from the actual range of the given v4l
control id. when the cid does not exist, could not be accessed for some reason, or some
error occurred 0 is returned.

v4l1compat.so wrapper library

This library intercepts calls to open(), close(), ioctl(), mmap() and munmap() operations and
redirects them to the libv4l counterparts, by using LD_PRELOAD=/usr/lib/v4l1compat.so. It
also emulates V4L1 calls via V4L2 API.

It allows usage of binary legacy applications that still don’t use libv4l.

3.2.6 Changes

The following chapters document the evolution of the V4L2 API, errata or extensions. They are
also intended to help application and driver writers to port or update their code.

3.2.6.1 Differences between V4L and V4L2

The Video For Linux API was first introduced in Linux 2.1 to unify and replace various TV
and radio device related interfaces, developed independently by driver writers in prior years.
Starting with Linux 2.5 the much improved V4L2 API replaces the V4L API. The support for the
old V4L calls were removed from Kernel, but the library Libv4l Userspace Library supports the
conversion of a V4L API system call into a V4L2 one.

Opening and Closing Devices

For compatibility reasons the character device file names recommended for V4L2 video capture,
overlay, radio and raw vbi capture devices did not change from those used by V4L. They are
listed in Interfaces and below in V4L Device Types, Names and Numbers.

The teletext devices (minor range 192-223) have been removed in V4L2 and no longer exist.
There is no hardware available anymore for handling pure teletext. Instead raw or sliced VBI
is used.

The V4L videodev module automatically assigns minor numbers to drivers in load order, de-
pending on the registered device type. We recommend that V4L2 drivers by default register
devices with the same numbers, but the system administrator can assign arbitrary minor num-
bers using driver module options. The major device number remains 81.

Table 129: V4L Device Types, Names and Numbers
Device Type File Name Minor Numbers
Video capture and overlay /dev/video and /dev/bttv01, /dev/video0 to /

dev/video63
0-63

Radio receiver /dev/radio2, /dev/radio0 to /dev/radio63 64-127
Raw VBI capture /dev/vbi, /dev/vbi0 to /dev/vbi31 224-255

1066 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L prohibits (or used to prohibit) multiple opens of a device file. V4L2 drivers may support
multiple opens, see Opening and Closing Devices for details and consequences.

V4L drivers respond to V4L2 ioctls with an EINVAL error code.

Querying Capabilities

The V4L VIDIOCGCAP ioctl is equivalent to V4L2’s ioctl VIDIOC_QUERYCAP.

The name field in struct video_capability became card in struct v4l2_capability, type was
replaced by capabilities. Note V4L2 does not distinguish between device types like this,
better think of basic video input, video output and radio devices supporting a set of related
functions like video capturing, video overlay and VBI capturing. See Opening and Closing De-
vices for an introduction.

struct video_capability
type

struct v4l2_capability
capabilities flags

Purpose

VID_TYPE_CAPTURE V4L2_CAP_VIDEO_CAPTURE The video capture interface is
supported.

VID_TYPE_TUNER V4L2_CAP_TUNER The device has a tuner or
modulator.

VID_TYPE_TELETEXT V4L2_CAP_VBI_CAPTURE The raw VBI capture interface
is supported.

VID_TYPE_OVERLAY V4L2_CAP_VIDEO_OVERLAY The video overlay interface is
supported.

VID_TYPE_CHROMAKEY V4L2_FBUF_CAP_CHROMAKEY in
field capability of struct
v4l2_framebuffer

Whether chromakey overlay
is supported. For more infor-
mation on overlay see Video
Overlay Interface.

VID_TYPE_CLIPPING V4L2_FBUF_CAP_LIST_CLIPPING and
V4L2_FBUF_CAP_BITMAP_CLIPPING
in field capability of struct
v4l2_framebuffer

Whether clipping the overlaid
image is supported, see Video
Overlay Interface.

VID_TYPE_FRAMERAM V4L2_FBUF_CAP_EXTERNOVERLAY not
set in field capability of struct
v4l2_framebuffer

Whether overlay overwrites
frame buffer memory, see
Video Overlay Interface.

VID_TYPE_SCALES - This flag indicates if the hard-
ware can scale images. The
V4L2 API implies the scale
factor by setting the crop-
ping dimensions and image
size with the VIDIOC_S_CROP
and VIDIOC_S_FMT ioctl, re-
spectively. The driver returns
the closest sizes possible. For
more information on cropping
and scaling see Image Crop-
ping, Insertion and Scaling –
the CROP API.

Continued on next page

1 According to Documentation/admin-guide/devices.rst these should be symbolic links to /dev/video0. Note the
original bttv interface is not compatible with V4L or V4L2.

2 According to Documentation/admin-guide/devices.rst a symbolic link to /dev/radio0.

3.2. Part I - Video for Linux API 1067

Linux Media Documentation

Table 130 – continued from previous page
struct video_capability
type

struct v4l2_capability
capabilities flags

Purpose

VID_TYPE_MONOCHROME - Applications can enumer-
ate the supported image
formats with the ioctl VID-
IOC_ENUM_FMT ioctl to
determine if the device sup-
ports grey scale capturing
only. For more information
on image formats see Image
Formats.

VID_TYPE_SUBCAPTURE - Applications can call the VID-
IOC_G_CROP ioctl to deter-
mine if the device supports
capturing a subsection of the
full picture (“cropping” in
V4L2). If not, the ioctl returns
the EINVAL error code. For
more information on cropping
and scaling see Image Crop-
ping, Insertion and Scaling –
the CROP API.

VID_TYPE_MPEG_DECODER - Applications can enumer-
ate the supported image
formats with the ioctl VID-
IOC_ENUM_FMT ioctl to
determine if the device sup-
ports MPEG streams.

VID_TYPE_MPEG_ENCODER - See above.
VID_TYPE_MJPEG_DECODER - See above.
VID_TYPE_MJPEG_ENCODER - See above.

The audios field was replaced by capabilities flag V4L2_CAP_AUDIO, indicating if the device
has any audio inputs or outputs. To determine their number applications can enumerate audio
inputs with the VIDIOC_G_AUDIO ioctl. The audio ioctls are described in Audio Inputs and
Outputs.

The maxwidth, maxheight, minwidth and minheight fields were removed. Calling the VID-
IOC_S_FMT or VIDIOC_TRY_FMT ioctl with the desired dimensions returns the closest size
possible, taking into account the current video standard, cropping and scaling limitations.

Video Sources

V4L provides the VIDIOCGCHAN and VIDIOCSCHAN ioctl using struct video_channel to enumerate
the video inputs of a V4L device. The equivalent V4L2 ioctls are ioctl VIDIOC_ENUMINPUT,
VIDIOC_G_INPUT and VIDIOC_S_INPUT using struct v4l2_input as discussed in Video Inputs
and Outputs.

The channel field counting inputs was renamed to index, the video input types were renamed
as follows:

struct video_channel type struct v4l2_input type
VIDEO_TYPE_TV V4L2_INPUT_TYPE_TUNER
VIDEO_TYPE_CAMERA V4L2_INPUT_TYPE_CAMERA

1068 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Unlike the tuners field expressing the number of tuners of this input, V4L2 assumes each video
input is connected to at most one tuner. However a tuner can have more than one input, i. e. RF
connectors, and a device can have multiple tuners. The index number of the tuner associated
with the input, if any, is stored in field tuner of struct v4l2_input. Enumeration of tuners is
discussed in Tuners and Modulators.

The redundant VIDEO_VC_TUNER flag was dropped. Video inputs associated with a tuner are
of type V4L2_INPUT_TYPE_TUNER. The VIDEO_VC_AUDIO flag was replaced by the audioset field.
V4L2 considers devices with up to 32 audio inputs. Each set bit in the audioset field represents
one audio input this video input combines with. For information about audio inputs and how to
switch between them see Audio Inputs and Outputs.

The norm field describing the supported video standards was replaced by std. The V4L speci-
fication mentions a flag VIDEO_VC_NORM indicating whether the standard can be changed. This
flag was a later addition together with the norm field and has been removed in the meantime.
V4L2 has a similar, albeit more comprehensive approach to video standards, see Video Stan-
dards for more information.

Tuning

The V4L VIDIOCGTUNER and VIDIOCSTUNER ioctl and struct video_tuner can be used to enumer-
ate the tuners of a V4L TV or radio device. The equivalent V4L2 ioctls are VIDIOC_G_TUNER
and VIDIOC_S_TUNER using struct v4l2_tuner. Tuners are covered in Tuners andModulators.

The tuner field counting tuners was renamed to index. The fields name, rangelow and
rangehigh remained unchanged.

The VIDEO_TUNER_PAL, VIDEO_TUNER_NTSC and VIDEO_TUNER_SECAM flags indicating the sup-
ported video standards were dropped. This information is now contained in the associated
struct v4l2_input. No replacement exists for the VIDEO_TUNER_NORM flag indicating whether
the video standard can be switched. The mode field to select a different video standard was
replaced by a whole new set of ioctls and structures described in Video Standards. Due to its
ubiquity it should be mentioned the BTTV driver supports several standards in addition to the
regular VIDEO_MODE_PAL (0), VIDEO_MODE_NTSC, VIDEO_MODE_SECAM and VIDEO_MODE_AUTO (3).
Namely N/PAL Argentina, M/PAL, N/PAL, and NTSC Japan with numbers 3-6 (sic).

The VIDEO_TUNER_STEREO_ON flag indicating stereo reception became V4L2_TUNER_SUB_STEREO
in field rxsubchans. This field also permits the detection of monaural and bilingual audio,
see the definition of struct v4l2_tuner for details. Presently no replacement exists for the
VIDEO_TUNER_RDS_ON and VIDEO_TUNER_MBS_ON flags.

The VIDEO_TUNER_LOW flag was renamed to V4L2_TUNER_CAP_LOW in the struct v4l2_tuner
capability field.

The VIDIOCGFREQ and VIDIOCSFREQ ioctl to change the tuner frequency where renamed
to VIDIOC_G_FREQUENCY and VIDIOC_S_FREQUENCY. They take a pointer to a struct
v4l2_frequency instead of an unsigned long integer.

3.2. Part I - Video for Linux API 1069

Linux Media Documentation

Image Properties

V4L2 has no equivalent of the VIDIOCGPICT and VIDIOCSPICT ioctl and struct video_picture.
The following fields where replaced by V4L2 controls accessible with the ioctls VID-
IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU, VIDIOC_G_CTRL
and VIDIOC_S_CTRL ioctls:

struct video_picture V4L2 Control ID
brightness V4L2_CID_BRIGHTNESS
hue V4L2_CID_HUE
colour V4L2_CID_SATURATION
contrast V4L2_CID_CONTRAST
whiteness V4L2_CID_WHITENESS

The V4L picture controls are assumed to range from 0 to 65535 with no particular reset value.
The V4L2 API permits arbitrary limits and defaults which can be queried with the ioctls VID-
IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU ioctl. For general
information about controls see User Controls.

The depth (average number of bits per pixel) of a video image is implied by the selected image
format. V4L2 does not explicitly provide such information assuming applications recognizing
the format are aware of the image depth and others need not know. The palette field moved
into the struct v4l2_pix_format:

struct video_picture palette struct v4l2_pix_format pixfmt
VIDEO_PALETTE_GREY V4L2_PIX_FMT_GREY
VIDEO_PALETTE_HI240 V4L2_PIX_FMT_HI2403
VIDEO_PALETTE_RGB565 V4L2_PIX_FMT_RGB565
VIDEO_PALETTE_RGB555 V4L2_PIX_FMT_RGB555
VIDEO_PALETTE_RGB24 V4L2_PIX_FMT_BGR24
VIDEO_PALETTE_RGB32 V4L2_PIX_FMT_BGR324
VIDEO_PALETTE_YUV422 V4L2_PIX_FMT_YUYV
VIDEO_PALETTE_YUYV5 V4L2_PIX_FMT_YUYV
VIDEO_PALETTE_UYVY V4L2_PIX_FMT_UYVY
VIDEO_PALETTE_YUV420 None
VIDEO_PALETTE_YUV411 V4L2_PIX_FMT_Y41P6

VIDEO_PALETTE_RAW None7
VIDEO_PALETTE_YUV422P V4L2_PIX_FMT_YUV422P
VIDEO_PALETTE_YUV411P V4L2_PIX_FMT_YUV411P8
VIDEO_PALETTE_YUV420P V4L2_PIX_FMT_YVU420
VIDEO_PALETTE_YUV410P V4L2_PIX_FMT_YVU410

V4L2 image formats are defined in Image Formats. The image format can be selected with the
VIDIOC_S_FMT ioctl.

3 This is a custom format used by the BTTV driver, not one of the V4L2 standard formats.
4 Presumably all V4L RGB formats are little-endian, although some drivers might interpret them according to

machine endianness. V4L2 defines little-endian, big-endian and red/blue swapped variants. For details see RGB
Formats.

5 VIDEO_PALETTE_YUV422 and VIDEO_PALETTE_YUYV are the same formats. Some V4L drivers respond to one,

1070 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Audio

The VIDIOCGAUDIO and VIDIOCSAUDIO ioctl and struct video_audio are used to enumerate
the audio inputs of a V4L device. The equivalent V4L2 ioctls are VIDIOC_G_AUDIO and VID-
IOC_S_AUDIO using struct v4l2_audio as discussed in Audio Inputs and Outputs.

The audio “channel number” field counting audio inputs was renamed to index.

On VIDIOCSAUDIO the mode field selects one of the VIDEO_SOUND_MONO, VIDEO_SOUND_STEREO,
VIDEO_SOUND_LANG1 or VIDEO_SOUND_LANG2 audio demodulation modes. When the current au-
dio standard is BTSC VIDEO_SOUND_LANG2 refers to SAP and VIDEO_SOUND_LANG1 is meaning-
less. Also undocumented in the V4L specification, there is no way to query the selected mode.
On VIDIOCGAUDIO the driver returns the actually received audio programmes in this field. In the
V4L2 API this information is stored in the struct v4l2_tuner rxsubchans and audmode fields,
respectively. See Tuners and Modulators for more information on tuners. Related to audio
modes struct v4l2_audio also reports if this is a mono or stereo input, regardless if the source
is a tuner.

The following fields where replaced by V4L2 controls accessible with the ioctls VID-
IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU, VIDIOC_G_CTRL
and VIDIOC_S_CTRL ioctls:

struct video_audio V4L2 Control ID
volume V4L2_CID_AUDIO_VOLUME
bass V4L2_CID_AUDIO_BASS
treble V4L2_CID_AUDIO_TREBLE
balance V4L2_CID_AUDIO_BALANCE

To determine which of these controls are supported by a driver V4L provides the flags
VIDEO_AUDIO_VOLUME, VIDEO_AUDIO_BASS, VIDEO_AUDIO_TREBLE and VIDEO_AUDIO_BALANCE.
In the V4L2 API the ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VID-
IOC_QUERYMENU ioctl reports if the respective control is supported. Accordingly
the VIDEO_AUDIO_MUTABLE and VIDEO_AUDIO_MUTE flags where replaced by the boolean
V4L2_CID_AUDIO_MUTE control.

All V4L2 controls have a step attribute replacing the struct video_audio step field. The V4L au-
dio controls are assumed to range from 0 to 65535 with no particular reset value. The V4L2 API
permits arbitrary limits and defaults which can be queried with the ioctls VIDIOC_QUERYCTRL,
VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU ioctl. For general information about
controls see User Controls.
some to the other.

6 Not to be confused with V4L2_PIX_FMT_YUV411P, which is a planar format.
7 V4L explains this as: “RAW capture (BT848)”
8 Not to be confused with V4L2_PIX_FMT_Y41P, which is a packed format.

3.2. Part I - Video for Linux API 1071

Linux Media Documentation

Frame Buffer Overlay

The V4L2 ioctls equivalent to VIDIOCGFBUF and VIDIOCSFBUF are VIDIOC_G_FBUF and VID-
IOC_S_FBUF. The base field of struct video_buffer remained unchanged, except V4L2 defines
a flag to indicate non-destructive overlays instead of a NULL pointer. All other fields moved into
the struct v4l2_pix_format fmt substructure of struct v4l2_framebuffer. The depth field was
replaced by pixelformat. See RGB Formats for a list of RGB formats and their respective color
depths.

Instead of the special ioctls VIDIOCGWIN and VIDIOCSWIN V4L2 uses the general-purpose data
format negotiation ioctls VIDIOC_G_FMT and VIDIOC_S_FMT. They take a pointer to a struct
v4l2_format as argument. Here the winmember of the fmt union is used, a struct v4l2_window.

The x, y, width and height fields of struct video_window moved into struct v4l2_rect sub-
structure w of struct v4l2_window. The chromakey, clips, and clipcount fields remained
unchanged. Struct video_clip was renamed to struct v4l2_clip, also containing a struct
v4l2_rect, but the semantics are still the same.

The VIDEO_WINDOW_INTERLACE flag was dropped. Instead applications must set the field field
to V4L2_FIELD_ANY or V4L2_FIELD_INTERLACED. The VIDEO_WINDOW_CHROMAKEY flag moved into
struct v4l2_framebuffer, under the new name V4L2_FBUF_FLAG_CHROMAKEY.

In V4L, storing a bitmap pointer in clips and setting clipcount to VIDEO_CLIP_BITMAP (-1)
requests bitmap clipping, using a fixed size bitmap of 1024 × 625 bits. Struct v4l2_window has
a separate bitmap pointer field for this purpose and the bitmap size is determined by w.width
and w.height.

The VIDIOCCAPTURE ioctl to enable or disable overlay was renamed to ioctl VIDIOC_OVERLAY.

Cropping

To capture only a subsection of the full picture V4L defines the VIDIOCGCAPTURE and
VIDIOCSCAPTURE ioctls using struct video_capture. The equivalent V4L2 ioctls are VID-
IOC_G_CROP and VIDIOC_S_CROP using struct v4l2_crop, and the related ioctl VID-
IOC_CROPCAP ioctl. This is a rather complex matter, see Image Cropping, Insertion and Scal-
ing – the CROP API for details.

The x, y, width and height fields moved into struct v4l2_rect substructure c of struct
v4l2_crop. The decimation field was dropped. In the V4L2 API the scaling factor is implied
by the size of the cropping rectangle and the size of the captured or overlaid image.

The VIDEO_CAPTURE_ODD and VIDEO_CAPTURE_EVEN flags to capture only the odd or even field,
respectively, were replaced by V4L2_FIELD_TOP and V4L2_FIELD_BOTTOM in the field named
field of struct v4l2_pix_format and struct v4l2_window. These structures are used to select
a capture or overlay format with the VIDIOC_S_FMT ioctl.

1072 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Reading Images, Memory Mapping

Capturing using the read method

There is no essential difference between reading images from a V4L or V4L2 device using the
read() function, however V4L2 drivers are not required to support this I/O method. Applica-
tions can determine if the function is available with the ioctl VIDIOC_QUERYCAP ioctl. All V4L2
devices exchanging data with applications must support the select() and poll() functions.

To select an image format and size, V4L provides the VIDIOCSPICT and VIDIOCSWIN ioctls. V4L2
uses the general-purpose data format negotiation ioctls VIDIOC_G_FMT and VIDIOC_S_FMT.
They take a pointer to a struct v4l2_format as argument, here the struct v4l2_pix_format
named pix of its fmt union is used.

For more information about the V4L2 read interface see Read/Write.

Capturing using memory mapping

Applications can read from V4L devices by mapping buffers in device memory, or more often
just buffers allocated in DMA-able system memory, into their address space. This avoids the
data copying overhead of the read method. V4L2 supports memory mapping as well, with a few
differences.

3.2. Part I - Video for Linux API 1073

Linux Media Documentation

V4L V4L2
The image format must be selected before buffers are
allocated, with the VIDIOC_S_FMT ioctl. When no for-
mat is selected the driver may use the last, possibly by
another application requested format.

Applications cannot change the number
of buffers. The it is built into the driver,
unless it has a module option to change
the number when the driver module is
loaded.

The ioctl VIDIOC_REQBUFS ioctl allocates the desired
number of buffers, this is a required step in the initial-
ization sequence.

Drivers map all buffers as one con-
tiguous range of memory. The
VIDIOCGMBUF ioctl is available to
query the number of buffers, the offset
of each buffer from the start of the
virtual file, and the overall amount of
memory used, which can be used as
arguments for the mmap() function.

Buffers are individually mapped. The offset and size
of each buffer can be determined with the ioctl VID-
IOC_QUERYBUF ioctl.

The VIDIOCMCAPTURE ioctl prepares a
buffer for capturing. It also determines
the image format for this buffer. The
ioctl returns immediately, eventually
with an EAGAIN error code if no video
signal had been detected. When the
driver supports more than one buffer
applications can call the ioctl multiple
times and thus have multiple outstand-
ing capture requests.
The VIDIOCSYNC ioctl suspends execu-
tion until a particular buffer has been
filled.

Drivers maintain an incoming and outgoing queue.
ioctl VIDIOC_QBUF, VIDIOC_DQBUF enqueues any
empty buffer into the incoming queue. Filled buffers
are dequeued from the outgoing queue with the VID-
IOC_DQBUF ioctl. To wait until filled buffers be-
come available this function, select() or poll()
can be used. The ioctl VIDIOC_STREAMON, VID-
IOC_STREAMOFF ioctl must be called once after
enqueuing one or more buffers to start capturing.
Its counterpart VIDIOC_STREAMOFF stops capturing
and dequeues all buffers from both queues. Applica-
tions can query the signal status, if known, with the
ioctl VIDIOC_ENUMINPUT ioctl.

For a more in-depth discussion of memory mapping and examples, see Streaming I/O (Memory
Mapping).

Reading Raw VBI Data

Originally the V4L API did not specify a raw VBI capture interface, only the device file /dev/vbi
was reserved for this purpose. The only driver supporting this interface was the BTTV driver,
de-facto defining the V4L VBI interface. Reading from the device yields a raw VBI image with
the following parameters:

1074 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

struct v4l2_vbi_format V4L, BTTV driver
sampling_rate 28636363 Hz NTSC (or any other 525-line standard); 35468950 Hz

PAL and SECAM (625-line standards)
offset ?
samples_per_line 2048
sample_format V4L2_PIX_FMT_GREY. The last four bytes (a machine endianness in-

teger) contain a frame counter.
start[] 10, 273 NTSC; 22, 335 PAL and SECAM
count[] 16, 169
flags 0

Undocumented in the V4L specification, in Linux 2.3 the VIDIOCGVBIFMT and VIDIOCSVBIFMT
ioctls using struct vbi_formatwere added to determine the VBI image parameters. These ioctls
are only partially compatible with the V4L2 VBI interface specified in Raw VBI Data Interface.

An offset field does not exist, sample_format is supposed to be VIDEO_PALETTE_RAW,
equivalent to V4L2_PIX_FMT_GREY. The remaining fields are probably equivalent to struct
v4l2_vbi_format.

Apparently only the Zoran (ZR 36120) driver implements these ioctls. The semantics differ from
those specified for V4L2 in two ways. The parameters are reset on open() and VIDIOCSVBIFMT
always returns an EINVAL error code if the parameters are invalid.

Miscellaneous

V4L2 has no equivalent of the VIDIOCGUNIT ioctl. Applications can find the VBI device associ-
ated with a video capture device (or vice versa) by reopening the device and requesting VBI
data. For details see Opening and Closing Devices.

No replacement exists for VIDIOCKEY, and the V4L functions formicrocode programming. A new
interface for MPEG compression and playback devices is documented in Extended Controls API.

3.2.6.2 Changes of the V4L2 API

Soon after the V4L API was added to the kernel it was criticised as too inflexible. In August
1998 Bill Dirks proposed a number of improvements and began to work on documentation,
example drivers and applications. With the help of other volunteers this eventually became the
V4L2 API, not just an extension but a replacement for the V4L API. However it took another
four years and two stable kernel releases until the new API was finally accepted for inclusion
into the kernel in its present form.

9 Old driver versions used different values, eventually the custom BTTV_VBISIZE ioctl was added to query the
correct values.

3.2. Part I - Video for Linux API 1075

Linux Media Documentation

Early Versions

1998-08-20: First version.

1998-08-27: The select() function was introduced.

1998-09-10: New video standard interface.

1998-09-18: The VIDIOC_NONCAP ioctl was replaced by the otherwise meaningless O_TRUNC
open() flag, and the aliases O_NONCAP and O_NOIO were defined. Applications can set this
flag if they intend to access controls only, as opposed to capture applications which need
exclusive access. The VIDEO_STD_XXX identifiers are now ordinals instead of flags, and the
video_std_construct() helper function takes id and transmission arguments.

1998-09-28: Revamped video standard. Made video controls individually enumerable.

1998-10-02: The id field was removed from struct video_standard and the color subcarrier
fields were renamed. The ioctl VIDIOC_QUERYSTD, VIDIOC_SUBDEV_QUERYSTD ioctl was
renamed to ioctl VIDIOC_ENUMSTD, VIDIOC_SUBDEV_ENUMSTD, VIDIOC_G_INPUT to ioctl
VIDIOC_ENUMINPUT. A first draft of the Codec API was released.

1998-11-08: Many minor changes. Most symbols have been renamed. Some material changes
to struct v4l2_capability.

1998-11-12: The read/write directon of some ioctls was misdefined.

1998-11-14: V4L2_PIX_FMT_RGB24 changed to V4L2_PIX_FMT_BGR24, and V4L2_PIX_FMT_RGB32
changed to V4L2_PIX_FMT_BGR32. Audio controls are now accessible with the VIDIOC_G_CTRL
and VIDIOC_S_CTRL ioctls under names starting with V4L2_CID_AUDIO. The V4L2_MAJOR define
was removed from videodev.h since it was only used once in the videodev kernel module. The
YUV422 and YUV411 planar image formats were added.

1998-11-28: A few ioctl symbols changed. Interfaces for codecs and video output devices were
added.

1999-01-14: A raw VBI capture interface was added.

1999-01-19: The VIDIOC_NEXTBUF ioctl was removed.

V4L2 Version 0.16 1999-01-31

1999-01-27: There is now one QBUF ioctl, VIDIOC_QWBUF and VIDIOC_QRBUF are gone.
VIDIOC_QBUF takes a v4l2_buffer as a parameter. Added digital zoom (cropping) controls.

V4L2 Version 0.18 1999-03-16

Added a v4l to V4L2 ioctl compatibility layer to videodev.c. Driver writers, this changes how
you implement your ioctl handler. See the Driver Writer’s Guide. Added some more control id
codes.

1076 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2 Version 0.19 1999-06-05

1999-03-18: Fill in the category and catname fields of v4l2_queryctrl objects before passing
them to the driver. Required aminor change to the VIDIOC_QUERYCTRL handlers in the sample
drivers.

1999-03-31: Better compatibility for v4l memory capture ioctls. Requires changes to drivers to
fully support new compatibility features, see Driver Writer’s Guide and v4l2cap.c. Added new
control IDs: V4L2_CID_HFLIP, _VFLIP. Changed V4L2_PIX_FMT_YUV422P to _YUV422P, and
_YUV411P to _YUV411P.

1999-04-04: Added a few more control IDs.

1999-04-07: Added the button control type.

1999-05-02: Fixed a typo in videodev.h, and added the V4L2_CTRL_FLAG_GRAYED (later
V4L2_CTRL_FLAG_GRABBED) flag.

1999-05-20: Definition of VIDIOC_G_CTRL was wrong causing a malfunction of this ioctl.

1999-06-05: Changed the value of V4L2_CID_WHITENESS.

V4L2 Version 0.20 (1999-09-10)

Version 0.20 introduced a number of changes which were not backward compatible with 0.19
and earlier versions. Purpose of these changes was to simplify the API, while making it more
extensible and following common Linux driver API conventions.

1. Some typos in V4L2_FMT_FLAG symbols were fixed. struct v4l2_clip was changed for com-
patibility with v4l. (1999-08-30)

2. V4L2_TUNER_SUB_LANG1 was added. (1999-09-05)

3. All ioctl() commands that used an integer argument now take a pointer to an integer.
Where it makes sense, ioctls will return the actual new value in the integer pointed
to by the argument, a common convention in the V4L2 API. The affected ioctls are:
VIDIOC_PREVIEW, VIDIOC_STREAMON, VIDIOC_STREAMOFF, VIDIOC_S_FREQ, VID-
IOC_S_INPUT, VIDIOC_S_OUTPUT, VIDIOC_S_EFFECT. For example

err = ioctl (fd, VIDIOC_XXX, V4L2_XXX);

becomes

int a = V4L2_XXX; err = ioctl(fd, VIDIOC_XXX, &a);

4. All the different get- and set-format commands were swept into one VIDIOC_G_FMT and
VIDIOC_S_FMT ioctl taking a union and a type field selecting the union member as pa-
rameter. Purpose is to simplify the API by eliminating several ioctls and to allow new and
driver private data streams without adding new ioctls.

This change obsoletes the following ioctls: VIDIOC_S_INFMT, VIDIOC_G_INFMT,
VIDIOC_S_OUTFMT, VIDIOC_G_OUTFMT, VIDIOC_S_VBIFMT and VIDIOC_G_VBIFMT. The
image format struct v4l2_format was renamed to struct v4l2_pix_format, while struct
v4l2_format is now the envelopping structure for all format negotiations.

3.2. Part I - Video for Linux API 1077

Linux Media Documentation

5. Similar to the changes above, the VIDIOC_G_PARM and VIDIOC_S_PARM ioctls were
merged with VIDIOC_G_OUTPARM and VIDIOC_S_OUTPARM. A type field in the new struct
v4l2_streamparm selects the respective union member.

This change obsoletes the VIDIOC_G_OUTPARM and VIDIOC_S_OUTPARM ioctls.

6. Control enumeration was simplified, and two new control flags were introduced and one
dropped. The catname field was replaced by a group field.

Drivers can now flag unsupported and temporarily unavailable controls with
V4L2_CTRL_FLAG_DISABLED and V4L2_CTRL_FLAG_GRABBED respectively. The group
name indicates a possibly narrower classification than the category. In other words,
there may be multiple groups within a category. Controls within a group would typically
be drawn within a group box. Controls in different categories might have a greater
separation, or may even appear in separate windows.

7. The struct v4l2_buffer timestamp was changed to a 64 bit integer, containing the sam-
pling or output time of the frame in nanoseconds. Additionally timestamps will be in
absolute system time, not starting from zero at the beginning of a stream. The data
type name for timestamps is stamp_t, defined as a signed 64-bit integer. Output devices
should not send a buffer out until the time in the timestamp field has arrived. I would
like to follow SGI’s lead, and adopt a multimedia timestamping system like their UST
(Unadjusted System Time). See http://web.archive.org/web/*/http://reality.sgi.com /cpi-
razzi_engr/lg/time/intro.html. UST uses timestamps that are 64-bit signed integers (not
struct timeval’s) and given in nanosecond units. The UST clock starts at zero when the
system is booted and runs continuously and uniformly. It takes a little over 292 years
for UST to overflow. There is no way to set the UST clock. The regular Linux time-of-
day clock can be changed periodically, which would cause errors if it were being used for
timestamping a multimedia stream. A real UST style clock will require some support in
the kernel that is not there yet. But in anticipation, I will change the timestamp field to
a 64-bit integer, and I will change the v4l2_masterclock_gettime() function (used only by
drivers) to return a 64-bit integer.

8. A sequence field was added to struct v4l2_buffer. The sequence field counts captured
frames, it is ignored by output devices. When a capture driver drops a frame, the sequence
number of that frame is skipped.

V4L2 Version 0.20 incremental changes

1999-12-23: In struct v4l2_vbi_format the reserved1 field became offset. Previously drivers
were required to clear the reserved1 field.

2000-01-13: The V4L2_FMT_FLAG_NOT_INTERLACED flag was added.

2000-07-31: The linux/poll.h header is now included by videodev.h for compatibility with
the original videodev.h file.

2000-11-20: V4L2_TYPE_VBI_OUTPUT and V4L2_PIX_FMT_Y41P were added.

2000-11-25: V4L2_TYPE_VBI_INPUT was added.

2000-12-04: A couple typos in symbol names were fixed.

2001-01-18: To avoid namespace conflicts the fourcc macro defined in the videodev.h header
file was renamed to v4l2_fourcc.

1078 Chapter 3. Linux Media Infrastructure userspace API

http://web.archive.org/web/*/http://reality.sgi.com

Linux Media Documentation

2001-01-25: A possible driver-level compatibility problem between the videodev.h file in Linux
2.4.0 and the videodev.h file included in the videodevX patch was fixed. Users of an earlier
version of videodevX on Linux 2.4.0 should recompile their V4L and V4L2 drivers.

2001-01-26: A possible kernel-level incompatibility between the videodev.h file in the
videodevX patch and the videodev.h file in Linux 2.2.x with devfs patches applied was fixed.

2001-03-02: Certain V4L ioctls which pass data in both direction although they are defined
with read-only parameter, did not work correctly through the backward compatibility layer.
[Solution?]

2001-04-13: Big endian 16-bit RGB formats were added.

2001-09-17: New YUV formats and the VIDIOC_G_FREQUENCY and VIDIOC_S_FREQUENCY
ioctls were added. (The old VIDIOC_G_FREQ and VIDIOC_S_FREQ ioctls did not take multiple
tuners into account.)

2000-09-18: V4L2_BUF_TYPE_VBI was added. This may break compatibility as the VID-
IOC_G_FMT and VIDIOC_S_FMT ioctls may fail now if the struct v4l2_fmt type field does not
contain V4L2_BUF_TYPE_VBI. In the documentation of the struct v4l2_vbi_format`, the offset
field the ambiguous phrase “rising edge” was changed to “leading edge”.

V4L2 Version 0.20 2000-11-23

A number of changes were made to the raw VBI interface.

1. Figures clarifying the line numbering scheme were added to the V4L2 API specification.
The start[0] and start[1] fields no longer count line numbers beginning at zero. Ratio-
nale: a) The previous definition was unclear. b) The start[] values are ordinal numbers.
c) There is no point in inventing a new line numbering scheme. We now use line num-
ber as defined by ITU-R, period. Compatibility: Add one to the start values. Applications
depending on the previous semantics may not function correctly.

2. The restriction “count[0] > 0 and count[1] > 0” has been relaxed to “(count[0] + count[1])
> 0”. Rationale: Drivers may allocate resources at scan line granularity and some data
services are transmitted only on the first field. The comment that both count values will
usually be equal is misleading and pointless and has been removed. This change breaks
compatibility with earlier versions: Drivers may return EINVAL, applications may not func-
tion correctly.

3. Drivers are again permitted to return negative (unknown) start values as proposed earlier.
Why this feature was dropped is unclear. This change may break compatibility with appli-
cations depending on the start values being positive. The use of EBUSY and EINVAL error
codes with the VIDIOC_S_FMT ioctl was clarified. The EBUSY error code was finally docu-
mented, and the reserved2 field which was previously mentioned only in the videodev.h
header file.

4. New buffer types V4L2_TYPE_VBI_INPUT and V4L2_TYPE_VBI_OUTPUT were added. The
former is an alias for the old V4L2_TYPE_VBI, the latter was missing in the videodev.h file.

3.2. Part I - Video for Linux API 1079

Linux Media Documentation

V4L2 Version 0.20 2002-07-25

Added sliced VBI interface proposal.

V4L2 in Linux 2.5.46, 2002-10

Around October-November 2002, prior to an announced feature freeze of Linux 2.5, the API was
revised, drawing from experience with V4L2 0.20. This unnamed version was finally merged
into Linux 2.5.46.

1. As specified inRelated Devices, driversmustmake related device functions available under
all minor device numbers.

2. The open() function requires access mode O_RDWR regardless of the device type. All V4L2
drivers exchanging data with applications must support the O_NONBLOCK flag. The O_NOIO
flag, a V4L2 symbol which aliased the meaningless O_TRUNC to indicate accesses without
data exchange (panel applications) was dropped. Drivers must stay in “panel mode” until
the application attempts to initiate a data exchange, see Opening and Closing Devices.

3. The struct v4l2_capability changed dramatically. Note that also the size of the structure
changed, which is encoded in the ioctl request code, thus older V4L2 devices will respond
with an EINVAL error code to the new ioctl VIDIOC_QUERYCAP ioctl.

There are new fields to identify the driver, a new RDS device function
V4L2_CAP_RDS_CAPTURE, the V4L2_CAP_AUDIO flag indicates if the device has any au-
dio connectors, another I/O capability V4L2_CAP_ASYNCIO can be flagged. In response
to these changes the type field became a bit set and was merged into the flags field.
V4L2_FLAG_TUNER was renamed to V4L2_CAP_TUNER, V4L2_CAP_VIDEO_OVERLAY replaced
V4L2_FLAG_PREVIEW and V4L2_CAP_VBI_CAPTURE and V4L2_CAP_VBI_OUTPUT replaced
V4L2_FLAG_DATA_SERVICE. V4L2_FLAG_READ and V4L2_FLAG_WRITE were merged into
V4L2_CAP_READWRITE.

The redundant fields inputs, outputs and audios were removed. These properties can be
determined as described in Video Inputs and Outputs and Audio Inputs and Outputs.

The somewhat volatile and therefore barely useful fields maxwidth, maxheight, minwidth,
minheight, maxframerate were removed. This information is available as described in
Data Formats and Video Standards.

V4L2_FLAG_SELECT was removed. We believe the select() function is important enough to
require support of it in all V4L2 drivers exchanging data with applications. The redundant
V4L2_FLAG_MONOCHROME flag was removed, this information is available as described in
Data Formats.

4. In struct v4l2_input the assoc_audio field and the capability field and its only flag
V4L2_INPUT_CAP_AUDIO was replaced by the new audioset field. Instead of linking one
video input to one audio input this field reports all audio inputs this video input combines
with.

New fields are tuner (reversing the former link from tuners to video inputs), std and
status.

Accordingly struct v4l2_output lost its capability and assoc_audio fields. audioset,
modulator and std where added instead.

1080 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

5. The struct v4l2_audio field audio was renamed to index, for consistency with other struc-
tures. A new capability flag V4L2_AUDCAP_STEREO was added to indicated if the audio
input in question supports stereo sound. V4L2_AUDCAP_EFFECTS and the corresponding
V4L2_AUDMODE flags where removed. This can be easily implemented using controls. (How-
ever the same applies to AVL which is still there.)

Again for consistency the struct v4l2_audioout field audio was renamed to index.

6. The struct v4l2_tuner input field was replaced by an index field, permitting devices with
multiple tuners. The link between video inputs and tuners is now reversed, inputs point to
their tuner. The std substructure became a simple set (more about this below) and moved
into struct v4l2_input. A type field was added.

Accordingly in struct v4l2_modulator the output was replaced by an index field.

In struct v4l2_frequency the port field was replaced by a tuner field containing the respec-
tive tuner or modulator index number. A tuner type field was added and the reserved field
became larger for future extensions (satellite tuners in particular).

7. The idea of completely transparent video standards was dropped. Experience showed
that applications must be able to work with video standards beyond presenting the user
a menu. Instead of enumerating supported standards with an ioctl applications can now
refer to standards by v4l2_std_id and symbols defined in the videodev2.h header file.
For details see Video Standards. The VIDIOC_G_STD and VIDIOC_S_STD now take a
pointer to this type as argument. ioctl VIDIOC_QUERYSTD, VIDIOC_SUBDEV_QUERYSTD
was added to autodetect the received standard, if the hardware has this capability.
In struct v4l2_standard an index field was added for ioctl VIDIOC_ENUMSTD, VID-
IOC_SUBDEV_ENUMSTD. A v4l2_std_id field named id was added as machine readable
identifier, also replacing the transmission field. The misleading framerate field was re-
named to frameperiod. The now obsolete colorstandard information, originally needed
to distguish between variations of standards, were removed.

Struct v4l2_enumstd ceased to be. ioctl VIDIOC_ENUMSTD, VID-
IOC_SUBDEV_ENUMSTD now takes a pointer to a struct v4l2_standard directly. The
information which standards are supported by a particular video input or output moved
into struct v4l2_input and struct v4l2_output fields named std, respectively.

8. The struct v4l2_queryctrl fields category and group did not catch on and/or were not
implemented as expected and therefore removed.

9. The VIDIOC_TRY_FMT ioctl was added to negotiate data formats as with VIDIOC_S_FMT,
but without the overhead of programming the hardware and regardless of I/O in progress.

In struct v4l2_format the fmt union was extended to contain struct v4l2_window. All
image format negotiations are now possible with VIDIOC_G_FMT, VIDIOC_S_FMT and
VIDIOC_TRY_FMT; ioctl. The VIDIOC_G_WIN and VIDIOC_S_WIN ioctls to prepare for a video
overlay were removed. The type field changed to type enum v4l2_buf_type and the buffer
type names changed as follows.

3.2. Part I - Video for Linux API 1081

Linux Media Documentation

Old defines enum v4l2_buf_type
V4L2_BUF_TYPE_CAPTURE V4L2_BUF_TYPE_VIDEO_CAPTURE
V4L2_BUF_TYPE_CODECIN Omitted for now
V4L2_BUF_TYPE_CODECOUT Omitted for now
V4L2_BUF_TYPE_EFFECTSIN Omitted for now
V4L2_BUF_TYPE_EFFECTSIN2 Omitted for now
V4L2_BUF_TYPE_EFFECTSOUT Omitted for now
V4L2_BUF_TYPE_VIDEOOUT V4L2_BUF_TYPE_VIDEO_OUTPUT
- V4L2_BUF_TYPE_VIDEO_OVERLAY
- V4L2_BUF_TYPE_VBI_CAPTURE
- V4L2_BUF_TYPE_VBI_OUTPUT
- V4L2_BUF_TYPE_SLICED_VBI_CAPTURE
- V4L2_BUF_TYPE_SLICED_VBI_OUTPUT
V4L2_BUF_TYPE_PRIVATE_BASE V4L2_BUF_TYPE_PRIVATE (but this is deprecated)

10. In struct v4l2_fmtdesc a enum v4l2_buf_type field named type was added as in
struct v4l2_format. The VIDIOC_ENUM_FBUFFMT ioctl is no longer needed and was
removed. These calls can be replaced by ioctl VIDIOC_ENUM_FMT with type
V4L2_BUF_TYPE_VIDEO_OVERLAY.

11. In struct v4l2_pix_format the depth field was removed, assuming applications
which recognize the format by its four-character-code already know the color depth,
and others do not care about it. The same rationale lead to the removal of the
V4L2_FMT_FLAG_COMPRESSED flag. The V4L2_FMT_FLAG_SWCONVECOMPRESSED flag was re-
moved because drivers are not supposed to convert images in kernel space. A user library
of conversion functions should be provided instead. The V4L2_FMT_FLAG_BYTESPERLINE
flag was redundant. Applications can set the bytesperline field to zero to get a reason-
able default. Since the remaining flags were replaced as well, the flags field itself was
removed.

The interlace flags were replaced by a enum v4l2_field value in a newly added field
field.

Old flag enum v4l2_field
V4L2_FMT_FLAG_NOT_INTERLACED ?
V4L2_FMT_FLAG_INTERLACED = V4L2_FMT_FLAG_COMBINED V4L2_FIELD_INTERLACED
V4L2_FMT_FLAG_TOPFIELD = V4L2_FMT_FLAG_ODDFIELD V4L2_FIELD_TOP
V4L2_FMT_FLAG_BOTFIELD = V4L2_FMT_FLAG_EVENFIELD V4L2_FIELD_BOTTOM
- V4L2_FIELD_SEQ_TB
- V4L2_FIELD_SEQ_BT
- V4L2_FIELD_ALTERNATE

The color space flags were replaced by a enum v4l2_colorspace value in a newly added
colorspace field, where one of V4L2_COLORSPACE_SMPTE170M, V4L2_COLORSPACE_BT878,
V4L2_COLORSPACE_470_SYSTEM_M or V4L2_COLORSPACE_470_SYSTEM_BG replaces
V4L2_FMT_CS_601YUV.

12. In struct v4l2_requestbuffers the type field was properly defined as enum v4l2_buf_type.
Buffer types changed as mentioned above. A new memory field of type enum v4l2_memory
was added to distinguish between I/O methods using buffers allocated by the driver or the
application. See Input/Output for details.

1082 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

13. In struct v4l2_buffer the type field was properly defined as enum v4l2_buf_type. Buffer
types changed as mentioned above. A field field of type enum v4l2_field was added to
indicate if a buffer contains a top or bottom field. The old field flags were removed. Since
no unadjusted system time clock was added to the kernel as planned, the timestamp field
changed back from type stamp_t, an unsigned 64 bit integer expressing the sample time
in nanoseconds, to struct timeval. With the addition of a second memory mapping method
the offset field moved into union m, and a new memory field of type enum v4l2_memory
was added to distinguish between I/O methods. See Input/Output for details.

The V4L2_BUF_REQ_CONTIG flag was used by the V4L compatibility layer, after changes to
this code it was no longer needed. The V4L2_BUF_ATTR_DEVICEMEM flag would indicate if
the buffer was indeed allocated in device memory rather than DMA-able system memory.
It was barely useful and so was removed.

14. In struct v4l2_framebuffer the base[3] array anticipating double- and triple-buffering in
off-screen video memory, however without defining a synchronization mechanism, was re-
placed by a single pointer. The V4L2_FBUF_CAP_SCALEUP and V4L2_FBUF_CAP_SCALEDOWN
flags were removed. Applications can determine this capability more accurately using the
new cropping and scaling interface. The V4L2_FBUF_CAP_CLIPPING flag was replaced by
V4L2_FBUF_CAP_LIST_CLIPPING and V4L2_FBUF_CAP_BITMAP_CLIPPING.

15. In struct v4l2_clip the x, y, width and height field moved into a c substructure of type
struct v4l2_rect. The x and y fields were renamed to left and top, i. e. offsets to a
context dependent origin.

16. In struct v4l2_window the x, y, width and height field moved into a w substructure as
above. A field field of type enum v4l2_field was added to distinguish between field and
frame (interlaced) overlay.

17. The digital zoom interface, including struct v4l2_zoomcap, struct v4l2_zoom,
V4L2_ZOOM_NONCAP and V4L2_ZOOM_WHILESTREAMING was replaced by a new cropping
and scaling interface. The previously unused struct v4l2_cropcap and struct v4l2_crop
where redefined for this purpose. See Image Cropping, Insertion and Scaling – the CROP
API for details.

18. In struct v4l2_vbi_format the SAMPLE_FORMAT field now contains a four-character-
code as used to identify video image formats and V4L2_PIX_FMT_GREY replaces the
V4L2_VBI_SF_UBYTE define. The reserved field was extended.

19. In struct v4l2_captureparm the type of the timeperframe field changed from unsigned long
to struct v4l2_fract. This allows the accurate expression of multiples of the NTSC-M frame
rate 30000 / 1001. A new field readbuffers was added to control the driver behaviour in
read I/O mode.

Similar changes were made to struct v4l2_outputparm.

20. The struct v4l2_performance and VIDIOC_G_PERF ioctl were dropped. Except when using
the read/write I/O method, which is limited anyway, this information is already available
to applications.

21. The example transformation fromRGB to YCbCr color space in the old V4L2 documentation
was inaccurate, this has been corrected in Image Formats.

3.2. Part I - Video for Linux API 1083

Linux Media Documentation

V4L2 2003-06-19

1. A new capability flag V4L2_CAP_RADIO was added for radio devices. Prior to this change
radio devices would identify solely by having exactly one tuner whose type field reads
V4L2_TUNER_RADIO.

2. An optional driver access priority mechanism was added, see Application Priority for de-
tails.

3. The audio input and output interface was found to be incomplete.

Previously the VIDIOC_G_AUDIO ioctl would enumerate the available audio inputs. An
ioctl to determine the current audio input, if more than one combines with the current
video input, did not exist. So VIDIOC_G_AUDIO was renamed to VIDIOC_G_AUDIO_OLD, this
ioctl was removed on Kernel 2.6.39. The ioctl VIDIOC_ENUMAUDIO ioctl was added to
enumerate audio inputs, while VIDIOC_G_AUDIO now reports the current audio input.

The same changes were made to VIDIOC_G_AUDOUT and VIDIOC_ENUMAUDOUT.

Until further the “videodev” module will automatically translate between the old and new
ioctls, but drivers and applications must be updated to successfully compile again.

4. The ioctl VIDIOC_OVERLAY ioctl was incorrectly definedwith write-read parameter. It was
changed to write-only, while the write-read version was renamed to VIDIOC_OVERLAY_OLD.
The old ioctl was removed on Kernel 2.6.39. Until further the “videodev” kernel module
will automatically translate to the new version, so drivers must be recompiled, but not
applications.

5. Video Overlay Interface incorrectly stated that clipping rectangles define regions where
the video can be seen. Correct is that clipping rectangles define regions where no video
shall be displayed and so the graphics surface can be seen.

6. The VIDIOC_S_PARM and VIDIOC_S_CTRL ioctls were defined with write-only parameter,
inconsistent with other ioctls modifying their argument. They were changed to write-read,
while a _OLD suffix was added to the write-only versions. The old ioctls were removed on
Kernel 2.6.39. Drivers and applications assuming a constant parameter need an update.

V4L2 2003-11-05

1. In RGB Formats the following pixel formats were incorrectly transferred from Bill Dirks’
V4L2 specification. Descriptions below refer to bytes in memory, in ascending address
order.

Symbol In this document prior to revision 0.5 Corrected
V4L2_PIX_FMT_RGB24 B, G, R R, G, B
V4L2_PIX_FMT_BGR24 R, G, B B, G, R
V4L2_PIX_FMT_RGB32 B, G, R, X R, G, B, X
V4L2_PIX_FMT_BGR32 R, G, B, X B, G, R, X

The V4L2_PIX_FMT_BGR24 example was always correct.

In Image Properties the mapping of the V4L VIDEO_PALETTE_RGB24 and
VIDEO_PALETTE_RGB32 formats to V4L2 pixel formats was accordingly corrected.

1084 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

2. Unrelated to the fixes above, drivers may still interpret some V4L2 RGB pixel formats
differently. These issues have yet to be addressed, for details see RGB Formats.

V4L2 in Linux 2.6.6, 2004-05-09

1. The ioctl VIDIOC_CROPCAP ioctl was incorrectly defined with read-only parameter.
It is now defined as write-read ioctl, while the read-only version was renamed to
VIDIOC_CROPCAP_OLD. The old ioctl was removed on Kernel 2.6.39.

V4L2 in Linux 2.6.8

1. A new field input (former reserved[0]) was added to the struct v4l2_buffer. Purpose
of this field is to alternate between video inputs (e. g. cameras) in step with the video
capturing process. This function must be enabled with the new V4L2_BUF_FLAG_INPUT
flag. The flags field is no longer read-only.

V4L2 spec erratum 2004-08-01

1. The return value of the V4L2 open() function was incorrectly documented.

2. Audio output ioctls end in -AUDOUT, not -AUDIOOUT.

3. In the Current Audio Input example the VIDIOC_G_AUDIO ioctl took the wrong argument.

4. The documentation of the ioctl VIDIOC_QBUF, VIDIOC_DQBUF and VIDIOC_DQBUF ioctls
did not mention the struct v4l2_buffer memory field. It was also missing from examples.
Also on the VIDIOC_DQBUF page the EIO error code was not documented.

V4L2 in Linux 2.6.14

1. A new sliced VBI interface was added. It is documented in Sliced VBI Data Interface and
replaces the interface first proposed in V4L2 specification 0.8.

V4L2 in Linux 2.6.15

1. The ioctl VIDIOC_LOG_STATUS ioctl was added.

2. New video standards V4L2_STD_NTSC_443, V4L2_STD_SECAM_LC, V4L2_STD_SECAM_DK (a
set of SECAM D, K and K1), and V4L2_STD_ATSC (a set of V4L2_STD_ATSC_8_VSB and
V4L2_STD_ATSC_16_VSB) were defined. Note the V4L2_STD_525_60 set now includes
V4L2_STD_NTSC_443. See also typedef v4l2_std_id.

3. The VIDIOC_G_COMP and VIDIOC_S_COMP ioctl were renamed to VIDIOC_G_MPEGCOMP
and VIDIOC_S_MPEGCOMP respectively. Their argument was replaced by a struct
v4l2_mpeg_compression pointer. (The VIDIOC_G_MPEGCOMP and VIDIOC_S_MPEGCOMP ioctls
where removed in Linux 2.6.25.)

3.2. Part I - Video for Linux API 1085

Linux Media Documentation

V4L2 spec erratum 2005-11-27

The capture example in Video Capture Example called the VIDIOC_S_CROP ioctl without check-
ing if cropping is supported. In the video standard selection example in Video Standards the
VIDIOC_S_STD call used the wrong argument type.

V4L2 spec erratum 2006-01-10

1. The V4L2_IN_ST_COLOR_KILL flag in struct v4l2_input not only indicates if the color killer
is enabled, but also if it is active. (The color killer disables color decoding when it detects
no color in the video signal to improve the image quality.)

2. VIDIOC_S_PARM is a write-read ioctl, not write-only as stated on its reference page. The
ioctl changed in 2003 as noted above.

V4L2 spec erratum 2006-02-03

1. In struct v4l2_captureparm and struct v4l2_outputparm the timeperframe field gives the
time in seconds, not microseconds.

V4L2 spec erratum 2006-02-04

1. The clips field in struct v4l2_window must point to an array of struct v4l2_clip, not a
linked list, because drivers ignore the struct v4l2_clip. next pointer.

V4L2 in Linux 2.6.17

1. New video standard macros were added: V4L2_STD_NTSC_M_KR (NTSC M South
Korea), and the sets V4L2_STD_MN, V4L2_STD_B, V4L2_STD_GH and V4L2_STD_DK.
The V4L2_STD_NTSC and V4L2_STD_SECAM sets now include V4L2_STD_NTSC_M_KR and
V4L2_STD_SECAM_LC respectively.

2. A new V4L2_TUNER_MODE_LANG1_LANG2 was defined to record both languages of a bilingual
program. The use of V4L2_TUNER_MODE_STEREO for this purpose is deprecated now. See
the VIDIOC_G_TUNER section for details.

V4L2 spec erratum 2006-09-23 (Draft 0.15)

1. In various places V4L2_BUF_TYPE_SLICED_VBI_CAPTURE and
V4L2_BUF_TYPE_SLICED_VBI_OUTPUT of the sliced VBI interface were not mentioned
along with other buffer types.

2. In VIDIOC_G_AUDIO it was clarified that the struct v4l2_audio mode field is a flags field.

3. ioctl VIDIOC_QUERYCAP did not mention the sliced VBI and radio capability flags.

4. In VIDIOC_G_FREQUENCY it was clarified that applications must initialize the tuner type
field of struct v4l2_frequency before calling VIDIOC_S_FREQUENCY.

1086 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

5. The reserved array in struct v4l2_requestbuffers has 2 elements, not 32.

6. In Video Output Interface and Raw VBI Data Interface the device file names /dev/vout
which never caught on were replaced by /dev/video.

7. With Linux 2.6.15 the possible range for VBI device minor numbers was extended from
224-239 to 224-255. Accordingly device file names /dev/vbi0 to /dev/vbi31 are possible
now.

V4L2 in Linux 2.6.18

1. New ioctls VIDIOC_G_EXT_CTRLS, VIDIOC_S_EXT_CTRLS and VIDIOC_TRY_EXT_CTRLS
were added, a flag to skip unsupported controls with ioctls VIDIOC_QUERYCTRL,
VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU, new control types
V4L2_CTRL_TYPE_INTEGER64 and V4L2_CTRL_TYPE_CTRL_CLASS (enum v4l2_ctrl_type),
and new control flags V4L2_CTRL_FLAG_READ_ONLY, V4L2_CTRL_FLAG_UPDATE,
V4L2_CTRL_FLAG_INACTIVE and V4L2_CTRL_FLAG_SLIDER (Control Flags). See Extended
Controls API for details.

V4L2 in Linux 2.6.19

1. In struct v4l2_sliced_vbi_cap a buffer type field was added replacing a reserved field. Note
on architectures where the size of enum types differs from int types the size of the structure
changed. The VIDIOC_G_SLICED_VBI_CAP ioctl was redefined from being read-only to
write-read. Applications must initialize the type field and clear the reserved fields now.
These changes may break the compatibility with older drivers and applications.

2. The ioctls ioctl VIDIOC_ENUM_FRAMESIZES and ioctl VID-
IOC_ENUM_FRAMEINTERVALS were added.

3. A new pixel format V4L2_PIX_FMT_RGB444 (RGB Formats) was added.

V4L2 spec erratum 2006-10-12 (Draft 0.17)

1. V4L2_PIX_FMT_HM12 (Reserved Image Formats) is a YUV 4:2:0, not 4:2:2 format.

V4L2 in Linux 2.6.21

1. The videodev2.h header file is now dual licensed under GNU General Public License ver-
sion two or later, and under a 3-clause BSD-style license.

3.2. Part I - Video for Linux API 1087

Linux Media Documentation

V4L2 in Linux 2.6.22

1. Two new field orders V4L2_FIELD_INTERLACED_TB and V4L2_FIELD_INTERLACED_BT were
added. See enum v4l2_field for details.

2. Three new clipping/blendingmethods with a global or straight or inverted local alpha value
were added to the video overlay interface. See the description of the VIDIOC_G_FBUF and
VIDIOC_S_FBUF ioctls for details.

A new global_alpha field was added to struct v4l2_window, extending the structure. This
may break compatibility with applications using a struct v4l2_window directly. How-
ever the VIDIOC_G/S/TRY_FMT ioctls, which take a pointer to a struct v4l2_format parent
structure with padding bytes at the end, are not affected.

3. The format of the chromakey field in struct v4l2_window changed from “host order RGB32”
to a pixel value in the same format as the framebuffer. This may break compatibility with
existing applications. Drivers supporting the “host order RGB32” format are not known.

V4L2 in Linux 2.6.24

1. The pixel formats V4L2_PIX_FMT_PAL8, V4L2_PIX_FMT_YUV444, V4L2_PIX_FMT_YUV555,
V4L2_PIX_FMT_YUV565 and V4L2_PIX_FMT_YUV32 were added.

V4L2 in Linux 2.6.25

1. The pixel formats V4L2_PIX_FMT_Y16 and V4L2_PIX_FMT_SBGGR16 were added.

2. New controls V4L2_CID_POWER_LINE_FREQUENCY, V4L2_CID_HUE_AUTO,
V4L2_CID_WHITE_BALANCE_TEMPERATURE, V4L2_CID_SHARPNESS and
V4L2_CID_BACKLIGHT_COMPENSATION were added. The controls V4L2_CID_BLACK_LEVEL,
V4L2_CID_WHITENESS, V4L2_CID_HCENTER and V4L2_CID_VCENTER were deprecated.

3. A Camera controls class was added, with the new controls V4L2_CID_EXPOSURE_AUTO,
V4L2_CID_EXPOSURE_ABSOLUTE, V4L2_CID_EXPOSURE_AUTO_PRIORITY,
V4L2_CID_PAN_RELATIVE, V4L2_CID_TILT_RELATIVE, V4L2_CID_PAN_RESET,
V4L2_CID_TILT_RESET, V4L2_CID_PAN_ABSOLUTE, V4L2_CID_TILT_ABSOLUTE,
V4L2_CID_FOCUS_ABSOLUTE, V4L2_CID_FOCUS_RELATIVE and V4L2_CID_FOCUS_AUTO.

4. The VIDIOC_G_MPEGCOMP and VIDIOC_S_MPEGCOMP ioctls, which were superseded by the
extended controls interface in Linux 2.6.18, where finally removed from the videodev2.h
header file.

V4L2 in Linux 2.6.26

1. The pixel formats V4L2_PIX_FMT_Y16 and V4L2_PIX_FMT_SBGGR16 were added.

2. Added user controls V4L2_CID_CHROMA_AGC and V4L2_CID_COLOR_KILLER.

1088 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2 in Linux 2.6.27

1. The ioctl VIDIOC_S_HW_FREQ_SEEK ioctl and the V4L2_CAP_HW_FREQ_SEEK capability
were added.

2. The pixel formats V4L2_PIX_FMT_YVYU, V4L2_PIX_FMT_PCA501, V4L2_PIX_FMT_PCA505,
V4L2_PIX_FMT_PCA508, V4L2_PIX_FMT_PCA561, V4L2_PIX_FMT_SGBRG8,
V4L2_PIX_FMT_PAC207 and V4L2_PIX_FMT_PJPG were added.

V4L2 in Linux 2.6.28

1. Added V4L2_MPEG_AUDIO_ENCODING_AAC and V4L2_MPEG_AUDIO_ENCODING_AC3 MPEG au-
dio encodings.

2. Added V4L2_MPEG_VIDEO_ENCODING_MPEG_4_AVC MPEG video encoding.

3. The pixel formats V4L2_PIX_FMT_SGRBG10 and V4L2_PIX_FMT_SGRBG10DPCM8 were added.

V4L2 in Linux 2.6.29

1. The VIDIOC_G_CHIP_IDENT ioctl was renamed to VIDIOC_G_CHIP_IDENT_OLD and
VIDIOC_DBG_G_CHIP_IDENT was introduced in its place. The old struct v4l2_chip_ident
was renamed to struct v4l2_chip_ident_old.

2. The pixel formats V4L2_PIX_FMT_VYUY, V4L2_PIX_FMT_NV16 and V4L2_PIX_FMT_NV61 were
added.

3. Added camera controls V4L2_CID_ZOOM_ABSOLUTE, V4L2_CID_ZOOM_RELATIVE,
V4L2_CID_ZOOM_CONTINUOUS and V4L2_CID_PRIVACY.

V4L2 in Linux 2.6.30

1. New control flag V4L2_CTRL_FLAG_WRITE_ONLY was added.

2. New control V4L2_CID_COLORFX was added.

V4L2 in Linux 2.6.32

1. In order to be easier to compare a V4L2 API and a kernel version, now V4L2 API is num-
bered using the Linux Kernel version numeration.

2. Finalized the RDS capture API. See RDS Interface for more information.

3. Added new capabilities for modulators and RDS encoders.

4. Add description for libv4l API.

5. Added support for string controls via new type V4L2_CTRL_TYPE_STRING.

6. Added V4L2_CID_BAND_STOP_FILTER documentation.

7. Added FMModulator (FM TX) Extended Control Class: V4L2_CTRL_CLASS_FM_TX and their
Control IDs.

3.2. Part I - Video for Linux API 1089

Linux Media Documentation

8. Added FM Receiver (FM RX) Extended Control Class: V4L2_CTRL_CLASS_FM_RX and their
Control IDs.

9. Added Remote Controller chapter, describing the default Remote Controller mapping for
media devices.

V4L2 in Linux 2.6.33

1. Added support for Digital Video timings in order to support HDTV receivers and transmit-
ters.

V4L2 in Linux 2.6.34

1. Added V4L2_CID_IRIS_ABSOLUTE and V4L2_CID_IRIS_RELATIVE controls to the Camera
controls class.

V4L2 in Linux 2.6.37

1. Remove the vtx (videotext/teletext) API. This API was no longer used and no hardware
exists to verify the API. Nor were any userspace applications found that used it. It was
originally scheduled for removal in 2.6.35.

V4L2 in Linux 2.6.39

1. The old VIDIOC_*_OLD symbols and V4L1 support were removed.

2. Multi-planar API added. Does not affect the compatibility of current drivers and applica-
tions. See multi-planar API for details.

V4L2 in Linux 3.1

1. VIDIOC_QUERYCAP now returns a per-subsystem version instead of a per-driver one.

Standardize an error code for invalid ioctl.

Added V4L2_CTRL_TYPE_BITMASK.

V4L2 in Linux 3.2

1. V4L2_CTRL_FLAG_VOLATILE was added to signal volatile controls to userspace.

2. Add selection API for extended control over cropping and composing. Does not affect the
compatibility of current drivers and applications. See selection API for details.

1090 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2 in Linux 3.3

1. Added V4L2_CID_ALPHA_COMPONENT control to the User controls class.

2. Added the device_caps field to struct v4l2_capabilities and added the new
V4L2_CAP_DEVICE_CAPS capability.

V4L2 in Linux 3.4

1. Added JPEG compression control class.

2. Extended the DV Timings API: ioctl VIDIOC_ENUM_DV_TIMINGS, VID-
IOC_SUBDEV_ENUM_DV_TIMINGS, ioctl VIDIOC_QUERY_DV_TIMINGS and ioctl
VIDIOC_DV_TIMINGS_CAP, VIDIOC_SUBDEV_DV_TIMINGS_CAP.

V4L2 in Linux 3.5

1. Added integer menus, the new type will be V4L2_CTRL_TYPE_INTEGER_MENU.

2. Added selection API for V4L2 subdev interface: ioctl VIDIOC_SUBDEV_G_SELECTION,
VIDIOC_SUBDEV_S_SELECTION and VIDIOC_SUBDEV_S_SELECTION.

3. Added V4L2_COLORFX_ANTIQUE, V4L2_COLORFX_ART_FREEZE, V4L2_COLORFX_AQUA,
V4L2_COLORFX_SILHOUETTE, V4L2_COLORFX_SOLARIZATION, V4L2_COLORFX_VIVID and
V4L2_COLORFX_ARBITRARY_CBCR menu items to the V4L2_CID_COLORFX control.

4. Added V4L2_CID_COLORFX_CBCR control.

5. Added camera controls V4L2_CID_AUTO_EXPOSURE_BIAS, V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE,
V4L2_CID_IMAGE_STABILIZATION, V4L2_CID_ISO_SENSITIVITY,
V4L2_CID_ISO_SENSITIVITY_AUTO, V4L2_CID_EXPOSURE_METERING,
V4L2_CID_SCENE_MODE, V4L2_CID_3A_LOCK, V4L2_CID_AUTO_FOCUS_START,
V4L2_CID_AUTO_FOCUS_STOP, V4L2_CID_AUTO_FOCUS_STATUS and
V4L2_CID_AUTO_FOCUS_RANGE.

V4L2 in Linux 3.6

1. Replaced input in struct v4l2_buffer by reserved2 and removed V4L2_BUF_FLAG_INPUT.

2. Added V4L2_CAP_VIDEO_M2M and V4L2_CAP_VIDEO_M2M_MPLANE capabilities.

3. Added support for frequency band enumerations: ioctl VIDIOC_ENUM_FREQ_BANDS.

3.2. Part I - Video for Linux API 1091

Linux Media Documentation

V4L2 in Linux 3.9

1. Added timestamp types to flags field in struct v4l2_buffer. See Buffer Flags.

2. Added V4L2_EVENT_CTRL_CH_RANGE control event changes flag. See Control Changes.

V4L2 in Linux 3.10

1. Removed obsolete and unused DV_PRESET ioctls VIDIOC_G_DV_PRESET, VID-
IOC_S_DV_PRESET, VIDIOC_QUERY_DV_PRESET and VIDIOC_ENUM_DV_PRESET.
Remove the related v4l2_input/output capability flags V4L2_IN_CAP_PRESETS and
V4L2_OUT_CAP_PRESETS.

2. Added new debugging ioctl ioctl VIDIOC_DBG_G_CHIP_INFO.

V4L2 in Linux 3.11

1. Remove obsolete VIDIOC_DBG_G_CHIP_IDENT ioctl.

V4L2 in Linux 3.14

1. In struct v4l2_rect, the type of width and height fields changed from _s32 to _u32.

V4L2 in Linux 3.15

1. Added Software Defined Radio (SDR) Interface.

V4L2 in Linux 3.16

1. Added event V4L2_EVENT_SOURCE_CHANGE.

V4L2 in Linux 3.17

1. Extended struct v4l2_pix_format. Added format flags.

2. Added compound control types and VIDIOC_QUERY_EXT_CTRL.

V4L2 in Linux 3.18

1. Added V4L2_CID_PAN_SPEED and V4L2_CID_TILT_SPEED camera controls.

1092 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2 in Linux 3.19

1. Rewrote Colorspace chapter, added new enum v4l2_ycbcr_encoding
and enum v4l2_quantization fields to struct v4l2_pix_format, struct
v4l2_pix_format_mplane and struct v4l2_mbus_framefmt.

V4L2 in Linux 4.4

1. Renamed V4L2_TUNER_ADC to V4L2_TUNER_SDR. The use of V4L2_TUNER_ADC is deprecated
now.

2. Added V4L2_CID_RF_TUNER_RF_GAIN RF Tuner control.

3. Added transmitter support for Software Defined Radio (SDR) Interface.

Relation of V4L2 to other Linux multimedia APIs

X Video Extension

The X Video Extension (abbreviated XVideo or just Xv) is an extension of the X Window system,
implemented for example by the XFree86 project. Its scope is similar to V4L2, an API to video
capture and output devices for X clients. Xv allows applications to display live video in a window,
send window contents to a TV output, and capture or output still images in XPixmaps1. With
their implementation XFree86 makes the extension available across many operating systems
and architectures.

Because the driver is embedded into the X server Xv has a number of advantages over the
V4L2 video overlay interface. The driver can easily determine the overlay target, i. e. visible
graphics memory or off-screen buffers for a destructive overlay. It can program the RAMDAC
for a non-destructive overlay, scaling or color-keying, or the clipping functions of the video
capture hardware, always in sync with drawing operations or windows moving or changing
their stacking order.

To combine the advantages of Xv and V4L a special Xv driver exists in XFree86 and XOrg,
just programming any overlay capable Video4Linux device it finds. To enable it /etc/X11/
XF86Config must contain these lines:

Section "Module"
Load "v4l"

EndSection

As of XFree86 4.2 this driver still supports only V4L ioctls, however it should work just fine
with all V4L2 devices through the V4L2 backward-compatibility layer. Since V4L2 permits
multiple opens it is possible (if supported by the V4L2 driver) to capture video while an X client
requested video overlay. Restrictions of simultaneous capturing and overlay are discussed in
Video Overlay Interface apply.

Only marginally related to V4L2, XFree86 extended Xv to support hardware YUV to RGB con-
version and scaling for faster video playback, and added an interface to MPEG-2 decoding
hardware. This API is useful to display images captured with V4L2 devices.

1 This is not implemented in XFree86.

3.2. Part I - Video for Linux API 1093

Linux Media Documentation

Digital Video

V4L2 does not support digital terrestrial, cable or satellite broadcast. A separate project aiming
at digital receivers exists. You can find its homepage at https://linuxtv.org. The Linux DVB API
has no connection to the V4L2 API except that drivers for hybrid hardware may support both.

Audio Interfaces

[to do - OSS/ALSA]

Experimental API Elements

The following V4L2 API elements are currently experimental and may change in the future.

• ioctl VIDIOC_DBG_G_REGISTER, VIDIOC_DBG_S_REGISTER and VID-
IOC_DBG_S_REGISTER ioctls.

• ioctl VIDIOC_DBG_G_CHIP_INFO ioctl.

Obsolete API Elements

The following V4L2 API elements were superseded by new interfaces and should not be imple-
mented in new drivers.

• VIDIOC_G_MPEGCOMP and VIDIOC_S_MPEGCOMP ioctls. Use Extended Controls, Extended
Controls API.

• VIDIOC_G_DV_PRESET, VIDIOC_S_DV_PRESET, VIDIOC_ENUM_DV_PRESETS and VID-
IOC_QUERY_DV_PRESET ioctls. Use the DV Timings API (Digital Video (DV) Timings).

• VIDIOC_SUBDEV_G_CROP and VIDIOC_SUBDEV_S_CROP ioctls. Use
VIDIOC_SUBDEV_G_SELECTION and VIDIOC_SUBDEV_S_SELECTION, ioctl VID-
IOC_SUBDEV_G_SELECTION, VIDIOC_SUBDEV_S_SELECTION.

3.2.7 Function Reference

3.2.7.1 V4L2 close()

Name

v4l2-close - Close a V4L2 device

1094 Chapter 3. Linux Media Infrastructure userspace API

https://linuxtv.org

Linux Media Documentation

Synopsis

#include <unistd.h>

int close(int fd)

Arguments

fd File descriptor returned by open().

Description

Closes the device. Any I/O in progress is terminated and resources associated with the file
descriptor are freed. However data format parameters, current input or output, control values
or other properties remain unchanged.

Return Value

The function returns 0 on success, -1 on failure and the errno is set appropriately. Possible
error codes:

EBADF fd is not a valid open file descriptor.

3.2.7.2 V4L2 ioctl()

Name

v4l2-ioctl - Program a V4L2 device

Synopsis

#include <sys/ioctl.h>

int ioctl(int fd, int request, void *argp)

Arguments

fd File descriptor returned by open().

request V4L2 ioctl request code as defined in the videodev2.h header file, for example VID-
IOC_QUERYCAP.

argp Pointer to a function parameter, usually a structure.

3.2. Part I - Video for Linux API 1095

Linux Media Documentation

Description

The ioctl() function is used to program V4L2 devices. The argument fd must be an open file
descriptor. An ioctl request has encoded in it whether the argument is an input, output or
read/write parameter, and the size of the argument argp in bytes. Macros and defines specifying
V4L2 ioctl requests are located in the videodev2.h header file. Applications should use their
own copy, not include the version in the kernel sources on the system they compile on. All V4L2
ioctl requests, their respective function and parameters are specified in Function Reference.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

When an ioctl that takes an output or read/write parameter fails, the parameter remains un-
modified.

3.2.7.3 ioctl VIDIOC_CREATE_BUFS

Name

VIDIOC_CREATE_BUFS - Create buffers for Memory Mapped or User Pointer or DMA Buffer
I/O

Synopsis

VIDIOC_CREATE_BUFS

int ioctl(int fd, VIDIOC_CREATE_BUFS, struct v4l2_create_buffers *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_create_buffers.

Description

This ioctl is used to create buffers for memory mapped or user pointer or DMA buffer I/O. It
can be used as an alternative or in addition to the ioctl VIDIOC_REQBUFS ioctl, when a tighter
control over buffers is required. This ioctl can be called multiple times to create buffers of
different sizes.

To allocate the device buffers applications must initialize the relevant fields of the struct
v4l2_create_buffers structure. The count field must be set to the number of requested
buffers, the memory field specifies the requested I/O method and the reserved array must be
zeroed.

1096 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

The format field specifies the image format that the buffers must be able to handle. The applica-
tion has to fill in this struct v4l2_format. Usually this will be done using the VIDIOC_TRY_FMT
or VIDIOC_G_FMT ioctls to ensure that the requested format is supported by the driver. Based
on the format’s type field the requested buffer size (for single-planar) or plane sizes (for multi-
planar formats) will be used for the allocated buffers. The driver may return an error if the
size(s) are not supported by the hardware (usually because they are too small).

The buffers created by this ioctl will have as minimum size the size defined by the format.pix.
sizeimage field (or the corresponding fields for other format types). Usually if the format.
pix.sizeimage field is less than the minimum required for the given format, then an error will
be returned since drivers will typically not allow this. If it is larger, then the value will be used
as-is. In other words, the driver may reject the requested size, but if it is accepted the driver
will use it unchanged.

When the ioctl is called with a pointer to this structure the driver will attempt to allocate up to
the requested number of buffers and store the actual number allocated and the starting index
in the count and the index fields respectively. On return count can be smaller than the number
requested.

v4l2_create_buffers

3.2. Part I - Video for Linux API 1097

Linux Media Documentation

Table 131: struct v4l2_create_buffers
__u32 index The starting buffer index, returned by the

driver.
__u32 count The number of buffers requested or

granted. If count == 0, then ioctl VID-
IOC_CREATE_BUFS will set index to the
current number of created buffers, and
it will check the validity of memory and
format.type. If those are invalid -1 is re-
turned and errno is set to EINVAL error code,
otherwise ioctl VIDIOC_CREATE_BUFS re-
turns 0. It will never set errno to EBUSY
error code in this particular case.

__u32 memory Applications set this field to
V4L2_MEMORY_MMAP, V4L2_MEMORY_DMABUF
or V4L2_MEMORY_USERPTR. See v4l2_memory

struct v4l2_format format Filled in by the application, preserved by
the driver.

__u32 capabilities Set by the driver. If 0, then the driver
doesn’t support capabilities. In that case all
you know is that the driver is guaranteed to
support V4L2_MEMORY_MMAP and might sup-
port other v4l2_memory types. It will not
support any other capabilities. See here for
a list of the capabilities.
If you want to just query the capabilities
without making any other changes, then set
count to 0, memory to V4L2_MEMORY_MMAP
and format.type to the buffer type.

__u32 flags Specifies additional buffer management at-
tributes. See Memory Consistency Flags.

__u32 reserved[6] A place holder for future extensions.
Drivers and applications must set the array
to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

ENOMEM No memory to allocate buffers for memory mapped I/O.

EINVAL The buffer type (format.type field), requested I/O method (memory) or format (format
field) is not valid.

1098 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

3.2.7.4 ioctl VIDIOC_CROPCAP

Name

VIDIOC_CROPCAP - Information about the video cropping and scaling abilities

Synopsis

VIDIOC_CROPCAP

int ioctl(int fd, VIDIOC_CROPCAP, struct v4l2_cropcap *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_cropcap.

Description

Applications use this function to query the cropping limits, the pixel aspect of images and to
calculate scale factors. They set the type field of a v4l2_cropcap structure to the respective
buffer (stream) type and call the ioctl VIDIOC_CROPCAP ioctl with a pointer to this structure.
Drivers fill the rest of the structure. The results are constant except when switching the video
standard. Remember this switch can occur implicit when switching the video input or output.

This ioctl must be implemented for video capture or output devices that support cropping and/or
scaling and/or have non-square pixels, and for overlay devices.

v4l2_cropcap

3.2. Part I - Video for Linux API 1099

Linux Media Documentation

Table 132: struct v4l2_cropcap
__u32 type Type of the data stream, set by the ap-

plication. Only these types are valid
here: V4L2_BUF_TYPE_VIDEO_CAPTURE,
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE,
V4L2_BUF_TYPE_VIDEO_OUTPUT,
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
and V4L2_BUF_TYPE_VIDEO_OVERLAY. See
v4l2_buf_type and the note below.

struct v4l2_rect bounds Defines the window within capturing or out-
put is possible, this may exclude for exam-
ple the horizontal and vertical blanking ar-
eas. The cropping rectangle cannot exceed
these limits. Width and height are defined
in pixels, the driver writer is free to choose
origin and units of the coordinate system in
the analog domain.

struct v4l2_rect defrect Default cropping rectangle, it shall cover
the “whole picture”. Assuming pixel aspect
1/1 this could be for example a 640 × 480
rectangle for NTSC, a 768 × 576 rectangle
for PAL and SECAM centered over the ac-
tive picture area. The same co-ordinate sys-
tem as for bounds is used.

struct v4l2_fract pixelaspect This is the pixel aspect (y / x) when no scal-
ing is applied, the ratio of the actual sam-
pling frequency and the frequency required
to get square pixels.
When cropping coordinates refer to square
pixels, the driver sets pixelaspect to 1/1.
Other common values are 54/59 for PAL and
SECAM, 11/10 for NTSC sampled according
to [ITU BT.601].

Note: Unfortunately in the case of multiplanar buffer types
(V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE and V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) this
API was messed up with regards to how the v4l2_cropcap type field should be filled in.
Some drivers only accepted the _MPLANE buffer type while other drivers only accepted a
non-multiplanar buffer type (i.e. without the _MPLANE at the end).

Starting with kernel 4.13 both variations are allowed.

1100 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 133: struct v4l2_rect
__s32 left Horizontal offset of the top, left corner of

the rectangle, in pixels.
__s32 top Vertical offset of the top, left corner of the

rectangle, in pixels.
__u32 width Width of the rectangle, in pixels.
__u32 height Height of the rectangle, in pixels.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_cropcap type is invalid.

ENODATA Cropping is not supported for this input or output.

3.2.7.5 ioctl VIDIOC_DBG_G_CHIP_INFO

Name

VIDIOC_DBG_G_CHIP_INFO - Identify the chips on a TV card

Synopsis

VIDIOC_DBG_G_CHIP_INFO

int ioctl(int fd, VIDIOC_DBG_G_CHIP_INFO, struct v4l2_dbg_chip_info *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_dbg_chip_info.

Description

Note: This is an Experimental API Elements interface and may change in the future.

For driver debugging purposes this ioctl allows test applications to query the driver about the
chips present on the TV card. Regular applications must not use it. When you found a chip
specific bug, please contact the linux-media mailing list (https://linuxtv.org/lists.php) so it can
be fixed.

Additionally the Linux kernel must be compiled with the CONFIG_VIDEO_ADV_DEBUG option to
enable this ioctl.

3.2. Part I - Video for Linux API 1101

https://linuxtv.org/lists.php

Linux Media Documentation

To query the driver applications must initialize the match.type and match.addr or match.name
fields of a struct v4l2_dbg_chip_info and call ioctl VIDIOC_DBG_G_CHIP_INFO with a pointer
to this structure. On success the driver stores information about the selected chip in the name
and flags fields.

When match.type is V4L2_CHIP_MATCH_BRIDGE, match.addr selects the nth bridge ‘chip’ on
the TV card. You can enumerate all chips by starting at zero and incrementing match.addr by
one until ioctl VIDIOC_DBG_G_CHIP_INFO fails with an EINVAL error code. The number zero
always selects the bridge chip itself, e. g. the chip connected to the PCI or USB bus. Non-zero
numbers identify specific parts of the bridge chip such as an AC97 register block.

When match.type is V4L2_CHIP_MATCH_SUBDEV, match.addr selects the nth sub-device. This
allows you to enumerate over all sub-devices.

On success, the name field will contain a chip name and the flags field will con-
tain V4L2_CHIP_FL_READABLE if the driver supports reading registers from the device or
V4L2_CHIP_FL_WRITABLE if the driver supports writing registers to the device.

We recommended the v4l2-dbg utility over calling this ioctl directly. It is available from the
LinuxTV v4l-dvb repository; see https://linuxtv.org/repo/ for access instructions.

Table 134: struct v4l2_dbg_match
__u32 type See Chip Match

Types for a list of
possible types.

union { (anonymous)
__u32 addr Match a chip by

this number, in-
terpreted accord-
ing to the type
field.

char name[32] Match a chip by
this name, inter-
preted according
to the type field.
Currently un-
used.

}

v4l2_dbg_chip_info

Table 135: struct v4l2_dbg_chip_info
struct
v4l2_dbg_match

match How to match the chip, see struct
v4l2_dbg_match.

char name[32] The name of the chip.
__u32 flags Set by the driver. If

V4L2_CHIP_FL_READABLE is set, then the
driver supports reading registers from the
device. If V4L2_CHIP_FL_WRITABLE is set,
then it supports writing registers.

__u32 reserved[8] Reserved fields, both application and driver
must set these to 0.

1102 Chapter 3. Linux Media Infrastructure userspace API

https://linuxtv.org/repo/

Linux Media Documentation

Table 136: Chip Match Types
V4L2_CHIP_MATCH_BRIDGE 0 Match the nth chip on the card, zero for the

bridge chip. Does not match sub-devices.
V4L2_CHIP_MATCH_SUBDEV 4 Match the nth sub-device.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The match_type is invalid or no device could be matched.

3.2.7.6 ioctl VIDIOC_DBG_G_REGISTER, VIDIOC_DBG_S_REGISTER

Name

VIDIOC_DBG_G_REGISTER - VIDIOC_DBG_S_REGISTER - Read or write hardware registers

Synopsis

VIDIOC_DBG_G_REGISTER

int ioctl(int fd, VIDIOC_DBG_G_REGISTER, struct v4l2_dbg_register *argp)

VIDIOC_DBG_S_REGISTER

int ioctl(int fd, VIDIOC_DBG_S_REGISTER, const struct v4l2_dbg_register *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_dbg_register.

Description

Note: This is an Experimental API Elements interface and may change in the future.

For driver debugging purposes these ioctls allow test applications to access hardware registers
directly. Regular applications must not use them.

Since writing or even reading registers can jeopardize the system security, its stability and
damage the hardware, both ioctls require superuser privileges. Additionally the Linux kernel
must be compiled with the CONFIG_VIDEO_ADV_DEBUG option to enable these ioctls.

To write a register applications must initialize all fields of a struct v4l2_dbg_register except
for size and call VIDIOC_DBG_S_REGISTER with a pointer to this structure. The match.type and

3.2. Part I - Video for Linux API 1103

Linux Media Documentation

match.addr or match.name fields select a chip on the TV card, the reg field specifies a register
number and the val field the value to be written into the register.

To read a register applications must initialize the match.type, match.addr or match.name and
reg fields, and call VIDIOC_DBG_G_REGISTER with a pointer to this structure. On success the
driver stores the register value in the val field and the size (in bytes) of the value in size.

When match.type is V4L2_CHIP_MATCH_BRIDGE, match.addr selects the nth non-sub-device
chip on the TV card. The number zero always selects the host chip, e. g. the chip con-
nected to the PCI or USB bus. You can find out which chips are present with the ioctl VID-
IOC_DBG_G_CHIP_INFO ioctl.

When match.type is V4L2_CHIP_MATCH_SUBDEV, match.addr selects the nth sub-device.

These ioctls are optional, not all drivers may support them. However when a driver supports
these ioctls it must also support ioctl VIDIOC_DBG_G_CHIP_INFO. Conversely it may support
VIDIOC_DBG_G_CHIP_INFO but not these ioctls.

VIDIOC_DBG_G_REGISTER and VIDIOC_DBG_S_REGISTER were introduced in Linux 2.6.21, but
their API was changed to the one described here in kernel 2.6.29.

We recommended the v4l2-dbg utility over calling these ioctls directly. It is available from the
LinuxTV v4l-dvb repository; see https://linuxtv.org/repo/ for access instructions.

v4l2_dbg_match

Table 137: struct v4l2_dbg_match
__u32 type See Chip Match

Types for a list of
possible types.

union { (anonymous)
__u32 addr Match a chip by

this number, in-
terpreted accord-
ing to the type
field.

char name[32] Match a chip by
this name, inter-
preted according
to the type field.
Currently un-
used.

}

v4l2_dbg_register

Table 138: struct v4l2_dbg_register
struct v4l2_dbg_match match How to match the chip, see v4l2_dbg_match.
__u32 size The register size in bytes.
__u64 reg A register number.
__u64 val The value read from, or to be written into the register.

1104 Chapter 3. Linux Media Infrastructure userspace API

https://linuxtv.org/repo/

Linux Media Documentation

Table 139: Chip Match Types
V4L2_CHIP_MATCH_BRIDGE 0 Match the nth chip on the card, zero for the

bridge chip. Does not match sub-devices.
V4L2_CHIP_MATCH_SUBDEV 4 Match the nth sub-device.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EPERM Insufficient permissions. Root privileges are required to execute these ioctls.

3.2.7.7 ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD

Name

VIDIOC_DECODER_CMD - VIDIOC_TRY_DECODER_CMD - Execute an decoder command

Synopsis

VIDIOC_DECODER_CMD

int ioctl(int fd, VIDIOC_DECODER_CMD, struct v4l2_decoder_cmd *argp)

VIDIOC_TRY_DECODER_CMD

int ioctl(int fd, VIDIOC_TRY_DECODER_CMD, struct v4l2_decoder_cmd *argp)

Arguments

fd File descriptor returned by open().

argp pointer to struct v4l2_decoder_cmd.

Description

These ioctls control an audio/video (usually MPEG-) decoder. VIDIOC_DECODER_CMD sends a
command to the decoder, VIDIOC_TRY_DECODER_CMD can be used to try a command without
actually executing it. To send a command applications must initialize all fields of a struct
v4l2_decoder_cmd and call VIDIOC_DECODER_CMD or VIDIOC_TRY_DECODER_CMD with a pointer
to this structure.

The cmd field must contain the command code. Some commands use the flags field for addi-
tional information.

A write() or ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF call sends an implicit START
command to the decoder if it has not been started yet. Applies to both queues of mem2mem
decoders.

3.2. Part I - Video for Linux API 1105

Linux Media Documentation

A close() or VIDIOC_STREAMOFF call of a streaming file descriptor sends an implicit imme-
diate STOP command to the decoder, and all buffered data is discarded. Applies to both queues
of mem2mem decoders.

In principle, these ioctls are optional, not all drivers may support them. They were introduced
in Linux 3.3. They are, however, mandatory for stateful mem2mem decoders (as further docu-
mented in Memory-to-Memory Stateful Video Decoder Interface).

v4l2_decoder_cmd

Table 140: struct v4l2_decoder_cmd
__u32 cmd The decoder command, see Decoder Commands.
__u32 flags Flags to go with the command. If no flags are defined for this

command, drivers and applications must set this field to zero.
union { (anonymous)
struct start Structure containing additional data for the

V4L2_DEC_CMD_START command.
__s32 speed Playback speed and direction. The playback speed is defined

as speed/1000 of the normal speed. So 1000 is normal play-
back. Negative numbers denote reverse playback, so -1000
does reverse playback at normal speed. Speeds -1, 0 and 1
have special meanings: speed 0 is shorthand for 1000 (nor-
mal playback). A speed of 1 steps just one frame forward, a
speed of -1 steps just one frame back.

__u32 format Format restrictions. This field is set by the driver, not the ap-
plication. Possible values are V4L2_DEC_START_FMT_NONE if
there are no format restrictions or V4L2_DEC_START_FMT_GOP
if the decoder operates on full GOPs (GroupOf Pictures). This
is usually the case for reverse playback: the decoder needs
full GOPs, which it can then play in reverse order. So to im-
plement reverse playback the application must feed the de-
coder the last GOP in the video file, then the GOP before that,
etc. etc.

struct stop Structure containing additional data for the
V4L2_DEC_CMD_STOP command.

__u64 pts Stop playback at this pts or immediately if the playback is
already past that timestamp. Leave to 0 if you want to stop
after the last frame was decoded.

struct raw
__u32 data[16] Reserved for future extensions. Drivers and applications

must set the array to zero.
}

1106 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 141: Decoder Commands
V4L2_DEC_CMD_START 0 Start the decoder. When the decoder is already

running or paused, this command will just change
the playback speed. That means that calling
V4L2_DEC_CMD_START when the decoder was paused
will not resume the decoder. You have to explicitly
call V4L2_DEC_CMD_RESUME for that. This command has
one flag: V4L2_DEC_CMD_START_MUTE_AUDIO. If set, then
audio will be muted when playing back at a non-standard
speed.
For a device implementing theMemory-to-Memory State-
ful Video Decoder Interface, once the drain sequence is
initiated with the V4L2_DEC_CMD_STOP command, it must
be driven to completion before this command can be in-
voked. Any attempt to invoke the command while the
drain sequence is in progress will trigger an EBUSY error
code. The command may be also used to restart the de-
coder in case of an implicit stop initiated by the decoder
itself, without the V4L2_DEC_CMD_STOP being called ex-
plicitly. See Memory-to-Memory Stateful Video Decoder
Interface for more details.

V4L2_DEC_CMD_STOP 1 Stop the decoder. When the decoder is already stopped,
this command does nothing. This command has two
flags: if V4L2_DEC_CMD_STOP_TO_BLACK is set, then the
decoder will set the picture to black after it stopped
decoding. Otherwise the last image will repeat. If
V4L2_DEC_CMD_STOP_IMMEDIATELY is set, then the de-
coder stops immediately (ignoring the pts value), other-
wise it will keep decoding until timestamp >= pts or until
the last of the pending data from its internal buffers was
decoded.
For a device implementing theMemory-to-Memory State-
ful Video Decoder Interface, the command will initiate
the drain sequence as documented inMemory-to-Memory
Stateful Video Decoder Interface. No flags or other argu-
ments are accepted in this case. Any attempt to invoke
the command again before the sequence completes will
trigger an EBUSY error code.

V4L2_DEC_CMD_PAUSE 2 Pause the decoder. When the decoder has not been
started yet, the driver will return an EPERM error
code. When the decoder is already paused, this com-
mand does nothing. This command has one flag: if
V4L2_DEC_CMD_PAUSE_TO_BLACK is set, then set the de-
coder output to black when paused.

V4L2_DEC_CMD_RESUME 3 Resume decoding after a PAUSE command. When the
decoder has not been started yet, the driver will return an
EPERM error code. When the decoder is already running,
this command does nothing. No flags are defined for this
command.

Continued on next page

3.2. Part I - Video for Linux API 1107

Linux Media Documentation

Table 141 – continued from previous page
V4L2_DEC_CMD_FLUSH 4 Flush any held capture buffers. Only valid for stateless

decoders. This command is typically used when the appli-
cation reached the end of the stream and the last output
buffer had the V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF
flag set. This would prevent dequeueing the capture
buffer containing the last decoded frame. So this com-
mand can be used to explicitly flush that final decoded
frame. This command does nothing if there are no held
capture buffers.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EBUSY A drain sequence of a device implementing theMemory-to-Memory Stateful Video De-
coder Interface is still in progress. It is not allowed to issue another decoder command
until it completes.

EINVAL The cmd field is invalid.
EPERM The application sent a PAUSE or RESUME command when the decoder was not run-

ning.

3.2.7.8 ioctl VIDIOC_DQEVENT

Name

VIDIOC_DQEVENT - Dequeue event

Synopsis

VIDIOC_DQEVENT

int ioctl(int fd, VIDIOC_DQEVENT, struct v4l2_event *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_event.

1108 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Description

Dequeue an event from a video device. No input is required for this ioctl. All the fields of the
struct v4l2_event structure are filled by the driver. The file handle will also receive exceptions
which the application may get by e.g. using the select system call.

v4l2_event

Table 142: struct v4l2_event
__u32 type Type of the event, see Event Types.
union { u
struct
v4l2_event_vsync

vsync Event data for event V4L2_EVENT_VSYNC.

struct
v4l2_event_ctrl

ctrl Event data for event V4L2_EVENT_CTRL.

struct
v4l2_event_frame_sync

frame_sync Event data for event V4L2_EVENT_FRAME_SYNC.

struct
v4l2_event_motion_det

motion_det Event data for event V4L2_EVENT_MOTION_DET.

struct
v4l2_event_src_change

src_change Event data for event V4L2_EVENT_SOURCE_CHANGE.

__u8 data[64] Event data. Defined by the event type. The union should
be used to define easily accessible type for events.

}
__u32 pending Number of pending events excluding this one.
__u32 sequence Event sequence number. The sequence number is in-

cremented for every subscribed event that takes place.
If sequence numbers are not contiguous it means that
events have been lost.

struct timespec timestamp Event timestamp. The timestamp has been taken from
the CLOCK_MONOTONIC clock. To access the same clock
outside V4L2, use clock_gettime().

u32 id The ID associated with the event source. If the event
does not have an associated ID (this depends on the
event type), then this is 0.

__u32 reserved[8] Reserved for future extensions. Drivers must set the ar-
ray to zero.

Table 143: Event Types
V4L2_EVENT_ALL 0 All events. V4L2_EVENT_ALL is valid only

for VIDIOC_UNSUBSCRIBE_EVENT for un-
subscribing all events at once.

V4L2_EVENT_VSYNC 1 This event is triggered on the vertical sync.
This event has a struct v4l2_event_vsync
associated with it.

Continued on next page

3.2. Part I - Video for Linux API 1109

Linux Media Documentation

Table 143 – continued from previous page
V4L2_EVENT_EOS 2 This event is triggered when the end of a

stream is reached. This is typically used
with MPEG decoders to report to the appli-
cation when the last of the MPEG stream
has been decoded.

V4L2_EVENT_CTRL 3 This event requires that the id matches
the control ID from which you want to re-
ceive events. This event is triggered if the
control’s value changes, if a button control
is pressed or if the control’s flags change.
This event has a struct v4l2_event_ctrl
associated with it. This struct contains
much of the same information as struct
v4l2_queryctrl and struct v4l2_control.
If the event is generated due to a call to
VIDIOC_S_CTRL or VIDIOC_S_EXT_CTRLS,
then the event will not be sent to the
file handle that called the ioctl function.
This prevents nasty feedback loops. If you
do want to get the event, then set the
V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag.
This event type will ensure that no infor-
mation is lost when more events are raised
than there is room internally. In that case
the struct v4l2_event_ctrl of the second-
oldest event is kept, but the changes field
of the second-oldest event is ORed with the
changes field of the oldest event.

V4L2_EVENT_FRAME_SYNC 4 Triggered immediately when the reception
of a frame has begun. This event has a
struct v4l2_event_frame_sync associated
with it.
If the hardware needs to be stopped in
the case of a buffer underrun it might not
be able to generate this event. In such
cases the frame_sequence field in struct
v4l2_event_frame_sync will not be incre-
mented. This causes two consecutive frame
sequence numbers to have n times frame in-
terval in between them.

Continued on next page

1110 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 143 – continued from previous page
V4L2_EVENT_SOURCE_CHANGE 5 This event is triggered when a source pa-

rameter change is detected during runtime
by the video device. It can be a runtime res-
olution change triggered by a video decoder
or the format change happening on an input
connector. This event requires that the id
matches the input index (when used with a
video device node) or the pad index (when
used with a subdevice node) from which you
want to receive events.
This event has a struct
v4l2_event_src_change associated with
it. The changes bitfield denotes what has
changed for the subscribed pad. If multiple
events occurred before application could
dequeue them, then the changes will have
the ORed value of all the events generated.

V4L2_EVENT_MOTION_DET 6 Triggered whenever the motion detec-
tion state for one or more of the re-
gions changes. This event has a struct
v4l2_event_motion_det associated with it.

V4L2_EVENT_PRIVATE_START 0x08000000 Base event number for driver-private
events.

v4l2_event_vsync

Table 144: struct v4l2_event_vsync
__u8 field The upcoming field. See enum v4l2_field.

v4l2_event_ctrl

Table 145: struct v4l2_event_ctrl
__u32 changes A bitmask that tells what has changed. See Control

Changes.
__u32 type The type of the control. See enum v4l2_ctrl_type.
union { (anonymous)
__s32 value The 32-bit value of the control for 32-bit control types.

This is 0 for string controls since the value of a string
cannot be passed using ioctl VIDIOC_DQEVENT.

__s64 value64 The 64-bit value of the control for 64-bit control types.
}
__u32 flags The control flags. See Control Flags.
__s32 minimum The minimum value of the control. See struct

v4l2_queryctrl.
__s32 maximum The maximum value of the control. See struct

v4l2_queryctrl.
__s32 step The step value of the control. See struct v4l2_queryctrl.
__s32 default_value The default value of the control. See struct

v4l2_queryctrl.

3.2. Part I - Video for Linux API 1111

Linux Media Documentation

v4l2_event_frame_sync

Table 146: struct v4l2_event_frame_sync
__u32 frame_sequence The sequence number of the frame being re-

ceived.

v4l2_event_src_change

Table 147: struct v4l2_event_src_change
__u32 changes A bitmask that tells what has changed. See

Source Changes.

v4l2_event_motion_det

Table 148: struct v4l2_event_motion_det
__u32 flags Currently only one flag is available: if

V4L2_EVENT_MD_FL_HAVE_FRAME_SEQ is set,
then the frame_sequence field is valid, oth-
erwise that field should be ignored.

__u32 frame_sequence The sequence number of the frame
being received. Only valid if the
V4L2_EVENT_MD_FL_HAVE_FRAME_SEQ flag
was set.

__u32 region_mask The bitmask of the regions that re-
ported motion. There is at least one
region. If this field is 0, then no mo-
tion was detected at all. If there is no
V4L2_CID_DETECT_MD_REGION_GRID control
(see Detect Control Reference) to assign a
different region to each cell in the motion
detection grid, then that all cells are au-
tomatically assigned to the default region
0.

Table 149: Control Changes
V4L2_EVENT_CTRL_CH_VALUE 0x0001 This control event was triggered be-

cause the value of the control changed.
Special cases: Volatile controls do no
generate this event; If a control has the
V4L2_CTRL_FLAG_EXECUTE_ON_WRITE flag
set, then this event is sent as well, regard-
less its value.

V4L2_EVENT_CTRL_CH_FLAGS 0x0002 This control event was triggered because
the control flags changed.

V4L2_EVENT_CTRL_CH_RANGE 0x0004 This control event was triggered because
the minimum, maximum, step or the default
value of the control changed.

1112 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 150: Source Changes
V4L2_EVENT_SRC_CH_RESOLUTION 0x0001 This event gets triggered when a resolu-

tion change is detected at an input. This
can come from an input connector or from
a video decoder. Applications will have to
query the new resolution (if any, the signal
may also have been lost).
For stateful decoders follow the guide-
lines in Memory-to-Memory Stateful Video
Decoder Interface. Video Capture de-
vices have to query the new timings using
ioctl VIDIOC_QUERY_DV_TIMINGS or VID-
IOC_QUERYSTD.
Important: even if the new video timings
appear identical to the old ones, receiving
this event indicates that there was an issue
with the video signal and you must stop and
restart streaming (VIDIOC_STREAMOFF
followed by VIDIOC_STREAMON). The rea-
son is that many Video Capture devices are
not able to recover from a temporary loss
of signal and so restarting streaming I/O is
required in order for the hardware to syn-
chronize to the video signal.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

3.2.7.9 ioctl VIDIOC_DV_TIMINGS_CAP, VIDIOC_SUBDEV_DV_TIMINGS_CAP

Name

VIDIOC_DV_TIMINGS_CAP - VIDIOC_SUBDEV_DV_TIMINGS_CAP - The capabilities of the Dig-
ital Video receiver/transmitter

Synopsis

VIDIOC_DV_TIMINGS_CAP

int ioctl(int fd, VIDIOC_DV_TIMINGS_CAP, struct v4l2_dv_timings_cap *argp)

VIDIOC_SUBDEV_DV_TIMINGS_CAP

int ioctl(int fd, VIDIOC_SUBDEV_DV_TIMINGS_CAP, struct v4l2_dv_timings_cap
*argp)

3.2. Part I - Video for Linux API 1113

Linux Media Documentation

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_dv_timings_cap.

Description

To query the capabilities of the DV receiver/transmitter applications initialize the pad field to 0,
zero the reserved array of struct v4l2_dv_timings_cap and call the VIDIOC_DV_TIMINGS_CAP
ioctl on a video node and the driver will fill in the structure.

Note: Drivers may return different values after switching the video input or output.

When implemented by the driver DV capabilities of subdevices can be queried by calling the
VIDIOC_SUBDEV_DV_TIMINGS_CAP ioctl directly on a subdevice node. The capabilities are spe-
cific to inputs (for DV receivers) or outputs (for DV transmitters), applications must specify the
desired pad number in the struct v4l2_dv_timings_cap pad field and zero the reserved array.
Attempts to query capabilities on a pad that doesn’t support them will return an EINVAL error
code.

v4l2_bt_timings_cap

Table 151: struct v4l2_bt_timings_cap
__u32 min_width Minimum width of the active video in pixels.
__u32 max_width Maximum width of the active video in pixels.
__u32 min_height Minimum height of the active video in lines.
__u32 max_height Maximum height of the active video in lines.
__u64 min_pixelclockMinimum pixelclock frequency in Hz.
__u64 max_pixelclockMaximum pixelclock frequency in Hz.
__u32 standards The video standard(s) supported by the hardware. See DV BT Tim-

ing standards for a list of standards.
__u32 capabilities Several flags giving more information about the capabilities. See

DV BT Timing capabilities for a description of the flags.
__u32 reserved[16] Reserved for future extensions. Drivers must set the array to zero.

v4l2_dv_timings_cap

1114 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 152: struct v4l2_dv_timings_cap
__u32 type Type of DV timings as listed in DV Timing types.
__u32 pad Pad number as reported by the media controller

API. This field is only used when operating on
a subdevice node. When operating on a video
node applications must set this field to zero.

__u32 reserved[2] Reserved for future extensions.
Drivers and applications must set the array to
zero.

union { (anonymous)
struct
v4l2_bt_timings_cap

bt BT.656/1120 timings capabilities of the hard-
ware.

__u32 raw_data[32]
}

Table 153: DV BT Timing capabilities
Flag Description

V4L2_DV_BT_CAP_INTERLACED Interlaced formats are supported.
V4L2_DV_BT_CAP_PROGRESSIVE Progressive formats are supported.
V4L2_DV_BT_CAP_REDUCED_BLANKING CVT/GTF specific: the timings can make use of re-

duced blanking (CVT) or the ‘Secondary GTF’ curve
(GTF).

V4L2_DV_BT_CAP_CUSTOM Can support non-standard timings, i.e. timings not
belonging to the standards set in the standards field.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

3.2.7.10 ioctl VIDIOC_ENCODER_CMD, VIDIOC_TRY_ENCODER_CMD

Name

VIDIOC_ENCODER_CMD - VIDIOC_TRY_ENCODER_CMD - Execute an encoder command

3.2. Part I - Video for Linux API 1115

Linux Media Documentation

Synopsis

VIDIOC_ENCODER_CMD

int ioctl(int fd, VIDIOC_ENCODER_CMD, struct v4l2_encoder_cmd *argp)

VIDIOC_TRY_ENCODER_CMD

int ioctl(int fd, VIDIOC_TRY_ENCODER_CMD, struct v4l2_encoder_cmd *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_encoder_cmd.

Description

These ioctls control an audio/video (usually MPEG-) encoder. VIDIOC_ENCODER_CMD sends a
command to the encoder, VIDIOC_TRY_ENCODER_CMD can be used to try a command without
actually executing it.

To send a command applications must initialize all fields of a struct v4l2_encoder_cmd and call
VIDIOC_ENCODER_CMD or VIDIOC_TRY_ENCODER_CMD with a pointer to this structure.

The cmd field must contain the command code. Some commands use the flags field for addi-
tional information.

After a STOP command, read() calls will read the remaining data buffered by the driver. When
the buffer is empty, read() will return zero and the next read() call will restart the encoder.

A read() or VIDIOC_STREAMON call sends an implicit START command to the encoder if it
has not been started yet. Applies to both queues of mem2mem encoders.

A close() or VIDIOC_STREAMOFF call of a streaming file descriptor sends an implicit im-
mediate STOP to the encoder, and all buffered data is discarded. Applies to both queues of
mem2mem encoders.

These ioctls are optional, not all drivers may support them. They were introduced in Linux
2.6.21. They are, however, mandatory for stateful mem2mem encoders (as further documented
in Memory-to-Memory Stateful Video Encoder Interface).

v4l2_encoder_cmd

Table 154: struct v4l2_encoder_cmd
__u32 cmd The encoder command, see Encoder Com-

mands.
__u32 flags Flags to go with the command, see Encoder

Command Flags. If no flags are defined
for this command, drivers and applications
must set this field to zero.

__u32 data[8] Reserved for future extensions. Drivers and
applications must set the array to zero.

1116 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 155: Encoder Commands
V4L2_ENC_CMD_START 0 Start the encoder. When the encoder is

already running or paused, this command
does nothing. No flags are defined for this
command.
For a device implementing the Memory-to-
Memory Stateful Video Encoder Interface,
once the drain sequence is initiated with
the V4L2_ENC_CMD_STOP command, it must
be driven to completion before this com-
mand can be invoked. Any attempt to invoke
the command while the drain sequence is in
progress will trigger an EBUSY error code.
See Memory-to-Memory Stateful Video En-
coder Interface for more details.

V4L2_ENC_CMD_STOP 1 Stop the encoder. When the
V4L2_ENC_CMD_STOP_AT_GOP_END flag is
set, encoding will continue until the end of
the current Group Of Pictures, otherwise
encoding will stop immediately. When the
encoder is already stopped, this command
does nothing.
For a device implementing the Memory-
to-Memory Stateful Video Encoder Inter-
face, the command will initiate the drain
sequence as documented in Memory-to-
Memory Stateful Video Encoder Interface.
No flags or other arguments are accepted
in this case. Any attempt to invoke the com-
mand again before the sequence completes
will trigger an EBUSY error code.

V4L2_ENC_CMD_PAUSE 2 Pause the encoder. When the encoder has
not been started yet, the driver will return
an EPERM error code. When the encoder is
already paused, this command does noth-
ing. No flags are defined for this command.

V4L2_ENC_CMD_RESUME 3 Resume encoding after a PAUSE command.
When the encoder has not been started yet,
the driver will return an EPERM error code.
When the encoder is already running, this
command does nothing. No flags are de-
fined for this command.

Table 156: Encoder Command Flags
V4L2_ENC_CMD_STOP_AT_GOP_END 0x0001 Stop encoding at the end of the current

Group Of Pictures, rather than immediately.
Does not apply to Memory-to-Memory
Stateful Video Encoder Interface.

3.2. Part I - Video for Linux API 1117

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EBUSY A drain sequence of a device implementing theMemory-to-Memory Stateful Video En-
coder Interface is still in progress. It is not allowed to issue another encoder command
until it completes.

EINVAL The cmd field is invalid.
EPERM The application sent a PAUSE or RESUME command when the encoder was not run-

ning.

3.2.7.11 ioctl VIDIOC_ENUMAUDIO

Name

VIDIOC_ENUMAUDIO - Enumerate audio inputs

Synopsis

VIDIOC_ENUMAUDIO

int ioctl(int fd, VIDIOC_ENUMAUDIO, struct v4l2_audio *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_audio.

Description

To query the attributes of an audio input applications initialize the index field and zero out
the reserved array of a struct v4l2_audio and call the ioctl VIDIOC_ENUMAUDIO ioctl with a
pointer to this structure. Drivers fill the rest of the structure or return an EINVAL error code
when the index is out of bounds. To enumerate all audio inputs applications shall begin at index
zero, incrementing by one until the driver returns EINVAL.

See VIDIOC_G_AUDIO for a description of struct v4l2_audio.

1118 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The number of the audio input is out of bounds.

3.2.7.12 ioctl VIDIOC_ENUMAUDOUT

Name

VIDIOC_ENUMAUDOUT - Enumerate audio outputs

Synopsis

VIDIOC_ENUMAUDOUT

int ioctl(int fd, VIDIOC_ENUMAUDOUT, struct v4l2_audioout *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_audioout.

Description

To query the attributes of an audio output applications initialize the index field and zero out the
reserved array of a struct v4l2_audioout and call the VIDIOC_G_AUDOUT ioctl with a pointer
to this structure. Drivers fill the rest of the structure or return an EINVAL error code when the
index is out of bounds. To enumerate all audio outputs applications shall begin at index zero,
incrementing by one until the driver returns EINVAL.

Note: Connectors on a TV card to loop back the received audio signal to a sound card are not
audio outputs in this sense.

See VIDIOC_G_AUDIOout for a description of struct v4l2_audioout.

3.2. Part I - Video for Linux API 1119

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The number of the audio output is out of bounds.

3.2.7.13 ioctl VIDIOC_ENUM_DV_TIMINGS, VIDIOC_SUBDEV_ENUM_DV_TIMINGS

Name

VIDIOC_ENUM_DV_TIMINGS - VIDIOC_SUBDEV_ENUM_DV_TIMINGS - Enumerate supported
Digital Video timings

Synopsis

VIDIOC_ENUM_DV_TIMINGS

int ioctl(int fd, VIDIOC_ENUM_DV_TIMINGS, struct v4l2_enum_dv_timings *argp)

VIDIOC_SUBDEV_ENUM_DV_TIMINGS

int ioctl(int fd, VIDIOC_SUBDEV_ENUM_DV_TIMINGS, struct v4l2_enum_dv_timings
*argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_enum_dv_timings.

Description

While some DV receivers or transmitters support a wide range of timings, others support only a
limited number of timings. With this ioctl applications can enumerate a list of known supported
timings. Call ioctl VIDIOC_DV_TIMINGS_CAP, VIDIOC_SUBDEV_DV_TIMINGS_CAP to check if
it also supports other standards or even custom timings that are not in this list.

To query the available timings, applications initialize the index field, set the pad field to 0, zero
the reserved array of struct v4l2_enum_dv_timings and call the VIDIOC_ENUM_DV_TIMINGS ioctl
on a video node with a pointer to this structure. Drivers fill the rest of the structure or return
an EINVAL error code when the index is out of bounds. To enumerate all supported DV timings,
applications shall begin at index zero, incrementing by one until the driver returns EINVAL.

Note: Drivers may enumerate a different set of DV timings after switching the video input or
output.

1120 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

When implemented by the driver DV timings of subdevices can be queried by calling the
VIDIOC_SUBDEV_ENUM_DV_TIMINGS ioctl directly on a subdevice node. The DV timings are spe-
cific to inputs (for DV receivers) or outputs (for DV transmitters), applications must specify
the desired pad number in the struct v4l2_enum_dv_timings pad field. Attempts to enumerate
timings on a pad that doesn’t support them will return an EINVAL error code.

v4l2_enum_dv_timings

Table 157: struct v4l2_enum_dv_timings
__u32 index Number of the DV timings, set by the appli-

cation.
__u32 pad Pad number as reported by the media con-

troller API. This field is only used when op-
erating on a subdevice node. When oper-
ating on a video node applications must set
this field to zero.

__u32 reserved[2] Reserved for future extensions. Drivers and
applications must set the array to zero.

struct
v4l2_dv_timings

timings The timings.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_enum_dv_timings index is out of bounds or the pad number is invalid.
ENODATA Digital video presets are not supported for this input or output.

3.2.7.14 ioctl VIDIOC_ENUM_FMT

Name

VIDIOC_ENUM_FMT - Enumerate image formats

Synopsis

VIDIOC_ENUM_FMT

int ioctl(int fd, VIDIOC_ENUM_FMT, struct v4l2_fmtdesc *argp)

3.2. Part I - Video for Linux API 1121

Linux Media Documentation

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_fmtdesc.

Description

To enumerate image formats applications initialize the type, mbus_code and index fields of
struct v4l2_fmtdesc and call the ioctl VIDIOC_ENUM_FMT ioctl with a pointer to this structure.
Drivers fill the rest of the structure or return an EINVAL error code. All formats are enumerable
by beginning at index zero and incrementing by one until EINVAL is returned. If applicable,
drivers shall return formats in preference order, where preferred formats are returned before
(that is, with lower index value) less-preferred formats.

Depending on the V4L2_CAP_IO_MC capability, the mbus_code field is handled differently:

1) V4L2_CAP_IO_MC is not set (also known as a ‘video-node-centric’ driver)

Applications shall initialize the mbus_code field to zero and drivers shall ignore the value
of the field.

Drivers shall enumerate all image formats.

Note: After switching the input or output the list of enumerated image formats may be
different.

2) V4L2_CAP_IO_MC is set (also known as an ‘MC-centric’ driver)

If the mbus_code field is zero, then all image formats shall be enumerated.

If the mbus_code field is initialized to a valid (non-zero)media bus format code, then drivers
shall restrict enumeration to only the image formats that can produce (for video output
devices) or be produced from (for video capture devices) that media bus code. If the
mbus_code is unsupported by the driver, then EINVAL shall be returned.

Regardless of the value of the mbus_code field, the enumerated image formats shall not
depend on the active configuration of the video device or device pipeline.

v4l2_fmtdesc

1122 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 158: struct v4l2_fmtdesc
__u32 index Number of the format in the enumeration,

set by the application. This is in no way re-
lated to the pixelformat field.

__u32 type Type of the data stream, set by the ap-
plication. Only these types are valid
here: V4L2_BUF_TYPE_VIDEO_CAPTURE,
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE,
V4L2_BUF_TYPE_VIDEO_OUTPUT,
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE,
V4L2_BUF_TYPE_VIDEO_OVERLAY,
V4L2_BUF_TYPE_SDR_CAPTURE,
V4L2_BUF_TYPE_SDR_OUTPUT,
V4L2_BUF_TYPE_META_CAPTURE and
V4L2_BUF_TYPE_META_OUTPUT. See
v4l2_buf_type.

__u32 flags See Image Format Description Flags
__u8 description[32] Description of the format, a NUL-

terminated ASCII string. This information
is intended for the user, for example: “YUV
4:2:2”.

__u32 pixelformat The image format identifier. This is a
four character code as computed by the
v4l2_fourcc() macro:

#define v4l2_fourcc(a,b,c,d)
(((__u32)(a)<<0)|((__u32)(b)<<8)|((__u32)(c)<<16)|((__u32)(d)<<24))
Several image formats are already defined by this specification in Image Formats.

Attention: These codes are not the same as those used in the Windows world.

__u32 mbus_code Media bus code restricting the enumer-
ated formats, set by the application. Only
applicable to drivers that advertise the
V4L2_CAP_IO_MC capability, shall be 0 oth-
erwise.

__u32 reserved[3] Reserved for future extensions. Drivers
must set the array to zero.

Table 159: Image Format Description Flags
V4L2_FMT_FLAG_COMPRESSED 0x0001 This is a compressed format.
V4L2_FMT_FLAG_EMULATED 0x0002 This format is not native to the de-

vice but emulated through software
(usually libv4l2), where possible try
to use a native format instead for
better performance.

Continued on next page

3.2. Part I - Video for Linux API 1123

Linux Media Documentation

Table 159 – continued from previous page
V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM 0x0004 The hardware decoder for this com-

pressed bytestream format (aka
coded format) is capable of parsing
a continuous bytestream. Appli-
cations do not need to parse the
bytestream themselves to find the
boundaries between frames/fields.
This flag can only be used
in combination with the
V4L2_FMT_FLAG_COMPRESSED flag,
since this applies to compressed
formats only. This flag is valid for
stateful decoders only.

V4L2_FMT_FLAG_DYN_RESOLUTION 0x0008 Dynamic resolution switching
is supported by the device for
this compressed bytestream for-
mat (aka coded format). It will
notify the user via the event
V4L2_EVENT_SOURCE_CHANGE when
changes in the video parameters are
detected.
This flag can only be used
in combination with the
V4L2_FMT_FLAG_COMPRESSED flag,
since this applies to compressed
formats only. This flag is valid for
stateful codecs only.

Continued on next page

1124 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 159 – continued from previous page
V4L2_FMT_FLAG_ENC_CAP_FRAME_INTERVAL 0x0010 The hardware encoder supports set-

ting the CAPTURE coded frame in-
terval separately from the OUTPUT
raw frame interval. Setting the
OUTPUT raw frame interval with VID-
IOC_S_PARM also sets the CAPTURE
coded frame interval to the same
value. If this flag is set, then the
CAPTURE coded frame interval can be
set to a different value afterwards.
This is typically used for offline en-
coding where the OUTPUT raw frame
interval is used as a hint for reserv-
ing hardware encoder resources and
the CAPTURE coded frame interval is
the actual frame rate embedded in
the encoded video stream.
This flag can only be used
in combination with the
V4L2_FMT_FLAG_COMPRESSED flag,
since this applies to compressed
formats only. This flag is valid for
stateful encoders only.

V4L2_FMT_FLAG_CSC_COLORSPACE 0x0020 The driver allows the application
to try to change the default col-
orspace. This flag is relevant only
for capture devices. The application
can ask to configure the colorspace
of the capture device when call-
ing the VIDIOC_S_FMT ioctl with
V4L2_PIX_FMT_FLAG_SET_CSC
set.

V4L2_FMT_FLAG_CSC_XFER_FUNC 0x0040 The driver allows the application to
try to change the default transfer
function. This flag is relevant only
for capture devices. The application
can ask to configure the transfer
function of the capture device when
calling the VIDIOC_S_FMT ioctl with
V4L2_PIX_FMT_FLAG_SET_CSC
set.

Continued on next page

3.2. Part I - Video for Linux API 1125

Linux Media Documentation

Table 159 – continued from previous page
V4L2_FMT_FLAG_CSC_YCBCR_ENC 0x0080 The driver allows the application

to try to change the default Y’CbCr
encoding. This flag is relevant only
for capture devices. The application
can ask to configure the Y’CbCr en-
coding of the capture device when
calling the VIDIOC_S_FMT ioctl with
V4L2_PIX_FMT_FLAG_SET_CSC
set.

V4L2_FMT_FLAG_CSC_HSV_ENC 0x0080 The driver allows the application to
try to change the default HSV en-
coding. This flag is relevant only for
capture devices. The application can
ask to configure the HSV encoding
of the capture device when call-
ing the VIDIOC_S_FMT ioctl with
V4L2_PIX_FMT_FLAG_SET_CSC
set.

V4L2_FMT_FLAG_CSC_QUANTIZATION 0x0100 The driver allows the application to
try to change the default quantiza-
tion. This flag is relevant only for
capture devices. The application can
ask to configure the quantization
of the capture device when call-
ing the VIDIOC_S_FMT ioctl with
V4L2_PIX_FMT_FLAG_SET_CSC
set.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_fmtdesc type is not supported or the index is out of bounds.

If V4L2_CAP_IO_MC is set and the specified mbus_code is unsupported, then also return this
error code.

3.2.7.15 ioctl VIDIOC_ENUM_FRAMESIZES

Name

VIDIOC_ENUM_FRAMESIZES - Enumerate frame sizes

1126 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Synopsis

VIDIOC_ENUM_FRAMESIZES

int ioctl(int fd, VIDIOC_ENUM_FRAMESIZES, struct v4l2_frmsizeenum *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_frmsizeenum that contains an index and pixel format and receives
a frame width and height.

Description

This ioctl allows applications to enumerate all frame sizes (i. e. width and height in pixels) that
the device supports for the given pixel format.

The supported pixel formats can be obtained by using the ioctl VIDIOC_ENUM_FMT function.

The return value and the content of the v4l2_frmsizeenum.type field depend on the type of
frame sizes the device supports. Here are the semantics of the function for the different cases:

• Discrete: The function returns success if the given index value (zero-based) is valid. The
application should increase the index by one for each call until EINVAL is returned. The
v4l2_frmsizeenum.type field is set to V4L2_FRMSIZE_TYPE_DISCRETE by the driver. Of the
union only the discrete member is valid.

• Step-wise: The function returns success if the given index value is zero and
EINVAL for any other index value. The v4l2_frmsizeenum.type field is set to
V4L2_FRMSIZE_TYPE_STEPWISE by the driver. Of the union only the stepwise member
is valid.

• Continuous: This is a special case of the step-wise type above. The function returns
success if the given index value is zero and EINVAL for any other index value. The
v4l2_frmsizeenum.type field is set to V4L2_FRMSIZE_TYPE_CONTINUOUS by the driver. Of
the union only the stepwisemember is valid and the step_width and step_height values
are set to 1.

When the application calls the function with index zero, it must check the type field
to determine the type of frame size enumeration the device supports. Only for the
V4L2_FRMSIZE_TYPE_DISCRETE type does it make sense to increase the index value to receive
more frame sizes.

Note: The order in which the frame sizes are returned has no special meaning. In particular
does it not say anything about potential default format sizes.

Applications can assume that the enumeration data does not change without any interaction
from the application itself. This means that the enumeration data is consistent if the application
does not perform any other ioctl calls while it runs the frame size enumeration.

3.2. Part I - Video for Linux API 1127

Linux Media Documentation

Structs

In the structs below, IN denotes a value that has to be filled in by the application, OUT denotes
values that the driver fills in. The application should zero out all members except for the IN
fields.

v4l2_frmsize_discrete

Table 160: struct v4l2_frmsize_discrete
__u32 width Width of the frame [pixel].
__u32 height Height of the frame [pixel].

v4l2_frmsize_stepwise

Table 161: struct v4l2_frmsize_stepwise
__u32 min_width Minimum frame width [pixel].
__u32 max_width Maximum frame width [pixel].
__u32 step_width Frame width step size [pixel].
__u32 min_height Minimum frame height [pixel].
__u32 max_height Maximum frame height [pixel].
__u32 step_height Frame height step size [pixel].

v4l2_frmsizeenum

Table 162: struct v4l2_frmsizeenum
__u32 index IN: Index of the given frame size in the

enumeration.
__u32 pixel_format IN: Pixel format for which the frame sizes

are enumerated.
__u32 type OUT: Frame size type the device supports.
union { (anonymous) OUT: Frame size with the given index.
struct v4l2_frmsize_discrete discrete
struct v4l2_frmsize_stepwise stepwise
}
__u32 reserved[2] Reserved space for future use. Must be

zeroed by drivers and applications.

Enums

v4l2_frmsizetypes

Table 163: enum v4l2_frmsizetypes
V4L2_FRMSIZE_TYPE_DISCRETE 1 Discrete frame size.
V4L2_FRMSIZE_TYPE_CONTINUOUS 2 Continuous frame size.
V4L2_FRMSIZE_TYPE_STEPWISE 3 Step-wise defined frame size.

1128 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

3.2.7.16 ioctl VIDIOC_ENUM_FRAMEINTERVALS

Name

VIDIOC_ENUM_FRAMEINTERVALS - Enumerate frame intervals

Synopsis

VIDIOC_ENUM_FRAMEINTERVALS

int ioctl(int fd, VIDIOC_ENUM_FRAMEINTERVALS, struct v4l2_frmivalenum *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_frmivalenum that contains a pixel format and size and receives a
frame interval.

Description

This ioctl allows applications to enumerate all frame intervals that the device supports for the
given pixel format and frame size.

The supported pixel formats and frame sizes can be obtained by using the ioctl VID-
IOC_ENUM_FMT and ioctl VIDIOC_ENUM_FRAMESIZES functions.

The return value and the content of the v4l2_frmivalenum.type field depend on the type of
frame intervals the device supports. Here are the semantics of the function for the different
cases:

• Discrete: The function returns success if the given index value (zero-based) is valid. The
application should increase the index by one for each call until EINVAL is returned. The
v4l2_frmivalenum.type field is set to V4L2_FRMIVAL_TYPE_DISCRETE by the driver. Of
the union only the discrete member is valid.

• Step-wise: The function returns success if the given index value is zero and
EINVAL for any other index value. The v4l2_frmivalenum.type field is set to
V4L2_FRMIVAL_TYPE_STEPWISE by the driver. Of the union only the stepwise member
is valid.

• Continuous: This is a special case of the step-wise type above. The function returns
success if the given index value is zero and EINVAL for any other index value. The
v4l2_frmivalenum.type field is set to V4L2_FRMIVAL_TYPE_CONTINUOUS by the driver. Of
the union only the stepwise member is valid and the step value is set to 1.

3.2. Part I - Video for Linux API 1129

Linux Media Documentation

When the application calls the function with index zero, it must check the type field
to determine the type of frame interval enumeration the device supports. Only for the
V4L2_FRMIVAL_TYPE_DISCRETE type does it make sense to increase the index value to receive
more frame intervals.

Note: The order in which the frame intervals are returned has no special meaning. In partic-
ular does it not say anything about potential default frame intervals.

Applications can assume that the enumeration data does not change without any interaction
from the application itself. This means that the enumeration data is consistent if the application
does not perform any other ioctl calls while it runs the frame interval enumeration.

Note: Frame intervals and frame rates: The V4L2 API uses frame intervals instead of frame
rates. Given the frame interval the frame rate can be computed as follows:

frame_rate = 1 / frame_interval

Structs

In the structs below, IN denotes a value that has to be filled in by the application, OUT denotes
values that the driver fills in. The application should zero out all members except for the IN
fields.

v4l2_frmival_stepwise

Table 164: struct v4l2_frmival_stepwise
struct v4l2_fract min Minimum frame interval [s].
struct v4l2_fract max Maximum frame interval [s].
struct v4l2_fract step Frame interval step size [s].

v4l2_frmivalenum

1130 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 165: struct v4l2_frmivalenum
__u32 index IN: Index of the given frame interval in the enu-

meration.
__u32 pixel_format IN: Pixel format for which the frame intervals

are enumerated.
__u32 width IN: Frame width for which the frame intervals

are enumerated.
__u32 height IN: Frame height for which the frame intervals

are enumerated.
__u32 type OUT: Frame interval type the device supports.
union { (anonymous) OUT: Frame interval with the given index.
struct v4l2_fract discrete Frame interval [s].
struct
v4l2_frmival_stepwise

stepwise

}
__u32 reserved[2] Reserved space for future use. Must be zeroed

by drivers and applications.

Enums

v4l2_frmivaltypes

Table 166: enum v4l2_frmivaltypes
V4L2_FRMIVAL_TYPE_DISCRETE 1 Discrete frame interval.
V4L2_FRMIVAL_TYPE_CONTINUOUS 2 Continuous frame interval.
V4L2_FRMIVAL_TYPE_STEPWISE 3 Step-wise defined frame interval.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

3.2.7.17 ioctl VIDIOC_ENUM_FREQ_BANDS

Name

VIDIOC_ENUM_FREQ_BANDS - Enumerate supported frequency bands

3.2. Part I - Video for Linux API 1131

Linux Media Documentation

Synopsis

VIDIOC_ENUM_FREQ_BANDS

int ioctl(int fd, VIDIOC_ENUM_FREQ_BANDS, struct v4l2_frequency_band *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_frequency_band.

Description

Enumerates the frequency bands that a tuner or modulator supports. To do this applica-
tions initialize the tuner, type and index fields, and zero out the reserved array of a struct
v4l2_frequency_band and call the ioctl VIDIOC_ENUM_FREQ_BANDS ioctl with a pointer to
this structure.

This ioctl is supported if the V4L2_TUNER_CAP_FREQ_BANDS capability of the corresponding
tuner/modulator is set.

v4l2_frequency_band

1132 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 167: struct v4l2_frequency_band
__u32 tuner The tuner or modulator index number. This is the same

value as in the struct v4l2_input tuner field and the
struct v4l2_tuner index field, or the struct v4l2_output
modulator field and the struct v4l2_modulator index field.

__u32 type The tuner type. This is the same value as in the
struct v4l2_tuner type field. The type must be set to
V4L2_TUNER_RADIO for /dev/radioX device nodes, and to
V4L2_TUNER_ANALOG_TV for all others. Set this field to
V4L2_TUNER_RADIO for modulators (currently only radio
modulators are supported). See v4l2_tuner_type

__u32 index Identifies the frequency band, set by the application.
__u32 capability The tuner/modulator capability flags for this frequency

band, see Tuner and Modulator Capability Flags. The
V4L2_TUNER_CAP_LOW or V4L2_TUNER_CAP_1HZ capability
must be the same for all frequency bands of the selected
tuner/modulator. So either all bands have that capability
set, or none of them have that capability.

__u32 rangelow The lowest tunable frequency in units of 62.5 kHz, or if
the capability flag V4L2_TUNER_CAP_LOW is set, in units of
62.5 Hz, for this frequency band. A 1 Hz unit is used when
the capability flag V4L2_TUNER_CAP_1HZ is set.

__u32 rangehigh The highest tunable frequency in units of 62.5 kHz, or if
the capability flag V4L2_TUNER_CAP_LOW is set, in units of
62.5 Hz, for this frequency band. A 1 Hz unit is used when
the capability flag V4L2_TUNER_CAP_1HZ is set.

__u32 modulation The supported modulation systems of this frequency band.
See Band Modulation Systems.

Note: Currently only one modulation system per fre-
quency band is supported. More work will need to be done
if multiple modulation systems are possible. Contact the
linux-media mailing list (https://linuxtv.org/lists.php) if you
need such functionality.

__u32 reserved[9] Reserved for future extensions.
Applications and drivers must set the array to zero.

Table 168: Band Modulation Systems
V4L2_BAND_MODULATION_VSB 0x02 Vestigial Sideband modulation, used for

analog TV.
V4L2_BAND_MODULATION_FM 0x04 Frequency Modulation, commonly used for

analog radio.
V4L2_BAND_MODULATION_AM 0x08 Amplitude Modulation, commonly used for

analog radio.

3.2. Part I - Video for Linux API 1133

https://linuxtv.org/lists.php

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The tuner or index is out of bounds or the type field is wrong.

3.2.7.18 ioctl VIDIOC_ENUMINPUT

Name

VIDIOC_ENUMINPUT - Enumerate video inputs

Synopsis

VIDIOC_ENUMINPUT

int ioctl(int fd, VIDIOC_ENUMINPUT, struct v4l2_input *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_input.

Description

To query the attributes of a video input applications initialize the index field of struct
v4l2_input and call the ioctl VIDIOC_ENUMINPUT with a pointer to this structure. Drivers
fill the rest of the structure or return an EINVAL error code when the index is out of bounds.
To enumerate all inputs applications shall begin at index zero, incrementing by one until the
driver returns EINVAL.

v4l2_input

1134 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 169: struct v4l2_input
__u32 index Identifies the input, set by the application.
__u8 name[32] Name of the video input, a NUL-terminated ASCII

string, for example: “Vin (Composite 2)”. This informa-
tion is intended for the user, preferably the connector
label on the device itself.

__u32 type Type of the input, see Input Types.
__u32 audioset Drivers can enumerate up to 32 video and audio inputs.

This field shows which audio inputs were selectable as
audio source if this was the currently selected video in-
put. It is a bit mask. The LSB corresponds to audio input
0, the MSB to input 31. Any number of bits can be set,
or none.
When the driver does not enumerate audio inputs no
bits must be set. Applications shall not interpret this as
lack of audio support. Some drivers automatically select
audio sources and do not enumerate them since there
is no choice anyway.
For details on audio inputs and how to select the current
input see Audio Inputs and Outputs.

__u32 tuner Capture devices can have zero or more tuners
(RF demodulators). When the type is set to
V4L2_INPUT_TYPE_TUNER this is an RF connector and
this field identifies the tuner. It corresponds to struct
v4l2_tuner field index. For details on tuners see
Tuners and Modulators.

v4l2_std_id std Every video input supports one or more different video
standards. This field is a set of all supported standards.
For details on video standards and how to switch see
Video Standards.

__u32 status This field provides status information about the input.
See Input Status Flags for flags. With the exception of
the sensor orientation bits status is only valid when this
is the current input.

__u32 capabilities This field provides capabilities for the input. See Input
capabilities for flags.

__u32 reserved[3] Reserved for future extensions. Drivers must set the
array to zero.

Table 170: Input Types
V4L2_INPUT_TYPE_TUNER 1 This input uses a tuner (RF demodulator).
V4L2_INPUT_TYPE_CAMERA 2 Any non-tuner video input, for example Composite

Video, S-Video, HDMI, camera sensor. The nam-
ing as _TYPE_CAMERA is historical, today we would
have called it _TYPE_VIDEO.

V4L2_INPUT_TYPE_TOUCH 3 This input is a touch device for capturing raw
touch data.

3.2. Part I - Video for Linux API 1135

Linux Media Documentation

Table 171: Input Status Flags
General
V4L2_IN_ST_NO_POWER 0x00000001 Attached device is off.
V4L2_IN_ST_NO_SIGNAL 0x00000002
V4L2_IN_ST_NO_COLOR 0x00000004 The hardware supports color decoding, but

does not detect color modulation in the signal.
Sensor Orientation
V4L2_IN_ST_HFLIP 0x00000010 The input is connected to a device that pro-

duces a signal that is flipped horizontally and
does not correct this before passing the signal
to userspace.

V4L2_IN_ST_VFLIP 0x00000020 The input is connected to a device that pro-
duces a signal that is flipped vertically and does
not correct this before passing the signal to
userspace. .. note:: A 180 degree rotation is
the same as HFLIP | VFLIP

Analog Video
V4L2_IN_ST_NO_H_LOCK 0x00000100 No horizontal sync lock.
V4L2_IN_ST_COLOR_KILL 0x00000200 A color killer circuit automatically disables

color decoding when it detects no color mod-
ulation. When this flag is set the color killer is
enabled and has shut off color decoding.

V4L2_IN_ST_NO_V_LOCK 0x00000400 No vertical sync lock.
V4L2_IN_ST_NO_STD_LOCK 0x00000800 No standard format lock in case of auto-

detection format by the component.
Digital Video
V4L2_IN_ST_NO_SYNC 0x00010000 No synchronization lock.
V4L2_IN_ST_NO_EQU 0x00020000 No equalizer lock.
V4L2_IN_ST_NO_CARRIER 0x00040000 Carrier recovery failed.
VCR and Set-Top Box
V4L2_IN_ST_MACROVISION 0x01000000 Macrovision is an analog copy prevention sys-

tem mangling the video signal to confuse video
recorders. When this flag is set Macrovision
has been detected.

V4L2_IN_ST_NO_ACCESS 0x02000000 Conditional access denied.
V4L2_IN_ST_VTR 0x04000000 VTR time constant. [?]

Table 172: Input capabilities
V4L2_IN_CAP_DV_TIMINGS 0x00000002 This input supports setting video timings

by using VIDIOC_S_DV_TIMINGS.
V4L2_IN_CAP_STD 0x00000004 This input supports setting the TV standard

by using VIDIOC_S_STD.
V4L2_IN_CAP_NATIVE_SIZE 0x00000008 This input supports setting the native size

using the V4L2_SEL_TGT_NATIVE_SIZE se-
lection target, see Common selection defi-
nitions.

1136 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_input index is out of bounds.

3.2.7.19 ioctl VIDIOC_ENUMOUTPUT

Name

VIDIOC_ENUMOUTPUT - Enumerate video outputs

Synopsis

VIDIOC_ENUMOUTPUT

int ioctl(int fd, VIDIOC_ENUMOUTPUT, struct v4l2_output *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_output.

Description

To query the attributes of a video outputs applications initialize the index field of struct
v4l2_output and call the ioctl VIDIOC_ENUMOUTPUT with a pointer to this structure. Drivers
fill the rest of the structure or return an EINVAL error code when the index is out of bounds.
To enumerate all outputs applications shall begin at index zero, incrementing by one until the
driver returns EINVAL.

v4l2_output

3.2. Part I - Video for Linux API 1137

Linux Media Documentation

Table 173: struct v4l2_output
__u32 index Identifies the output, set by the application.
__u8 name[32] Name of the video output, a NUL-

terminated ASCII string, for example:
“Vout”. This information is intended for the
user, preferably the connector label on the
device itself.

__u32 type Type of the output, see Output Type.
__u32 audioset Drivers can enumerate up to 32 video and

audio outputs. This field shows which audio
outputs were selectable as the current out-
put if this was the currently selected video
output. It is a bit mask. The LSB corre-
sponds to audio output 0, the MSB to output
31. Any number of bits can be set, or none.
When the driver does not enumerate audio
outputs no bits must be set. Applications
shall not interpret this as lack of audio sup-
port. Drivers may automatically select au-
dio outputs without enumerating them.
For details on audio outputs and how to se-
lect the current output see Audio Inputs and
Outputs.

__u32 modulator Output devices can have zero or more
RF modulators. When the type is
V4L2_OUTPUT_TYPE_MODULATOR this is
an RF connector and this field identifies
the modulator. It corresponds to struct
v4l2_modulator field index. For details on
modulators see Tuners and Modulators.

v4l2_std_id std Every video output supports one or more
different video standards. This field is a set
of all supported standards. For details on
video standards and how to switch seeVideo
Standards.

__u32 capabilities This field provides capabilities for the out-
put. See Output capabilities for flags.

__u32 reserved[3] Reserved for future extensions. Drivers
must set the array to zero.

Table 174: Output Type
V4L2_OUTPUT_TYPE_MODULATOR 1 This output is an analog TV modulator.
V4L2_OUTPUT_TYPE_ANALOG 2 Any non-modulator video output, for example

Composite Video, S-Video, HDMI. The naming
as _TYPE_ANALOG is historical, today we would
have called it _TYPE_VIDEO.

V4L2_OUTPUT_TYPE_ANALOGVGAOVERLAY3 The video output will be copied to a video over-
lay.

1138 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 175: Output capabilities
V4L2_OUT_CAP_DV_TIMINGS 0x00000002 This output supports setting video timings

by using VIDIOC_S_DV_TIMINGS.
V4L2_OUT_CAP_STD 0x00000004 This output supports setting the TV stan-

dard by using VIDIOC_S_STD.
V4L2_OUT_CAP_NATIVE_SIZE 0x00000008 This output supports setting the native size

using the V4L2_SEL_TGT_NATIVE_SIZE se-
lection target, see Common selection defi-
nitions.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_output index is out of bounds.

3.2.7.20 ioctl VIDIOC_ENUMSTD, VIDIOC_SUBDEV_ENUMSTD

Name

VIDIOC_ENUMSTD - VIDIOC_SUBDEV_ENUMSTD - Enumerate supported video standards

Synopsis

VIDIOC_ENUMSTD

int ioctl(int fd, VIDIOC_ENUMSTD, struct v4l2_standard *argp)

VIDIOC_SUBDEV_ENUMSTD

int ioctl(int fd, VIDIOC_SUBDEV_ENUMSTD, struct v4l2_standard *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_standard.

3.2. Part I - Video for Linux API 1139

Linux Media Documentation

Description

To query the attributes of a video standard, especially a custom (driver defined) one, applica-
tions initialize the index field of struct v4l2_standard and call the ioctl VIDIOC_ENUMSTD,
VIDIOC_SUBDEV_ENUMSTD ioctl with a pointer to this structure. Drivers fill the rest of the
structure or return an EINVAL error code when the index is out of bounds. To enumerate all
standards applications shall begin at index zero, incrementing by one until the driver returns
EINVAL. Drivers may enumerate a different set of standards after switching the video input or
output.1

v4l2_standard

Table 176: struct v4l2_standard
__u32 index Number of the video standard, set by the ap-

plication.
v4l2_std_id id The bits in this field identify the standard

as one of the common standards listed in
typedef v4l2_std_id, or if bits 32 to 63 are
set as custom standards. Multiple bits can
be set if the hardware does not distinguish
between these standards, however separate
indices do not indicate the opposite. The
id must be unique. No other enumerated
struct v4l2_standard structure, for this in-
put or output anyway, can contain the same
set of bits.

__u8 name[24] Name of the standard, a NUL-terminated
ASCII string, for example: “PAL-B/G”,
“NTSC Japan”. This information is intended
for the user.

struct v4l2_fract frameperiod The frame period (not field period) is numer-
ator / denominator. For example M/NTSC
has a frame period of 1001 / 30000 seconds.

__u32 framelines Total lines per frame including blanking, e.
g. 625 for B/PAL.

__u32 reserved[4] Reserved for future extensions. Drivers
must set the array to zero.

v4l2_fract

Table 177: struct v4l2_fract
__u32 numerator
__u32 denominator
1 The supported standards may overlap and we need an unambiguous set to find the current standard returned

by VIDIOC_G_STD.

1140 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 178: typedef v4l2_std_id
__u64 v4l2_std_id This type is a set, each bit representing an-

other video standard as listed below and in
Video Standards (based on itu470). The 32
most significant bits are reserved for cus-
tom (driver defined) video standards.

#define V4L2_STD_PAL_B ((v4l2_std_id)0x00000001)
#define V4L2_STD_PAL_B1 ((v4l2_std_id)0x00000002)
#define V4L2_STD_PAL_G ((v4l2_std_id)0x00000004)
#define V4L2_STD_PAL_H ((v4l2_std_id)0x00000008)
#define V4L2_STD_PAL_I ((v4l2_std_id)0x00000010)
#define V4L2_STD_PAL_D ((v4l2_std_id)0x00000020)
#define V4L2_STD_PAL_D1 ((v4l2_std_id)0x00000040)
#define V4L2_STD_PAL_K ((v4l2_std_id)0x00000080)

#define V4L2_STD_PAL_M ((v4l2_std_id)0x00000100)
#define V4L2_STD_PAL_N ((v4l2_std_id)0x00000200)
#define V4L2_STD_PAL_Nc ((v4l2_std_id)0x00000400)
#define V4L2_STD_PAL_60 ((v4l2_std_id)0x00000800)

V4L2_STD_PAL_60 is a hybrid standard with 525 lines, 60 Hz refresh rate, and PAL color modu-
lation with a 4.43 MHz color subcarrier. Some PAL video recorders can play back NTSC tapes
in this mode for display on a 50/60 Hz agnostic PAL TV.

#define V4L2_STD_NTSC_M ((v4l2_std_id)0x00001000)
#define V4L2_STD_NTSC_M_JP ((v4l2_std_id)0x00002000)
#define V4L2_STD_NTSC_443 ((v4l2_std_id)0x00004000)

V4L2_STD_NTSC_443 is a hybrid standard with 525 lines, 60 Hz refresh rate, and NTSC color
modulation with a 4.43 MHz color subcarrier.

#define V4L2_STD_NTSC_M_KR ((v4l2_std_id)0x00008000)

#define V4L2_STD_SECAM_B ((v4l2_std_id)0x00010000)
#define V4L2_STD_SECAM_D ((v4l2_std_id)0x00020000)
#define V4L2_STD_SECAM_G ((v4l2_std_id)0x00040000)
#define V4L2_STD_SECAM_H ((v4l2_std_id)0x00080000)
#define V4L2_STD_SECAM_K ((v4l2_std_id)0x00100000)
#define V4L2_STD_SECAM_K1 ((v4l2_std_id)0x00200000)
#define V4L2_STD_SECAM_L ((v4l2_std_id)0x00400000)
#define V4L2_STD_SECAM_LC ((v4l2_std_id)0x00800000)

/* ATSC/HDTV */
#define V4L2_STD_ATSC_8_VSB ((v4l2_std_id)0x01000000)
#define V4L2_STD_ATSC_16_VSB ((v4l2_std_id)0x02000000)

V4L2_STD_ATSC_8_VSB and V4L2_STD_ATSC_16_VSB are U.S. terrestrial digital TV standards.
Presently the V4L2 API does not support digital TV. See also the Linux DVB API at https://
linuxtv.org.

#define V4L2_STD_PAL_BG (V4L2_STD_PAL_B |
V4L2_STD_PAL_B1 |
V4L2_STD_PAL_G)

3.2. Part I - Video for Linux API 1141

https://linuxtv.org
https://linuxtv.org

Linux Media Documentation

#define V4L2_STD_B (V4L2_STD_PAL_B |
V4L2_STD_PAL_B1 |
V4L2_STD_SECAM_B)

#define V4L2_STD_GH (V4L2_STD_PAL_G |
V4L2_STD_PAL_H |
V4L2_STD_SECAM_G |
V4L2_STD_SECAM_H)

#define V4L2_STD_PAL_DK (V4L2_STD_PAL_D |
V4L2_STD_PAL_D1 |
V4L2_STD_PAL_K)

#define V4L2_STD_PAL (V4L2_STD_PAL_BG |
V4L2_STD_PAL_DK |
V4L2_STD_PAL_H |
V4L2_STD_PAL_I)

#define V4L2_STD_NTSC (V4L2_STD_NTSC_M |
V4L2_STD_NTSC_M_JP |
V4L2_STD_NTSC_M_KR)

#define V4L2_STD_MN (V4L2_STD_PAL_M |
V4L2_STD_PAL_N |
V4L2_STD_PAL_Nc |
V4L2_STD_NTSC)

#define V4L2_STD_SECAM_DK (V4L2_STD_SECAM_D |
V4L2_STD_SECAM_K |
V4L2_STD_SECAM_K1)

#define V4L2_STD_DK (V4L2_STD_PAL_DK |
V4L2_STD_SECAM_DK)

#define V4L2_STD_SECAM (V4L2_STD_SECAM_B |
V4L2_STD_SECAM_G |
V4L2_STD_SECAM_H |
V4L2_STD_SECAM_DK |
V4L2_STD_SECAM_L |
V4L2_STD_SECAM_LC)

#define V4L2_STD_525_60 (V4L2_STD_PAL_M |
V4L2_STD_PAL_60 |
V4L2_STD_NTSC |
V4L2_STD_NTSC_443)

#define V4L2_STD_625_50 (V4L2_STD_PAL |
V4L2_STD_PAL_N |
V4L2_STD_PAL_Nc |
V4L2_STD_SECAM)

#define V4L2_STD_UNKNOWN 0
#define V4L2_STD_ALL (V4L2_STD_525_60 |

V4L2_STD_625_50)

1142 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 179: Video Standards (based on ITU BT.470)
CharacteristicsM/NTSC2 M/PAL N/PAL3 B, B1, G/PAL D, D1,

K/PAL
H/PAL I/PAL B, G/SECAM D,

K/SECAM
K1/SECAM L/SECAM

Frame lines 525 625
Frame pe-
riod (s)

1001/30000 1/25

Chrominance
sub-carrier
frequency
(Hz)

3579545 ±
10

3579611.49 ±
10

4433618.75 ±
5
(3582056.25 ±
5)

4433618.75 ± 5 4433618.75 ±
1

fOR = 4406250 ± 2000,
fOB = 4250000 ± 2000

Nominal
radio-
frequency
channel
bandwidth
(MHz)

6 6 6 B: 7; B1, G: 8 8 8 8 8 8 8 8

Sound car-
rier relative
to vision car-
rier (MHz)

4.5 4.5 4.5 5.5 ±
0.0014567

6.5 ±
0.001

5.5 5.9996 ±
0.0005

5.5 ± 0.001 6.5 ±
0.001

6.5 6.58

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_standard index is out of bounds.

ENODATA Standard video timings are not supported for this input or output.

2 Japan uses a standard similar to M/NTSC (V4L2_STD_NTSC_M_JP).
3 The values in brackets apply to the combination N/PAL a.k.a. NC used in Argentina (V4L2_STD_PAL_Nc).
4 In the Federal Republic of Germany, Austria, Italy, the Netherlands, Slovakia and Switzerland a system of two

sound carriers is used, the frequency of the second carrier being 242.1875 kHz above the frequency of the first
sound carrier. For stereophonic sound transmissions a similar system is used in Australia.

5 New Zealand uses a sound carrier displaced 5.4996 ± 0.0005 MHz from the vision carrier.
6 In Denmark, Finland, New Zealand, Sweden and Spain a system of two sound carriers is used. In Iceland,

Norway and Poland the same system is being introduced. The second carrier is 5.85 MHz above the vision carrier
and is DQPSK modulated with 728 kbit/s sound and data multiplex. (NICAM system)

7 In the United Kingdom, a system of two sound carriers is used. The second sound carrier is 6.552 MHz above
the vision carrier and is DQPSK modulated with a 728 kbit/s sound and data multiplex able to carry two sound
channels. (NICAM system)

8 In France, a digital carrier 5.85 MHz away from the vision carrier may be used in addition to the main sound
carrier. It is modulated in differentially encoded QPSK with a 728 kbit/s sound and data multiplexer capable of
carrying two sound channels. (NICAM system)

3.2. Part I - Video for Linux API 1143

Linux Media Documentation

3.2.7.21 ioctl VIDIOC_EXPBUF

Name

VIDIOC_EXPBUF - Export a buffer as a DMABUF file descriptor.

Synopsis

VIDIOC_EXPBUF

int ioctl(int fd, VIDIOC_EXPBUF, struct v4l2_exportbuffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_exportbuffer.

Description

This ioctl is an extension to the memory mapping I/O method, therefore it is available only for
V4L2_MEMORY_MMAP buffers. It can be used to export a buffer as a DMABUF file at any time after
buffers have been allocated with the ioctl VIDIOC_REQBUFS ioctl.

To export a buffer, applications fill struct v4l2_exportbuffer. The type field is set to the same
buffer type as was previously used with struct v4l2_requestbuffers type. Applications must
also set the index field. Valid index numbers range from zero to the number of buffers allocated
with ioctl VIDIOC_REQBUFS (struct v4l2_requestbuffers count) minus one. For the multi-
planar API, applications set the plane field to the index of the plane to be exported. Valid planes
range from zero to the maximal number of valid planes for the currently active format. For the
single-planar API, applications must set plane to zero. Additional flags may be posted in the
flags field. Refer to a manual for open() for details. Currently only O_CLOEXEC, O_RDONLY,
O_WRONLY, and O_RDWR are supported. All other fields must be set to zero. In the case of
multi-planar API, every plane is exported separately using multiple ioctl VIDIOC_EXPBUF calls.

After calling ioctl VIDIOC_EXPBUF the fd field will be set by a driver. This is a DMABUF file
descriptor. The application may pass it to other DMABUF-aware devices. Refer to DMABUF

1144 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

importing for details about importing DMABUF files into V4L2 nodes. It is recommended to
close a DMABUF file when it is no longer used to allow the associated memory to be reclaimed.

Examples

int buffer_export(int v4lfd, enum v4l2_buf_type bt, int index, int *dmafd)
{

struct v4l2_exportbuffer expbuf;

memset(&expbuf, 0, sizeof(expbuf));
expbuf.type = bt;
expbuf.index = index;
if (ioctl(v4lfd, VIDIOC_EXPBUF, &expbuf) == -1) {

perror("VIDIOC_EXPBUF");
return -1;

}

*dmafd = expbuf.fd;

return 0;
}

int buffer_export_mp(int v4lfd, enum v4l2_buf_type bt, int index,
int dmafd[], int n_planes)

{
int i;

for (i = 0; i < n_planes; ++i) {
struct v4l2_exportbuffer expbuf;

memset(&expbuf, 0, sizeof(expbuf));
expbuf.type = bt;
expbuf.index = index;
expbuf.plane = i;
if (ioctl(v4lfd, VIDIOC_EXPBUF, &expbuf) == -1) {

perror("VIDIOC_EXPBUF");
while (i)

close(dmafd[--i]);
return -1;

}
dmafd[i] = expbuf.fd;

}

return 0;
}

v4l2_exportbuffer

3.2. Part I - Video for Linux API 1145

Linux Media Documentation

Table 180: struct v4l2_exportbuffer
__u32 type Type of the buffer, same as

struct v4l2_format type or struct
v4l2_requestbuffers type, set by the
application. See v4l2_buf_type

__u32 index Number of the buffer, set by the applica-
tion. This field is only used for memory
mapping I/O and can range from zero to
the number of buffers allocated with the
ioctl VIDIOC_REQBUFS and/or ioctl VID-
IOC_CREATE_BUFS ioctls.

__u32 plane Index of the plane to be exported when
using the multi-planar API. Otherwise this
value must be set to zero.

__u32 flags Flags for the newly created file, currently
only O_CLOEXEC, O_RDONLY, O_WRONLY, and
O_RDWR are supported, refer to the manual
of open() for more details.

__s32 fd The DMABUF file descriptor associated
with a buffer. Set by the driver.

__u32 reserved[11] Reserved field for future use. Drivers and
applications must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL A queue is not in MMAP mode or DMABUF exporting is not supported or flags or
type or index or plane fields are invalid.

3.2.7.22 ioctl VIDIOC_G_AUDIO, VIDIOC_S_AUDIO

Name

VIDIOC_G_AUDIO - VIDIOC_S_AUDIO - Query or select the current audio input and its at-
tributes

Synopsis

VIDIOC_G_AUDIO

int ioctl(int fd, VIDIOC_G_AUDIO, struct v4l2_audio *argp)

VIDIOC_S_AUDIO

int ioctl(int fd, VIDIOC_S_AUDIO, const struct v4l2_audio *argp)

1146 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_audio.

Description

To query the current audio input applications zero out the reserved array of a struct v4l2_audio
and call the VIDIOC_G_AUDIO ioctl with a pointer to this structure. Drivers fill the rest of the
structure or return an EINVAL error code when the device has no audio inputs, or none which
combine with the current video input.

Audio inputs have one writable property, the audio mode. To select the current audio input
and change the audio mode, applications initialize the index and mode fields, and the reserved
array of a struct v4l2_audio structure and call the VIDIOC_S_AUDIO ioctl. Drivers may switch
to a different audio mode if the request cannot be satisfied. However, this is a write-only ioctl,
it does not return the actual new audio mode.

v4l2_audio

Table 181: struct v4l2_audio
__u32 index Identifies the audio input, set by the driver

or application.
__u8 name[32] Name of the audio input, a NUL-terminated

ASCII string, for example: “Line In”. This
information is intended for the user, prefer-
ably the connector label on the device itself.

__u32 capability Audio capability flags, see Audio Capability
Flags.

__u32 mode Audio mode flags set by drivers and applica-
tions (on VIDIOC_S_AUDIO ioctl), see Audio
Mode Flags.

__u32 reserved[2] Reserved for future extensions. Drivers and
applications must set the array to zero.

Table 182: Audio Capability Flags
V4L2_AUDCAP_STEREO 0x00001 This is a stereo input. The flag is intended to

automatically disable stereo recording etc.
when the signal is always monaural. The
API provides no means to detect if stereo is
received, unless the audio input belongs to
a tuner.

V4L2_AUDCAP_AVL 0x00002 Automatic Volume Level mode is supported.

Table 183: Audio Mode Flags
V4L2_AUDMODE_AVL 0x00001 AVL mode is on.

3.2. Part I - Video for Linux API 1147

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL No audio inputs combine with the current video input, or the number of the selected
audio input is out of bounds or it does not combine.

3.2.7.23 ioctl VIDIOC_G_AUDOUT, VIDIOC_S_AUDOUT

Name

VIDIOC_G_AUDOUT - VIDIOC_S_AUDOUT - Query or select the current audio output

Synopsis

VIDIOC_G_AUDOUT

int ioctl(int fd, VIDIOC_G_AUDOUT, struct v4l2_audioout *argp)

VIDIOC_S_AUDOUT

int ioctl(int fd, VIDIOC_S_AUDOUT, const struct v4l2_audioout *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_audioout.

Description

To query the current audio output applications zero out the reserved array of a struct
v4l2_audioout and call the VIDIOC_G_AUDOUT ioctl with a pointer to this structure. Drivers
fill the rest of the structure or return an EINVAL error code when the device has no audio in-
puts, or none which combine with the current video output.

Audio outputs have no writable properties. Nevertheless, to select the current audio output
applications can initialize the index field and reserved array (which in the future may contain
writable properties) of a struct v4l2_audioout structure and call the VIDIOC_S_AUDOUT ioctl.
Drivers switch to the requested output or return the EINVAL error code when the index is out
of bounds. This is a write-only ioctl, it does not return the current audio output attributes as
VIDIOC_G_AUDOUT does.

Note: Connectors on a TV card to loop back the received audio signal to a sound card are not
audio outputs in this sense.

v4l2_audioout

1148 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 184: struct v4l2_audioout
__u32 index Identifies the audio output, set by the driver

or application.
__u8 name[32] Name of the audio output, a NUL-

terminated ASCII string, for example:
“Line Out”. This information is intended for
the user, preferably the connector label on
the device itself.

__u32 capability Audio capability flags, none defined yet.
Drivers must set this field to zero.

__u32 mode Audio mode, none defined yet. Drivers and
applications (on VIDIOC_S_AUDOUT) must set
this field to zero.

__u32 reserved[2] Reserved for future extensions. Drivers and
applications must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL No audio outputs combine with the current video output, or the number of the selected
audio output is out of bounds or it does not combine.

3.2.7.24 ioctl VIDIOC_G_CROP, VIDIOC_S_CROP

Name

VIDIOC_G_CROP - VIDIOC_S_CROP - Get or set the current cropping rectangle

Synopsis

VIDIOC_G_CROP

int ioctl(int fd, VIDIOC_G_CROP, struct v4l2_crop *argp)

VIDIOC_S_CROP

int ioctl(int fd, VIDIOC_S_CROP, const struct v4l2_crop *argp)

3.2. Part I - Video for Linux API 1149

Linux Media Documentation

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_crop.

Description

To query the cropping rectangle size and position applications set the type field of a struct
v4l2_crop structure to the respective buffer (stream) type and call the VIDIOC_G_CROP ioctl
with a pointer to this structure. The driver fills the rest of the structure or returns the EINVAL
error code if cropping is not supported.

To change the cropping rectangle applications initialize the type and struct v4l2_rect sub-
structure named c of a v4l2_crop structure and call the VIDIOC_S_CROP ioctl with a pointer to
this structure.

The driver first adjusts the requested dimensions against hardware limits, i. e. the bounds
given by the capture/output window, and it rounds to the closest possible values of horizontal
and vertical offset, width and height. In particular the driver must round the vertical offset of
the cropping rectangle to frame lines modulo two, such that the field order cannot be confused.

Second the driver adjusts the image size (the opposite rectangle of the scaling process, source
or target depending on the data direction) to the closest size possible while maintaining the
current horizontal and vertical scaling factor.

Finally the driver programs the hardware with the actual cropping and image parameters.
VIDIOC_S_CROP is a write-only ioctl, it does not return the actual parameters. To query
them applications must call VIDIOC_G_CROP and ioctl VIDIOC_G_FMT, VIDIOC_S_FMT, VID-
IOC_TRY_FMT. When the parameters are unsuitable the application may modify the cropping
or image parameters and repeat the cycle until satisfactory parameters have been negotiated.

When cropping is not supported then no parameters are changed and VIDIOC_S_CROP returns
the EINVAL error code.

v4l2_crop

Table 185: struct v4l2_crop
__u32 type Type of the data stream, set by the ap-

plication. Only these types are valid
here: V4L2_BUF_TYPE_VIDEO_CAPTURE,
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE,
V4L2_BUF_TYPE_VIDEO_OUTPUT,
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
and V4L2_BUF_TYPE_VIDEO_OVERLAY. See
v4l2_buf_type and the note below.

struct v4l2_rect c Cropping rectangle. The same co-ordinate
system as for struct v4l2_cropcap bounds
is used.

Note: Unfortunately in the case of multiplanar buffer types
(V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE and V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) this API

1150 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

was messed up with regards to how the v4l2_crop type field should be filled in. Some drivers
only accepted the _MPLANE buffer type while other drivers only accepted a non-multiplanar
buffer type (i.e. without the _MPLANE at the end).

Starting with kernel 4.13 both variations are allowed.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

ENODATA Cropping is not supported for this input or output.

3.2.7.25 ioctl VIDIOC_G_CTRL, VIDIOC_S_CTRL

Name

VIDIOC_G_CTRL - VIDIOC_S_CTRL - Get or set the value of a control

Synopsis

VIDIOC_G_CTRL

int ioctl(int fd, VIDIOC_G_CTRL, struct v4l2_control *argp)

VIDIOC_S_CTRL

int ioctl(int fd, VIDIOC_S_CTRL, struct v4l2_control *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_control.

Description

To get the current value of a control applications initialize the id field of a struct v4l2_control
and call the VIDIOC_G_CTRL ioctl with a pointer to this structure. To change the value of a
control applications initialize the id and value fields of a struct v4l2_control and call the
VIDIOC_S_CTRL ioctl.

When the id is invalid drivers return an EINVAL error code. When the value is out of bounds
drivers can choose to take the closest valid value or return an ERANGE error code, whatever
seems more appropriate. However, VIDIOC_S_CTRL is a write-only ioctl, it does not return the
actual new value. If the value is inappropriate for the control (e.g. if it refers to an unsupported
menu index of a menu control), then EINVAL error code is returned as well.

These ioctls work only with user controls. For other control classes the VIDIOC_G_EXT_CTRLS,
VIDIOC_S_EXT_CTRLS or VIDIOC_TRY_EXT_CTRLS must be used.

3.2. Part I - Video for Linux API 1151

Linux Media Documentation

v4l2_control

Table 186: struct v4l2_control
__u32 id Identifies the control, set by the application.
__s32 value New value or current value.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_control id is invalid or the value is inappropriate for the given con-
trol (i.e. if a menu item is selected that is not supported by the driver according to VID-
IOC_QUERYMENU).

ERANGE The struct v4l2_control value is out of bounds.

EBUSY The control is temporarily not changeable, possibly because another applications took
over control of the device function this control belongs to.

EACCES Attempt to set a read-only control or to get a write-only control.
Or if there is an attempt to set an inactive control and the driver is not capable of caching
the new value until the control is active again.

3.2.7.26 ioctl VIDIOC_G_DV_TIMINGS, VIDIOC_S_DV_TIMINGS

Name

VIDIOC_G_DV_TIMINGS - VIDIOC_S_DV_TIMINGS - VIDIOC_SUBDEV_G_DV_TIMINGS - VID-
IOC_SUBDEV_S_DV_TIMINGS - Get or set DV timings for input or output

Synopsis

VIDIOC_G_DV_TIMINGS

int ioctl(int fd, VIDIOC_G_DV_TIMINGS, struct v4l2_dv_timings *argp)

VIDIOC_S_DV_TIMINGS

int ioctl(int fd, VIDIOC_S_DV_TIMINGS, struct v4l2_dv_timings *argp)

VIDIOC_SUBDEV_G_DV_TIMINGS

int ioctl(int fd, VIDIOC_SUBDEV_G_DV_TIMINGS, struct v4l2_dv_timings *argp)

VIDIOC_SUBDEV_S_DV_TIMINGS

int ioctl(int fd, VIDIOC_SUBDEV_S_DV_TIMINGS, struct v4l2_dv_timings *argp)

1152 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_dv_timings.

Description

To set DV timings for the input or output, applications use the VIDIOC_S_DV_TIMINGS ioctl
and to get the current timings, applications use the VIDIOC_G_DV_TIMINGS ioctl. The detailed
timing information is filled in using the structure struct v4l2_dv_timings. These ioctls take a
pointer to the struct v4l2_dv_timings structure as argument. If the ioctl is not supported or
the timing values are not correct, the driver returns EINVAL error code.

Calling VIDIOC_SUBDEV_S_DV_TIMINGS on a subdev device node that has been registered in
read-only mode is not allowed. An error is returned and the errno variable is set to -EPERM.

The linux/v4l2-dv-timings.h header can be used to get the timings of the formats in the CEA-
861-E andVESADMT standards. If the current input or output does not support DV timings (e.g.
if ioctl VIDIOC_ENUMINPUT does not set the V4L2_IN_CAP_DV_TIMINGS flag), then ENODATA
error code is returned.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL This ioctl is not supported, or the VIDIOC_S_DV_TIMINGS parameter was unsuitable.

ENODATA Digital video timings are not supported for this input or output.

EBUSY The device is busy and therefore can not change the timings.
EPERM VIDIOC_SUBDEV_S_DV_TIMINGS has been called on a read-only subdevice.

v4l2_bt_timings

Table 187: struct v4l2_bt_timings
__u32 width Width of the active video in pixels.
__u32 height Height of the active video frame in lines. So

for interlaced formats the height of the ac-
tive video in each field is height/2.

__u32 interlaced Progressive (V4L2_DV_PROGRESSIVE) or in-
terlaced (V4L2_DV_INTERLACED).

__u32 polarities This is a bit mask that defines
polarities of sync signals. bit 0
(V4L2_DV_VSYNC_POS_POL) is for
vertical sync polarity and bit 1
(V4L2_DV_HSYNC_POS_POL) is for hori-
zontal sync polarity. If the bit is set (1) it is
positive polarity and if is cleared (0), it is
negative polarity.

Continued on next page

3.2. Part I - Video for Linux API 1153

Linux Media Documentation

Table 187 – continued from previous page
__u64 pixelclock Pixel clock in Hz. Ex. 74.25MHz-

>74250000
__u32 hfrontporch Horizontal front porch in pixels
__u32 hsync Horizontal sync length in pixels
__u32 hbackporch Horizontal back porch in pixels
__u32 vfrontporch Vertical front porch in lines. For interlaced

formats this refers to the odd field (aka field
1).

__u32 vsync Vertical sync length in lines. For interlaced
formats this refers to the odd field (aka field
1).

__u32 vbackporch Vertical back porch in lines. For interlaced
formats this refers to the odd field (aka field
1).

__u32 il_vfrontporch Vertical front porch in lines for the even
field (aka field 2) of interlaced field formats.
Must be 0 for progressive formats.

__u32 il_vsync Vertical sync length in lines for the even
field (aka field 2) of interlaced field formats.
Must be 0 for progressive formats.

__u32 il_vbackporch Vertical back porch in lines for the even
field (aka field 2) of interlaced field formats.
Must be 0 for progressive formats.

__u32 standards The video standard(s) this format belongs
to. This will be filled in by the driver. Appli-
cations must set this to 0. SeeDV BT Timing
standards for a list of standards.

__u32 flags Several flags giving more information about
the format. See DV BT Timing flags for a
description of the flags.

struct v4l2_fract picture_aspect The picture aspect if the pixels
are not square. Only valid if the
V4L2_DV_FL_HAS_PICTURE_ASPECT flag
is set.

__u8 cea861_vic The Video Identification Code according to
the CEA-861 standard. Only valid if the
V4L2_DV_FL_HAS_CEA861_VIC flag is set.

__u8 hdmi_vic The Video Identification Code according
to the HDMI standard. Only valid if the
V4L2_DV_FL_HAS_HDMI_VIC flag is set.

__u8 reserved[46] Reserved for future extensions. Drivers and
applications must set the array to zero.

v4l2_dv_timings

1154 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 188: struct v4l2_dv_timings
__u32 type Type of DV timings as listed in DV

Timing types.
union { (anonymous)
struct
v4l2_bt_timings

bt Timings defined by BT.656/1120
specifications

__u32 reserved[32]
}

Table 189: DV Timing types
Timing type value Description

V4L2_DV_BT_656_1120 0 BT.656/1120 timings

Table 190: DV BT Timing standards
Timing standard Description
V4L2_DV_BT_STD_CEA861 The timings follow the CEA-861 Digital TV Profile stan-

dard
V4L2_DV_BT_STD_DMT The timings follow the VESA Discrete Monitor Timings

standard
V4L2_DV_BT_STD_CVT The timings follow the VESA Coordinated Video Timings

standard
V4L2_DV_BT_STD_GTF The timings follow the VESA Generalized Timings For-

mula standard
V4L2_DV_BT_STD_SDI The timings follow the SDI Timings standard. There are

no horizontal syncs/porches at all in this format. Total
blanking timings must be set in hsync or vsync fields only.

Table 191: DV BT Timing flags
Flag Description
V4L2_DV_FL_REDUCED_BLANKING CVT/GTF specific: the timings use reduced blank-

ing (CVT) or the ‘Secondary GTF’ curve (GTF). In
both cases the horizontal and/or vertical blanking
intervals are reduced, allowing a higher resolution
over the same bandwidth. This is a read-only flag,
applications must not set this.

V4L2_DV_FL_CAN_REDUCE_FPS CEA-861 specific: set for CEA-861 formats with
a framerate that is a multiple of six. These for-
mats can be optionally played at 1 / 1.001 speed
to be compatible with 60 Hz based standards such
as NTSC and PAL-M that use a framerate of 29.97
frames per second. If the transmitter can’t gen-
erate such frequencies, then the flag will also be
cleared. This is a read-only flag, applications must
not set this.

Continued on next page

3.2. Part I - Video for Linux API 1155

Linux Media Documentation

Table 191 – continued from previous page
V4L2_DV_FL_REDUCED_FPS CEA-861 specific: only valid for video trans-

mitters or video receivers that have the
V4L2_DV_FL_CAN_DETECT_REDUCED_FPS set. This
flag is cleared otherwise. It is also only valid for
formats with the V4L2_DV_FL_CAN_REDUCE_FPS
flag set, for other formats the flag will be cleared
by the driver.
If the application sets this flag for a transmitter,
then the pixelclock used to set up the transmitter is
divided by 1.001 to make it compatible with NTSC
framerates. If the transmitter can’t generate such
frequencies, then the flag will be cleared.
If a video receiver detects that the format uses a
reduced framerate, then it will set this flag to sig-
nal this to the application.

V4L2_DV_FL_HALF_LINE Specific to interlaced formats: if set, then the ver-
tical frontporch of field 1 (aka the odd field) is re-
ally one half-line longer and the vertical backporch
of field 2 (aka the even field) is really one half-line
shorter, so each field has exactly the same number
of half-lines. Whether half-lines can be detected or
used depends on the hardware.

V4L2_DV_FL_IS_CE_VIDEO If set, then this is a Consumer Electronics (CE)
video format. Such formats differ from other for-
mats (commonly called IT formats) in that if R’G’B’
encoding is used then by default the R’G’B’ values
use limited range (i.e. 16-235) as opposed to full
range (i.e. 0-255). All formats defined in CEA-861
except for the 640x480p59.94 format are CE for-
mats.

V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE Some formats like SMPTE-125M have an inter-
laced signal with a odd total height. For these for-
mats, if this flag is set, the first field has the extra
line. Else, it is the second field.

V4L2_DV_FL_HAS_PICTURE_ASPECT If set, then the picture_aspect field is valid. Other-
wise assume that the pixels are square, so the pic-
ture aspect ratio is the same as the width to height
ratio.

V4L2_DV_FL_HAS_CEA861_VIC If set, then the cea861_vic field is valid and con-
tains the Video Identification Code as per the CEA-
861 standard.

V4L2_DV_FL_HAS_HDMI_VIC If set, then the hdmi_vic field is valid and contains
the Video Identification Code as per the HDMI
standard (HDMI Vendor Specific InfoFrame).

Continued on next page

1156 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 191 – continued from previous page
V4L2_DV_FL_CAN_DETECT_REDUCED_FPS CEA-861 specific: only valid for video receivers,

the flag is cleared by transmitters. If set, then
the hardware can detect the difference between
regular framerates and framerates reduced by
1000/1001. E.g.: 60 vs 59.94 Hz, 30 vs 29.97 Hz
or 24 vs 23.976 Hz.

3.2.7.27 ioctl VIDIOC_G_EDID, VIDIOC_S_EDID, VIDIOC_SUBDEV_G_EDID, VID-
IOC_SUBDEV_S_EDID

Name

VIDIOC_G_EDID - VIDIOC_S_EDID - VIDIOC_SUBDEV_G_EDID - VIDIOC_SUBDEV_S_EDID -
Get or set the EDID of a video receiver/transmitter

Synopsis

VIDIOC_G_EDID

int ioctl(int fd, VIDIOC_G_EDID, struct v4l2_edid *argp)

VIDIOC_S_EDID

int ioctl(int fd, VIDIOC_S_EDID, struct v4l2_edid *argp)

VIDIOC_SUBDEV_G_EDID

int ioctl(int fd, VIDIOC_SUBDEV_G_EDID, struct v4l2_edid *argp)

VIDIOC_SUBDEV_S_EDID

int ioctl(int fd, VIDIOC_SUBDEV_S_EDID, struct v4l2_edid *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_edid.

Description

These ioctls can be used to get or set an EDID associated with an input from a receiver or an
output of a transmitter device. They can be used with subdevice nodes (/dev/v4l-subdevX) or
with video nodes (/dev/videoX).

When used with video nodes the pad field represents the input (for video capture devices) or
output (for video output devices) index as is returned by ioctl VIDIOC_ENUMINPUT and ioctl
VIDIOC_ENUMOUTPUT respectively. When used with subdevice nodes the pad field represents
the input or output pad of the subdevice. If there is no EDID support for the given pad value,
then the EINVAL error code will be returned.

3.2. Part I - Video for Linux API 1157

Linux Media Documentation

To get the EDID data the application has to fill in the pad, start_block, blocks and edid fields,
zero the reserved array and call VIDIOC_G_EDID. The current EDID from block start_block
and of size blocks will be placed in the memory edid points to. The edid pointer must point to
memory at least blocks * 128 bytes large (the size of one block is 128 bytes).

If there are fewer blocks than specified, then the driver will set blocks to the actual number of
blocks. If there are no EDID blocks available at all, then the error code ENODATA is set.

If blocks have to be retrieved from the sink, then this call will block until they have been read.

If start_block and blocks are both set to 0 when VIDIOC_G_EDID is called, then the driver
will set blocks to the total number of available EDID blocks and it will return 0 without copying
any data. This is an easy way to discover how many EDID blocks there are.

Note: If there are no EDID blocks available at all, then the driver will set blocks to 0 and it
returns 0.

To set the EDID blocks of a receiver the application has to fill in the pad, blocks and edid fields,
set start_block to 0 and zero the reserved array. It is not possible to set part of an EDID, it
is always all or nothing. Setting the EDID data is only valid for receivers as it makes no sense
for a transmitter.

The driver assumes that the full EDID is passed in. If there are more EDID blocks than the
hardware can handle then the EDID is not written, but instead the error code E2BIG is set and
blocks is set to the maximum that the hardware supports. If start_block is any value other
than 0 then the error code EINVAL is set.

To disable an EDID you set blocks to 0. Depending on the hardware this will drive the hotplug
pin low and/or block the source from reading the EDID data in some way. In any case, the end
result is the same: the EDID is no longer available.

v4l2_edid

Table 192: struct v4l2_edid
__u32 pad Pad for which to get/set the EDID blocks.

When used with a video device node the pad
represents the input or output index as re-
turned by ioctl VIDIOC_ENUMINPUT and
ioctl VIDIOC_ENUMOUTPUT respectively.

__u32 start_block Read the EDID from starting with this block.
Must be 0 when setting the EDID.

__u32 blocks The number of blocks to get or set. Must be
less or equal to 256 (the maximum number
of blocks as defined by the standard). When
you set the EDID and blocks is 0, then the
EDID is disabled or erased.

__u32 reserved[5] Reserved for future extensions. Applica-
tions and drivers must set the array to zero.

__u8 * edid Pointer to memory that contains the EDID.
The minimum size is blocks * 128.

1158 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

ENODATA The EDID data is not available.

E2BIG The EDID data you provided is more than the hardware can handle.

3.2.7.28 ioctl VIDIOC_G_ENC_INDEX

Name

VIDIOC_G_ENC_INDEX - Get meta data about a compressed video stream

Synopsis

VIDIOC_G_ENC_INDEX

int ioctl(int fd, VIDIOC_G_ENC_INDEX, struct v4l2_enc_idx *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_enc_idx.

Description

The VIDIOC_G_ENC_INDEX ioctl provides meta data about a compressed video stream the
same or another application currently reads from the driver, which is useful for random access
into the stream without decoding it.

To read the data applications must call VIDIOC_G_ENC_INDEX with a pointer to a struct
v4l2_enc_idx. On success the driver fills the entry array, stores the number of elements
written in the entries field, and initializes the entries_cap field.

Each element of the entry array contains meta data about one picture. A VID-
IOC_G_ENC_INDEX call reads up to V4L2_ENC_IDX_ENTRIES entries from a driver buffer,
which can hold up to entries_cap entries. This number can be lower or higher than
V4L2_ENC_IDX_ENTRIES, but not zero. When the application fails to read the meta data in time
the oldest entries will be lost. When the buffer is empty or no capturing/encoding is in progress,
entries will be zero.

Currently this ioctl is only defined for MPEG-2 program streams and video elementary streams.

v4l2_enc_idx

3.2. Part I - Video for Linux API 1159

Linux Media Documentation

Table 193: struct v4l2_enc_idx
__u32 entries The number of entries the driver

stored in the entry array.
__u32 entries_cap The number of entries the driver

can buffer. Must be greater than
zero.

__u32 reserved[4] Reserved for future extensions.
Drivers must set the array to zero.

struct
v4l2_enc_idx_entry

entry[V4L2_ENC_IDX_ENTRIES] Meta data about a compressed
video stream. Each element of the
array corresponds to one picture,
sorted in ascending order by their
offset.

v4l2_enc_idx_entry

Table 194: struct v4l2_enc_idx_entry
__u64 offset The offset in bytes from the beginning of the

compressed video stream to the beginning
of this picture, that is a PES packet header
as defined in ISO 13818-1 or a picture
header as defined in ISO 13818-2. When the
encoder is stopped, the driver resets the off-
set to zero.

__u64 pts The 33 bit Presentation Time Stamp of this
picture as defined in ISO 13818-1.

__u32 length The length of this picture in bytes.
__u32 flags Flags containing the coding type of this pic-

ture, see Index Entry Flags.
__u32 reserved[2] Reserved for future extensions. Drivers

must set the array to zero.

Table 195: Index Entry Flags
V4L2_ENC_IDX_FRAME_I 0x00 This is an Intra-coded picture.
V4L2_ENC_IDX_FRAME_P 0x01 This is a Predictive-coded picture.
V4L2_ENC_IDX_FRAME_B 0x02 This is a Bidirectionally predictive-coded

picture.
V4L2_ENC_IDX_FRAME_MASK 0x0F AND the flags field with this mask to obtain

the picture coding type.

1160 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

3.2.7.29 ioctl VIDIOC_G_EXT_CTRLS, VIDIOC_S_EXT_CTRLS, VIDIOC_TRY_EXT_CTRLS

Name

VIDIOC_G_EXT_CTRLS - VIDIOC_S_EXT_CTRLS - VIDIOC_TRY_EXT_CTRLS - Get or set the
value of several controls, try control values

Synopsis

VIDIOC_G_EXT_CTRLS

int ioctl(int fd, VIDIOC_G_EXT_CTRLS, struct v4l2_ext_controls *argp)

VIDIOC_S_EXT_CTRLS

int ioctl(int fd, VIDIOC_S_EXT_CTRLS, struct v4l2_ext_controls *argp)

VIDIOC_TRY_EXT_CTRLS

int ioctl(int fd, VIDIOC_TRY_EXT_CTRLS, struct v4l2_ext_controls *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_ext_controls.

Description

These ioctls allow the caller to get or set multiple controls atomically. Control IDs are grouped
into control classes (see Control classes) and all controls in the control array must belong to
the same control class.

Applications must always fill in the count, which, controls and reserved fields of struct
v4l2_ext_controls, and initialize the struct v4l2_ext_control array pointed to by the
controls fields.

To get the current value of a set of controls applications initialize the id, size and
reserved2 fields of each struct v4l2_ext_control and call the VIDIOC_G_EXT_CTRLS
ioctl. String controls must also set the string field. Controls of compound types
(V4L2_CTRL_FLAG_HAS_PAYLOAD is set) must set the ptr field.

If the size is too small to receive the control result (only relevant for pointer-type controls like
strings), then the driver will set size to a valid value and return an ENOSPC error code. You
should re-allocate the memory to this new size and try again. For the string type it is possible
that the same issue occurs again if the string has grown in the meantime. It is recommended to

3.2. Part I - Video for Linux API 1161

Linux Media Documentation

call ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU first
and use maximum+1 as the new size value. It is guaranteed that that is sufficient memory.

N-dimensional arrays are set and retrieved row-by-row. You cannot set a partial array, all el-
ements have to be set or retrieved. The total size is calculated as elems * elem_size. These
values can be obtained by calling VIDIOC_QUERY_EXT_CTRL.

To change the value of a set of controls applications initialize the id, size, reserved2
and value/value64/string/ptr fields of each struct v4l2_ext_control and call the VID-
IOC_S_EXT_CTRLS ioctl. The controls will only be set if all control values are valid.

To check if a set of controls have correct values applications initialize the id, size, reserved2
and value/value64/string/ptr fields of each struct v4l2_ext_control and call the VID-
IOC_TRY_EXT_CTRLS ioctl. It is up to the driver whether wrong values are automatically ad-
justed to a valid value or if an error is returned.

When the id or which is invalid drivers return an EINVAL error code. When the value is out of
bounds drivers can choose to take the closest valid value or return an ERANGE error code, what-
ever seems more appropriate. In the first case the new value is set in struct v4l2_ext_control.
If the new control value is inappropriate (e.g. the given menu index is not supported by the
menu control), then this will also result in an EINVAL error code error.

If request_fd is set to a not-yet-queued request file descriptor and which is set to
V4L2_CTRL_WHICH_REQUEST_VAL, then the controls are not applied immediately when calling
VIDIOC_S_EXT_CTRLS, but instead are applied by the driver for the buffer associated with the
same request. If the device does not support requests, then EACCESwill be returned. If requests
are supported but an invalid request file descriptor is given, then EINVAL will be returned.

An attempt to call VIDIOC_S_EXT_CTRLS for a request that has already been queued will result
in an EBUSY error.

If request_fd is specified and which is set to V4L2_CTRL_WHICH_REQUEST_VAL during a call to
VIDIOC_G_EXT_CTRLS, then it will return the values of the controls at the time of request
completion. If the request is not yet completed, then this will result in an EACCES error.

The driver will only set/get these controls if all control values are correct. This prevents the
situation where only some of the controls were set/get. Only low-level errors (e. g. a failed i2c
command) can still cause this situation.

v4l2_ext_control

Table 196: struct v4l2_ext_control
__u32 id Identifies the control, set by the applica-

tion.
__u32 size The total size in bytes of the payload of

this control.
The size field is normally 0, but for pointer controls this should be set to the size of the memory that contains
the payload or that will receive the payload. If VIDIOC_G_EXT_CTRLS finds that this value is less than is
required to store the payload result, then it is set to a value large enough to store the payload result and
ENOSPC is returned.

Note: For string controls, this size field should not be confused with the length of the string. This field refers
to the size of the memory that contains the string. The actual length of the string may well be much smaller.

__u32 reserved2[1] Reserved for future extensions. Drivers
and applications must set the array to
zero.

union { (anonymous)
Continued on next page

1162 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 196 – continued from previous page
__s32 value New value or current value. Valid

if this control is not of type
V4L2_CTRL_TYPE_INTEGER64 and
V4L2_CTRL_FLAG_HAS_PAYLOAD is not
set.

__s64 value64 New value or current value.
Valid if this control is of type
V4L2_CTRL_TYPE_INTEGER64 and
V4L2_CTRL_FLAG_HAS_PAYLOAD is not
set.

char * string A pointer to a string. Valid if this control
is of type V4L2_CTRL_TYPE_STRING.

__u8 * p_u8 A pointer to a matrix control of unsigned
8-bit values. Valid if this control is of type
V4L2_CTRL_TYPE_U8.

__u16 * p_u16 A pointer to a matrix control of unsigned
16-bit values. Valid if this control is of
type V4L2_CTRL_TYPE_U16.

__u32 * p_u32 A pointer to a matrix control of unsigned
32-bit values. Valid if this control is of
type V4L2_CTRL_TYPE_U32.

struct v4l2_area * p_area A pointer to a struct v4l2_area.
Valid if this control is of type
V4L2_CTRL_TYPE_AREA.

struct v4l2_ctrl_h264_sps * p_h264_sps A pointer to a struct
v4l2_ctrl_h264_sps. Valid
if this control is of type
V4L2_CTRL_TYPE_H264_SPS.

struct v4l2_ctrl_h264_pps * p_h264_pps A pointer to a struct
v4l2_ctrl_h264_pps. Valid
if this control is of type
V4L2_CTRL_TYPE_H264_PPS.

struct v4l2_ctrl_h264_scaling_matrix * p_h264_scaling_matrix A pointer to a struct
v4l2_ctrl_h264_scaling_matrix.
Valid if this control is of type
V4L2_CTRL_TYPE_H264_SCALING_MATRIX.

struct v4l2_ctrl_h264_pred_weights * p_h264_pred_weights A pointer to a struct
v4l2_ctrl_h264_pred_weights.
Valid if this control is of type
V4L2_CTRL_TYPE_H264_PRED_WEIGHTS.

struct v4l2_ctrl_h264_slice_params * p_h264_slice_params A pointer to a struct
v4l2_ctrl_h264_slice_params.
Valid if this control is of type
V4L2_CTRL_TYPE_H264_SLICE_PARAMS.

struct v4l2_ctrl_h264_decode_params * p_h264_decode_params A pointer to a struct
v4l2_ctrl_h264_decode_params.
Valid if this control is of type
V4L2_CTRL_TYPE_H264_DECODE_PARAMS.

struct v4l2_ctrl_fwht_params * p_fwht_params A pointer to a struct
v4l2_ctrl_fwht_params. Valid
if this control is of type
V4L2_CTRL_TYPE_FWHT_PARAMS.

struct v4l2_ctrl_vp8_frame * p_vp8_frame A pointer to a struct
v4l2_ctrl_vp8_frame. Valid
if this control is of type
V4L2_CTRL_TYPE_VP8_FRAME.

struct v4l2_ctrl_mpeg2_sequence * p_mpeg2_sequence A pointer to a struct
v4l2_ctrl_mpeg2_sequence.
Valid if this control is of type
V4L2_CTRL_TYPE_MPEG2_SEQUENCE.

Continued on next page

3.2. Part I - Video for Linux API 1163

Linux Media Documentation

Table 196 – continued from previous page
struct v4l2_ctrl_mpeg2_picture * p_mpeg2_picture A pointer to a struct

v4l2_ctrl_mpeg2_picture.
Valid if this control is of type
V4L2_CTRL_TYPE_MPEG2_PICTURE.

struct v4l2_ctrl_mpeg2_quantisation * p_mpeg2_quantisation A pointer to a struct
v4l2_ctrl_mpeg2_quantisation.
Valid if this control is of type
V4L2_CTRL_TYPE_MPEG2_QUANTISATION.

struct v4l2_ctrl_vp9_compressed_hdr * p_vp9_compressed_hdr_probsA pointer to a struct
v4l2_ctrl_vp9_compressed_hdr.
Valid if this control is of type
V4L2_CTRL_TYPE_VP9_COMPRESSED_HDR.

struct v4l2_ctrl_vp9_frame * p_vp9_frame A pointer to a struct
v4l2_ctrl_vp9_frame. Valid
if this control is of type
V4L2_CTRL_TYPE_VP9_FRAME.

struct v4l2_ctrl_hdr10_cll_info * p_hdr10_cll A pointer to a struct
v4l2_ctrl_hdr10_cll_info.
Valid if this control is of type
V4L2_CTRL_TYPE_HDR10_CLL_INFO.

struct v4l2_ctrl_hdr10_mastering_display
*

p_hdr10_mastering A pointer to a struct
v4l2_ctrl_hdr10_mastering_display.
Valid if this control is of type
V4L2_CTRL_TYPE_HDR10_MASTERING_DISPLAY.

void * ptr A pointer to a compound type which
can be an N-dimensional array and/or
a compound type (the control’s type is
>= V4L2_CTRL_COMPOUND_TYPES). Valid
if V4L2_CTRL_FLAG_HAS_PAYLOAD is set
for this control.

}

v4l2_ext_controls

Table 197: struct v4l2_ext_controls
union { (anonymous)
__u32 which Which value of the control to get/set/try.
V4L2_CTRL_WHICH_CUR_VAL will return the current value of the control,
V4L2_CTRL_WHICH_DEF_VAL will return the default value of the control and
V4L2_CTRL_WHICH_REQUEST_VAL indicates that these controls have to be retrieved from
a request or tried/set for a request. In the latter case the request_fd field contains the
file descriptor of the request that should be used. If the device does not support requests,
then EACCES will be returned.
When using V4L2_CTRL_WHICH_DEF_VAL be aware that you can only get the default value of
the control, you cannot set or try it.
For backwards compatibility you can also use a control class here (see Control classes).
In that case all controls have to belong to that control class. This usage is deprecated,
instead just use V4L2_CTRL_WHICH_CUR_VAL. There are some very old drivers that do not
yet support V4L2_CTRL_WHICH_CUR_VAL and that require a control class here. You can
test for such drivers by setting which to V4L2_CTRL_WHICH_CUR_VAL and calling VID-
IOC_TRY_EXT_CTRLS with a count of 0. If that fails, then the driver does not support
V4L2_CTRL_WHICH_CUR_VAL.
__u32 ctrl_class Deprecated name kept for backwards compatibility.

Use which instead.
Continued on next page

1164 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 197 – continued from previous page
}
__u32 count The number of controls in the controls array. May also

be zero.
__u32 error_idx Index of the failing control. Set by the driver in case of

an error.
If the error is associated with a particular control, then error_idx is set to the index of
that control. If the error is not related to a specific control, or the validation step failed
(see below), then error_idx is set to count. The value is undefined if the ioctl returned 0
(success).
Before controls are read from/written to hardware a validation step takes place: this checks
if all controls in the list are valid controls, if no attempt is made to write to a read-only con-
trol or read from a write-only control, and any other up-front checks that can be done
without accessing the hardware. The exact validations done during this step are driver de-
pendent since some checks might require hardware access for some devices, thus making
it impossible to do those checks up-front. However, drivers should make a best-effort to do
as many up-front checks as possible.
This check is done to avoid leaving the hardware in an inconsistent state due to easy-to-
avoid problems. But it leads to another problem: the application needs to know whether
an error came from the validation step (meaning that the hardware was not touched) or
from an error during the actual reading from/writing to hardware.
The, in hindsight quite poor, solution for that is to set error_idx to count if the validation
failed. This has the unfortunate side-effect that it is not possible to see which control failed
the validation. If the validation was successful and the error happened while accessing the
hardware, then error_idx is less than count and only the controls up to error_idx-1were
read or written correctly, and the state of the remaining controls is undefined.
Since VIDIOC_TRY_EXT_CTRLS does not access hardware there is also no need to handle
the validation step in this special way, so error_idxwill just be set to the control that failed
the validation step instead of to count. This means that if VIDIOC_S_EXT_CTRLS fails with
error_idx set to count, then you can call VIDIOC_TRY_EXT_CTRLS to try to discover the
actual control that failed the validation step. Unfortunately, there is no TRY equivalent for
VIDIOC_G_EXT_CTRLS.
__s32 request_fd File descriptor of the request to be used by

this operation. Only valid if which is set to
V4L2_CTRL_WHICH_REQUEST_VAL. If the device does
not support requests, then EACCES will be returned.
If requests are supported but an invalid request file
descriptor is given, then EINVAL will be returned.

__u32 reserved[1] Reserved for future extensions.
Drivers and applications must set the array to zero.

struct
v4l2_ext_control
*

controls Pointer to an array of count v4l2_ext_control structures.
Ignored if count equals zero.

3.2. Part I - Video for Linux API 1165

Linux Media Documentation

Table 198: Control classes
V4L2_CTRL_CLASS_USER 0x980000 The class containing user controls. These

controls are described in User Controls.
All controls that can be set using the VID-
IOC_S_CTRL and VIDIOC_G_CTRL ioctl
belong to this class.

V4L2_CTRL_CLASS_CODEC 0x990000 The class containing stateful codec con-
trols. These controls are described in
Codec Control Reference.

V4L2_CTRL_CLASS_CAMERA 0x9a0000 The class containing camera controls.
These controls are described in Camera
Control Reference.

V4L2_CTRL_CLASS_FM_TX 0x9b0000 The class containing FM Transmitter (FM
TX) controls. These controls are de-
scribed in FM Transmitter Control Refer-
ence.

V4L2_CTRL_CLASS_FLASH 0x9c0000 The class containing flash device con-
trols. These controls are described in
Flash Control Reference.

V4L2_CTRL_CLASS_JPEG 0x9d0000 The class containing JPEG compression
controls. These controls are described in
JPEG Control Reference.

V4L2_CTRL_CLASS_IMAGE_SOURCE 0x9e0000 The class containing image source con-
trols. These controls are described in Im-
age Source Control Reference.

V4L2_CTRL_CLASS_IMAGE_PROC 0x9f0000 The class containing image processing
controls. These controls are described in
Image Process Control Reference.

V4L2_CTRL_CLASS_FM_RX 0xa10000 The class containing FM Receiver (FM
RX) controls. These controls are de-
scribed in FM Receiver Control Refer-
ence.

V4L2_CTRL_CLASS_RF_TUNER 0xa20000 The class containing RF tuner controls.
These controls are described in RF Tuner
Control Reference.

V4L2_CTRL_CLASS_DETECT 0xa30000 The class containing motion or object de-
tection controls. These controls are de-
scribed in Detect Control Reference.

V4L2_CTRL_CLASS_CODEC_STATELESS 0xa40000 The class containing stateless codec con-
trols. These controls are described in
Stateless Codec Control Reference.

V4L2_CTRL_CLASS_COLORIMETRY 0xa50000 The class containing colorimetry con-
trols. These controls are described in
Colorimetry Control Reference.

1166 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_ext_control id is invalid, or the struct v4l2_ext_controls
which is invalid, or the struct v4l2_ext_control value was inappropriate (e.g.
the given menu index is not supported by the driver), or the which field was
set to V4L2_CTRL_WHICH_REQUEST_VAL but the given request_fd was invalid or
V4L2_CTRL_WHICH_REQUEST_VAL is not supported by the kernel. This error code is also re-
turned by the VIDIOC_S_EXT_CTRLS and VIDIOC_TRY_EXT_CTRLS ioctls if two or more
control values are in conflict.

ERANGE The struct v4l2_ext_control value is out of bounds.

EBUSY The control is temporarily not changeable, possibly because another applications took
over control of the device function this control belongs to, or (if the which field was set to
V4L2_CTRL_WHICH_REQUEST_VAL) the request was queued but not yet completed.

ENOSPC The space reserved for the control’s payload is insufficient. The field size is set to a
value that is enough to store the payload and this error code is returned.

EACCES Attempt to try or set a read-only control, or to get a write-only control, or to get a
control from a request that has not yet been completed.

Or the which field was set to V4L2_CTRL_WHICH_REQUEST_VAL but the device does not sup-
port requests.

Or if there is an attempt to set an inactive control and the driver is not capable of caching
the new value until the control is active again.

3.2.7.30 ioctl VIDIOC_G_FBUF, VIDIOC_S_FBUF

Name

VIDIOC_G_FBUF - VIDIOC_S_FBUF - Get or set frame buffer overlay parameters

Synopsis

VIDIOC_G_FBUF

int ioctl(int fd, VIDIOC_G_FBUF, struct v4l2_framebuffer *argp)

VIDIOC_S_FBUF

int ioctl(int fd, VIDIOC_S_FBUF, const struct v4l2_framebuffer *argp)

3.2. Part I - Video for Linux API 1167

Linux Media Documentation

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_framebuffer.

Description

Applications can use the VIDIOC_G_FBUF and VIDIOC_S_FBUF ioctl to get and set the frame-
buffer parameters for a Video Overlay or Video Output Overlay (OSD). The type of overlay is
implied by the device type (capture or output device) and can be determined with the ioctl
VIDIOC_QUERYCAP ioctl. One /dev/videoN device must not support both kinds of overlay.

The V4L2 API distinguishes destructive and non-destructive overlays. A destructive overlay
copies captured video images into the video memory of a graphics card. A non-destructive
overlay blends video images into a VGA signal or graphics into a video signal. Video Output
Overlays are always non-destructive.

To get the current parameters applications call the VIDIOC_G_FBUF ioctl with a pointer to a
struct v4l2_framebuffer structure. The driver fills all fields of the structure or returns an
EINVAL error code when overlays are not supported.

To set the parameters for a Video Output Overlay, applications must initialize the flags field
of a struct v4l2_framebuffer. Since the framebuffer is implemented on the TV card all other
parameters are determined by the driver. When an application calls VIDIOC_S_FBUF with
a pointer to this structure, the driver prepares for the overlay and returns the framebuffer
parameters as VIDIOC_G_FBUF does, or it returns an error code.

To set the parameters for a non-destructive Video Overlay, applications must initialize the flags
field, the fmt substructure, and call VIDIOC_S_FBUF. Again the driver prepares for the overlay
and returns the framebuffer parameters as VIDIOC_G_FBUF does, or it returns an error code.

For a destructive Video Overlay applications must additionally provide a base address. Setting
up a DMA to a random memory location can jeopardize the system security, its stability or even
damage the hardware, therefore only the superuser can set the parameters for a destructive
video overlay.

v4l2_framebuffer

Table 199: struct v4l2_framebuffer
__u32 capability Overlay capability flags set by the

driver, see Frame Buffer Capabil-
ity Flags.

__u32 flags Overlay control flags set by ap-
plication and driver, see Frame
Buffer Flags

void * base Physical base address of the
framebuffer, that is the address of
the pixel in the top left corner of
the framebuffer.1

Continued on next page

1168 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 199 – continued from previous page
This field is irrelevant to non-
destructive Video Overlays. For
destructive Video Overlays appli-
cations must provide a base ad-
dress. The driver may accept only
base addresses which are a multi-
ple of two, four or eight bytes. For
Video Output Overlays the driver
must return a valid base address,
so applications can find the cor-
responding Linux framebuffer de-
vice (see Video Output Overlay In-
terface).

struct fmt Layout of the frame buffer.
__u32 width Width of the frame buffer in pix-

els.
__u32 height Height of the frame buffer in pix-

els.
__u32 pixelformat The pixel format of the frame-

buffer.
For non-destructive Video Over-
lays this field only defines a for-
mat for the struct v4l2_window
chromakey field.
For destructive Video Overlays
applications must initialize this
field. For Video Output Overlays
the driver must return a valid for-
mat.
Usually this is an RGB
format (for example
V4L2_PIX_FMT_RGB565) but
YUV formats (only packed
YUV formats when chroma
keying is used, not includ-
ing V4L2_PIX_FMT_YUYV and
V4L2_PIX_FMT_UYVY) and the
V4L2_PIX_FMT_PAL8 format are
also permitted. The behavior of
the driver when an application
requests a compressed format is
undefined. See Image Formats
for information on pixel formats.

enum v4l2_field field Drivers and applications shall ig-
nore this field. If applicable, the
field order is selected with the
VIDIOC_S_FMT ioctl, using the
field field of struct v4l2_window.

Continued on next page

3.2. Part I - Video for Linux API 1169

Linux Media Documentation

Table 199 – continued from previous page
__u32 bytesperline Distance in bytes between the left-

most pixels in two adjacent lines.
This field is irrelevant to non-destructive Video Overlays.
For destructive Video Overlays both applications and drivers can set this field to request
padding bytes at the end of each line. Drivers however may ignore the requested value,
returning width times bytes-per-pixel or a larger value required by the hardware. That
implies applications can just set this field to zero to get a reasonable default.
For Video Output Overlays the driver must return a valid value.
Video hardware may access padding bytes, therefore they must reside in accessible mem-
ory. Consider for example the case where padding bytes after the last line of an image
cross a system page boundary. Capture devices may write padding bytes, the value is
undefined. Output devices ignore the contents of padding bytes.
When the image format is planar the bytesperline value applies to the first plane and is
divided by the same factor as the width field for the other planes. For example the Cb and
Cr planes of a YUV 4:2:0 image have half as many padding bytes following each line as the
Y plane. To avoid ambiguities drivers must return a bytesperline value rounded up to a
multiple of the scale factor.

__u32 sizeimage This field is irrelevant to non-
destructive Video Overlays. For
destructive Video Overlays appli-
cations must initialize this field.
For Video Output Overlays the
driver must return a valid format.
Together with base it defines the
framebuffer memory accessible
by the driver.

enum
v4l2_colorspace

colorspace This information supplements the
pixelformat and must be set by
the driver, see Colorspaces.

__u32 priv Reserved. Drivers and applica-
tions must set this field to zero.

1 A physical base address may not suit all platforms. GK notes in theory we should pass something like PCI
device + memory region + offset instead. If you encounter problems please discuss on the linux-media mailing list:
https://linuxtv.org/lists.php.

1170 Chapter 3. Linux Media Infrastructure userspace API

https://linuxtv.org/lists.php

Linux Media Documentation

Table 200: Frame Buffer Capability Flags
V4L2_FBUF_CAP_EXTERNOVERLAY 0x0001 The device is capable of non-destructive

overlays. When the driver clears this flag,
only destructive overlays are supported.
There are no drivers yet which support
both destructive and non-destructive over-
lays. Video Output Overlays are in practice
always non-destructive.

V4L2_FBUF_CAP_CHROMAKEY 0x0002 The device supports clipping by chroma-
keying the images. That is, image pix-
els replace pixels in the VGA or video sig-
nal only where the latter assume a certain
color. Chroma-keying makes no sense for
destructive overlays.

V4L2_FBUF_CAP_LIST_CLIPPING 0x0004 The device supports clipping using a list of
clip rectangles.

V4L2_FBUF_CAP_BITMAP_CLIPPING 0x0008 The device supports clipping using a bit
mask.

V4L2_FBUF_CAP_LOCAL_ALPHA 0x0010 The device supports clipping/blending us-
ing the alpha channel of the framebuffer
or VGA signal. Alpha blending makes no
sense for destructive overlays.

V4L2_FBUF_CAP_GLOBAL_ALPHA 0x0020 The device supports alpha blending using a
global alpha value. Alpha blending makes
no sense for destructive overlays.

V4L2_FBUF_CAP_LOCAL_INV_ALPHA 0x0040 The device supports clipping/blending us-
ing the inverted alpha channel of the
framebuffer or VGA signal. Alpha blending
makes no sense for destructive overlays.

V4L2_FBUF_CAP_SRC_CHROMAKEY 0x0080 The device supports Source Chroma-
keying. Video pixels with the chroma-
key colors are replaced by framebuffer
pixels, which is exactly opposite of
V4L2_FBUF_CAP_CHROMAKEY

Table 201: Frame Buffer Flags
V4L2_FBUF_FLAG_PRIMARY 0x0001 The framebuffer is the primary graph-

ics surface. In other words, the over-
lay is destructive. This flag is typically
set by any driver that doesn’t have the
V4L2_FBUF_CAP_EXTERNOVERLAY capability
and it is cleared otherwise.

Continued on next page

3.2. Part I - Video for Linux API 1171

Linux Media Documentation

Table 201 – continued from previous page
V4L2_FBUF_FLAG_OVERLAY 0x0002 If this flag is set for a video capture de-

vice, then the driver will set the initial over-
lay size to cover the full framebuffer size,
otherwise the existing overlay size (as set
by VIDIOC_S_FMT) will be used. Only one
video capture driver (bttv) supports this
flag. The use of this flag for capture de-
vices is deprecated. There is no way to de-
tect which drivers support this flag, so the
only reliable method of setting the overlay
size is through VIDIOC_S_FMT. If this flag
is set for a video output device, then the
video output overlay window is relative to
the top-left corner of the framebuffer and
restricted to the size of the framebuffer. If
it is cleared, then the video output overlay
window is relative to the video output dis-
play.

V4L2_FBUF_FLAG_CHROMAKEY 0x0004 Use chroma-keying. The chroma-key color
is determined by the chromakey field of
struct v4l2_window and negotiated with
the VIDIOC_S_FMT ioctl, see Video Over-
lay Interface and Video Output Overlay In-
terface.

There are no flags to enable clipping using a list of clip rectangles or a bitmap. These
methods are negotiated with the VIDIOC_S_FMT ioctl, see Video Overlay Interface and
Video Output Overlay Interface.
V4L2_FBUF_FLAG_LOCAL_ALPHA 0x0008 Use the alpha channel of the framebuffer to

clip or blend framebuffer pixels with video
images. The blend function is: output =
framebuffer pixel * alpha + video pixel * (1
- alpha). The actual alpha depth depends
on the framebuffer pixel format.

V4L2_FBUF_FLAG_GLOBAL_ALPHA 0x0010 Use a global alpha value to blend the
framebuffer with video images. The blend
function is: output = (framebuffer pixel
* alpha + video pixel * (255 - alpha)) /
255. The alpha value is determined by the
global_alpha field of struct v4l2_window
and negotiated with the VIDIOC_S_FMT
ioctl, see Video Overlay Interface and
Video Output Overlay Interface.

Continued on next page

1172 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 201 – continued from previous page
V4L2_FBUF_FLAG_LOCAL_INV_ALPHA 0x0020 Like V4L2_FBUF_FLAG_LOCAL_ALPHA, use

the alpha channel of the framebuffer to clip
or blend framebuffer pixels with video im-
ages, but with an inverted alpha value. The
blend function is: output = framebuffer
pixel * (1 - alpha) + video pixel * alpha. The
actual alpha depth depends on the frame-
buffer pixel format.

V4L2_FBUF_FLAG_SRC_CHROMAKEY 0x0040 Use source chroma-keying. The source
chroma-key color is determined by the
chromakey field of struct v4l2_window
and negotiated with the VIDIOC_S_FMT
ioctl, see Video Overlay Interface and
Video Output Overlay Interface. Both
chroma-keying are mutual exclusive to
each other, so same chromakey field of
struct v4l2_window is being used.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EPERM VIDIOC_S_FBUF can only be called by a privileged user to negotiate the parameters
for a destructive overlay.

EINVAL The VIDIOC_S_FBUF parameters are unsuitable.

3.2.7.31 ioctl VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT

Name

VIDIOC_G_FMT - VIDIOC_S_FMT - VIDIOC_TRY_FMT - Get or set the data format, try a format

Synopsis

VIDIOC_G_FMT

int ioctl(int fd, VIDIOC_G_FMT, struct v4l2_format *argp)

VIDIOC_S_FMT

int ioctl(int fd, VIDIOC_S_FMT, struct v4l2_format *argp)

VIDIOC_TRY_FMT

int ioctl(int fd, VIDIOC_TRY_FMT, struct v4l2_format *argp)

3.2. Part I - Video for Linux API 1173

Linux Media Documentation

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_format.

Description

These ioctls are used to negotiate the format of data (typically image format) exchanged be-
tween driver and application.

To query the current parameters applications set the type field of a struct v4l2_format
to the respective buffer (stream) type. For example video capture devices use
V4L2_BUF_TYPE_VIDEO_CAPTURE or V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE. When the appli-
cation calls the VIDIOC_G_FMT ioctl with a pointer to this structure the driver fills the re-
spective member of the fmt union. In case of video capture devices that is either the struct
v4l2_pix_format pix or the struct v4l2_pix_format_mplane pix_mp member. When the re-
quested buffer type is not supported drivers return an EINVAL error code.

To change the current format parameters applications initialize the type field and all fields of the
respective fmt union member. For details see the documentation of the various devices types
in Interfaces. Good practice is to query the current parameters first, and to modify only those
parameters not suitable for the application. When the application calls the VIDIOC_S_FMT ioctl
with a pointer to a struct v4l2_format structure the driver checks and adjusts the parameters
against hardware abilities. Drivers should not return an error code unless the type field is
invalid, this is a mechanism to fathom device capabilities and to approach parameters accept-
able for both the application and driver. On success the driver may program the hardware,
allocate resources and generally prepare for data exchange. Finally the VIDIOC_S_FMT ioctl
returns the current format parameters as VIDIOC_G_FMT does. Very simple, inflexible devices
may even ignore all input and always return the default parameters. However all V4L2 devices
exchanging data with the application must implement the VIDIOC_G_FMT and VIDIOC_S_FMT
ioctl. When the requested buffer type is not supported drivers return an EINVAL error code on
a VIDIOC_S_FMT attempt. When I/O is already in progress or the resource is not available for
other reasons drivers return the EBUSY error code.

The VIDIOC_TRY_FMT ioctl is equivalent to VIDIOC_S_FMT with one exception: it does not
change driver state. It can also be called at any time, never returning EBUSY. This function is
provided to negotiate parameters, to learn about hardware limitations, without disabling I/O or
possibly time consuming hardware preparations. Although strongly recommended drivers are
not required to implement this ioctl.

The format as returned by VIDIOC_TRY_FMT must be identical to what VIDIOC_S_FMT returns
for the same input or output.

v4l2_format

1174 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 202: struct v4l2_format
__u32 type Type of the data stream, see

v4l2_buf_type.
union { fmt
struct v4l2_pix_format pix Definition of an image for-

mat, see Image Formats,
used by video capture and
output devices.

struct v4l2_pix_format_mplane pix_mp Definition of an image for-
mat, see Image Formats,
used by video capture and
output devices that support
the multi-planar version of
the API.

struct v4l2_window win Definition of an overlaid im-
age, see Video Overlay In-
terface, used by video over-
lay devices.

struct v4l2_vbi_format vbi Raw VBI capture or output
parameters. This is dis-
cussed in more detail in Raw
VBI Data Interface. Used by
raw VBI capture and output
devices.

struct v4l2_sliced_vbi_format sliced Sliced VBI capture or out-
put parameters. See Sliced
VBI Data Interface for de-
tails. Used by sliced VBI
capture and output devices.

struct v4l2_sdr_format sdr Definition of a data format,
see Image Formats, used by
SDR capture and output de-
vices.

struct v4l2_meta_format meta Definition of a metadata for-
mat, see Metadata Formats,
used by metadata capture
devices.

__u8 raw_data[200] Place holder for future ex-
tensions.

}

3.2. Part I - Video for Linux API 1175

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_format type field is invalid or the requested buffer type not sup-
ported.

EBUSY The device is busy and cannot change the format. This could be because or the device
is streaming or buffers are allocated or queued to the driver. Relevant for VIDIOC_S_FMT
only.

3.2.7.32 ioctl VIDIOC_G_FREQUENCY, VIDIOC_S_FREQUENCY

Name

VIDIOC_G_FREQUENCY - VIDIOC_S_FREQUENCY - Get or set tuner or modulator radio fre-
quency

Synopsis

VIDIOC_G_FREQUENCY

int ioctl(int fd, VIDIOC_G_FREQUENCY, struct v4l2_frequency *argp)

VIDIOC_S_FREQUENCY

int ioctl(int fd, VIDIOC_S_FREQUENCY, const struct v4l2_frequency *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_frequency.

Description

To get the current tuner or modulator radio frequency applications set the tuner field of a
struct v4l2_frequency to the respective tuner or modulator number (only input devices have
tuners, only output devices have modulators), zero out the reserved array and call the VID-
IOC_G_FREQUENCY ioctl with a pointer to this structure. The driver stores the current fre-
quency in the frequency field.

To change the current tuner or modulator radio frequency applications initialize the tuner,
type and frequency fields, and the reserved array of a struct v4l2_frequency and call the
VIDIOC_S_FREQUENCY ioctl with a pointer to this structure. When the requested frequency
is not possible the driver assumes the closest possible value. However VIDIOC_S_FREQUENCY
is a write-only ioctl, it does not return the actual new frequency.

v4l2_frequency

1176 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 203: struct v4l2_frequency
__u32 tuner The tuner or modulator index number.

This is the same value as in the struct
v4l2_input tuner field and the struct
v4l2_tuner index field, or the struct
v4l2_output modulator field and the struct
v4l2_modulator index field.

__u32 type The tuner type. This is the same value
as in the struct v4l2_tuner type field.
The type must be set to V4L2_TUNER_RADIO
for /dev/radioX device nodes, and to
V4L2_TUNER_ANALOG_TV for all others. Set
this field to V4L2_TUNER_RADIO for modu-
lators (currently only radio modulators are
supported). See v4l2_tuner_type

__u32 frequency Tuning frequency in units of 62.5
kHz, or if the struct v4l2_tuner or
struct v4l2_modulator capability flag
V4L2_TUNER_CAP_LOW is set, in units of
62.5 Hz. A 1 Hz unit is used when the
capability flag V4L2_TUNER_CAP_1HZ is
set.

__u32 reserved[8] Reserved for future extensions. Drivers and
applications must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The tuner index is out of bounds or the value in the type field is wrong.
EBUSY A hardware seek is in progress.

3.2.7.33 ioctl VIDIOC_G_INPUT, VIDIOC_S_INPUT

Name

VIDIOC_G_INPUT - VIDIOC_S_INPUT - Query or select the current video input

3.2. Part I - Video for Linux API 1177

Linux Media Documentation

Synopsis

VIDIOC_G_INPUT

int ioctl(int fd, VIDIOC_G_INPUT, int *argp)

VIDIOC_S_INPUT

int ioctl(int fd, VIDIOC_S_INPUT, int *argp)

Arguments

fd File descriptor returned by open().

argp Pointer an integer with input index.

Description

To query the current video input applications call the VIDIOC_G_INPUT ioctl with a pointer to
an integer where the driver stores the number of the input, as in the struct v4l2_input index
field. This ioctl will fail only when there are no video inputs, returning EINVAL.

To select a video input applications store the number of the desired input in an integer and
call the VIDIOC_S_INPUT ioctl with a pointer to this integer. Side effects are possible. For
example inputs may support different video standards, so the driver may implicitly switch the
current standard. Because of these possible side effects applicationsmust select an input before
querying or negotiating any other parameters.

Information about video inputs is available using the ioctl VIDIOC_ENUMINPUT ioctl.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The number of the video input is out of bounds.

3.2.7.34 ioctl VIDIOC_G_JPEGCOMP, VIDIOC_S_JPEGCOMP

Name

VIDIOC_G_JPEGCOMP - VIDIOC_S_JPEGCOMP

1178 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Synopsis

VIDIOC_G_JPEGCOMP

int ioctl(int fd, VIDIOC_G_JPEGCOMP, v4l2_jpegcompression *argp)

VIDIOC_S_JPEGCOMP

int ioctl(int fd, VIDIOC_S_JPEGCOMP, const v4l2_jpegcompression *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_jpegcompression.

Description

These ioctls are deprecated. New drivers and applications should use JPEG class controls for
image quality and JPEG markers control.

[to do]

Ronald Bultje elaborates:

APP is some application-specific information. The application can set it itself, and it’ll be stored
in the JPEG-encoded fields (eg; interlacing information for in an AVI or so). COM is the same,
but it’s comments, like ‘encoded by me’ or so.

jpeg_markers describes whether the huffman tables, quantization tables and the restart interval
information (all JPEG-specific stuff) should be stored in the JPEG-encoded fields. These define
how the JPEG field is encoded. If you omit them, applications assume you’ve used standard
encoding. You usually do want to add them.

v4l2_jpegcompression

Table 204: struct v4l2_jpegcompression
int quality Deprecated. If V4L2_CID_JPEG_COMPRESSION_QUALITY control

is exposed by a driver applications should use it instead and ignore
this field.

int APPn
int APP_len
char APP_data[60]
int COM_len
char COM_data[60]
__u32 jpeg_markers See JPEG Markers Flags. Deprecated. If

V4L2_CID_JPEG_ACTIVE_MARKER control is exposed by a driver
applications should use it instead and ignore this field.

3.2. Part I - Video for Linux API 1179

Linux Media Documentation

Table 205: JPEG Markers Flags
V4L2_JPEG_MARKER_DHT (1<<3) Define Huffman Tables
V4L2_JPEG_MARKER_DQT (1<<4) Define Quantization Tables
V4L2_JPEG_MARKER_DRI (1<<5) Define Restart Interval
V4L2_JPEG_MARKER_COM (1<<6) Comment segment
V4L2_JPEG_MARKER_APP (1<<7) App segment, driver will always use APP0

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

3.2.7.35 ioctl VIDIOC_G_MODULATOR, VIDIOC_S_MODULATOR

Name

VIDIOC_G_MODULATOR - VIDIOC_S_MODULATOR - Get or set modulator attributes

Synopsis

VIDIOC_G_MODULATOR

int ioctl(int fd, VIDIOC_G_MODULATOR, struct v4l2_modulator *argp)

VIDIOC_S_MODULATOR

int ioctl(int fd, VIDIOC_S_MODULATOR, const struct v4l2_modulator *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_modulator.

Description

To query the attributes of a modulator applications initialize the index field and zero out the
reserved array of a struct v4l2_modulator and call the VIDIOC_G_MODULATOR ioctl with a
pointer to this structure. Drivers fill the rest of the structure or return an EINVAL error code
when the index is out of bounds. To enumerate all modulators applications shall begin at index
zero, incrementing by one until the driver returns EINVAL.

Modulators have two writable properties, an audio modulation set and the radio frequency. To
change the modulated audio subprograms, applications initialize the index and txsubchans
fields and the reserved array and call the VIDIOC_S_MODULATOR ioctl. Drivers may choose a
different audio modulation if the request cannot be satisfied. However this is a write-only ioctl,
it does not return the actual audio modulation selected.

1180 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

SDR specific modulator types are V4L2_TUNER_SDR and V4L2_TUNER_RF. For SDR devices
txsubchans field must be initialized to zero. The term ‘modulator’ means SDR transmitter
in this context.

To change the radio frequency the VIDIOC_S_FREQUENCY ioctl is available.

v4l2_modulator

Table 206: struct v4l2_modulator
__u32 index Identifies the modulator, set by the application.
__u8 name[32] Name of the modulator, a NUL-terminated ASCII string.

This information is intended for the user.
__u32 capability Modulator capability flags. No flags are defined for this

field, the tuner flags in struct v4l2_tuner are used accord-
ingly. The audio flags indicate the ability to encode audio
subprograms. They will not change for example with the
current video standard.

__u32 rangelow The lowest tunable frequency in units of 62.5 KHz, or if
the capability flag V4L2_TUNER_CAP_LOW is set, in units of
62.5 Hz, or if the capability flag V4L2_TUNER_CAP_1HZ is
set, in units of 1 Hz.

__u32 rangehigh The highest tunable frequency in units of 62.5 KHz, or if
the capability flag V4L2_TUNER_CAP_LOW is set, in units of
62.5 Hz, or if the capability flag V4L2_TUNER_CAP_1HZ is
set, in units of 1 Hz.

__u32 txsubchans With this field applications can determine how audio sub-
carriers shall be modulated. It contains a set of flags as
defined in Modulator Audio Transmission Flags.

Note: The tuner rxsubchans flags are reused, but the se-
mantics are different. Video output devices are assumed to
have an analog or PCM audio input with 1-3 channels. The
txsubchans flags select one or more channels for modula-
tion, together with some audio subprogram indicator, for
example, a stereo pilot tone.

__u32 type Type of the modulator, see v4l2_tuner_type.
__u32 reserved[3] Reserved for future extensions.

Drivers and applications must set the array to zero.

Table 207: Modulator Audio Transmission Flags
V4L2_TUNER_SUB_MONO 0x0001 Modulate channel 1 as mono audio, when

the input has more channels, a down-mix
of channel 1 and 2. This flag does not
combine with V4L2_TUNER_SUB_STEREO or
V4L2_TUNER_SUB_LANG1.

Continued on next page

3.2. Part I - Video for Linux API 1181

Linux Media Documentation

Table 207 – continued from previous page
V4L2_TUNER_SUB_STEREO 0x0002 Modulate channel 1 and 2 as left and right

channel of a stereo audio signal. When the in-
put has only one channel or two channels and
V4L2_TUNER_SUB_SAP is also set, channel 1 is
encoded as left and right channel. This flag
does not combine with V4L2_TUNER_SUB_MONO or
V4L2_TUNER_SUB_LANG1. When the driver does
not support stereo audio it shall fall back to
mono.

V4L2_TUNER_SUB_LANG1 0x0008 Modulate channel 1 and 2 as primary
and secondary language of a bilingual au-
dio signal. When the input has only one
channel it is used for both languages. It
is not possible to encode the primary or
secondary language only. This flag does
not combine with V4L2_TUNER_SUB_MONO,
V4L2_TUNER_SUB_STEREO or
V4L2_TUNER_SUB_SAP. If the hardware does
not support the respective audio matrix, or
the current video standard does not permit
bilingual audio the VIDIOC_S_MODULATOR
ioctl shall return an EINVAL error code and the
driver shall fall back to mono or stereo mode.

V4L2_TUNER_SUB_LANG2 0x0004 Same effect as V4L2_TUNER_SUB_SAP.
V4L2_TUNER_SUB_SAP 0x0004 When combined with V4L2_TUNER_SUB_MONO the

first channel is encoded as mono audio, the
last channel as Second Audio Program. When
the input has only one channel it is used
for both audio tracks. When the input has
three channels the mono track is a down-mix
of channel 1 and 2. When combined with
V4L2_TUNER_SUB_STEREO channel 1 and 2 are
encoded as left and right stereo audio, channel
3 as Second Audio Program. When the input
has only two channels, the first is encoded as
left and right channel and the second as SAP.
When the input has only one channel it is used
for all audio tracks. It is not possible to en-
code a Second Audio Program only. This flag
must combine with V4L2_TUNER_SUB_MONO or
V4L2_TUNER_SUB_STEREO. If the hardware does
not support the respective audio matrix, or the
current video standard does not permit SAP the
VIDIOC_S_MODULATOR ioctl shall return an
EINVAL error code and driver shall fall back to
mono or stereo mode.

V4L2_TUNER_SUB_RDS 0x0010 Enable the RDS encoder for a radio FM trans-
mitter.

1182 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_modulator index is out of bounds.

3.2.7.36 ioctl VIDIOC_G_OUTPUT, VIDIOC_S_OUTPUT

Name

VIDIOC_G_OUTPUT - VIDIOC_S_OUTPUT - Query or select the current video output

Synopsis

VIDIOC_G_OUTPUT

int ioctl(int fd, VIDIOC_G_OUTPUT, int *argp)

VIDIOC_S_OUTPUT

int ioctl(int fd, VIDIOC_S_OUTPUT, int *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to an integer with output index.

Description

To query the current video output applications call the VIDIOC_G_OUTPUT ioctl with a pointer
to an integer where the driver stores the number of the output, as in the struct v4l2_output
index field. This ioctl will fail only when there are no video outputs, returning the EINVAL error
code.

To select a video output applications store the number of the desired output in an integer and
call the VIDIOC_S_OUTPUT ioctl with a pointer to this integer. Side effects are possible. For
example outputs may support different video standards, so the driver may implicitly switch the
current standard. Because of these possible side effects applications must select an output
before querying or negotiating any other parameters.

Information about video outputs is available using the ioctl VIDIOC_ENUMOUTPUT ioctl.

3.2. Part I - Video for Linux API 1183

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The number of the video output is out of bounds, or there are no video outputs at all.

3.2.7.37 ioctl VIDIOC_G_PARM, VIDIOC_S_PARM

Name

VIDIOC_G_PARM - VIDIOC_S_PARM - Get or set streaming parameters

Synopsis

VIDIOC_G_PARM

int ioctl(int fd, VIDIOC_G_PARM, v4l2_streamparm *argp)

VIDIOC_S_PARM

int ioctl(int fd, VIDIOC_S_PARM, v4l2_streamparm *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_streamparm.

Description

Applications can request a different frame interval. The capture or output device will be recon-
figured to support the requested frame interval if possible. Optionally drivers may choose to
skip or repeat frames to achieve the requested frame interval.

For stateful encoders (seeMemory-to-Memory Stateful Video Encoder Interface) this represents
the frame interval that is typically embedded in the encoded video stream.

Changing the frame interval shall never change the format. Changing the format, on the other
hand, may change the frame interval.

Further these ioctls can be used to determine the number of buffers used internally by a driver
in read/write mode. For implications see the section discussing the read() function.

To get and set the streaming parameters applications call the VIDIOC_G_PARM and VID-
IOC_S_PARM ioctl, respectively. They take a pointer to a struct v4l2_streamparm which con-
tains a union holding separate parameters for input and output devices.

v4l2_streamparm

1184 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 208: struct v4l2_streamparm
__u32 type The buffer (stream) type, same as struct

v4l2_format type, set by the application. See
v4l2_buf_type.

union { parm
struct
v4l2_captureparm

capture Parameters for capture devices, used when
type is V4L2_BUF_TYPE_VIDEO_CAPTURE or
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE.

struct
v4l2_outputparm

output Parameters for output devices, used when
type is V4L2_BUF_TYPE_VIDEO_OUTPUT or
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE.

__u8 raw_data[200] A place holder for future extensions.
}

v4l2_captureparm

Table 209: struct v4l2_captureparm
__u32 capability See Streaming Parameters Capabilities.
__u32 capturemode Set by drivers and applications, see Capture

Parameters Flags.
struct v4l2_fract timeperframe This is the desired period between succes-

sive frames captured by the driver, in sec-
onds.

This will configure the speed at which the video source (e.g. a sensor) generates video
frames. If the speed is fixed, then the driver may choose to skip or repeat frames in order
to achieve the requested frame rate.
For stateful encoders (see Memory-to-Memory Stateful Video Encoder Interface) this rep-
resents the frame interval that is typically embedded in the encoded video stream.
Applications store here the desired frame period, drivers return the actual frame period.
Changing the video standard (also implicitly by switching the video input) may reset this
parameter to the nominal frame period. To reset manually applications can just set this
field to zero.
Drivers support this function only when they set the V4L2_CAP_TIMEPERFRAME flag in the
capability field.
__u32 extendedmode Custom (driver specific) streaming parame-

ters. When unused, applications and drivers
must set this field to zero. Applications us-
ing this field should check the driver name
and version, see Querying Capabilities.

__u32 readbuffers Applications set this field to the desired
number of buffers used internally by the
driver in read() mode. Drivers return the
actual number of buffers. When an appli-
cation requests zero buffers, drivers should
just return the current setting rather than
the minimum or an error code. For details
see Read/Write.

__u32 reserved[4] Reserved for future extensions. Drivers and
applications must set the array to zero.

3.2. Part I - Video for Linux API 1185

Linux Media Documentation

v4l2_outputparm

Table 210: struct v4l2_outputparm
__u32 capability See Streaming Parameters Capabilities.
__u32 outputmode Set by drivers and applications, see Capture

Parameters Flags.
struct v4l2_fract timeperframe This is the desired period between succes-

sive frames output by the driver, in seconds.
The field is intended to repeat frames on the driver side in write() mode (in streaming
mode timestamps can be used to throttle the output), saving I/O bandwidth.
For stateful encoders (see Memory-to-Memory Stateful Video Encoder Interface) this rep-
resents the frame interval that is typically embedded in the encoded video stream and it
provides a hint to the encoder of the speed at which raw frames are queued up to the
encoder.
Applications store here the desired frame period, drivers return the actual frame period.
Changing the video standard (also implicitly by switching the video output) may reset this
parameter to the nominal frame period. To reset manually applications can just set this
field to zero.
Drivers support this function only when they set the V4L2_CAP_TIMEPERFRAME flag in the
capability field.
__u32 extendedmode Custom (driver specific) streaming parame-

ters. When unused, applications and drivers
must set this field to zero. Applications us-
ing this field should check the driver name
and version, see Querying Capabilities.

__u32 writebuffers Applications set this field to the desired
number of buffers used internally by the
driver in write() mode. Drivers return the
actual number of buffers. When an appli-
cation requests zero buffers, drivers should
just return the current setting rather than
the minimum or an error code. For details
see Read/Write.

__u32 reserved[4] Reserved for future extensions. Drivers and
applications must set the array to zero.

Table 211: Streaming Parameters Capabilities
V4L2_CAP_TIMEPERFRAME 0x1000 The frame period can be modified by setting

the timeperframe field.

1186 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 212: Capture Parameters Flags
V4L2_MODE_HIGHQUALITY 0x0001 High quality imaging mode. High quality

mode is intended for still imaging applica-
tions. The idea is to get the best possible
image quality that the hardware can deliver.
It is not defined how the driver writer may
achieve that; it will depend on the hard-
ware and the ingenuity of the driver writer.
High quality mode is a different mode from
the regular motion video capture modes. In
high quality mode:
• The driver may be able to capture
higher resolutions than for motion cap-
ture.

• The driver may support fewer pixel for-
mats than motion capture (eg; true
color).

• The driver may capture and arith-
metically combine multiple successive
fields or frames to remove color edge
artifacts and reduce the noise in the
video data.

• The driver may capture images in
slices like a scanner in order to handle
larger format images than would oth-
erwise be possible.

• An image capture operation may be
significantly slower than motion cap-
ture.

• Moving objects in the image might
have excessive motion blur.

• Capture might only work through the
read() call.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

3.2. Part I - Video for Linux API 1187

Linux Media Documentation

3.2.7.38 ioctl VIDIOC_G_PRIORITY, VIDIOC_S_PRIORITY

Name

VIDIOC_G_PRIORITY - VIDIOC_S_PRIORITY - Query or request the access priority associated
with a file descriptor

Synopsis

VIDIOC_G_PRIORITY

int ioctl(int fd, VIDIOC_G_PRIORITY, enum v4l2_priority *argp)

VIDIOC_S_PRIORITY

int ioctl(int fd, VIDIOC_S_PRIORITY, const enum v4l2_priority *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to an enum v4l2_priority type.

Description

To query the current access priority applications call the VIDIOC_G_PRIORITY ioctl with a
pointer to an enum v4l2_priority variable where the driver stores the current priority.

To request an access priority applications store the desired priority in an enum v4l2_priority
variable and call VIDIOC_S_PRIORITY ioctl with a pointer to this variable.

v4l2_priority

1188 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 213: enum v4l2_priority
V4L2_PRIORITY_UNSET 0
V4L2_PRIORITY_BACKGROUND 1 Lowest priority, usually applications run-

ning in background, for example monitoring
VBI transmissions. A proxy application run-
ning in user space will be necessary if multi-
ple applications want to read from a device
at this priority.

V4L2_PRIORITY_INTERACTIVE 2
V4L2_PRIORITY_DEFAULT 2 Medium priority, usually applications

started and interactively controlled by the
user. For example TV viewers, Teletext
browsers, or just “panel” applications to
change the channel or video controls. This
is the default priority unless an application
requests another.

V4L2_PRIORITY_RECORD 3 Highest priority. Only one file descriptor
can have this priority, it blocks any other
fd from changing device properties. Usually
applications which must not be interrupted,
like video recording.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The requested priority value is invalid.
EBUSY Another application already requested higher priority.

3.2.7.39 ioctl VIDIOC_G_SELECTION, VIDIOC_S_SELECTION

Name

VIDIOC_G_SELECTION - VIDIOC_S_SELECTION - Get or set one of the selection rectangles

Synopsis

VIDIOC_G_SELECTION

int ioctl(int fd, VIDIOC_G_SELECTION, struct v4l2_selection *argp)

VIDIOC_S_SELECTION

int ioctl(int fd, VIDIOC_S_SELECTION, struct v4l2_selection *argp)

3.2. Part I - Video for Linux API 1189

Linux Media Documentation

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_selection.

Description

The ioctls are used to query and configure selection rectangles.

To query the cropping (composing) rectangle set struct v4l2_selection type field to the re-
spective buffer type. The next step is setting the value of struct v4l2_selection target field
to V4L2_SEL_TGT_CROP (V4L2_SEL_TGT_COMPOSE). Please refer to table Common selection defi-
nitions or Cropping, composing and scaling – the SELECTION API for additional targets. The
flags and reserved fields of struct v4l2_selection are ignored and they must be filled with
zeros. The driver fills the rest of the structure or returns EINVAL error code if incorrect buffer
type or target was used. If cropping (composing) is not supported then the active rectangle
is not mutable and it is always equal to the bounds rectangle. Finally, the struct v4l2_rect r
rectangle is filled with the current cropping (composing) coordinates. The coordinates are ex-
pressed in driver-dependent units. The only exception are rectangles for images in raw formats,
whose coordinates are always expressed in pixels.

To change the cropping (composing) rectangle set the struct v4l2_selection type field to the
respective buffer type. The next step is setting the value of struct v4l2_selection target
to V4L2_SEL_TGT_CROP (V4L2_SEL_TGT_COMPOSE). Please refer to table Common selection def-
initions or Cropping, composing and scaling – the SELECTION API for additional targets.
The struct v4l2_rect r rectangle need to be set to the desired active area. Field struct
v4l2_selection reserved is ignored and must be filled with zeros. The driver may adjust
coordinates of the requested rectangle. An application may introduce constraints to control
rounding behaviour. The struct v4l2_selection flags field must be set to one of the follow-
ing:

• 0 - The driver can adjust the rectangle size freely and shall choose a crop/compose rectan-
gle as close as possible to the requested one.

• V4L2_SEL_FLAG_GE - The driver is not allowed to shrink the rectangle. The original rect-
angle must lay inside the adjusted one.

• V4L2_SEL_FLAG_LE - The driver is not allowed to enlarge the rectangle. The adjusted rect-
angle must lay inside the original one.

• V4L2_SEL_FLAG_GE | V4L2_SEL_FLAG_LE - The driver must choose the size exactly the
same as in the requested rectangle.

Please refer to Size adjustments with constraint flags..

The driver may have to adjusts the requested dimensions against hardware limits and other
parts as the pipeline, i.e. the bounds given by the capture/output window or TV display. The
closest possible values of horizontal and vertical offset and sizes are chosen according to fol-
lowing priority:

1. Satisfy constraints from struct v4l2_selection flags.

2. Adjust width, height, left, and top to hardware limits and alignments.

3. Keep center of adjusted rectangle as close as possible to the original one.

1190 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

4. Keep width and height as close as possible to original ones.

5. Keep horizontal and vertical offset as close as possible to original ones.

On success the struct v4l2_rect r field contains the adjusted rectangle. When the parameters
are unsuitable the application may modify the cropping (composing) or image parameters and
repeat the cycle until satisfactory parameters have been negotiated. If constraints flags have
to be violated at then ERANGE is returned. The error indicates that there exist no rectangle that
satisfies the constraints.

Selection targets and flags are documented in Common selection definitions.

Fig. 18: Size adjustments with constraint flags.
Behaviour of rectangle adjustment for different constraint flags.

v4l2_selection

Table 214: struct v4l2_selection
__u32 type Type of the buffer (from enum

v4l2_buf_type).
__u32 target Used to select between cropping and com-

posing rectangles.
__u32 flags Flags controlling the selection rectangle ad-

justments, refer to selection flags.
struct v4l2_rect r The selection rectangle.
__u32 reserved[9] Reserved fields for future use. Drivers and

applications must zero this array.

Note: Unfortunately in the case of multiplanar buffer types

3.2. Part I - Video for Linux API 1191

Linux Media Documentation

(V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE and V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) this
API was messed up with regards to how the v4l2_selection type field should be filled in.
Some drivers only accepted the _MPLANE buffer type while other drivers only accepted a
non-multiplanar buffer type (i.e. without the _MPLANE at the end).

Starting with kernel 4.13 both variations are allowed.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL Given buffer type type or the selection target target is not supported, or the flags
argument is not valid.

ERANGE It is not possible to adjust struct v4l2_rect r rectangle to satisfy all constraints given
in the flags argument.

ENODATA Selection is not supported for this input or output.

EBUSY It is not possible to apply change of the selection rectangle at the moment. Usually
because streaming is in progress.

3.2.7.40 ioctl VIDIOC_G_SLICED_VBI_CAP

Name

VIDIOC_G_SLICED_VBI_CAP - Query sliced VBI capabilities

Synopsis

VIDIOC_G_SLICED_VBI_CAP

int ioctl(int fd, VIDIOC_G_SLICED_VBI_CAP, struct v4l2_sliced_vbi_cap *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_sliced_vbi_cap.

1192 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Description

To find out which data services are supported by a sliced VBI capture or output device, appli-
cations initialize the type field of a struct v4l2_sliced_vbi_cap, clear the reserved array and
call the VIDIOC_G_SLICED_VBI_CAP ioctl. The driver fills in the remaining fields or returns an
EINVAL error code if the sliced VBI API is unsupported or type is invalid.

Note: The type field was added, and the ioctl changed from read-only to write-read, in Linux
2.6.19.

v4l2_sliced_vbi_cap

Table 215: struct v4l2_sliced_vbi_cap
__u16 service_set A set of all data services supported by the driver.

Equal to the union of all elements of the service_lines array.
__u16 service_lines[2][24] Each element of this array contains a set of data services the

hardware can look for or insert into a particular scan line.
Data services are defined in Sliced VBI services. Array indices
map to ITU-R line numbers1 as follows:
Element 525 line systems 625 line systems
service_lines[0][1] 1 1
service_lines[0][23] 23 23
service_lines[1][1] 264 314
service_lines[1][23] 286 336

The number of VBI lines the hardware can capture or output
per frame, or the number of services it can identify on a given
line may be limited. For example on PAL line 16 the hardware
may be able to look for a VPS or Teletext signal, but not both
at the same time. Applications can learn about these limits
using the VIDIOC_S_FMT ioctl as described in Sliced VBI Data
Interface.

Drivers must set service_lines [0][0] and
service_lines[1][0] to zero.

__u32 type Type of the data stream, see v4l2_buf_type.
Should be V4L2_BUF_TYPE_SLICED_VBI_CAPTURE or
V4L2_BUF_TYPE_SLICED_VBI_OUTPUT.

__u32 reserved[3] This array is reserved for future extensions.
Applications and drivers must set it to zero.

1 See also Figure 4.2. ITU-R 525 line numbering (M/NTSC and M/PAL) and Figure 4.3. ITU-R 625 line numbering.

3.2. Part I - Video for Linux API 1193

Linux Media Documentation

Table 216: Sliced VBI services
Symbol Value Reference Lines, usually Payload
V4L2_SLICED_TELETEXT_B
(Teletext System B)

0x0001 ETS 300 706,
ITU BT.653

PAL/SECAM line 7-
22, 320-335 (second
field 7-22)

Last 42 of the 45 byte Teletext packet, that is with-
out clock run-in and framing code, lsb first trans-
mitted.

V4L2_SLICED_VPS 0x0400 ETS 300 231 PAL line 16 Byte number 3 to 15 according to Figure 9 of ETS
300 231, lsb first transmitted.

V4L2_SLICED_CAPTION_525 0x1000 CEA 608-E NTSC line 21, 284
(second field 21)

Two bytes in transmission order, including parity
bit, lsb first transmitted.

V4L2_SLICED_WSS_625 0x4000 EN 300 294,
ITU BT.1119

PAL/SECAM line 23 See V4L2_SLICED_VBI_CAP WSS_625 payload
below.

V4L2_SLICED_VBI_525 0x1000 Set of services applicable to 525 line systems.
V4L2_SLICED_VBI_625 0x4401 Set of services applicable to 625 line systems.

V4L2_SLICED_VBI_CAP WSS_625 payload

The payload for V4L2_SLICED_WSS_625 is:

Byte 0 1
Bit msb lsb msb lsb

7 6 5 4 3 2 1 0 x x 13 12 11 10 9 8

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The value in the type field is wrong.

3.2.7.41 ioctl VIDIOC_G_STD, VIDIOC_S_STD, VIDIOC_SUBDEV_G_STD, VID-
IOC_SUBDEV_S_STD

Name

VIDIOC_G_STD - VIDIOC_S_STD - VIDIOC_SUBDEV_G_STD - VIDIOC_SUBDEV_S_STD - Query
or select the video standard of the current input

Synopsis

VIDIOC_G_STD

int ioctl(int fd, VIDIOC_G_STD, v4l2_std_id *argp)

VIDIOC_S_STD

int ioctl(int fd, VIDIOC_S_STD, const v4l2_std_id *argp)

VIDIOC_SUBDEV_G_STD

int ioctl(int fd, VIDIOC_SUBDEV_G_STD, v4l2_std_id *argp)

VIDIOC_SUBDEV_S_STD

1194 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

int ioctl(int fd, VIDIOC_SUBDEV_S_STD, const v4l2_std_id *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to v4l2_std_id.

Description

To query and select the current video standard applications use the VIDIOC_G_STD and VID-
IOC_S_STD ioctls which take a pointer to a v4l2_std_id type as argument. VIDIOC_G_STD can
return a single flag or a set of flags as in struct v4l2_standard field id. The flags must be
unambiguous such that they appear in only one enumerated struct v4l2_standard structure.

VIDIOC_S_STD accepts one or more flags, being a write-only ioctl it does not return the actual
new standard as VIDIOC_G_STD does. When no flags are given or the current input does not
support the requested standard the driver returns an EINVAL error code. When the standard set
is ambiguous driversmay return EINVAL or choose any of the requested standards. If the current
input or output does not support standard video timings (e.g. if ioctl VIDIOC_ENUMINPUT does
not set the V4L2_IN_CAP_STD flag), then ENODATA error code is returned.

Calling VIDIOC_SUBDEV_S_STD on a subdev device node that has been registered in read-only
mode is not allowed. An error is returned and the errno variable is set to -EPERM.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The VIDIOC_S_STD parameter was unsuitable.
ENODATA Standard video timings are not supported for this input or output.

EPERM VIDIOC_SUBDEV_S_STD has been called on a read-only subdevice.

3.2.7.42 ioctl VIDIOC_G_TUNER, VIDIOC_S_TUNER

Name

VIDIOC_G_TUNER - VIDIOC_S_TUNER - Get or set tuner attributes

3.2. Part I - Video for Linux API 1195

Linux Media Documentation

Synopsis

VIDIOC_G_TUNER

int ioctl(int fd, VIDIOC_G_TUNER, struct v4l2_tuner *argp)

VIDIOC_S_TUNER

int ioctl(int fd, VIDIOC_S_TUNER, const struct v4l2_tuner *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_tuner.

Description

To query the attributes of a tuner applications initialize the index field and zero out the
reserved array of a struct v4l2_tuner and call the VIDIOC_G_TUNER ioctl with a pointer to this
structure. Drivers fill the rest of the structure or return an EINVAL error code when the index
is out of bounds. To enumerate all tuners applications shall begin at index zero, incrementing
by one until the driver returns EINVAL.

Tuners have two writable properties, the audio mode and the radio frequency. To change
the audio mode, applications initialize the index, audmode and reserved fields and call the
VIDIOC_S_TUNER ioctl. This will not change the current tuner, which is determined by the cur-
rent video input. Drivers may choose a different audio mode if the requested mode is invalid
or unsupported. Since this is a write-only ioctl, it does not return the actually selected audio
mode.

SDR specific tuner types are V4L2_TUNER_SDR and V4L2_TUNER_RF. For SDR devices audmode
field must be initialized to zero. The term ‘tuner’ means SDR receiver in this context.

To change the radio frequency the VIDIOC_S_FREQUENCY ioctl is available.

v4l2_tuner

Table 217: struct v4l2_tuner
__u32 index Identifies the tuner, set by the application.
__u8 name[32] Name of the tuner, a NUL-terminated ASCII string.

This information is intended for the user.
__u32 type Type of the tuner, see v4l2_tuner_type.

Continued on next page

1196 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 217 – continued from previous page
__u32 capability Tuner capability flags, see Tuner and Modulator Capability Flags.

Audio flags indicate the ability to decode audio subprograms. They
will not change, for example with the current video standard.
When the structure refers to a radio tuner the
V4L2_TUNER_CAP_LANG1, V4L2_TUNER_CAP_LANG2 and
V4L2_TUNER_CAP_NORM flags can’t be used.
If multiple frequency bands are supported, then capability is the
union of all capability fields of each struct v4l2_frequency_band.

__u32 rangelow The lowest tunable frequency in units of 62.5 kHz, or if the
capability flag V4L2_TUNER_CAP_LOW is set, in units of 62.5 Hz,
or if the capability flag V4L2_TUNER_CAP_1HZ is set, in units of 1
Hz. If multiple frequency bands are supported, then rangelow is
the lowest frequency of all the frequency bands.

__u32 rangehigh The highest tunable frequency in units of 62.5 kHz, or if the
capability flag V4L2_TUNER_CAP_LOW is set, in units of 62.5 Hz,
or if the capability flag V4L2_TUNER_CAP_1HZ is set, in units of 1
Hz. If multiple frequency bands are supported, then rangehigh is
the highest frequency of all the frequency bands.

__u32 rxsubchans Some tuners or audio decoders can determine the received audio
subprograms by analyzing audio carriers, pilot tones or other indi-
cators. To pass this information drivers set flags defined in Tuner
Audio Reception Flags in this field. For example:
V4L2_TUNER_SUB_MONO receiving mono audio
STEREO | SAP receiving stereo audio and a

secondary audio program
MONO | STEREO receiving mono or stereo au-

dio, the hardware cannot dis-
tinguish

LANG1 | LANG2 receiving bilingual audio
MONO | STEREO | LANG1 | LANG2 receiving mono, stereo or

bilingual audio
When the V4L2_TUNER_CAP_STEREO, _LANG1, _LANG2 or _SAP
flag is cleared in the capability field, the corresponding
V4L2_TUNER_SUB_ flag must not be set here.
This field is valid only if this is the tuner of the current video input,
or when the structure refers to a radio tuner.

__u32 audmode The selected audio mode, see Tuner Audio Modes for valid values.
The audio mode does not affect audio subprogram detection, and
like a User Controls it does not automatically change unless the
requested mode is invalid or unsupported. See Tuner Audio Matrix
for possible results when the selected and received audio programs
do not match.
Currently this is the only field of struct struct v4l2_tuner applica-
tions can change.

__u32 signal The signal strength if known.
Ranging from 0 to 65535. Higher values indicate a better signal.

__s32 afc Automatic frequency control.
When the afc value is negative, the frequency is too low, when
positive too high.

Continued on next page

3.2. Part I - Video for Linux API 1197

Linux Media Documentation

Table 217 – continued from previous page
__u32 reserved[4] Reserved for future extensions.

Drivers and applications must set the array to zero.

v4l2_tuner_type

Table 218: enum v4l2_tuner_type
V4L2_TUNER_RADIO 1 Tuner supports radio
V4L2_TUNER_ANALOG_TV 2 Tuner supports analog TV
V4L2_TUNER_SDR 4 Tuner controls the A/D and/or D/A block of

a Software Digital Radio (SDR)
V4L2_TUNER_RF 5 Tuner controls the RF part of a Software

Digital Radio (SDR)

Table 219: Tuner and Modulator Capability Flags
V4L2_TUNER_CAP_LOW 0x0001 When set, tuning frequencies are ex-

pressed in units of 62.5 Hz instead of 62.5
kHz.

V4L2_TUNER_CAP_NORM 0x0002 This is a multi-standard tuner; the video
standard can or must be switched. (B/G
PAL tuners for example are typically not
considered multi-standard because the
video standard is automatically deter-
mined from the frequency band.) The set
of supported video standards is available
from the struct v4l2_input pointing to
this tuner, see the description of ioctl ioctl
VIDIOC_ENUMINPUT for details. Only
V4L2_TUNER_ANALOG_TV tuners can have
this capability.

V4L2_TUNER_CAP_HWSEEK_BOUNDED 0x0004 If set, then this tuner supports the hard-
ware seek functionality where the seek
stops when it reaches the end of the fre-
quency range.

V4L2_TUNER_CAP_HWSEEK_WRAP 0x0008 If set, then this tuner supports the hard-
ware seek functionality where the seek
wraps around when it reaches the end of
the frequency range.

V4L2_TUNER_CAP_STEREO 0x0010 Stereo audio reception is supported.
V4L2_TUNER_CAP_LANG1 0x0040 Reception of the primary language of

a bilingual audio program is supported.
Bilingual audio is a feature of two-
channel systems, transmitting the pri-
mary language monaural on the main
audio carrier and a secondary language
monaural on a second carrier. Only
V4L2_TUNER_ANALOG_TV tuners can have
this capability.

Continued on next page

1198 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 219 – continued from previous page
V4L2_TUNER_CAP_LANG2 0x0020 Reception of the secondary language of

a bilingual audio program is supported.
Only V4L2_TUNER_ANALOG_TV tuners can
have this capability.

V4L2_TUNER_CAP_SAP 0x0020 Reception of a secondary audio pro-
gram is supported. This is a feature
of the BTSC system which accompanies
the NTSC video standard. Two au-
dio carriers are available for mono or
stereo transmissions of a primary lan-
guage, and an independent third carrier
for a monaural secondary language. Only
V4L2_TUNER_ANALOG_TV tuners can have
this capability.

Note: The V4L2_TUNER_CAP_LANG2 and
V4L2_TUNER_CAP_SAP flags are synonyms.
V4L2_TUNER_CAP_SAP applies when the
tuner supports the V4L2_STD_NTSC_M
video standard.

V4L2_TUNER_CAP_RDS 0x0080 RDS capture is supported. This capability
is only valid for radio tuners.

V4L2_TUNER_CAP_RDS_BLOCK_IO 0x0100 The RDS data is passed as unparsed RDS
blocks.

V4L2_TUNER_CAP_RDS_CONTROLS 0x0200 The RDS data is parsed by the hardware
and set via controls.

V4L2_TUNER_CAP_FREQ_BANDS 0x0400 The ioctl VIDIOC_ENUM_FREQ_BANDS
ioctl can be used to enumerate the avail-
able frequency bands.

V4L2_TUNER_CAP_HWSEEK_PROG_LIM 0x0800 The range to search when using the hard-
ware seek functionality is programmable,
see ioctl VIDIOC_S_HW_FREQ_SEEK for
details.

V4L2_TUNER_CAP_1HZ 0x1000 When set, tuning frequencies are ex-
pressed in units of 1 Hz instead of 62.5
kHz.

3.2. Part I - Video for Linux API 1199

Linux Media Documentation

Table 220: Tuner Audio Reception Flags
V4L2_TUNER_SUB_MONO 0x0001 The tuner receives a mono audio signal.
V4L2_TUNER_SUB_STEREO 0x0002 The tuner receives a stereo audio signal.
V4L2_TUNER_SUB_LANG1 0x0008 The tuner receives the primary language of

a bilingual audio signal. Drivers must clear
this flag when the current video standard is
V4L2_STD_NTSC_M.

V4L2_TUNER_SUB_LANG2 0x0004 The tuner receives the secondary language
of a bilingual audio signal (or a second audio
program).

V4L2_TUNER_SUB_SAP 0x0004 The tuner receives a Second Audio Pro-
gram.

Note: The V4L2_TUNER_SUB_LANG2
and V4L2_TUNER_SUB_SAP flags are syn-
onyms. The V4L2_TUNER_SUB_SAP flag
applies when the current video standard is
V4L2_STD_NTSC_M.

V4L2_TUNER_SUB_RDS 0x0010 The tuner receives an RDS channel.

1200 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 221: Tuner Audio Modes
V4L2_TUNER_MODE_MONO 0 Play mono audio. When the tuner receives

a stereo signal this a down-mix of the left
and right channel. When the tuner receives
a bilingual or SAP signal this mode selects
the primary language.

V4L2_TUNER_MODE_STEREO 1 Play stereo audio. When the tuner receives
bilingual audio it may play different lan-
guages on the left and right channel or the
primary language is played on both chan-
nels.
Playing different languages in this mode is
deprecated. New drivers should do this only
in MODE_LANG1_LANG2.
When the tuner receives no stereo signal or
does not support stereo reception the driver
shall fall back to MODE_MONO.

V4L2_TUNER_MODE_LANG1 3 Play the primary language, mono or stereo.
Only V4L2_TUNER_ANALOG_TV tuners sup-
port this mode.

V4L2_TUNER_MODE_LANG2 2 Play the secondary language, mono. When
the tuner receives no bilingual audio or
SAP, or their reception is not supported
the driver shall fall back to mono or stereo
mode. Only V4L2_TUNER_ANALOG_TV tuners
support this mode.

V4L2_TUNER_MODE_SAP 2 Play the Second Audio Program. When the
tuner receives no bilingual audio or SAP, or
their reception is not supported the driver
shall fall back to mono or stereo mode. Only
V4L2_TUNER_ANALOG_TV tuners support this
mode.

Note: The V4L2_TUNER_MODE_LANG2 and
V4L2_TUNER_MODE_SAP are synonyms.

V4L2_TUNER_MODE_LANG1_LANG2 4 Play the primary language on the left
channel, the secondary language on the
right channel. When the tuner receives
no bilingual audio or SAP, it shall fall
back to MODE_LANG1 or MODE_MONO. Only
V4L2_TUNER_ANALOG_TV tuners support this
mode.

3.2. Part I - Video for Linux API 1201

Linux Media Documentation

Table 222: Tuner Audio Matrix
Selected V4L2_TUNER_MODE_

Received
V4L2_TUNER_SUB_

MONO STEREO LANG1 LANG2 = SAP LANG1_LANG21

MONO Mono Mono/Mono Mono Mono Mono/Mono
MONO |
SAP

Mono Mono/Mono Mono SAP Mono/SAP
(preferred) or
Mono/Mono

STEREO L+R L/R Stereo L/R (pre-
ferred) or Mono
L+R

Stereo L/R (pre-
ferred) or Mono
L+R

L/R (preferred) or
L+R/L+R

STEREO |
SAP

L+R L/R Stereo L/R (pre-
ferred) or Mono
L+R

SAP L+R/SAP (pre-
ferred) or L/R or
L+R/L+R

LANG1 |
LANG2

Language
1

Lang1/Lang2
(deprecated2) or
Lang1/Lang1

Language 1 Language 2 Lang1/Lang2
(preferred) or
Lang1/Lang1

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_tuner index is out of bounds.

3.2.7.43 ioctl VIDIOC_LOG_STATUS

Name

VIDIOC_LOG_STATUS - Log driver status information

Synopsis

VIDIOC_LOG_STATUS

int ioctl(int fd, VIDIOC_LOG_STATUS)

Arguments

fd File descriptor returned by open().
1 This mode has been added in Linux 2.6.17 and may not be supported by older drivers.
2 Playback of both languages in MODE_STEREO is deprecated. In the future drivers should produce only the primary

language in this mode. Applications should request MODE_LANG1_LANG2 to record both languages or a stereo signal.

1202 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Description

As the video/audio devices become more complicated it becomes harder to debug problems.
When this ioctl is called the driver will output the current device status to the kernel log. This
is particular useful when dealing with problems like no sound, no video and incorrectly tuned
channels. Also many modern devices autodetect video and audio standards and this ioctl will
report what the device thinks what the standard is. Mismatches may give an indication where
the problem is.

This ioctl is optional and not all drivers support it. It was introduced in Linux 2.6.15.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

3.2.7.44 ioctl VIDIOC_OVERLAY

Name

VIDIOC_OVERLAY - Start or stop video overlay

Synopsis

VIDIOC_OVERLAY

int ioctl(int fd, VIDIOC_OVERLAY, const int *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to an integer.

Description

This ioctl is part of the video overlay I/O method. Applications call ioctl VIDIOC_OVERLAY to
start or stop the overlay. It takes a pointer to an integer which must be set to zero by the
application to stop overlay, to one to start.

Drivers do not support ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF or VID-
IOC_STREAMOFF with V4L2_BUF_TYPE_VIDEO_OVERLAY.

3.2. Part I - Video for Linux API 1203

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The overlay parameters have not been set up. See Video Overlay Interface for the
necessary steps.

3.2.7.45 ioctl VIDIOC_PREPARE_BUF

Name

VIDIOC_PREPARE_BUF - Prepare a buffer for I/O

Synopsis

VIDIOC_PREPARE_BUF

int ioctl(int fd, VIDIOC_PREPARE_BUF, struct v4l2_buffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_buffer.

Description

Applications can optionally call the ioctl VIDIOC_PREPARE_BUF ioctl to pass ownership of the
buffer to the driver before actually enqueuing it, using the VIDIOC_QBUF ioctl, and to prepare
it for future I/O. Such preparations may include cache invalidation or cleaning. Performing
them in advance saves time during the actual I/O.

The struct v4l2_buffer structure is specified in Buffers.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EBUSY File I/O is in progress.
EINVAL The buffer type is not supported, or the index is out of bounds, or no buffers have

been allocated yet, or the userptr or length are invalid.

1204 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

3.2.7.46 ioctl VIDIOC_QBUF, VIDIOC_DQBUF

Name

VIDIOC_QBUF - VIDIOC_DQBUF - Exchange a buffer with the driver

Synopsis

VIDIOC_QBUF

int ioctl(int fd, VIDIOC_QBUF, struct v4l2_buffer *argp)

VIDIOC_DQBUF

int ioctl(int fd, VIDIOC_DQBUF, struct v4l2_buffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_buffer.

Description

Applications call the VIDIOC_QBUF ioctl to enqueue an empty (capturing) or filled (output) buffer
in the driver’s incoming queue. The semantics depend on the selected I/O method.

To enqueue a buffer applications set the type field of a struct v4l2_buffer to the same buffer
type as was previously used with struct v4l2_format type and struct v4l2_requestbuffers
type. Applications must also set the index field. Valid index numbers range from zero to the
number of buffers allocated with ioctl VIDIOC_REQBUFS (struct v4l2_requestbuffers count)
minus one. The contents of the struct v4l2_buffer returned by a ioctl VIDIOC_QUERYBUF ioctl
will do as well. When the buffer is intended for output (type is V4L2_BUF_TYPE_VIDEO_OUTPUT,
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE, or V4L2_BUF_TYPE_VBI_OUTPUT) applications must also
initialize the bytesused, field and timestamp fields, see Buffers for details. Applications must
also set flags to 0. The reserved2 and reserved fields must be set to 0. When using themulti-
planar API, the m.planes field must contain a userspace pointer to a filled-in array of struct
v4l2_plane and the length field must be set to the number of elements in that array.

To enqueue a memory mapped buffer applications set the memory field to V4L2_MEMORY_MMAP.
When VIDIOC_QBUF is called with a pointer to this structure the driver sets the
V4L2_BUF_FLAG_MAPPED and V4L2_BUF_FLAG_QUEUED flags and clears the V4L2_BUF_FLAG_DONE
flag in the flags field, or it returns an EINVAL error code.

To enqueue a user pointer buffer applications set the memory field to V4L2_MEMORY_USERPTR,
the m.userptr field to the address of the buffer and length to its size. When the multi-planar
API is used, m.userptr and length members of the passed array of struct v4l2_plane have to
be used instead. When VIDIOC_QBUF is called with a pointer to this structure the driver sets the
V4L2_BUF_FLAG_QUEUED flag and clears the V4L2_BUF_FLAG_MAPPED and V4L2_BUF_FLAG_DONE
flags in the flags field, or it returns an error code. This ioctl locks the memory pages of the
buffer in physical memory, they cannot be swapped out to disk. Buffers remain locked until

3.2. Part I - Video for Linux API 1205

Linux Media Documentation

dequeued, until the VIDIOC_STREAMOFF or ioctl VIDIOC_REQBUFS ioctl is called, or until
the device is closed.

To enqueue a DMABUF buffer applications set the memory field to V4L2_MEMORY_DMABUF and the
m.fd field to a file descriptor associated with a DMABUF buffer. When the multi-planar API is
used the m.fd fields of the passed array of struct v4l2_plane have to be used instead. When
VIDIOC_QBUF is called with a pointer to this structure the driver sets the V4L2_BUF_FLAG_QUEUED
flag and clears the V4L2_BUF_FLAG_MAPPED and V4L2_BUF_FLAG_DONE flags in the flags field,
or it returns an error code. This ioctl locks the buffer. Locking a buffer means passing it
to a driver for a hardware access (usually DMA). If an application accesses (reads/writes) a
locked buffer then the result is undefined. Buffers remain locked until dequeued, until the
VIDIOC_STREAMOFF or ioctl VIDIOC_REQBUFS ioctl is called, or until the device is closed.

The request_fd field can be used with the VIDIOC_QBUF ioctl to specify the file descriptor of a
request, if requests are in use. Setting it means that the buffer will not be passed to the driver
until the request itself is queued. Also, the driver will apply any settings associated with the
request for this buffer. This field will be ignored unless the V4L2_BUF_FLAG_REQUEST_FD flag
is set. If the device does not support requests, then EBADR will be returned. If requests are
supported but an invalid request file descriptor is given, then EINVAL will be returned.

Caution: It is not allowed to mix queuing requests with queuing buffers directly. EBUSY will
be returned if the first buffer was queued directly and then the application tries to queue
a request, or vice versa. After closing the file descriptor, calling VIDIOC_STREAMOFF or
calling ioctl VIDIOC_REQBUFS the check for this will be reset.

For memory-to-memory devices you can specify the request_fd only for output buffers, not
for capture buffers. Attempting to specify this for a capture buffer will result in an EBADR
error.

Applications call the VIDIOC_DQBUF ioctl to dequeue a filled (capturing) or displayed (output)
buffer from the driver’s outgoing queue. They just set the type, memory and reserved fields
of a struct v4l2_buffer as above, when VIDIOC_DQBUF is called with a pointer to this struc-
ture the driver fills the remaining fields or returns an error code. The driver may also set
V4L2_BUF_FLAG_ERROR in the flags field. It indicates a non-critical (recoverable) streaming er-
ror. In such case the application may continue as normal, but should be aware that data in the
dequeued buffer might be corrupted. When using the multi-planar API, the planes array must
be passed in as well.

If the application sets the memory field to V4L2_MEMORY_DMABUF to dequeue a DMABUF buffer,
the driver fills the m.fd field with a file descriptor numerically the same as the one given to
VIDIOC_QBUF when the buffer was enqueued. No new file descriptor is created at dequeue time
and the value is only for the application convenience. When the multi-planar API is used the
m.fd fields of the passed array of struct v4l2_plane are filled instead.

By default VIDIOC_DQBUF blocks when no buffer is in the outgoing queue. When the O_NONBLOCK
flag was given to the open() function, VIDIOC_DQBUF returns immediately with an EAGAIN error
code when no buffer is available.

The struct v4l2_buffer structure is specified in Buffers.

1206 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EAGAIN Non-blocking I/O has been selected using O_NONBLOCK and no buffer was in the out-
going queue.

EINVAL The buffer type is not supported, or the index is out of bounds, or no buffers have been
allocated yet, or the userptr or length are invalid, or the V4L2_BUF_FLAG_REQUEST_FD
flag was set but the given request_fd was invalid, or m.fd was an invalid DMABUF file
descriptor.

EIO VIDIOC_DQBUF failed due to an internal error. Can also indicate temporary problems like
signal loss.

Note: The driver might dequeue an (empty) buffer despite returning an error, or even
stop capturing. Reusing such buffer may be unsafe though and its details (e.g. index)
may not be returned either. It is recommended that drivers indicate recoverable errors
by setting the V4L2_BUF_FLAG_ERROR and returning 0 instead. In that case the application
should be able to safely reuse the buffer and continue streaming.

EPIPE VIDIOC_DQBUF returns this on an empty capture queue for mem2mem codecs if a buffer
with the V4L2_BUF_FLAG_LAST was already dequeued and no new buffers are expected to
become available.

EBADR The V4L2_BUF_FLAG_REQUEST_FD flag was set but the device does not support requests
for the given buffer type, or the V4L2_BUF_FLAG_REQUEST_FD flag was not set but the device
requires that the buffer is part of a request.

EBUSY The first buffer was queued via a request, but the application now tries to queue it
directly, or vice versa (it is not permitted to mix the two APIs).

3.2.7.47 ioctl VIDIOC_QUERYBUF

Name

VIDIOC_QUERYBUF - Query the status of a buffer

Synopsis

VIDIOC_QUERYBUF

int ioctl(int fd, VIDIOC_QUERYBUF, struct v4l2_buffer *argp)

3.2. Part I - Video for Linux API 1207

Linux Media Documentation

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_buffer.

Description

This ioctl is part of the streaming I/O method. It can be used to query the status of a buffer at
any time after buffers have been allocated with the ioctl VIDIOC_REQBUFS ioctl.

Applications set the type field of a struct v4l2_buffer to the same buffer type as was previ-
ously used with struct v4l2_format type and struct v4l2_requestbuffers type, and the index
field. Valid index numbers range from zero to the number of buffers allocated with ioctl VID-
IOC_REQBUFS (struct v4l2_requestbuffers count) minus one. The reserved and reserved2
fields must be set to 0. When using the multi-planar API, the m.planes field must contain a
userspace pointer to an array of struct v4l2_plane and the length field has to be set to the
number of elements in that array. After calling ioctl VIDIOC_QUERYBUF with a pointer to this
structure drivers return an error code or fill the rest of the structure.

In the flags field the V4L2_BUF_FLAG_MAPPED, V4L2_BUF_FLAG_PREPARED,
V4L2_BUF_FLAG_QUEUED and V4L2_BUF_FLAG_DONE flags will be valid. The memory field
will be set to the current I/O method. For the single-planar API, the m.offset contains the
offset of the buffer from the start of the device memory, the length field its size. For the
multi-planar API, fields m.mem_offset and length in the m.planes array elements will be
used instead and the length field of struct v4l2_buffer is set to the number of filled-in array
elements. The driver may or may not set the remaining fields and flags, they are meaningless
in this context.

The struct v4l2_buffer structure is specified in Buffers.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The buffer type is not supported, or the index is out of bounds.

3.2.7.48 ioctl VIDIOC_QUERYCAP

Name

VIDIOC_QUERYCAP - Query device capabilities

1208 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Synopsis

VIDIOC_QUERYCAP

int ioctl(int fd, VIDIOC_QUERYCAP, struct v4l2_capability *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_capability.

Description

All V4L2 devices support the VIDIOC_QUERYCAP ioctl. It is used to identify kernel devices com-
patible with this specification and to obtain information about driver and hardware capabilities.
The ioctl takes a pointer to a struct v4l2_capability which is filled by the driver. When the
driver is not compatible with this specification the ioctl returns an EINVAL error code.

v4l2_capability

Table 223: struct v4l2_capability
__u8 driver[16] Name of the driver, a unique NUL-terminated ASCII string. For ex-

ample: “bttv”. Driver specific applications can use this information
to verify the driver identity. It is also useful to work around known
bugs, or to identify drivers in error reports.
Storing strings in fixed sized arrays is bad practice but unavoidable
here. Drivers and applications should take precautions to never
read or write beyond the end of the array and to make sure the
strings are properly NUL-terminated.

__u8 card[32] Name of the device, a NUL-terminated UTF-8 string. For exam-
ple: “Yoyodyne TV/FM”. One driver may support different brands or
models of video hardware. This information is intended for users,
for example in a menu of available devices. Since multiple TV cards
of the same brandmay be installed which are supported by the same
driver, this name should be combined with the character device file
name (e. g. /dev/video2) or the bus_info string to avoid ambigui-
ties.

__u8 bus_info[32] Location of the device in the system, a NUL-terminated ASCII
string. For example: “PCI:0000:05:06.0”. This information is in-
tended for users, to distinguishmultiple identical devices. If no such
information is available the field must simply count the devices con-
trolled by the driver (“platform:vivid-000”). The bus_info must start
with “PCI:” for PCI boards, “PCIe:” for PCI Express boards, “usb-”
for USB devices, “I2C:” for i2c devices, “ISA:” for ISA devices, “par-
port” for parallel port devices and “platform:” for platform devices.

Continued on next page

3.2. Part I - Video for Linux API 1209

Linux Media Documentation

Table 223 – continued from previous page
__u32 version Version number of the driver.

Starting with kernel 3.1, the version reported is provided by the
V4L2 subsystem following the kernel numbering scheme. However,
it may not always return the same version as the kernel if, for ex-
ample, a stable or distribution-modified kernel uses the V4L2 stack
from a newer kernel.
The version number is formatted using the KERNEL_VERSION()
macro. For example if the media stack corresponds to the V4L2
version shipped with Kernel 4.14, it would be equivalent to:

#define KERNEL_VERSION(a,b,c) (((a) << 16) + ((b) << 8) + (c))
__u32 version = KERNEL_VERSION(4, 14, 0);
printf ("Version: %u.%u.%u\\n",
(version >> 16) & 0xFF, (version >> 8) & 0xFF, version & 0xFF);
__u32 capabilities Available capabilities of the physical device as a whole, see Device

Capabilities Flags. The same physical device can export multiple
devices in /dev (e.g. /dev/videoX, /dev/vbiY and /dev/radioZ). The
capabilities field should contain a union of all capabilities avail-
able around the several V4L2 devices exported to userspace. For
all those devices the capabilities field returns the same set of ca-
pabilities. This allows applications to open just one of the devices
(typically the video device) and discover whether video, vbi and/or
radio are also supported.

__u32 device_caps Device capabilities of the opened device, see Device Capabilities
Flags. Should contain the available capabilities of that specific de-
vice node. So, for example, device_caps of a radio device will
only contain radio related capabilities and no video or vbi capabil-
ities. This field is only set if the capabilities field contains the
V4L2_CAP_DEVICE_CAPS capability. Only the capabilities field can
have the V4L2_CAP_DEVICE_CAPS capability, device_capswill never
set V4L2_CAP_DEVICE_CAPS.

__u32 reserved[3] Reserved for future extensions. Drivers must set this array to zero.

Table 224: Device Capabilities Flags
V4L2_CAP_VIDEO_CAPTURE 0x00000001 The device supports the single-planar

API through the Video Capture inter-
face.

V4L2_CAP_VIDEO_CAPTURE_MPLANE 0x00001000 The device supports the multi-planar
API through the Video Capture inter-
face.

V4L2_CAP_VIDEO_OUTPUT 0x00000002 The device supports the single-planar
API through the Video Output interface.

V4L2_CAP_VIDEO_OUTPUT_MPLANE 0x00002000 The device supports the multi-planar
API through the Video Output interface.

V4L2_CAP_VIDEO_M2M 0x00008000 The device supports the single-planar
API through the Video Memory-To-
Memory interface.

Continued on next page

1210 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 224 – continued from previous page
V4L2_CAP_VIDEO_M2M_MPLANE 0x00004000 The device supports the multi-planar

API through the Video Memory-To-
Memory interface.

V4L2_CAP_VIDEO_OVERLAY 0x00000004 The device supports the Video Overlay
interface. A video overlay device typi-
cally stores captured images directly in
the video memory of a graphics card,
with hardware clipping and scaling.

V4L2_CAP_VBI_CAPTURE 0x00000010 The device supports the Raw VBI Cap-
ture interface, providing Teletext and
Closed Caption data.

V4L2_CAP_VBI_OUTPUT 0x00000020 The device supports the Raw VBI Out-
put interface.

V4L2_CAP_SLICED_VBI_CAPTURE 0x00000040 The device supports the Sliced VBI Cap-
ture interface.

V4L2_CAP_SLICED_VBI_OUTPUT 0x00000080 The device supports the Sliced VBI Out-
put interface.

V4L2_CAP_RDS_CAPTURE 0x00000100 The device supports theRDS capture in-
terface.

V4L2_CAP_VIDEO_OUTPUT_OVERLAY 0x00000200 The device supports the Video Out-
put Overlay (OSD) interface. Unlike
the Video Overlay interface, this is
a secondary function of video output
devices and overlays an image onto
an outgoing video signal. When the
driver sets this flag, it must clear the
V4L2_CAP_VIDEO_OVERLAY flag and vice
versa.1

V4L2_CAP_HW_FREQ_SEEK 0x00000400 The device supports the ioctl VID-
IOC_S_HW_FREQ_SEEK ioctl for hard-
ware frequency seeking.

V4L2_CAP_RDS_OUTPUT 0x00000800 The device supports the RDS output in-
terface.

V4L2_CAP_TUNER 0x00010000 The device has some sort of tuner to re-
ceive RF-modulated video signals. For
more information about tuner program-
ming see Tuners and Modulators.

V4L2_CAP_AUDIO 0x00020000 The device has audio inputs or outputs.
It may or may not support audio record-
ing or playback, in PCM or compressed
formats. PCM audio support must be
implemented as ALSA or OSS interface.
For more information on audio inputs
and outputs see Audio Inputs and Out-
puts.

V4L2_CAP_RADIO 0x00040000 This is a radio receiver.
Continued on next page

3.2. Part I - Video for Linux API 1211

Linux Media Documentation

Table 224 – continued from previous page
V4L2_CAP_MODULATOR 0x00080000 The device has some sort of modulator

to emit RF-modulated video/audio sig-
nals. For more information about mod-
ulator programming see Tuners and
Modulators.

V4L2_CAP_SDR_CAPTURE 0x00100000 The device supports the SDR Capture
interface.

V4L2_CAP_EXT_PIX_FORMAT 0x00200000 The device supports the struct
v4l2_pix_format extended fields.

V4L2_CAP_SDR_OUTPUT 0x00400000 The device supports the SDR Output in-
terface.

V4L2_CAP_META_CAPTURE 0x00800000 The device supports theMetadata Inter-
face capture interface.

V4L2_CAP_READWRITE 0x01000000 The device supports the read() and/or
write() I/O methods.

V4L2_CAP_ASYNCIO 0x02000000 The device supports the asynchronous
I/O methods.

V4L2_CAP_STREAMING 0x04000000 The device supports the streaming I/O
method.

V4L2_CAP_META_OUTPUT 0x08000000 The device supports theMetadata Inter-
face output interface.

V4L2_CAP_TOUCH 0x10000000 This is a touch device.
V4L2_CAP_IO_MC 0x20000000 There is only one input and/or output

seen from userspace. The whole video
topology configuration, including which
I/O entity is routed to the input/output,
is configured by userspace via the Me-
dia Controller. See Part IV - Media Con-
troller API.

V4L2_CAP_DEVICE_CAPS 0x80000000 The driver fills the device_caps field.
This capability can only appear in the
capabilities field and never in the
device_caps field.

1 The struct v4l2_framebuffer lacks an enum v4l2_buf_type field, therefore the type of overlay is implied by
the driver capabilities.

1212 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

3.2.7.49 ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VID-
IOC_QUERYMENU

Name

VIDIOC_QUERYCTRL - VIDIOC_QUERY_EXT_CTRL - VIDIOC_QUERYMENU - Enumerate con-
trols and menu control items

Synopsis

int ioctl(int fd, int VIDIOC_QUERYCTRL, struct v4l2_queryctrl *argp)

VIDIOC_QUERY_EXT_CTRL

int ioctl(int fd, VIDIOC_QUERY_EXT_CTRL, struct v4l2_query_ext_ctrl *argp)

VIDIOC_QUERYMENU

int ioctl(int fd, VIDIOC_QUERYMENU, struct v4l2_querymenu *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_queryctrl, v4l2_query_ext_ctrl or v4l2_querymenu (depending
on the ioctl).

Description

To query the attributes of a control applications set the id field of a struct v4l2_queryctrl and
call the VIDIOC_QUERYCTRL ioctl with a pointer to this structure. The driver fills the rest of the
structure or returns an EINVAL error code when the id is invalid.

It is possible to enumerate controls by calling VIDIOC_QUERYCTRL with successive id values
starting from V4L2_CID_BASE up to and exclusive V4L2_CID_LASTP1. Drivers may return EINVAL
if a control in this range is not supported. Further applications can enumerate private controls,
which are not defined in this specification, by starting at V4L2_CID_PRIVATE_BASE and incre-
menting id until the driver returns EINVAL.

In both cases, when the driver sets the V4L2_CTRL_FLAG_DISABLED flag in the flags field this
control is permanently disabled and should be ignored by the application.1

1 V4L2_CTRL_FLAG_DISABLED was intended for two purposes: Drivers can skip predefined controls not supported
by the hardware (although returning EINVAL would do as well), or disable predefined and private controls after

3.2. Part I - Video for Linux API 1213

Linux Media Documentation

When the application ORs id with V4L2_CTRL_FLAG_NEXT_CTRL the driver returns the
next supported non-compound control, or EINVAL if there is none. In addition, the
V4L2_CTRL_FLAG_NEXT_COMPOUND flag can be specified to enumerate all compound controls
(i.e. controls with type ≥ V4L2_CTRL_COMPOUND_TYPES and/or array control, in other words
controls that contain more than one value). Specify both V4L2_CTRL_FLAG_NEXT_CTRL and
V4L2_CTRL_FLAG_NEXT_COMPOUND in order to enumerate all controls, compound or not. Drivers
which do not support these flags yet always return EINVAL.

The VIDIOC_QUERY_EXT_CTRL ioctl was introduced in order to better support controls that can
use compound types, and to expose additional control information that cannot be returned in
struct v4l2_queryctrl since that structure is full.

VIDIOC_QUERY_EXT_CTRL is used in the same way as VIDIOC_QUERYCTRL, except that the
reserved array must be zeroed as well.

Additional information is required for menu controls: the names of the menu items. To
query them applications set the id and index fields of struct v4l2_querymenu and call the
VIDIOC_QUERYMENU ioctl with a pointer to this structure. The driver fills the rest of the structure
or returns an EINVAL error code when the id or index is invalid. Menu items are enumerated
by calling VIDIOC_QUERYMENU with successive index values from struct v4l2_queryctrl minimum
to maximum, inclusive.

Note: It is possible for VIDIOC_QUERYMENU to return an EINVAL error code for some indices
between minimum and maximum. In that case that particular menu item is not supported by this
driver. Also note that the minimum value is not necessarily 0.

See also the examples in User Controls.

Table 225: struct v4l2_queryctrl
__u32 id Identifies the control, set by the application. See Con-

trol IDs for predefined IDs. When the ID is ORed with
V4L2_CTRL_FLAG_NEXT_CTRL the driver clears the flag and re-
turns the first control with a higher ID. Drivers which do not sup-
port this flag yet always return an EINVAL error code.

__u32 type Type of control, see v4l2_ctrl_type.
__u8 name[32] Name of the control, a NUL-terminated ASCII string. This infor-

mation is intended for the user.
__s32 minimum Minimum value, inclusive. This field gives a lower bound for the

control. See enum v4l2_ctrl_type how the minimum value is
to be used for each possible control type. Note that this a signed
32-bit value.

__s32 maximum Maximum value, inclusive. This field gives an upper bound for
the control. See enum v4l2_ctrl_type how the maximum value
is to be used for each possible control type. Note that this a
signed 32-bit value.

Continued on next page

hardware detection without the trouble of reordering control arrays and indices (EINVAL cannot be used to skip
private controls because it would prematurely end the enumeration).

1214 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 225 – continued from previous page
__s32 step This field gives a step size for the control. See enum

v4l2_ctrl_type how the step value is to be used for each possi-
ble control type. Note that this an unsigned 32-bit value.
Generally drivers should not scale hardware control values. It
may be necessary for example when the name or id imply a partic-
ular unit and the hardware actually accepts only multiples of said
unit. If so, drivers must take care values are properly rounded
when scaling, such that errors will not accumulate on repeated
read-write cycles.
This field gives the smallest change of an integer control actually
affecting hardware. Often the information is needed when the
user can change controls by keyboard or GUI buttons, rather
than a slider. When for example a hardware register accepts
values 0-511 and the driver reports 0-65535, step should be 128.
Note that although signed, the step value is supposed to be al-
ways positive.

__s32 default_value The default value of a V4L2_CTRL_TYPE_INTEGER, _BOOLEAN,
_BITMASK, _MENU or _INTEGER_MENU control. Not valid for other
types of controls.

Note: Drivers reset controls to their default value only when
the driver is first loaded, never afterwards.

__u32 flags Control flags, see Control Flags.
__u32 reserved[2] Reserved for future extensions. Drivers must set the array to

zero.

Table 226: struct v4l2_query_ext_ctrl
__u32 id Identifies the control, set by the application. See Con-

trol IDs for predefined IDs. When the ID is ORed
with V4L2_CTRL_FLAG_NEXT_CTRL the driver clears
the flag and returns the first non-compound con-
trol with a higher ID. When the ID is ORed with
V4L2_CTRL_FLAG_NEXT_COMPOUND the driver clears the
flag and returns the first compound control with a
higher ID. Set both to get the first control (compound
or not) with a higher ID.

__u32 type Type of control, see v4l2_ctrl_type.
char name[32] Name of the control, a NUL-terminated ASCII string.

This information is intended for the user.
__s64 minimum Minimum value, inclusive. This field gives a lower

bound for the control. See enum v4l2_ctrl_type how
the minimum value is to be used for each possible con-
trol type. Note that this a signed 64-bit value.

Continued on next page

3.2. Part I - Video for Linux API 1215

Linux Media Documentation

Table 226 – continued from previous page
__s64 maximum Maximum value, inclusive. This field gives an upper

bound for the control. See enum v4l2_ctrl_type how
the maximum value is to be used for each possible con-
trol type. Note that this a signed 64-bit value.

__u64 step This field gives a step size for the control. See enum
v4l2_ctrl_type how the step value is to be used for
each possible control type. Note that this an unsigned
64-bit value.
Generally drivers should not scale hardware control
values. It may be necessary for example when the name
or id imply a particular unit and the hardware actually
accepts only multiples of said unit. If so, drivers must
take care values are properly rounded when scaling,
such that errors will not accumulate on repeated read-
write cycles.
This field gives the smallest change of an integer con-
trol actually affecting hardware. Often the information
is needed when the user can change controls by key-
board or GUI buttons, rather than a slider. When for
example a hardware register accepts values 0-511 and
the driver reports 0-65535, step should be 128.

__s64 default_value The default value of a V4L2_CTRL_TYPE_INTEGER,
_INTEGER64, _BOOLEAN, _BITMASK, _MENU,
_INTEGER_MENU, _U8 or _U16 control. Not valid
for other types of controls.

Note: Drivers reset controls to their default value
only when the driver is first loaded, never afterwards.

__u32 flags Control flags, see Control Flags.
__u32 elem_size The size in bytes of a single element of the ar-

ray. Given a char pointer p to a 3-dimensional ar-
ray you can find the position of cell (z, y, x) as
follows: p + ((z * dims[1] + y) * dims[0] + x)
* elem_size. elem_size is always valid, also when the
control isn’t an array. For string controls elem_size is
equal to maximum + 1.

__u32 elems The number of elements in the N-dimensional array. If
this control is not an array, then elems is 1. The elems
field can never be 0.

__u32 nr_of_dims The number of dimension in the N-dimensional array.
If this control is not an array, then this field is 0.

__u32 dims[V4L2_CTRL_MAX_DIMS] The size of each dimension. The first nr_of_dims el-
ements of this array must be non-zero, all remaining
elements must be zero.

__u32 reserved[32] Reserved for future extensions. Applications and
drivers must set the array to zero.

1216 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 227: struct v4l2_querymenu
__u32 id Identifies the control, set by the application from the respective

struct v4l2_queryctrl id.
__u32 index Index of the menu item, starting at zero, set by the application.
union
{

(anonymous)

__u8 name[32] Name of the menu item, a NUL-terminated ASCII string. This
information is intended for the user. This field is valid for
V4L2_CTRL_TYPE_MENU type controls.

__s64 value Value of the integer menu item. This field is valid for
V4L2_CTRL_TYPE_INTEGER_MENU type controls.

}
__u32 reserved Reserved for future extensions. Drivers must set the array to zero.

v4l2_ctrl_type

Table 228: enum v4l2_ctrl_type
Type minimum step maximum Description
V4L2_CTRL_TYPE_INTEGER any any any An integer-valued control ranging from

minimum to maximum inclusive. The step
value indicates the increment between val-
ues.

V4L2_CTRL_TYPE_BOOLEAN 0 1 1 A boolean-valued control. Zero corre-
sponds to “disabled”, and one means “en-
abled”.

V4L2_CTRL_TYPE_MENU ≥ 0 1 N-1 The control has a menu of N choices. The
names of the menu items can be enumer-
ated with the VIDIOC_QUERYMENU ioctl.

V4L2_CTRL_TYPE_INTEGER_MENU ≥ 0 1 N-1 The control has a menu of N choices. The
values of the menu items can be enu-
merated with the VIDIOC_QUERYMENU ioctl.
This is similar to V4L2_CTRL_TYPE_MENU ex-
cept that instead of strings, themenu items
are signed 64-bit integers.

V4L2_CTRL_TYPE_BITMASK 0 n/a any A bitmask field. The maximum value is the
set of bits that can be used, all other bits
are to be 0. The maximum value is inter-
preted as a __u32, allowing the use of bit
31 in the bitmask.

V4L2_CTRL_TYPE_BUTTON 0 0 0 A control which performs an action when
set. Drivers must ignore the value passed
with VIDIOC_S_CTRL and return an EACCES
error code on a VIDIOC_G_CTRL attempt.

V4L2_CTRL_TYPE_INTEGER64 any any any A 64-bit integer valued control. Mini-
mum, maximum and step size cannot be
queried using VIDIOC_QUERYCTRL. Only
VIDIOC_QUERY_EXT_CTRL can retrieve
the 64-bit min/max/step values, they
should be interpreted as n/a when using
VIDIOC_QUERYCTRL.

Continued on next page

3.2. Part I - Video for Linux API 1217

Linux Media Documentation

Table 228 – continued from previous page
Type minimum step maximum Description
V4L2_CTRL_TYPE_STRING ≥ 0 ≥ 1 ≥ 0 The minimum and maximum string

lengths. The step size means that the
string must be (minimum + N * step)
characters long for N ≥ 0. These lengths
do not include the terminating zero, so
in order to pass a string of length 8 to
VIDIOC_S_EXT_CTRLS you need to set
the size field of struct v4l2_ext_control
to 9. For VIDIOC_G_EXT_CTRLS you can
set the size field to maximum + 1. Which
character encoding is used will depend on
the string control itself and should be part
of the control documentation.

V4L2_CTRL_TYPE_CTRL_CLASS n/a n/a n/a This is not a control. When
VIDIOC_QUERYCTRL is called with a control
ID equal to a control class code (see
Control classes) + 1, the ioctl returns the
name of the control class and this control
type. Older drivers which do not support
this feature return an EINVAL error code.

V4L2_CTRL_TYPE_U8 any any any An unsigned 8-bit valued control rang-
ing from minimum to maximum inclusive.
The step value indicates the increment be-
tween values.

V4L2_CTRL_TYPE_U16 any any any An unsigned 16-bit valued control rang-
ing from minimum to maximum inclusive.
The step value indicates the increment be-
tween values.

V4L2_CTRL_TYPE_U32 any any any An unsigned 32-bit valued control rang-
ing from minimum to maximum inclusive.
The step value indicates the increment be-
tween values.

V4L2_CTRL_TYPE_MPEG2_QUANTISATION n/a n/a n/a A struct v4l2_ctrl_mpeg2_quantisation,
containing MPEG-2 quantisation matrices
for stateless video decoders.

V4L2_CTRL_TYPE_MPEG2_SEQUENCE n/a n/a n/a A struct v4l2_ctrl_mpeg2_sequence, con-
taining MPEG-2 sequence parameters for
stateless video decoders.

V4L2_CTRL_TYPE_MPEG2_PICTURE n/a n/a n/a A struct v4l2_ctrl_mpeg2_picture, con-
taining MPEG-2 picture parameters for
stateless video decoders.

V4L2_CTRL_TYPE_AREA n/a n/a n/a A struct v4l2_area, containing the width
and the height of a rectangular area. Units
depend on the use case.

V4L2_CTRL_TYPE_H264_SPS n/a n/a n/a A struct v4l2_ctrl_h264_sps, containing
H264 sequence parameters for stateless
video decoders.

V4L2_CTRL_TYPE_H264_PPS n/a n/a n/a A struct v4l2_ctrl_h264_pps, contain-
ing H264 picture parameters for stateless
video decoders.

V4L2_CTRL_TYPE_H264_SCALING_MATRIX n/a n/a n/a A struct v4l2_ctrl_h264_scaling_matrix,
containing H264 scaling matrices for
stateless video decoders.

V4L2_CTRL_TYPE_H264_SLICE_PARAMS n/a n/a n/a A struct v4l2_ctrl_h264_slice_params,
containing H264 slice parameters for
stateless video decoders.

V4L2_CTRL_TYPE_H264_DECODE_PARAMS n/a n/a n/a A struct v4l2_ctrl_h264_decode_params,
containing H264 decode parameters for
stateless video decoders.

Continued on next page

1218 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 228 – continued from previous page
Type minimum step maximum Description
V4L2_CTRL_TYPE_FWHT_PARAMS n/a n/a n/a A struct v4l2_ctrl_fwht_params, contain-

ing FWHT parameters for stateless video
decoders.

V4L2_CTRL_TYPE_HEVC_SPS n/a n/a n/a A struct v4l2_ctrl_hevc_sps, containing
HEVC Sequence Parameter Set for state-
less video decoders.

V4L2_CTRL_TYPE_HEVC_PPS n/a n/a n/a A struct v4l2_ctrl_hevc_pps, containing
HEVC Picture Parameter Set for stateless
video decoders.

V4L2_CTRL_TYPE_HEVC_SLICE_PARAMS n/a n/a n/a A struct v4l2_ctrl_hevc_slice_params,
containing HEVC slice parameters for
stateless video decoders.

V4L2_CTRL_TYPE_HEVC_SCALING_MATRIX n/a n/a n/a A struct v4l2_ctrl_hevc_scaling_matrix,
containing HEVC scaling matrix for state-
less video decoders.

V4L2_CTRL_TYPE_VP8_FRAME n/a n/a n/a A struct v4l2_ctrl_vp8_frame, contain-
ing VP8 frame parameters for stateless
video decoders.

V4L2_CTRL_TYPE_HEVC_DECODE_PARAMS n/a n/a n/a A struct v4l2_ctrl_hevc_decode_params,
containing HEVC decoding parameters for
stateless video decoders.

V4L2_CTRL_TYPE_VP9_COMPRESSED_HDR n/a n/a n/a A struct v4l2_ctrl_vp9_compressed_hdr,
containing VP9 probabilities updates for
stateless video decoders.

V4L2_CTRL_TYPE_VP9_FRAME n/a n/a n/a A struct v4l2_ctrl_vp9_frame, contain-
ing VP9 frame decode parameters for
stateless video decoders.

Table 229: Control Flags
V4L2_CTRL_FLAG_DISABLED 0x0001 This control is permanently disabled and

should be ignored by the application. Any
attempt to change the control will result in
an EINVAL error code.

V4L2_CTRL_FLAG_GRABBED 0x0002 This control is temporarily unchangeable,
for example because another application
took over control of the respective re-
source. Such controls may be displayed
specially in a user interface. Attempts to
change the control may result in an EBUSY
error code.

V4L2_CTRL_FLAG_READ_ONLY 0x0004 This control is permanently readable only.
Any attempt to change the control will re-
sult in an EINVAL error code.

V4L2_CTRL_FLAG_UPDATE 0x0008 A hint that changing this control may af-
fect the value of other controls within the
same control class. Applications should
update their user interface accordingly.

Continued on next page

3.2. Part I - Video for Linux API 1219

Linux Media Documentation

Table 229 – continued from previous page
V4L2_CTRL_FLAG_INACTIVE 0x0010 This control is not applicable to the cur-

rent configuration and should be displayed
accordingly in a user interface. For exam-
ple the flag may be set on a MPEG audio
level 2 bitrate control when MPEG audio
encoding level 1 was selectedwith another
control.

V4L2_CTRL_FLAG_SLIDER 0x0020 A hint that this control is best represented
as a slider-like element in a user interface.

V4L2_CTRL_FLAG_WRITE_ONLY 0x0040 This control is permanently writable only.
Any attempt to read the control will re-
sult in an EACCES error code error code.
This flag is typically present for relative
controls or action controls where writing
a value will cause the device to carry out
a given action (e. g. motor control) but no
meaningful value can be returned.

V4L2_CTRL_FLAG_VOLATILE 0x0080 This control is volatile, which means that
the value of the control changes continu-
ously. A typical example would be the cur-
rent gain value if the device is in auto-gain
mode. In such a case the hardware calcu-
lates the gain value based on the lighting
conditions which can change over time.

Note: Setting a new value for a
volatile control will be ignored unless
V4L2_CTRL_FLAG_EXECUTE_ON_WRITE
is also set. Setting a new value for
a volatile control will never trigger a
V4L2_EVENT_CTRL_CH_VALUE event.

V4L2_CTRL_FLAG_HAS_PAYLOAD 0x0100 This control has a pointer type, so its value
has to be accessed using one of the pointer
fields of struct v4l2_ext_control. This
flag is set for controls that are an array,
string, or have a compound type. In all
cases you have to set a pointer to memory
containing the payload of the control.

V4L2_CTRL_FLAG_EXECUTE_ON_WRITE 0x0200 The value provided to the control will
be propagated to the driver even if it re-
mains constant. This is required when the
control represents an action on the hard-
ware. For example: clearing an error flag
or triggering the flash. All the controls
of the type V4L2_CTRL_TYPE_BUTTON have
this flag set.

Continued on next page

1220 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 229 – continued from previous page
V4L2_CTRL_FLAG_MODIFY_LAYOUT 0x0400 Changing this control value may modify

the layout of the buffer (for video devices)
or the media bus format (for sub-devices).
A typical example would be the
V4L2_CID_ROTATE control.
Note that typically controls with this flag
will also set the V4L2_CTRL_FLAG_GRABBED
flag when buffers are allocated or stream-
ing is in progress since most drivers do not
support changing the format in that case.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_queryctrl id is invalid. The struct v4l2_querymenu id is invalid or
index is out of range (less than minimum or greater than maximum) or this particular menu
item is not supported by the driver.

EACCES An attempt was made to read a write-only control.

3.2.7.50 ioctl VIDIOC_QUERY_DV_TIMINGS

Name

VIDIOC_QUERY_DV_TIMINGS - VIDIOC_SUBDEV_QUERY_DV_TIMINGS - Sense the DV preset
received by the current input

Synopsis

VIDIOC_QUERY_DV_TIMINGS

int ioctl(int fd, VIDIOC_QUERY_DV_TIMINGS, struct v4l2_dv_timings *argp)

VIDIOC_SUBDEV_QUERY_DV_TIMINGS

int ioctl(int fd, VIDIOC_SUBDEV_QUERY_DV_TIMINGS, struct v4l2_dv_timings *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_dv_timings.

3.2. Part I - Video for Linux API 1221

Linux Media Documentation

Description

The hardware may be able to detect the current DV timings automatically, similar to sensing the
video standard. To do so, applications call ioctl VIDIOC_QUERY_DV_TIMINGS with a pointer
to a struct v4l2_dv_timings. Once the hardware detects the timings, it will fill in the timings
structure.

Note: Drivers shall not switch timings automatically if new timings are detected. Instead,
drivers should send the V4L2_EVENT_SOURCE_CHANGE event (if they support this) and expect
that userspace will take action by calling ioctl VIDIOC_QUERY_DV_TIMINGS. The reason is
that new timings usually mean different buffer sizes as well, and you cannot change buffer
sizes on the fly. In general, applications that receive the Source Change event will have to call
ioctl VIDIOC_QUERY_DV_TIMINGS, and if the detected timings are valid they will have to stop
streaming, set the new timings, allocate new buffers and start streaming again.

If the timings could not be detected because there was no signal, then ENOLINK is returned.
If a signal was detected, but it was unstable and the receiver could not lock to the signal,
then ENOLCK is returned. If the receiver could lock to the signal, but the format is unsup-
ported (e.g. because the pixelclock is out of range of the hardware capabilities), then the
driver fills in whatever timings it could find and returns ERANGE. In that case the application
can call ioctl VIDIOC_DV_TIMINGS_CAP, VIDIOC_SUBDEV_DV_TIMINGS_CAP to compare the
found timings with the hardware’s capabilities in order to give more precise feedback to the
user.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

ENODATA Digital video timings are not supported for this input or output.

ENOLINK No timings could be detected because no signal was found.

ENOLCK The signal was unstable and the hardware could not lock on to it.

ERANGE Timings were found, but they are out of range of the hardware capabilities.

3.2.7.51 ioctl VIDIOC_QUERYSTD, VIDIOC_SUBDEV_QUERYSTD

Name

VIDIOC_QUERYSTD - VIDIOC_SUBDEV_QUERYSTD - Sense the video standard received by the
current input

1222 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Synopsis

VIDIOC_QUERYSTD

int ioctl(int fd, VIDIOC_QUERYSTD, v4l2_std_id *argp)

VIDIOC_SUBDEV_QUERYSTD

int ioctl(int fd, VIDIOC_SUBDEV_QUERYSTD, v4l2_std_id *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to v4l2_std_id.

Description

The hardware may be able to detect the current video standard automatically. To do so,
applications call ioctl VIDIOC_QUERYSTD, VIDIOC_SUBDEV_QUERYSTD with a pointer to a
v4l2_std_id type. The driver stores here a set of candidates, this can be a single flag or a set of
supported standards if for example the hardware can only distinguish between 50 and 60 Hz
systems. If no signal was detected, then the driver will return V4L2_STD_UNKNOWN. When
detection is not possible or fails, the set must contain all standards supported by the current
video input or output.

Note: Drivers shall not switch the video standard automatically if a new video standard is
detected. Instead, drivers should send the V4L2_EVENT_SOURCE_CHANGE event (if they sup-
port this) and expect that userspace will take action by calling ioctl VIDIOC_QUERYSTD,
VIDIOC_SUBDEV_QUERYSTD. The reason is that a new video standard can mean different
buffer sizes as well, and you cannot change buffer sizes on the fly. In general, applica-
tions that receive the Source Change event will have to call ioctl VIDIOC_QUERYSTD, VID-
IOC_SUBDEV_QUERYSTD, and if the detected video standard is valid they will have to stop
streaming, set the new standard, allocate new buffers and start streaming again.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

ENODATA Standard video timings are not supported for this input or output.

3.2. Part I - Video for Linux API 1223

Linux Media Documentation

3.2.7.52 ioctl VIDIOC_REQBUFS

Name

VIDIOC_REQBUFS - Initiate Memory Mapping, User Pointer I/O or DMA buffer I/O

Synopsis

VIDIOC_REQBUFS

int ioctl(int fd, VIDIOC_REQBUFS, struct v4l2_requestbuffers *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_requestbuffers.

Description

This ioctl is used to initiate memory mapped, user pointer or DMABUF based I/O. Memory
mapped buffers are located in device memory and must be allocated with this ioctl before they
can be mapped into the application’s address space. User buffers are allocated by applications
themselves, and this ioctl is merely used to switch the driver into user pointer I/O mode and
to setup some internal structures. Similarly, DMABUF buffers are allocated by applications
through a device driver, and this ioctl only configures the driver into DMABUF I/O mode without
performing any direct allocation.

To allocate device buffers applications initialize all fields of the struct v4l2_requestbuffers
structure. They set the type field to the respective stream or buffer type, the count field to the
desired number of buffers, memory must be set to the requested I/O method and the reserved
array must be zeroed. When the ioctl is called with a pointer to this structure the driver will
attempt to allocate the requested number of buffers and it stores the actual number allocated in
the count field. It can be smaller than the number requested, even zero, when the driver runs
out of free memory. A larger number is also possible when the driver requires more buffers to
function correctly. For example video output requires at least two buffers, one displayed and
one filled by the application.

When the I/O method is not supported the ioctl returns an EINVAL error code.

Applications can call ioctl VIDIOC_REQBUFS again to change the number of buffers. Note that
if any buffers are still mapped or exported via DMABUF, then ioctl VIDIOC_REQBUFS can only
succeed if the V4L2_BUF_CAP_SUPPORTS_ORPHANED_BUFS capability is set. Otherwise ioctl VID-
IOC_REQBUFS will return the EBUSY error code. If V4L2_BUF_CAP_SUPPORTS_ORPHANED_BUFS
is set, then these buffers are orphaned and will be freed when they are unmapped or when
the exported DMABUF fds are closed. A count value of zero frees or orphans all buffers, after
aborting or finishing any DMA in progress, an implicit VIDIOC_STREAMOFF.

v4l2_requestbuffers

1224 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 230: struct v4l2_requestbuffers
__u32 count The number of buffers requested or

granted.
__u32 type Type of the stream or buffers, this is the

same as the struct v4l2_format type field.
See v4l2_buf_type for valid values.

__u32 memory Applications set this field to
V4L2_MEMORY_MMAP, V4L2_MEMORY_DMABUF
or V4L2_MEMORY_USERPTR. See
v4l2_memory.

__u32 capabilities Set by the driver. If 0, then the driver
doesn’t support capabilities. In that case all
you know is that the driver is guaranteed to
support V4L2_MEMORY_MMAP and might sup-
port other v4l2_memory types. It will not
support any other capabilities.
If you want to query the capabilities with
a minimum of side-effects, then this can
be called with count set to 0, memory set
to V4L2_MEMORY_MMAP and type set to the
buffer type. This will free any previously
allocated buffers, so this is typically some-
thing that will be done at the start of the
application.

__u8 flags Specifies additional buffer management at-
tributes. See Memory Consistency Flags.

__u8 reserved[3] Reserved for future extensions.

Table 231: V4L2 Buffer Capabilities Flags
V4L2_BUF_CAP_SUPPORTS_MMAP 0x00000001 This buffer type supports the

V4L2_MEMORY_MMAP streaming mode.
V4L2_BUF_CAP_SUPPORTS_USERPTR 0x00000002 This buffer type supports the

V4L2_MEMORY_USERPTR streaming mode.
V4L2_BUF_CAP_SUPPORTS_DMABUF 0x00000004 This buffer type supports the

V4L2_MEMORY_DMABUF streaming mode.
V4L2_BUF_CAP_SUPPORTS_REQUESTS 0x00000008 This buffer type supports requests.
V4L2_BUF_CAP_SUPPORTS_ORPHANED_BUFS 0x00000010 The kernel allows calling ioctl VID-

IOC_REQBUFS while buffers are still
mapped or exported via DMABUF. These
orphaned buffers will be freed when they
are unmapped or when the exported
DMABUF fds are closed.

V4L2_BUF_CAP_SUPPORTS_M2M_HOLD_CAPTURE_BUF 0x00000020 Only valid for stateless decoders.
If set, then userspace can set the
V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF
flag to hold off on returning the cap-
ture buffer until the OUTPUT timestamp
changes.

Continued on next page

3.2. Part I - Video for Linux API 1225

Linux Media Documentation

Table 231 – continued from previous page
V4L2_BUF_CAP_SUPPORTS_MMAP_CACHE_HINTS 0x00000040 This capability is set by the driver to in-

dicate that the queue supports cache and
memory management hints. However,
it’s only valid when the queue is used
for memory mapping streaming I/O. See
V4L2_BUF_FLAG_NO_CACHE_INVALIDATE,
V4L2_BUF_FLAG_NO_CACHE_CLEAN and
V4L2_MEMORY_FLAG_NON_COHERENT.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The buffer type (type field) or the requested I/O method (memory) is not supported.

3.2.7.53 ioctl VIDIOC_S_HW_FREQ_SEEK

Name

VIDIOC_S_HW_FREQ_SEEK - Perform a hardware frequency seek

Synopsis

VIDIOC_S_HW_FREQ_SEEK

int ioctl(int fd, VIDIOC_S_HW_FREQ_SEEK, struct v4l2_hw_freq_seek *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_hw_freq_seek.

Description

Start a hardware frequency seek from the current frequency. To do this applications initialize
the tuner, type, seek_upward, wrap_around, spacing, rangelow and rangehigh fields, and zero
out the reserved array of a struct v4l2_hw_freq_seek and call the VIDIOC_S_HW_FREQ_SEEK
ioctl with a pointer to this structure.

The rangelow and rangehigh fields can be set to a non-zero value to tell the
driver to search a specific band. If the struct v4l2_tuner capability field has the
V4L2_TUNER_CAP_HWSEEK_PROG_LIM flag set, these values must fall within one of the bands re-
turned by ioctl VIDIOC_ENUM_FREQ_BANDS. If the V4L2_TUNER_CAP_HWSEEK_PROG_LIM flag
is not set, then these values must exactly match those of one of the bands returned by ioctl
VIDIOC_ENUM_FREQ_BANDS. If the current frequency of the tuner does not fall within the
selected band it will be clamped to fit in the band before the seek is started.

If an error is returned, then the original frequency will be restored.

1226 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

This ioctl is supported if the V4L2_CAP_HW_FREQ_SEEK capability is set.

If this ioctl is called from a non-blocking filehandle, then EAGAIN error code is returned and no
seek takes place.

v4l2_hw_freq_seek

Table 232: struct v4l2_hw_freq_seek
__u32 tuner The tuner index number. This is the same

value as in the struct v4l2_input tuner
field and the struct v4l2_tuner index field.

__u32 type The tuner type. This is the same value as
in the struct v4l2_tuner type field. See
v4l2_tuner_type

__u32 seek_upward If non-zero, seek upward from the current
frequency, else seek downward.

__u32 wrap_around If non-zero, wrap around when at the end of
the frequency range, else stop seeking. The
struct v4l2_tuner capability field will tell
you what the hardware supports.

__u32 spacing If non-zero, defines the hardware seek res-
olution in Hz. The driver selects the near-
est value that is supported by the device. If
spacing is zero a reasonable default value is
used.

__u32 rangelow If non-zero, the lowest tunable frequency
of the band to search in units of 62.5 kHz,
or if the struct v4l2_tuner capability
field has the V4L2_TUNER_CAP_LOW flag
set, in units of 62.5 Hz or if the struct
v4l2_tuner capability field has the
V4L2_TUNER_CAP_1HZ flag set, in units of 1
Hz. If rangelow is zero a reasonable default
value is used.

__u32 rangehigh If non-zero, the highest tunable frequency
of the band to search in units of 62.5 kHz,
or if the struct v4l2_tuner capability
field has the V4L2_TUNER_CAP_LOW flag
set, in units of 62.5 Hz or if the struct
v4l2_tuner capability field has the
V4L2_TUNER_CAP_1HZ flag set, in units of
1 Hz. If rangehigh is zero a reasonable
default value is used.

__u32 reserved[5] Reserved for future extensions. Applica-
tions must set the array to zero.

3.2. Part I - Video for Linux API 1227

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The tuner index is out of bounds, the wrap_around value is not supported or one of
the values in the type, rangelow or rangehigh fields is wrong.

EAGAIN Attempted to call VIDIOC_S_HW_FREQ_SEEK with the filehandle in non-blocking mode.

ENODATA The hardware seek found no channels.

EBUSY Another hardware seek is already in progress.

3.2.7.54 ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF

Name

VIDIOC_STREAMON - VIDIOC_STREAMOFF - Start or stop streaming I/O

Synopsis

VIDIOC_STREAMON

int ioctl(int fd, VIDIOC_STREAMON, const int *argp)

VIDIOC_STREAMOFF

int ioctl(int fd, VIDIOC_STREAMOFF, const int *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to an integer.

Description

The VIDIOC_STREAMON and VIDIOC_STREAMOFF ioctl start and stop the capture or output process
during streaming (memory mapping, user pointer or DMABUF) I/O.

Capture hardware is disabled and no input buffers are filled (if there are any empty buffers in
the incoming queue) until VIDIOC_STREAMON has been called. Output hardware is disabled and
no video signal is produced until VIDIOC_STREAMON has been called. The ioctl will succeed when
at least one output buffer is in the incoming queue.

Memory-to-memory devices will not start until VIDIOC_STREAMON has been called for both the
capture and output stream types.

If VIDIOC_STREAMON fails then any already queued buffers will remain queued.

The VIDIOC_STREAMOFF ioctl, apart of aborting or finishing any DMA in progress, unlocks any
user pointer buffers locked in physical memory, and it removes all buffers from the incoming and

1228 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

outgoing queues. That means all images captured but not dequeued yet will be lost, likewise
all images enqueued for output but not transmitted yet. I/O returns to the same state as after
calling ioctl VIDIOC_REQBUFS and can be restarted accordingly.

If buffers have been queued with ioctl VIDIOC_QBUF, VIDIOC_DQBUF and VIDIOC_STREAMOFF
is called without ever having called VIDIOC_STREAMON, then those queued buffers will also be
removed from the incoming queue and all are returned to the same state as after calling ioctl
VIDIOC_REQBUFS and can be restarted accordingly.

Both ioctls take a pointer to an integer, the desired buffer or stream type. This is the same as
struct v4l2_requestbuffers type.

If VIDIOC_STREAMON is called when streaming is already in progress, or if VIDIOC_STREAMOFF is
called when streaming is already stopped, then 0 is returned. Nothing happens in the case of
VIDIOC_STREAMON, but VIDIOC_STREAMOFF will return queued buffers to their starting state as
mentioned above.

Note: Applications can be preempted for unknown periods right before or after the
VIDIOC_STREAMON or VIDIOC_STREAMOFF calls, there is no notion of starting or stopping “now”.
Buffer timestamps can be used to synchronize with other events.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The buffer type is not supported, or no buffers have been allocated (memory mapping)
or enqueued (output) yet.

EPIPE The driver implements pad-level format configuration and the pipeline configuration is
invalid.

ENOLINK The driver implements Media Controller interface and the pipeline link configura-
tion is invalid.

3.2. Part I - Video for Linux API 1229

Linux Media Documentation

3.2.7.55 ioctl VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL

Name

VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL - Enumerate frame intervals

Synopsis

VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL

int ioctl(int fd, VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL, struct
v4l2_subdev_frame_interval_enum * argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_frame_interval_enum.

Description

This ioctl lets applications enumerate available frame intervals on a given sub-device pad.
Frame intervals only makes sense for sub-devices that can control the frame period on their
own. This includes, for instance, image sensors and TV tuners.

For the common use case of image sensors, the frame intervals available on the sub-device
output pad depend on the frame format and size on the same pad. Applications must thus
specify the desired format and size when enumerating frame intervals.

To enumerate frame intervals applications initialize the index, pad, which, code, width
and height fields of struct v4l2_subdev_frame_interval_enum and call the ioctl VID-
IOC_SUBDEV_ENUM_FRAME_INTERVAL ioctl with a pointer to this structure. Drivers fill the
rest of the structure or return an EINVAL error code if one of the input fields is invalid. All frame
intervals are enumerable by beginning at index zero and incrementing by one until EINVAL is
returned.

Available frame intervals may depend on the current ‘try’ formats at other pads of the sub-
device, as well as on the current active links. See ioctl VIDIOC_SUBDEV_G_FMT, VID-
IOC_SUBDEV_S_FMT for more information about the try formats.

Sub-devices that support the frame interval enumeration ioctl should implemented it on a single
pad only. Its behaviour when supported on multiple pads of the same sub-device is not defined.

v4l2_subdev_frame_interval_enum

1230 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 233: struct v4l2_subdev_frame_interval_enum
__u32 index Number of the format in the enumeration,

set by the application.
__u32 pad Pad number as reported by the media con-

troller API.
__u32 code The media bus format code, as defined in

Media Bus Formats.
__u32 width Frame width, in pixels.
__u32 height Frame height, in pixels.
struct v4l2_fract interval Period, in seconds, between consecutive

video frames.
__u32 which Frame intervals to be enumerated, from

enum v4l2_subdev_format_whence.
__u32 reserved[8] Reserved for future extensions. Applica-

tions and drivers must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_subdev_frame_interval_enum pad references a non-existing pad,
one of the code, width or height fields are invalid for the given pad or the index field
is out of bounds.

3.2.7.56 ioctl VIDIOC_SUBDEV_ENUM_FRAME_SIZE

Name

VIDIOC_SUBDEV_ENUM_FRAME_SIZE - Enumerate media bus frame sizes

Synopsis

VIDIOC_SUBDEV_ENUM_FRAME_SIZE

int ioctl(int fd, VIDIOC_SUBDEV_ENUM_FRAME_SIZE, struct v4l2_subdev_frame_size_enum
* argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_frame_size_enum.

3.2. Part I - Video for Linux API 1231

Linux Media Documentation

Description

This ioctl allows applications to enumerate all frame sizes supported by a sub-device on the
given pad for the given media bus format. Supported formats can be retrieved with the ioctl
VIDIOC_SUBDEV_ENUM_MBUS_CODE ioctl.

To enumerate frame sizes applications initialize the pad, which , code and index fields of the
struct v4l2_subdev_mbus_code_enum and call the ioctl VIDIOC_SUBDEV_ENUM_FRAME_SIZE
ioctl with a pointer to the structure. Drivers fill the minimum and maximum frame sizes or
return an EINVAL error code if one of the input parameters is invalid.

Sub-devices that only support discrete frame sizes (such as most sensors) will return one or
more frame sizes with identical minimum and maximum values.

Not all possible sizes in given [minimum, maximum] ranges need to be supported. For instance,
a scaler that uses a fixed-point scaling ratio might not be able to produce every frame size be-
tween the minimum and maximum values. Applications must use the VIDIOC_SUBDEV_S_FMT
ioctl to try the sub-device for an exact supported frame size.

Available frame sizes may depend on the current ‘try’ formats at other pads of the sub-device,
as well as on the current active links and the current values of V4L2 controls. See ioctl VID-
IOC_SUBDEV_G_FMT, VIDIOC_SUBDEV_S_FMT for more information about try formats.

v4l2_subdev_frame_size_enum

Table 234: struct v4l2_subdev_frame_size_enum
__u32 index Number of the format in the enumeration,

set by the application.
__u32 pad Pad number as reported by the media con-

troller API.
__u32 code The media bus format code, as defined in

Media Bus Formats.
__u32 min_width Minimum frame width, in pixels.
__u32 max_width Maximum frame width, in pixels.
__u32 min_height Minimum frame height, in pixels.
__u32 max_height Maximum frame height, in pixels.
__u32 which Frame sizes to be enumerated, from enum

v4l2_subdev_format_whence.
__u32 reserved[8] Reserved for future extensions. Applica-

tions and drivers must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_subdev_frame_size_enum pad references a non-existing pad, the
code is invalid for the given pad or the index field is out of bounds.

1232 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

3.2.7.57 ioctl VIDIOC_SUBDEV_ENUM_MBUS_CODE

Name

VIDIOC_SUBDEV_ENUM_MBUS_CODE - Enumerate media bus formats

Synopsis

VIDIOC_SUBDEV_ENUM_MBUS_CODE

int ioctl(int fd, VIDIOC_SUBDEV_ENUM_MBUS_CODE, struct v4l2_subdev_mbus_code_enum
* argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_mbus_code_enum.

Description

To enumerate media bus formats available at a given sub-device pad applications initialize the
pad, which and index fields of struct v4l2_subdev_mbus_code_enum and call the ioctl VID-
IOC_SUBDEV_ENUM_MBUS_CODE ioctl with a pointer to this structure. Drivers fill the rest
of the structure or return an EINVAL error code if either the pad or index are invalid. All media
bus formats are enumerable by beginning at index zero and incrementing by one until EINVAL
is returned.

Available media bus formats may depend on the current ‘try’ formats at other pads of the
sub-device, as well as on the current active links. See ioctl VIDIOC_SUBDEV_G_FMT, VID-
IOC_SUBDEV_S_FMT for more information about the try formats.

v4l2_subdev_mbus_code_enum

Table 235: struct v4l2_subdev_mbus_code_enum
__u32 pad Pad number as reported by the media con-

troller API.
__u32 index Number of the format in the enumeration,

set by the application.
__u32 code The media bus format code, as defined in

Media Bus Formats.
__u32 which Media bus format codes to be enumerated,

from enum v4l2_subdev_format_whence.
__u32 flags See Subdev Media Bus Code Enumerate

Flags
__u32 reserved[7] Reserved for future extensions. Applica-

tions and drivers must set the array to zero.

3.2. Part I - Video for Linux API 1233

Linux Media Documentation

Table 236: Subdev Media Bus Code Enumerate
Flags

V4L2_SUBDEV_MBUS_CODE_CSC_COLORSPACE 0x00000001 The driver allows the application
to try to change the default col-
orspace encoding. The application
can ask to configure the colorspace
of the subdevice when calling the
VIDIOC_SUBDEV_S_FMT ioctl with
V4L2_MBUS_FRAMEFMT_SET_CSC
set. See Media Bus Formats on how to
do this.

V4L2_SUBDEV_MBUS_CODE_CSC_XFER_FUNC 0x00000002 The driver allows the application to
try to change the default transform
function. The application can ask
to configure the transform function
of the subdevice when calling the
VIDIOC_SUBDEV_S_FMT ioctl with
V4L2_MBUS_FRAMEFMT_SET_CSC
set. See Media Bus Formats on how to
do this.

V4L2_SUBDEV_MBUS_CODE_CSC_YCBCR_ENC 0x00000004 The driver allows the application
to try to change the default Y’CbCr
encoding. The application can ask
to configure the Y’CbCr encoding
of the subdevice when calling the
VIDIOC_SUBDEV_S_FMT ioctl with
V4L2_MBUS_FRAMEFMT_SET_CSC
set. See Media Bus Formats on how to
do this.

V4L2_SUBDEV_MBUS_CODE_CSC_HSV_ENC 0x00000004 The driver allows the application
to try to change the default HSV
encoding. The application can ask
to configure the HSV encoding of
the subdevice when calling the
VIDIOC_SUBDEV_S_FMT ioctl with
V4L2_MBUS_FRAMEFMT_SET_CSC
set. See Media Bus Formats on how to
do this.

V4L2_SUBDEV_MBUS_CODE_CSC_QUANTIZATION 0x00000008 The driver allows the application
to try to change the default quan-
tization. The application can ask
to configure the quantization of
the subdevice when calling the
VIDIOC_SUBDEV_S_FMT ioctl with
V4L2_MBUS_FRAMEFMT_SET_CSC
set. See Media Bus Formats on how to
do this.

1234 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_subdev_mbus_code_enum pad references a non-existing pad, or the
index field is out of bounds.

3.2.7.58 ioctl VIDIOC_SUBDEV_G_CROP, VIDIOC_SUBDEV_S_CROP

Name

VIDIOC_SUBDEV_G_CROP - VIDIOC_SUBDEV_S_CROP - Get or set the crop rectangle on a
subdev pad

Synopsis

VIDIOC_SUBDEV_G_CROP

int ioctl(int fd, VIDIOC_SUBDEV_G_CROP, struct v4l2_subdev_crop *argp)

VIDIOC_SUBDEV_S_CROP

int ioctl(int fd, VIDIOC_SUBDEV_S_CROP, const struct v4l2_subdev_crop *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_crop.

Description

Note: This is an Obsolete API Elements interface and may be removed in the future. It is
superseded by the selection API.

To retrieve the current crop rectangle applications set the pad field of a struct
v4l2_subdev_crop to the desired pad number as reported by the media API and the which
field to V4L2_SUBDEV_FORMAT_ACTIVE. They then call the VIDIOC_SUBDEV_G_CROP ioctl with a
pointer to this structure. The driver fills the members of the rect field or returns EINVAL error
code if the input arguments are invalid, or if cropping is not supported on the given pad.

To change the current crop rectangle applications set both the pad and which fields and all
members of the rect field. They then call the VIDIOC_SUBDEV_S_CROP ioctl with a pointer to this
structure. The driver verifies the requested crop rectangle, adjusts it based on the hardware
capabilities and configures the device. Upon return the struct v4l2_subdev_crop contains the
current format as would be returned by a VIDIOC_SUBDEV_G_CROP call.

3.2. Part I - Video for Linux API 1235

Linux Media Documentation

Applications can query the device capabilities by setting the which to
V4L2_SUBDEV_FORMAT_TRY. When set, ‘try’ crop rectangles are not applied to the device
by the driver, but are mangled exactly as active crop rectangles and stored in the sub-device
file handle. Two applications querying the same sub-device would thus not interact with each
other.

If the subdev device node has been registered in read-only mode, calls to
VIDIOC_SUBDEV_S_CROP are only valid if the which field is set to V4L2_SUBDEV_FORMAT_TRY,
otherwise an error is returned and the errno variable is set to -EPERM.

Drivers must not return an error solely because the requested crop rectangle doesn’t match
the device capabilities. They must instead modify the rectangle to match what the hardware
can provide. The modified format should be as close as possible to the original request.

v4l2_subdev_crop

Table 237: struct v4l2_subdev_crop
__u32 pad Pad number as reported by the media

framework.
__u32 which Crop rectangle to get or set, from enum

v4l2_subdev_format_whence.
struct v4l2_rect rect Crop rectangle boundaries, in pixels.
__u32 reserved[8] Reserved for future extensions. Applica-

tions and drivers must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EBUSY The crop rectangle can’t be changed because the pad is currently busy. This can
be caused, for instance, by an active video stream on the pad. The ioctl must not be
retried without performing another action to fix the problem first. Only returned by
VIDIOC_SUBDEV_S_CROP

EINVAL The struct v4l2_subdev_crop pad references a non-existing pad, the which field ref-
erences a non-existing format, or cropping is not supported on the given subdev pad.

EPERM The VIDIOC_SUBDEV_S_CROP ioctl has been called on a read-only subdevice and the
which field is set to V4L2_SUBDEV_FORMAT_ACTIVE.

3.2.7.59 ioctl VIDIOC_SUBDEV_G_FMT, VIDIOC_SUBDEV_S_FMT

Name

VIDIOC_SUBDEV_G_FMT - VIDIOC_SUBDEV_S_FMT - Get or set the data format on a subdev
pad

1236 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Synopsis

VIDIOC_SUBDEV_G_FMT

int ioctl(int fd, VIDIOC_SUBDEV_G_FMT, struct v4l2_subdev_format *argp)

VIDIOC_SUBDEV_S_FMT

int ioctl(int fd, VIDIOC_SUBDEV_S_FMT, struct v4l2_subdev_format *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_format.

Description

These ioctls are used to negotiate the frame format at specific subdev pads in the image pipeline.

To retrieve the current format applications set the pad field of a struct v4l2_subdev_format
to the desired pad number as reported by the media API and the which field to
V4L2_SUBDEV_FORMAT_ACTIVE. When they call the VIDIOC_SUBDEV_G_FMT ioctl with a pointer
to this structure the driver fills the members of the format field.

To change the current format applications set both the pad and which fields and all members of
the format field. When they call the VIDIOC_SUBDEV_S_FMT ioctl with a pointer to this structure
the driver verifies the requested format, adjusts it based on the hardware capabilities and con-
figures the device. Upon return the struct v4l2_subdev_format contains the current format as
would be returned by a VIDIOC_SUBDEV_G_FMT call.

Applications can query the device capabilities by setting the which to
V4L2_SUBDEV_FORMAT_TRY. When set, ‘try’ formats are not applied to the device by the
driver, but are changed exactly as active formats and stored in the sub-device file handle. Two
applications querying the same sub-device would thus not interact with each other.

For instance, to try a format at the output pad of a sub-device, applications would first set the
try format at the sub-device input with the VIDIOC_SUBDEV_S_FMT ioctl. They would then either
retrieve the default format at the output pad with the VIDIOC_SUBDEV_G_FMT ioctl, or set the
desired output pad format with the VIDIOC_SUBDEV_S_FMT ioctl and check the returned value.

Try formats do not depend on active formats, but can depend on the current links configuration
or sub-device controls value. For instance, a low-pass noise filter might crop pixels at the frame
boundaries, modifying its output frame size.

If the subdev device node has been registered in read-only mode, calls to VIDIOC_SUBDEV_S_FMT
are only valid if the which field is set to V4L2_SUBDEV_FORMAT_TRY, otherwise an error is re-
turned and the errno variable is set to -EPERM.

Drivers must not return an error solely because the requested format doesn’t match the device
capabilities. They must instead modify the format to match what the hardware can provide.
The modified format should be as close as possible to the original request.

v4l2_subdev_format

3.2. Part I - Video for Linux API 1237

Linux Media Documentation

Table 238: struct v4l2_subdev_format
__u32 pad Pad number as reported by the media con-

troller API.
__u32 which Format to modified, from enum

v4l2_subdev_format_whence.
struct
v4l2_mbus_framefmt

format Definition of an image format, see
v4l2_mbus_framefmt for details.

__u32 reserved[8] Reserved for future extensions. Applica-
tions and drivers must set the array to zero.

Table 239: enum v4l2_subdev_format_whence
V4L2_SUBDEV_FORMAT_TRY 0 Try formats, used for querying device capa-

bilities.
V4L2_SUBDEV_FORMAT_ACTIVE 1 Active formats, applied to the hardware.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EBUSY The format can’t be changed because the pad is currently busy. This can be caused,
for instance, by an active video stream on the pad. The ioctl must not be retried without
performing another action to fix the problem first. Only returned by VIDIOC_SUBDEV_S_FMT

EINVAL The struct v4l2_subdev_format pad references a non-existing pad, or the which field
references a non-existing format.

EPERM The VIDIOC_SUBDEV_S_FMT ioctl has been called on a read-only subdevice and the
which field is set to V4L2_SUBDEV_FORMAT_ACTIVE.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

3.2.7.60 ioctl VIDIOC_SUBDEV_G_FRAME_INTERVAL, VIDIOC_SUBDEV_S_FRAME_INTERVAL

Name

VIDIOC_SUBDEV_G_FRAME_INTERVAL - VIDIOC_SUBDEV_S_FRAME_INTERVAL - Get or set
the frame interval on a subdev pad

1238 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Synopsis

VIDIOC_SUBDEV_G_FRAME_INTERVAL

int ioctl(int fd, VIDIOC_SUBDEV_G_FRAME_INTERVAL, struct v4l2_subdev_frame_interval
*argp)

VIDIOC_SUBDEV_S_FRAME_INTERVAL

int ioctl(int fd, VIDIOC_SUBDEV_S_FRAME_INTERVAL, struct v4l2_subdev_frame_interval
*argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_frame_interval.

Description

These ioctls are used to get and set the frame interval at specific subdev pads in the image
pipeline. The frame interval only makes sense for sub-devices that can control the frame period
on their own. This includes, for instance, image sensors and TV tuners. Sub-devices that don’t
support frame intervals must not implement these ioctls.

To retrieve the current frame interval applications set the pad field of a struct
v4l2_subdev_frame_interval to the desired pad number as reported by the media controller
API. When they call the VIDIOC_SUBDEV_G_FRAME_INTERVAL ioctl with a pointer to this structure
the driver fills the members of the interval field.

To change the current frame interval applications set both the pad field and all members of the
interval field. When they call the VIDIOC_SUBDEV_S_FRAME_INTERVAL ioctl with a pointer to
this structure the driver verifies the requested interval, adjusts it based on the hardware capa-
bilities and configures the device. Upon return the struct v4l2_subdev_frame_interval con-
tains the current frame interval as would be returned by a VIDIOC_SUBDEV_G_FRAME_INTERVAL
call.

Calling VIDIOC_SUBDEV_S_FRAME_INTERVAL on a subdev device node that has been registered
in read-only mode is not allowed. An error is returned and the errno variable is set to -EPERM.

Drivers must not return an error solely because the requested interval doesn’t match the device
capabilities. They must instead modify the interval to match what the hardware can provide.
The modified interval should be as close as possible to the original request.

Changing the frame interval shall never change the format. Changing the format, on the other
hand, may change the frame interval.

Sub-devices that support the frame interval ioctls should implement them on a single pad only.
Their behaviour when supported on multiple pads of the same sub-device is not defined.

v4l2_subdev_frame_interval

3.2. Part I - Video for Linux API 1239

Linux Media Documentation

Table 240: struct v4l2_subdev_frame_interval
__u32 pad Pad number as reported by the media con-

troller API.
struct v4l2_fract interval Period, in seconds, between consecutive

video frames.
__u32 reserved[9] Reserved for future extensions. Applica-

tions and drivers must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EBUSY The frame interval can’t be changed because the pad is currently busy. This can
be caused, for instance, by an active video stream on the pad. The ioctl must not be
retried without performing another action to fix the problem first. Only returned by
VIDIOC_SUBDEV_S_FRAME_INTERVAL

EINVAL The struct v4l2_subdev_frame_interval pad references a non-existing pad, or the
pad doesn’t support frame intervals.

EPERM The VIDIOC_SUBDEV_S_FRAME_INTERVAL ioctl has been called on a read-only subde-
vice.

3.2.7.61 ioctl VIDIOC_SUBDEV_G_SELECTION, VIDIOC_SUBDEV_S_SELECTION

Name

VIDIOC_SUBDEV_G_SELECTION - VIDIOC_SUBDEV_S_SELECTION - Get or set selection rect-
angles on a subdev pad

Synopsis

VIDIOC_SUBDEV_G_SELECTION

int ioctl(int fd, VIDIOC_SUBDEV_G_SELECTION, struct v4l2_subdev_selection
*argp)

VIDIOC_SUBDEV_S_SELECTION

int ioctl(int fd, VIDIOC_SUBDEV_S_SELECTION, struct v4l2_subdev_selection
*argp)

1240 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_selection.

Description

The selections are used to configure various image processing functionality performed by the
subdevs which affect the image size. This currently includes cropping, scaling and composition.

The selection API replaces the old subdev crop API. All the function of the crop API, and more,
are supported by the selections API.

See Sub-device Interface for more information on how each selection target affects the image
processing pipeline inside the subdevice.

If the subdev device node has been registered in read-only mode, calls
to VIDIOC_SUBDEV_S_SELECTION are only valid if the which field is set to
V4L2_SUBDEV_FORMAT_TRY, otherwise an error is returned and the errno variable is set to
-EPERM.

Types of selection targets

There are two types of selection targets: actual and bounds. The actual targets are the targets
which configure the hardware. The BOUNDS target will return a rectangle that contain all
possible actual rectangles.

Discovering supported features

To discover which targets are supported, the user can perform VIDIOC_SUBDEV_G_SELECTION
on them. Any unsupported target will return EINVAL.

Selection targets and flags are documented in Common selection definitions.

v4l2_subdev_selection

Table 241: struct v4l2_subdev_selection
__u32 which Active or try selection, from enum

v4l2_subdev_format_whence.
__u32 pad Pad number as reported by the media

framework.
__u32 target Target selection rectangle. SeeCommon se-

lection definitions.
__u32 flags Flags. See Selection flags.
struct v4l2_rect r Selection rectangle, in pixels.
__u32 reserved[8] Reserved for future extensions. Applica-

tions and drivers must set the array to zero.

3.2. Part I - Video for Linux API 1241

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EBUSY The selection rectangle can’t be changed because the pad is currently busy. This
can be caused, for instance, by an active video stream on the pad. The ioctl must not
be retried without performing another action to fix the problem first. Only returned by
VIDIOC_SUBDEV_S_SELECTION

EINVAL The struct v4l2_subdev_selection pad references a non-existing pad, the which field
references a non-existing format, or the selection target is not supported on the given
subdev pad.

EPERM The VIDIOC_SUBDEV_S_SELECTION ioctl has been called on a read-only subdevice and
the which field is set to V4L2_SUBDEV_FORMAT_ACTIVE.

3.2.7.62 ioctl VIDIOC_SUBDEV_QUERYCAP

Name

VIDIOC_SUBDEV_QUERYCAP - Query sub-device capabilities

Synopsis

VIDIOC_SUBDEV_QUERYCAP

int ioctl(int fd, VIDIOC_SUBDEV_QUERYCAP, struct v4l2_subdev_capability *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_capability.

Description

All V4L2 sub-devices support the VIDIOC_SUBDEV_QUERYCAP ioctl. It is used to identify kernel
devices compatible with this specification and to obtain information about driver and hardware
capabilities. The ioctl takes a pointer to a struct v4l2_subdev_capability which is filled by
the driver. When the driver is not compatible with this specification the ioctl returns ENOTTY
error code.

v4l2_subdev_capability

1242 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 242: struct v4l2_subdev_capability
__u32 version Version number of the driver.

The version reported is provided by the V4L2 subsystem follow-
ing the kernel numbering scheme. However, it may not always
return the same version as the kernel if, for example, a stable or
distribution-modified kernel uses the V4L2 stack from a newer ker-
nel.
The version number is formatted using the KERNEL_VERSION()
macro:

#define KERNEL_VERSION(a,b,c) (((a) << 16) + ((b) << 8) + (c))
__u32 version = KERNEL_VERSION(0, 8, 1);
printf ("Version: %u.%u.%u\\n",
(version >> 16) & 0xFF, (version >> 8) & 0xFF, version & 0xFF);
__u32 capabilities Sub-device capabilities of the opened device, see Sub-Device Ca-

pabilities Flags.
__u32 reserved[14] Reserved for future extensions. Set to 0 by the V4L2 core.

Table 243: Sub-Device Capabilities Flags
V4L2_SUBDEV_CAP_RO_SUBDEV 0x00000001 The sub-device device node is registered

in read-only mode. Access to the sub-
device ioctls that modify the device state
is restricted. Refer to each individual sub-
device ioctl documentation for a descrip-
tion of which restrictions apply to a read-
only sub-device.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

ENOTTY The device node is not a V4L2 sub-device.

3.2.7.63 ioctl VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT

Name

VIDIOC_SUBSCRIBE_EVENT - VIDIOC_UNSUBSCRIBE_EVENT - Subscribe or unsubscribe
event

3.2. Part I - Video for Linux API 1243

Linux Media Documentation

Synopsis

VIDIOC_SUBSCRIBE_EVENT

int ioctl(int fd, VIDIOC_SUBSCRIBE_EVENT, struct v4l2_event_subscription *argp)

VIDIOC_UNSUBSCRIBE_EVENT

int ioctl(int fd, VIDIOC_UNSUBSCRIBE_EVENT, struct v4l2_event_subscription
*argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_event_subscription.

Description

Subscribe or unsubscribe V4L2 event. Subscribed events are dequeued by using the ioctl VID-
IOC_DQEVENT ioctl.

v4l2_event_subscription

Table 244: struct v4l2_event_subscription
__u32 type Type of the event, see Event Types.

Note: V4L2_EVENT_ALL can be used with VID-
IOC_UNSUBSCRIBE_EVENT for unsubscribing all
events at once.

__u32 id ID of the event source. If there is no ID associated
with the event source, then set this to 0. Whether or
not an event needs an ID depends on the event type.

__u32 flags Event flags, see Event Flags.
__u32 reserved[5] Reserved for future extensions. Drivers and applica-

tions must set the array to zero.

1244 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 245: Event Flags
V4L2_EVENT_SUB_FL_SEND_INITIAL 0x0001 When this event is subscribed an initial

event will be sent containing the current
status. This only makes sense for events
that are triggered by a status change
such as V4L2_EVENT_CTRL. Other events
will ignore this flag.

V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK 0x0002 If set, then events directly caused
by an ioctl will also be sent to the
filehandle that called that ioctl. For
example, changing a control us-
ing VIDIOC_S_CTRL will cause a
V4L2_EVENT_CTRL to be sent back
to that same filehandle. Normally
such events are suppressed to prevent
feedback loops where an application
changes a control to a one value and
then another, and then receives an
event telling it that that control has
changed to the first value.
Since it can’t tell whether that event was
caused by another application or by the
VIDIOC_S_CTRL call it is hard to decide
whether to set the control to the value
in the event, or ignore it.
Think carefully when you set this flag so
you won’t get into situations like that.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

3.2.7.64 V4L2 mmap()

Name

v4l2-mmap - Map device memory into application address space

3.2. Part I - Video for Linux API 1245

Linux Media Documentation

Synopsis

#include <unistd.h>
#include <sys/mman.h>

void *mmap(void *start, size_t length, int prot, int flags, int fd, off_t offset)

Arguments

start Map the buffer to this address in the application’s address space. When the MAP_FIXED
flag is specified, start must be a multiple of the pagesize and mmap will fail when the
specified address cannot be used. Use of this option is discouraged; applications should
just specify a NULL pointer here.

length Length of the memory area to map. This must be the same value as returned by the
driver in the struct v4l2_buffer length field for the single-planar API, and the same value
as returned by the driver in the struct v4l2_plane length field for the multi-planar API.

prot The prot argument describes the desired memory protection. Regardless of the device
type and the direction of data exchange it should be set to PROT_READ | PROT_WRITE, per-
mitting read and write access to image buffers. Drivers should support at least this com-
bination of flags.

Note:
1. The Linux videobuf kernel module, which is used by some drivers supports only

PROT_READ | PROT_WRITE. When the driver does not support the desired protection,
the mmap() function fails.

2. Device memory accesses (e. g. the memory on a graphics card with video capturing
hardware) may incur a performance penalty compared to main memory accesses, or
reads may be significantly slower than writes or vice versa. Other I/O methods may
be more efficient in such case.

flags The flags parameter specifies the type of the mapped object, mapping options and
whether modifications made to the mapped copy of the page are private to the process
or are to be shared with other references.

MAP_FIXED requests that the driver selects no other address than the one specified. If the
specified address cannot be used, mmap() will fail. If MAP_FIXED is specified, start must
be a multiple of the pagesize. Use of this option is discouraged.

One of the MAP_SHARED or MAP_PRIVATE flags must be set. MAP_SHARED allows applications
to share the mapped memory with other (e. g. child-) processes.

Note: The Linux videobuf module which is used by some drivers supports only
MAP_SHARED. MAP_PRIVATE requests copy-on-write semantics. V4L2 applications should
not set the MAP_PRIVATE, MAP_DENYWRITE, MAP_EXECUTABLE or MAP_ANON flags.

fd File descriptor returned by open().

1246 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

offset Offset of the buffer in device memory. This must be the same value as returned by the
driver in the struct v4l2_buffer m union offset field for the single-planar API, and the
same value as returned by the driver in the struct v4l2_plane m union mem_offset field
for the multi-planar API.

Description

The mmap() function asks to map length bytes starting at offset in the memory of the device
specified by fd into the application address space, preferably at address start. This latter
address is a hint only, and is usually specified as 0.

Suitable length and offset parameters are queried with the ioctl VIDIOC_QUERYBUF ioctl.
Buffers must be allocated with the ioctl VIDIOC_REQBUFS ioctl before they can be queried.

To unmap buffers the munmap() function is used.

Return Value

On success mmap() returns a pointer to themapped buffer. On error MAP_FAILED (-1) is returned,
and the errno variable is set appropriately. Possible error codes are:

EBADF fd is not a valid file descriptor.

EACCES fd is not open for reading and writing.

EINVAL The start or length or offset are not suitable. (E. g. they are too large, or not
aligned on a PAGESIZE boundary.)

The flags or prot value is not supported.

No buffers have been allocated with the ioctl VIDIOC_REQBUFS ioctl.

ENOMEM Not enough physical or virtual memory was available to complete the request.

3.2.7.65 V4L2 munmap()

Name

v4l2-munmap - Unmap device memory

Synopsis

#include <unistd.h>
#include <sys/mman.h>

int munmap(void *start, size_t length)

3.2. Part I - Video for Linux API 1247

Linux Media Documentation

Arguments

start Address of the mapped buffer as returned by the mmap() function.

length Length of the mapped buffer. This must be the same value as given to mmap() and
returned by the driver in the struct v4l2_buffer length field for the single-planar API
and in the struct v4l2_plane length field for the multi-planar API.

Description

Unmaps a previously with the mmap() function mapped buffer and frees it, if possible.

Return Value

On success munmap() returns 0, on failure -1 and the errno variable is set appropriately:

EINVAL The start or length is incorrect, or no buffers have been mapped yet.

3.2.7.66 V4L2 open()

Name

v4l2-open - Open a V4L2 device

Synopsis

#include <fcntl.h>

int open(const char *device_name, int flags)

Arguments

device_name Device to be opened.

flags Open flags. Access mode must be O_RDWR. This is just a technicality, input devices still
support only reading and output devices only writing.

When the O_NONBLOCK flag is given, the read() function and the VIDIOC_DQBUF ioctl
will return the EAGAIN error code when no data is available or no buffer is in the driver
outgoing queue, otherwise these functions block until data becomes available. All V4L2
drivers exchanging data with applications must support the O_NONBLOCK flag.

Other flags have no effect.

1248 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Description

To open a V4L2 device applications call open() with the desired device name. This function
has no side effects; all data format parameters, current input or output, control values or other
properties remain unchanged. At the first open() call after loading the driver they will be reset
to default values, drivers are never in an undefined state.

Return Value

On success open() returns the new file descriptor. On error -1 is returned, and the errno
variable is set appropriately. Possible error codes are:

EACCES The caller has no permission to access the device.
EBUSY The driver does not support multiple opens and the device is already in use.
ENXIO No device corresponding to this device special file exists.

ENOMEM Not enough kernel memory was available to complete the request.

EMFILE The process already has the maximum number of files open.

ENFILE The limit on the total number of files open on the system has been reached.

3.2.7.67 V4L2 poll()

Name

v4l2-poll - Wait for some event on a file descriptor

Synopsis

#include <sys/poll.h>

int poll(struct pollfd *ufds, unsigned int nfds, int timeout)

Arguments

Description

With the poll() function applications can suspend execution until the driver has captured data
or is ready to accept data for output.

When streaming I/O has been negotiated this function waits until a buffer has been filled by
the capture device and can be dequeued with the VIDIOC_DQBUF ioctl. For output devices
this function waits until the device is ready to accept a new buffer to be queued up with the
VIDIOC_QBUF ioctl for display. When buffers are already in the outgoing queue of the driver
(capture) or the incoming queue isn’t full (display) the function returns immediately.

On success poll() returns the number of file descriptors that have been selected (that is, file
descriptors for which the revents field of the respective struct pollfd structure is non-zero).

3.2. Part I - Video for Linux API 1249

Linux Media Documentation

Capture devices set the POLLIN and POLLRDNORM flags in the revents field, output devices the
POLLOUT and POLLWRNORM flags. When the function timed out it returns a value of zero, on
failure it returns -1 and the errno variable is set appropriately. When the application did not
callVIDIOC_STREAMON the poll() function succeeds, but sets the POLLERR flag in the revents
field. When the application has called VIDIOC_STREAMON for a capture device but hasn’t yet
called VIDIOC_QBUF, the poll() function succeeds and sets the POLLERR flag in the revents
field. For output devices this same situation will cause poll() to succeed as well, but it sets
the POLLOUT and POLLWRNORM flags in the revents field.

If an event occurred (see ioctl VIDIOC_DQEVENT) then POLLPRI will be set in the revents field
and poll() will return.

When use of the read() function has been negotiated and the driver does not capture yet, the
poll() function starts capturing. When that fails it returns a POLLERR as above. Otherwise it
waits until data has been captured and can be read. When the driver captures continuously (as
opposed to, for example, still images) the function may return immediately.

When use of the write() function has been negotiated and the driver does not stream yet, the
poll() function starts streaming. When that fails it returns a POLLERR as above. Otherwise it
waits until the driver is ready for a non-blocking write() call.

If the caller is only interested in events (just POLLPRI is set in the events field), then poll()
will not start streaming if the driver does not stream yet. This makes it possible to just poll for
events and not for buffers.

All drivers implementing the read() or write() function or streaming I/O must also support
the poll() function.

For more details see the poll() manual page.

Return Value

On success, poll() returns the number structures which have non-zero revents fields, or zero
if the call timed out. On error -1 is returned, and the errno variable is set appropriately:

EBADF One or more of the ufds members specify an invalid file descriptor.
EBUSY The driver does not support multiple read or write streams and the device is already

in use.

EFAULT ufds references an inaccessible memory area.

EINTR The call was interrupted by a signal.

EINVAL The nfds value exceeds the RLIMIT_NOFILE value. Use getrlimit() to obtain this
value.

1250 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

3.2.7.68 V4L2 read()

Name

v4l2-read - Read from a V4L2 device

Synopsis

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count)

Arguments

fd File descriptor returned by open().

buf Buffer to be filled

count Max number of bytes to read

Description

read() attempts to read up to count bytes from file descriptor fd into the buffer starting at
buf. The layout of the data in the buffer is discussed in the respective device interface section,
see ##. If count is zero, read() returns zero and has no other results. If count is greater
than SSIZE_MAX, the result is unspecified. Regardless of the count value each read() call will
provide at most one frame (two fields) worth of data.

By default read() blocks until data becomes available. When the O_NONBLOCK flag was given to
the open() function it returns immediately with an EAGAIN error code when no data is available.
The select() or poll() functions can always be used to suspend execution until data becomes
available. All drivers supporting the read() function must also support select() and poll().

Drivers can implement read functionality in different ways, using a single or multiple buffers
and discarding the oldest or newest frames once the internal buffers are filled.

read() never returns a “snapshot” of a buffer being filled. Using a single buffer the driver will
stop capturing when the application starts reading the buffer until the read is finished. Thus
only the period of the vertical blanking interval is available for reading, or the capture rate
must fall below the nominal frame rate of the video standard.

The behavior of read() when called during the active picture period or the vertical blanking
separating the top and bottom field depends on the discarding policy. A driver discarding the
oldest frames keeps capturing into an internal buffer, continuously overwriting the previously,
not read frame, and returns the frame being received at the time of the read() call as soon as
it is complete.

A driver discarding the newest frames stops capturing until the next read() call. The frame
being received at read() time is discarded, returning the following frame instead. Again this
implies a reduction of the capture rate to one half or less of the nominal frame rate. An example
of this model is the video read mode of the bttv driver, initiating a DMA to user memory when
read() is called and returning when the DMA finished.

3.2. Part I - Video for Linux API 1251

Linux Media Documentation

In the multiple buffer model drivers maintain a ring of internal buffers, automatically advancing
to the next free buffer. This allows continuous capturing when the application can empty the
buffers fast enough. Again, the behavior when the driver runs out of free buffers depends on
the discarding policy.

Applications can get and set the number of buffers used internally by the driver with the VID-
IOC_G_PARM and VIDIOC_S_PARM ioctls. They are optional, however. The discarding policy
is not reported and cannot be changed. For minimum requirements see Interfaces.

Return Value

On success, the number of bytes read is returned. It is not an error if this number is smaller
than the number of bytes requested, or the amount of data required for one frame. This may
happen for example because read() was interrupted by a signal. On error, -1 is returned, and
the errno variable is set appropriately. In this case the next read will start at the beginning of
a new frame. Possible error codes are:

EAGAIN Non-blocking I/O has been selected using O_NONBLOCK and no data was immedi-
ately available for reading.

EBADF fd is not a valid file descriptor or is not open for reading, or the process already has
the maximum number of files open.

EBUSY The driver does not support multiple read streams and the device is already in use.
EFAULT buf references an inaccessible memory area.

EINTR The call was interrupted by a signal before any data was read.

EIO I/O error. This indicates some hardware problem or a failure to communicate with a remote
device (USB camera etc.).

EINVAL The read() function is not supported by this driver, not on this device, or generally
not on this type of device.

3.2.7.69 V4L2 select()

Name

v4l2-select - Synchronous I/O multiplexing

Synopsis

#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct
timeval *timeout)

1252 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Arguments

nfds The highest-numbered file descriptor in any of the three sets, plus 1.

readfds File descriptions to be watched if a read() call won’t block.

writefds File descriptions to be watched if a write() won’t block.

exceptfds File descriptions to be watched for V4L2 events.

timeout Maximum time to wait.

Description

With the select() function applications can suspend execution until the driver has captured
data or is ready to accept data for output.

When streaming I/O has been negotiated this function waits until a buffer has been filled or
displayed and can be dequeued with the VIDIOC_DQBUF ioctl. When buffers are already in the
outgoing queue of the driver the function returns immediately.

On success select() returns the total number of bits set in fd_set. When the function timed
out it returns a value of zero. On failure it returns -1 and the errno variable is set appro-
priately. When the application did not call ioctl VIDIOC_QBUF, VIDIOC_DQBUF or ioctl VID-
IOC_STREAMON, VIDIOC_STREAMOFF yet the select() function succeeds, setting the bit of
the file descriptor in readfds or writefds, but subsequent VIDIOC_DQBUF calls will fail.1

When use of the read() function has been negotiated and the driver does not capture yet,
the select() function starts capturing. When that fails, select() returns successful and a
subsequent read() call, which also attempts to start capturing, will return an appropriate error
code. When the driver captures continuously (as opposed to, for example, still images) and data
is already available the select() function returns immediately.

When use of the write() function has been negotiated the select() function just waits until
the driver is ready for a non-blocking write() call.

All drivers implementing the read() or write() function or streaming I/O must also support
the select() function.

For more details see the select() manual page.

Return Value

On success, select() returns the number of descriptors contained in the three returned de-
scriptor sets, which will be zero if the timeout expired. On error -1 is returned, and the errno
variable is set appropriately; the sets and timeout are undefined. Possible error codes are:

EBADF One or more of the file descriptor sets specified a file descriptor that is not open.
EBUSY The driver does not support multiple read or write streams and the device is already

in use.

EFAULT The readfds, writefds, exceptfds or timeout pointer references an inaccessible
memory area.

1 The Linux kernel implements select() like the poll() function, but select() cannot return a POLLERR.

3.2. Part I - Video for Linux API 1253

Linux Media Documentation

EINTR The call was interrupted by a signal.

EINVAL The nfds argument is less than zero or greater than FD_SETSIZE.

3.2.7.70 V4L2 write()

Name

v4l2-write - Write to a V4L2 device

Synopsis

#include <unistd.h>

ssize_t write(int fd, void *buf, size_t count)

Arguments

fd File descriptor returned by open().

buf Buffer with data to be written

count Number of bytes at the buffer

Description

write() writes up to count bytes to the device referenced by the file descriptor fd from the
buffer starting at buf. When the hardware outputs are not active yet, this function enables
them. When count is zero, write() returns 0 without any other effect.

When the application does not provide more data in time, the previous video frame, raw VBI
image, sliced VPS or WSS data is displayed again. Sliced Teletext or Closed Caption data is not
repeated, the driver inserts a blank line instead.

Return Value

On success, the number of bytes written are returned. Zero indicates nothing was written. On
error, -1 is returned, and the errno variable is set appropriately. In this case the next write will
start at the beginning of a new frame. Possible error codes are:

EAGAIN Non-blocking I/O has been selected using the O_NONBLOCK flag and no buffer space
was available to write the data immediately.

EBADF fd is not a valid file descriptor or is not open for writing.

EBUSY The driver does not support multiple write streams and the device is already in use.
EFAULT buf references an inaccessible memory area.

EINTR The call was interrupted by a signal before any data was written.

EIO I/O error. This indicates some hardware problem.

1254 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

EINVAL The write() function is not supported by this driver, not on this device, or generally
not on this type of device.

3.2.8 Common definitions for V4L2 and V4L2 subdev interfaces

3.2.8.1 Common selection definitions

While the V4L2 selection API and V4L2 subdev selection APIs are very similar, there’s one
fundamental difference between the two. On sub-device API, the selection rectangle refers to
the media bus format, and is bound to a sub-device’s pad. On the V4L2 interface the selection
rectangles refer to the in-memory pixel format.

This section defines the common definitions of the selection interfaces on the two APIs.

Selection targets

The precise meaning of the selection targets may be dependent on which of the two interfaces
they are used.

Table 246: Selection target definitions
Target name id Definition Valid

for
V4L2

Valid
for
V4L2
sub-
dev

V4L2_SEL_TGT_CROP 0x0000 Crop rectangle. Defines the cropped
area.

Yes Yes

V4L2_SEL_TGT_CROP_DEFAULT 0x0001 Suggested cropping rectangle that cov-
ers the “whole picture”. This includes
only active pixels and excludes other non-
active pixels such as black pixels.

Yes Yes

V4L2_SEL_TGT_CROP_BOUNDS 0x0002 Bounds of the crop rectangle. All valid
crop rectangles fit inside the crop bounds
rectangle.

Yes Yes

V4L2_SEL_TGT_NATIVE_SIZE 0x0003 The native size of the device, e.g. a sen-
sor’s pixel array. left and top fields are
zero for this target.

Yes Yes

V4L2_SEL_TGT_COMPOSE 0x0100 Compose rectangle. Used to configure
scaling and composition.

Yes Yes

V4L2_SEL_TGT_COMPOSE_DEFAULT 0x0101 Suggested composition rectangle that
covers the “whole picture”.

Yes No

V4L2_SEL_TGT_COMPOSE_BOUNDS 0x0102 Bounds of the compose rectangle. All
valid compose rectangles fit inside the
compose bounds rectangle.

Yes Yes

V4L2_SEL_TGT_COMPOSE_PADDED 0x0103 The active area and all padding pixels
that are inserted or modified by hard-
ware.

Yes No

3.2. Part I - Video for Linux API 1255

Linux Media Documentation

Selection flags

Table 247: Selection flag definitions
Flag name id Definition Valid

for
V4L2

Valid
for
V4L2
sub-
dev

V4L2_SEL_FLAG_GE (1 << 0) Suggest the driver it should choose
greater or equal rectangle (in size)
than was requested. Albeit the
driver may choose a lesser size, it
will only do so due to hardware
limitations. Without this flag (and
V4L2_SEL_FLAG_LE) the behaviour is
to choose the closest possible rect-
angle.

Yes Yes

V4L2_SEL_FLAG_LE (1 << 1) Suggest the driver it should choose
lesser or equal rectangle (in size)
than was requested. Albeit the
driver may choose a greater size, it
will only do so due to hardware limi-
tations.

Yes Yes

V4L2_SEL_FLAG_KEEP_CONFIG (1 << 2) The configuration must not be prop-
agated to any further processing
steps. If this flag is not given, the
configuration is propagated inside
the subdevice to all further process-
ing steps.

No Yes

3.2.9 Video For Linux Two Header File

3.2.9.1 videodev2.h

/* SPDX-License-Identifier: ((GPL-2.0+ WITH Linux-syscall-note) OR␣
↪→BSD-3-Clause) */
/*
* Video for Linux Two header file
*
* Copyright (C) 1999-2012 the contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Alternatively you can redistribute this file under the terms of the

1256 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

* BSD license as stated below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. The names of its contributors may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Header file for v4l or V4L2 drivers and applications
* with public API.
* All kernel-specific stuff were moved to media/v4l2-dev.h, so
* no #if __KERNEL tests are allowed here
*
* See https://linuxtv.org for more info
*
* Author: Bill Dirks <bill@thedirks.org>
* Justin Schoeman
* Hans Verkuil <hverkuil@xs4all.nl>
* et al.
*/

#ifndef _UAPI__LINUX_VIDEODEV2_H
#define _UAPI__LINUX_VIDEODEV2_H

#ifndef __KERNEL__
#include <sys/time.h>
#endif
#include <linux/compiler.h>
#include <linux/ioctl.h>
#include <linux/types.h>
#include <linux/v4l2-common.h>
#include <linux/v4l2-controls.h>

3.2. Part I - Video for Linux API 1257

mailto:bill@thedirks.org
mailto:hverkuil@xs4all.nl

Linux Media Documentation

/*
* Common stuff for both V4L1 and V4L2
* Moved from videodev.h
*/

#define VIDEO_MAX_FRAME 32
#define VIDEO_MAX_PLANES 8

/*
* M I S C E L L A N E O U S
*/

/* Four-character-code (FOURCC) */
#define v4l2_fourcc(a, b, c, d)\

((__u32)(a) | ((__u32)(b) << 8) | ((__u32)(c) << 16) | ((__u32)(d) <<␣
↪→24))
#define v4l2_fourcc_be(a, b, c, d) (v4l2_fourcc(a, b, c, d) | (1U << 31))

/*
* E N U M S
*/

enum v4l2_field {
V4L2_FIELD_ANY = 0, /* driver can choose from none,

top, bottom, interlaced
depending on whatever it thinks
is approximate ... */

V4L2_FIELD_NONE = 1, /* this device has no fields ... */
V4L2_FIELD_TOP = 2, /* top field only */
V4L2_FIELD_BOTTOM = 3, /* bottom field only */
V4L2_FIELD_INTERLACED = 4, /* both fields interlaced */
V4L2_FIELD_SEQ_TB = 5, /* both fields sequential into one

buffer, top-bottom order */
V4L2_FIELD_SEQ_BT = 6, /* same as above + bottom-top order */
V4L2_FIELD_ALTERNATE = 7, /* both fields alternating into

separate buffers */
V4L2_FIELD_INTERLACED_TB = 8, /* both fields interlaced, top field

first and the top field is
transmitted first */

V4L2_FIELD_INTERLACED_BT = 9, /* both fields interlaced, top field
first and the bottom field is
transmitted first */

};
#define V4L2_FIELD_HAS_TOP(field) \

((field) == V4L2_FIELD_TOP ||\
(field) == V4L2_FIELD_INTERLACED ||\
(field) == V4L2_FIELD_INTERLACED_TB ||\
(field) == V4L2_FIELD_INTERLACED_BT ||\
(field) == V4L2_FIELD_SEQ_TB ||\
(field) == V4L2_FIELD_SEQ_BT)

#define V4L2_FIELD_HAS_BOTTOM(field) \
((field) == V4L2_FIELD_BOTTOM ||\
(field) == V4L2_FIELD_INTERLACED ||\

1258 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

(field) == V4L2_FIELD_INTERLACED_TB ||\
(field) == V4L2_FIELD_INTERLACED_BT ||\
(field) == V4L2_FIELD_SEQ_TB ||\
(field) == V4L2_FIELD_SEQ_BT)

#define V4L2_FIELD_HAS_BOTH(field) \
((field) == V4L2_FIELD_INTERLACED ||\
(field) == V4L2_FIELD_INTERLACED_TB ||\
(field) == V4L2_FIELD_INTERLACED_BT ||\
(field) == V4L2_FIELD_SEQ_TB ||\
(field) == V4L2_FIELD_SEQ_BT)

#define V4L2_FIELD_HAS_T_OR_B(field) \
((field) == V4L2_FIELD_BOTTOM ||\
(field) == V4L2_FIELD_TOP ||\
(field) == V4L2_FIELD_ALTERNATE)

#define V4L2_FIELD_IS_INTERLACED(field) \
((field) == V4L2_FIELD_INTERLACED ||\
(field) == V4L2_FIELD_INTERLACED_TB ||\
(field) == V4L2_FIELD_INTERLACED_BT)

#define V4L2_FIELD_IS_SEQUENTIAL(field) \
((field) == V4L2_FIELD_SEQ_TB ||\
(field) == V4L2_FIELD_SEQ_BT)

enum v4l2_buf_type {
V4L2_BUF_TYPE_VIDEO_CAPTURE = 1,
V4L2_BUF_TYPE_VIDEO_OUTPUT = 2,
V4L2_BUF_TYPE_VIDEO_OVERLAY = 3,
V4L2_BUF_TYPE_VBI_CAPTURE = 4,
V4L2_BUF_TYPE_VBI_OUTPUT = 5,
V4L2_BUF_TYPE_SLICED_VBI_CAPTURE = 6,
V4L2_BUF_TYPE_SLICED_VBI_OUTPUT = 7,
V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY = 8,
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE = 9,
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE = 10,
V4L2_BUF_TYPE_SDR_CAPTURE = 11,
V4L2_BUF_TYPE_SDR_OUTPUT = 12,
V4L2_BUF_TYPE_META_CAPTURE = 13,
V4L2_BUF_TYPE_META_OUTPUT = 14,
/* Deprecated, do not use */
V4L2_BUF_TYPE_PRIVATE = 0x80,

};

#define V4L2_TYPE_IS_MULTIPLANAR(type) \
((type) == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE \
|| (type) == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)

#define V4L2_TYPE_IS_OUTPUT(type) \
((type) == V4L2_BUF_TYPE_VIDEO_OUTPUT \
|| (type) == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE \
|| (type) == V4L2_BUF_TYPE_VIDEO_OVERLAY \
|| (type) == V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY \
|| (type) == V4L2_BUF_TYPE_VBI_OUTPUT \

3.2. Part I - Video for Linux API 1259

Linux Media Documentation

|| (type) == V4L2_BUF_TYPE_SLICED_VBI_OUTPUT \
|| (type) == V4L2_BUF_TYPE_SDR_OUTPUT \
|| (type) == V4L2_BUF_TYPE_META_OUTPUT)

#define V4L2_TYPE_IS_CAPTURE(type) (!V4L2_TYPE_IS_OUTPUT(type))

enum v4l2_tuner_type {
V4L2_TUNER_RADIO = 1,
V4L2_TUNER_ANALOG_TV = 2,
V4L2_TUNER_DIGITAL_TV = 3,
V4L2_TUNER_SDR = 4,
V4L2_TUNER_RF = 5,

};

/* Deprecated, do not use */
#define V4L2_TUNER_ADC V4L2_TUNER_SDR

enum v4l2_memory {
V4L2_MEMORY_MMAP = 1,
V4L2_MEMORY_USERPTR = 2,
V4L2_MEMORY_OVERLAY = 3,
V4L2_MEMORY_DMABUF = 4,

};

/* see also http://vektor.theorem.ca/graphics/ycbcr/ */
enum v4l2_colorspace {

/*
* Default colorspace, i.e. let the driver figure it out.
* Can only be used with video capture.
*/
V4L2_COLORSPACE_DEFAULT = 0,

/* SMPTE 170M: used for broadcast NTSC/PAL SDTV */
V4L2_COLORSPACE_SMPTE170M = 1,

/* Obsolete pre-1998 SMPTE 240M HDTV standard, superseded by Rec 709 */
V4L2_COLORSPACE_SMPTE240M = 2,

/* Rec.709: used for HDTV */
V4L2_COLORSPACE_REC709 = 3,

/*
* Deprecated, do not use. No driver will ever return this. This was
* based on a misunderstanding of the bt878 datasheet.
*/
V4L2_COLORSPACE_BT878 = 4,

/*
* NTSC 1953 colorspace. This only makes sense when dealing with
* really, really old NTSC recordings. Superseded by SMPTE 170M.
*/

1260 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_COLORSPACE_470_SYSTEM_M = 5,

/*
* EBU Tech 3213 PAL/SECAM colorspace.
*/
V4L2_COLORSPACE_470_SYSTEM_BG = 6,

/*
* Effectively shorthand for V4L2_COLORSPACE_SRGB, V4L2_YCBCR_ENC_601
* and V4L2_QUANTIZATION_FULL_RANGE. To be used for (Motion-)JPEG.
*/
V4L2_COLORSPACE_JPEG = 7,

/* For RGB colorspaces such as produces by most webcams. */
V4L2_COLORSPACE_SRGB = 8,

/* opRGB colorspace */
V4L2_COLORSPACE_OPRGB = 9,

/* BT.2020 colorspace, used for UHDTV. */
V4L2_COLORSPACE_BT2020 = 10,

/* Raw colorspace: for RAW unprocessed images */
V4L2_COLORSPACE_RAW = 11,

/* DCI-P3 colorspace, used by cinema projectors */
V4L2_COLORSPACE_DCI_P3 = 12,

};

/*
* Determine how COLORSPACE_DEFAULT should map to a proper colorspace.
* This depends on whether this is a SDTV image (use SMPTE 170M), an
* HDTV image (use Rec. 709), or something else (use sRGB).
*/

#define V4L2_MAP_COLORSPACE_DEFAULT(is_sdtv, is_hdtv) \
((is_sdtv) ? V4L2_COLORSPACE_SMPTE170M : \
((is_hdtv) ? V4L2_COLORSPACE_REC709 : V4L2_COLORSPACE_SRGB))

enum v4l2_xfer_func {
/*
* Mapping of V4L2_XFER_FUNC_DEFAULT to actual transfer functions
* for the various colorspaces:
*
* V4L2_COLORSPACE_SMPTE170M, V4L2_COLORSPACE_470_SYSTEM_M,
* V4L2_COLORSPACE_470_SYSTEM_BG, V4L2_COLORSPACE_REC709 and
* V4L2_COLORSPACE_BT2020: V4L2_XFER_FUNC_709
*
* V4L2_COLORSPACE_SRGB, V4L2_COLORSPACE_JPEG: V4L2_XFER_FUNC_SRGB
*
* V4L2_COLORSPACE_OPRGB: V4L2_XFER_FUNC_OPRGB
*

3.2. Part I - Video for Linux API 1261

Linux Media Documentation

* V4L2_COLORSPACE_SMPTE240M: V4L2_XFER_FUNC_SMPTE240M
*
* V4L2_COLORSPACE_RAW: V4L2_XFER_FUNC_NONE
*
* V4L2_COLORSPACE_DCI_P3: V4L2_XFER_FUNC_DCI_P3
*/
V4L2_XFER_FUNC_DEFAULT = 0,
V4L2_XFER_FUNC_709 = 1,
V4L2_XFER_FUNC_SRGB = 2,
V4L2_XFER_FUNC_OPRGB = 3,
V4L2_XFER_FUNC_SMPTE240M = 4,
V4L2_XFER_FUNC_NONE = 5,
V4L2_XFER_FUNC_DCI_P3 = 6,
V4L2_XFER_FUNC_SMPTE2084 = 7,

};

/*
* Determine how XFER_FUNC_DEFAULT should map to a proper transfer function.
* This depends on the colorspace.
*/

#define V4L2_MAP_XFER_FUNC_DEFAULT(colsp) \
((colsp) == V4L2_COLORSPACE_OPRGB ? V4L2_XFER_FUNC_OPRGB : \
((colsp) == V4L2_COLORSPACE_SMPTE240M ? V4L2_XFER_FUNC_SMPTE240M : \
((colsp) == V4L2_COLORSPACE_DCI_P3 ? V4L2_XFER_FUNC_DCI_P3 : \
((colsp) == V4L2_COLORSPACE_RAW ? V4L2_XFER_FUNC_NONE : \
((colsp) == V4L2_COLORSPACE_SRGB || (colsp) == V4L2_COLORSPACE_

↪→JPEG ? \
V4L2_XFER_FUNC_SRGB : V4L2_XFER_FUNC_709)))))

enum v4l2_ycbcr_encoding {
/*
* Mapping of V4L2_YCBCR_ENC_DEFAULT to actual encodings for the
* various colorspaces:
*
* V4L2_COLORSPACE_SMPTE170M, V4L2_COLORSPACE_470_SYSTEM_M,
* V4L2_COLORSPACE_470_SYSTEM_BG, V4L2_COLORSPACE_SRGB,
* V4L2_COLORSPACE_OPRGB and V4L2_COLORSPACE_JPEG: V4L2_YCBCR_ENC_601
*
* V4L2_COLORSPACE_REC709 and V4L2_COLORSPACE_DCI_P3: V4L2_YCBCR_ENC_

↪→709
*
* V4L2_COLORSPACE_BT2020: V4L2_YCBCR_ENC_BT2020
*
* V4L2_COLORSPACE_SMPTE240M: V4L2_YCBCR_ENC_SMPTE240M
*/
V4L2_YCBCR_ENC_DEFAULT = 0,

/* ITU-R 601 -- SDTV */
V4L2_YCBCR_ENC_601 = 1,

/* Rec. 709 -- HDTV */

1262 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_YCBCR_ENC_709 = 2,

/* ITU-R 601/EN 61966-2-4 Extended Gamut -- SDTV */
V4L2_YCBCR_ENC_XV601 = 3,

/* Rec. 709/EN 61966-2-4 Extended Gamut -- HDTV */
V4L2_YCBCR_ENC_XV709 = 4,

#ifndef __KERNEL__
/*
* sYCC (Y'CbCr encoding of sRGB), identical to ENC_601. It was added
* originally due to a misunderstanding of the sYCC standard. It should
* not be used, instead use V4L2_YCBCR_ENC_601.
*/
V4L2_YCBCR_ENC_SYCC = 5,

#endif

/* BT.2020 Non-constant Luminance Y'CbCr */
V4L2_YCBCR_ENC_BT2020 = 6,

/* BT.2020 Constant Luminance Y'CbcCrc */
V4L2_YCBCR_ENC_BT2020_CONST_LUM = 7,

/* SMPTE 240M -- Obsolete HDTV */
V4L2_YCBCR_ENC_SMPTE240M = 8,

};

/*
* enum v4l2_hsv_encoding values should not collide with the ones from
* enum v4l2_ycbcr_encoding.
*/

enum v4l2_hsv_encoding {

/* Hue mapped to 0 - 179 */
V4L2_HSV_ENC_180 = 128,

/* Hue mapped to 0-255 */
V4L2_HSV_ENC_256 = 129,

};

/*
* Determine how YCBCR_ENC_DEFAULT should map to a proper Y'CbCr encoding.
* This depends on the colorspace.
*/

#define V4L2_MAP_YCBCR_ENC_DEFAULT(colsp) \
(((colsp) == V4L2_COLORSPACE_REC709 || \
(colsp) == V4L2_COLORSPACE_DCI_P3) ? V4L2_YCBCR_ENC_709 : \

((colsp) == V4L2_COLORSPACE_BT2020 ? V4L2_YCBCR_ENC_BT2020 : \
((colsp) == V4L2_COLORSPACE_SMPTE240M ? V4L2_YCBCR_ENC_SMPTE240M : \
V4L2_YCBCR_ENC_601)))

3.2. Part I - Video for Linux API 1263

Linux Media Documentation

enum v4l2_quantization {
/*
* The default for R'G'B' quantization is always full range.
* For Y'CbCr the quantization is always limited range, except
* for COLORSPACE_JPEG: this is full range.
*/
V4L2_QUANTIZATION_DEFAULT = 0,
V4L2_QUANTIZATION_FULL_RANGE = 1,
V4L2_QUANTIZATION_LIM_RANGE = 2,

};

/*
* Determine how QUANTIZATION_DEFAULT should map to a proper quantization.
* This depends on whether the image is RGB or not, the colorspace.
* The Y'CbCr encoding is not used anymore, but is still there for backwards
* compatibility.
*/

#define V4L2_MAP_QUANTIZATION_DEFAULT(is_rgb_or_hsv, colsp, ycbcr_enc) \
(((is_rgb_or_hsv) || (colsp) == V4L2_COLORSPACE_JPEG) ? \
V4L2_QUANTIZATION_FULL_RANGE : V4L2_QUANTIZATION_LIM_RANGE)

/*
* Deprecated names for opRGB colorspace (IEC 61966-2-5)
*
* WARNING: Please don't use these deprecated defines in your code, as
* there is a chance we have to remove them in the future.
*/

#ifndef __KERNEL__
#define V4L2_COLORSPACE_ADOBERGB V4L2_COLORSPACE_OPRGB
#define V4L2_XFER_FUNC_ADOBERGB V4L2_XFER_FUNC_OPRGB
#endif

enum v4l2_priority {
V4L2_PRIORITY_UNSET = 0, /* not initialized */
V4L2_PRIORITY_BACKGROUND = 1,
V4L2_PRIORITY_INTERACTIVE = 2,
V4L2_PRIORITY_RECORD = 3,
V4L2_PRIORITY_DEFAULT = V4L2_PRIORITY_INTERACTIVE,

};

struct v4l2_rect {
__s32 left;
__s32 top;
__u32 width;
__u32 height;

};

struct v4l2_fract {
__u32 numerator;
__u32 denominator;

};

1264 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

struct v4l2_area {
__u32 width;
__u32 height;

};

/**
* struct v4l2_capability - Describes V4L2 device caps returned by VIDIOC_

↪→QUERYCAP
*
* @driver: name of the driver module (e.g. "bttv")
* @card: name of the card (e.g. "Hauppauge WinTV")
* @bus_info: name of the bus (e.g. "PCI:" + pci_name(pci_dev))
* @version: KERNEL_VERSION
* @capabilities: capabilities of the physical device as a whole
* @device_caps: capabilities accessed via this particular device (node)
* @reserved: reserved fields for future extensions
*/

struct v4l2_capability {
__u8 driver[16];
__u8 card[32];
__u8 bus_info[32];
__u32 version;
__u32 capabilities;
__u32 device_caps;
__u32 reserved[3];

};

/* Values for 'capabilities' field */
#define V4L2_CAP_VIDEO_CAPTURE 0x00000001 /* Is a video capture␣
↪→device */
#define V4L2_CAP_VIDEO_OUTPUT 0x00000002 /* Is a video output␣
↪→device */
#define V4L2_CAP_VIDEO_OVERLAY 0x00000004 /* Can do video overlay */
#define V4L2_CAP_VBI_CAPTURE 0x00000010 /* Is a raw VBI capture␣
↪→device */
#define V4L2_CAP_VBI_OUTPUT 0x00000020 /* Is a raw VBI output␣
↪→device */
#define V4L2_CAP_SLICED_VBI_CAPTURE 0x00000040 /* Is a sliced VBI capture␣
↪→device */
#define V4L2_CAP_SLICED_VBI_OUTPUT 0x00000080 /* Is a sliced VBI output␣
↪→device */
#define V4L2_CAP_RDS_CAPTURE 0x00000100 /* RDS data capture */
#define V4L2_CAP_VIDEO_OUTPUT_OVERLAY 0x00000200 /* Can do video output␣
↪→overlay */
#define V4L2_CAP_HW_FREQ_SEEK 0x00000400 /* Can do hardware␣
↪→frequency seek */
#define V4L2_CAP_RDS_OUTPUT 0x00000800 /* Is an RDS encoder */

/* Is a video capture device that supports multiplanar formats */
#define V4L2_CAP_VIDEO_CAPTURE_MPLANE 0x00001000

3.2. Part I - Video for Linux API 1265

Linux Media Documentation

/* Is a video output device that supports multiplanar formats */
#define V4L2_CAP_VIDEO_OUTPUT_MPLANE 0x00002000
/* Is a video mem-to-mem device that supports multiplanar formats */
#define V4L2_CAP_VIDEO_M2M_MPLANE 0x00004000
/* Is a video mem-to-mem device */
#define V4L2_CAP_VIDEO_M2M 0x00008000

#define V4L2_CAP_TUNER 0x00010000 /* has a tuner */
#define V4L2_CAP_AUDIO 0x00020000 /* has audio support */
#define V4L2_CAP_RADIO 0x00040000 /* is a radio device */
#define V4L2_CAP_MODULATOR 0x00080000 /* has a modulator */

#define V4L2_CAP_SDR_CAPTURE 0x00100000 /* Is a SDR capture device␣
↪→*/
#define V4L2_CAP_EXT_PIX_FORMAT 0x00200000 /* Supports the extended␣
↪→pixel format */
#define V4L2_CAP_SDR_OUTPUT 0x00400000 /* Is a SDR output device␣
↪→*/
#define V4L2_CAP_META_CAPTURE 0x00800000 /* Is a metadata capture␣
↪→device */

#define V4L2_CAP_READWRITE 0x01000000 /* read/write systemcalls␣
↪→*/
#define V4L2_CAP_ASYNCIO 0x02000000 /* async I/O */
#define V4L2_CAP_STREAMING 0x04000000 /* streaming I/O ioctls */
#define V4L2_CAP_META_OUTPUT 0x08000000 /* Is a metadata output␣
↪→device */

#define V4L2_CAP_TOUCH 0x10000000 /* Is a touch device */

#define V4L2_CAP_IO_MC 0x20000000 /* Is input/output␣
↪→controlled by the media controller */

#define V4L2_CAP_DEVICE_CAPS 0x80000000 /* sets device␣
↪→capabilities field */

/*
* V I D E O I M A G E F O R M A T
*/

struct v4l2_pix_format {
__u32 width;
__u32 height;
__u32 pixelformat;
__u32 field; /* enum v4l2_field */
__u32 bytesperline; /* for padding, zero if unused␣

↪→*/
__u32 sizeimage;
__u32 colorspace; /* enum v4l2_colorspace */
__u32 priv; /* private data, depends on␣

↪→pixelformat */
__u32 flags; /* format flags (V4L2_PIX_FMT_

1266 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

↪→FLAG_*) */
union {

/* enum v4l2_ycbcr_encoding */
__u32 ycbcr_enc;
/* enum v4l2_hsv_encoding */
__u32 hsv_enc;

};
__u32 quantization; /* enum v4l2_quantization */
__u32 xfer_func; /* enum v4l2_xfer_func */

};

/* Pixel format FOURCC depth ␣
↪→Description */

/* RGB formats (1 or 2 bytes per pixel) */
#define V4L2_PIX_FMT_RGB332 v4l2_fourcc('R', 'G', 'B', '1') /* 8 RGB-3-3-2 ␣
↪→ */
#define V4L2_PIX_FMT_RGB444 v4l2_fourcc('R', '4', '4', '4') /* 16 xxxxrrrr␣
↪→ggggbbbb */
#define V4L2_PIX_FMT_ARGB444 v4l2_fourcc('A', 'R', '1', '2') /* 16 aaaarrrr␣
↪→ggggbbbb */
#define V4L2_PIX_FMT_XRGB444 v4l2_fourcc('X', 'R', '1', '2') /* 16 xxxxrrrr␣
↪→ggggbbbb */
#define V4L2_PIX_FMT_RGBA444 v4l2_fourcc('R', 'A', '1', '2') /* 16 rrrrgggg␣
↪→bbbbaaaa */
#define V4L2_PIX_FMT_RGBX444 v4l2_fourcc('R', 'X', '1', '2') /* 16 rrrrgggg␣
↪→bbbbxxxx */
#define V4L2_PIX_FMT_ABGR444 v4l2_fourcc('A', 'B', '1', '2') /* 16 aaaabbbb␣
↪→ggggrrrr */
#define V4L2_PIX_FMT_XBGR444 v4l2_fourcc('X', 'B', '1', '2') /* 16 xxxxbbbb␣
↪→ggggrrrr */
#define V4L2_PIX_FMT_BGRA444 v4l2_fourcc('G', 'A', '1', '2') /* 16 bbbbgggg␣
↪→rrrraaaa */
#define V4L2_PIX_FMT_BGRX444 v4l2_fourcc('B', 'X', '1', '2') /* 16 bbbbgggg␣
↪→rrrrxxxx */
#define V4L2_PIX_FMT_RGB555 v4l2_fourcc('R', 'G', 'B', 'O') /* 16 RGB-5-5-5 ␣
↪→ */
#define V4L2_PIX_FMT_ARGB555 v4l2_fourcc('A', 'R', '1', '5') /* 16 ␣
↪→ARGB-1-5-5-5 */
#define V4L2_PIX_FMT_XRGB555 v4l2_fourcc('X', 'R', '1', '5') /* 16 ␣
↪→XRGB-1-5-5-5 */
#define V4L2_PIX_FMT_RGBA555 v4l2_fourcc('R', 'A', '1', '5') /* 16 ␣
↪→RGBA-5-5-5-1 */
#define V4L2_PIX_FMT_RGBX555 v4l2_fourcc('R', 'X', '1', '5') /* 16 ␣
↪→RGBX-5-5-5-1 */
#define V4L2_PIX_FMT_ABGR555 v4l2_fourcc('A', 'B', '1', '5') /* 16 ␣
↪→ABGR-1-5-5-5 */
#define V4L2_PIX_FMT_XBGR555 v4l2_fourcc('X', 'B', '1', '5') /* 16 ␣
↪→XBGR-1-5-5-5 */
#define V4L2_PIX_FMT_BGRA555 v4l2_fourcc('B', 'A', '1', '5') /* 16 ␣
↪→BGRA-5-5-5-1 */

3.2. Part I - Video for Linux API 1267

Linux Media Documentation

#define V4L2_PIX_FMT_BGRX555 v4l2_fourcc('B', 'X', '1', '5') /* 16 ␣
↪→BGRX-5-5-5-1 */
#define V4L2_PIX_FMT_RGB565 v4l2_fourcc('R', 'G', 'B', 'P') /* 16 RGB-5-6-5 ␣
↪→ */
#define V4L2_PIX_FMT_RGB555X v4l2_fourcc('R', 'G', 'B', 'Q') /* 16 RGB-5-5-5␣
↪→BE */
#define V4L2_PIX_FMT_ARGB555X v4l2_fourcc_be('A', 'R', '1', '5') /* 16 ␣
↪→ARGB-5-5-5 BE */
#define V4L2_PIX_FMT_XRGB555X v4l2_fourcc_be('X', 'R', '1', '5') /* 16 ␣
↪→XRGB-5-5-5 BE */
#define V4L2_PIX_FMT_RGB565X v4l2_fourcc('R', 'G', 'B', 'R') /* 16 RGB-5-6-5␣
↪→BE */

/* RGB formats (3 or 4 bytes per pixel) */
#define V4L2_PIX_FMT_BGR666 v4l2_fourcc('B', 'G', 'R', 'H') /* 18 BGR-6-6-6 ␣
↪→ */
#define V4L2_PIX_FMT_BGR24 v4l2_fourcc('B', 'G', 'R', '3') /* 24 BGR-8-8-8 ␣
↪→ */
#define V4L2_PIX_FMT_RGB24 v4l2_fourcc('R', 'G', 'B', '3') /* 24 RGB-8-8-8 ␣
↪→ */
#define V4L2_PIX_FMT_BGR32 v4l2_fourcc('B', 'G', 'R', '4') /* 32 ␣
↪→BGR-8-8-8-8 */
#define V4L2_PIX_FMT_ABGR32 v4l2_fourcc('A', 'R', '2', '4') /* 32 ␣
↪→BGRA-8-8-8-8 */
#define V4L2_PIX_FMT_XBGR32 v4l2_fourcc('X', 'R', '2', '4') /* 32 ␣
↪→BGRX-8-8-8-8 */
#define V4L2_PIX_FMT_BGRA32 v4l2_fourcc('R', 'A', '2', '4') /* 32 ␣
↪→ABGR-8-8-8-8 */
#define V4L2_PIX_FMT_BGRX32 v4l2_fourcc('R', 'X', '2', '4') /* 32 ␣
↪→XBGR-8-8-8-8 */
#define V4L2_PIX_FMT_RGB32 v4l2_fourcc('R', 'G', 'B', '4') /* 32 ␣
↪→RGB-8-8-8-8 */
#define V4L2_PIX_FMT_RGBA32 v4l2_fourcc('A', 'B', '2', '4') /* 32 ␣
↪→RGBA-8-8-8-8 */
#define V4L2_PIX_FMT_RGBX32 v4l2_fourcc('X', 'B', '2', '4') /* 32 ␣
↪→RGBX-8-8-8-8 */
#define V4L2_PIX_FMT_ARGB32 v4l2_fourcc('B', 'A', '2', '4') /* 32 ␣
↪→ARGB-8-8-8-8 */
#define V4L2_PIX_FMT_XRGB32 v4l2_fourcc('B', 'X', '2', '4') /* 32 ␣
↪→XRGB-8-8-8-8 */

/* Grey formats */
#define V4L2_PIX_FMT_GREY v4l2_fourcc('G', 'R', 'E', 'Y') /* 8 Greyscale ␣
↪→ */
#define V4L2_PIX_FMT_Y4 v4l2_fourcc('Y', '0', '4', ' ') /* 4 Greyscale ␣
↪→ */
#define V4L2_PIX_FMT_Y6 v4l2_fourcc('Y', '0', '6', ' ') /* 6 Greyscale ␣
↪→ */
#define V4L2_PIX_FMT_Y10 v4l2_fourcc('Y', '1', '0', ' ') /* 10 Greyscale ␣
↪→ */
#define V4L2_PIX_FMT_Y12 v4l2_fourcc('Y', '1', '2', ' ') /* 12 Greyscale ␣

1268 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

↪→ */
#define V4L2_PIX_FMT_Y14 v4l2_fourcc('Y', '1', '4', ' ') /* 14 Greyscale ␣
↪→ */
#define V4L2_PIX_FMT_Y16 v4l2_fourcc('Y', '1', '6', ' ') /* 16 Greyscale ␣
↪→ */
#define V4L2_PIX_FMT_Y16_BE v4l2_fourcc_be('Y', '1', '6', ' ') /* 16 ␣
↪→Greyscale BE */

/* Grey bit-packed formats */
#define V4L2_PIX_FMT_Y10BPACK v4l2_fourcc('Y', '1', '0', 'B') /* 10 ␣
↪→Greyscale bit-packed */
#define V4L2_PIX_FMT_Y10P v4l2_fourcc('Y', '1', '0', 'P') /* 10 Greyscale,␣
↪→MIPI RAW10 packed */

/* Palette formats */
#define V4L2_PIX_FMT_PAL8 v4l2_fourcc('P', 'A', 'L', '8') /* 8 8-bit␣
↪→palette */

/* Chrominance formats */
#define V4L2_PIX_FMT_UV8 v4l2_fourcc('U', 'V', '8', ' ') /* 8 UV 4:4 */

/* Luminance+Chrominance formats */
#define V4L2_PIX_FMT_YUYV v4l2_fourcc('Y', 'U', 'Y', 'V') /* 16 YUV 4:2:2 ␣
↪→ */
#define V4L2_PIX_FMT_YYUV v4l2_fourcc('Y', 'Y', 'U', 'V') /* 16 YUV 4:2:2 ␣
↪→ */
#define V4L2_PIX_FMT_YVYU v4l2_fourcc('Y', 'V', 'Y', 'U') /* 16 YVU 4:2:2 */
#define V4L2_PIX_FMT_UYVY v4l2_fourcc('U', 'Y', 'V', 'Y') /* 16 YUV 4:2:2 ␣
↪→ */
#define V4L2_PIX_FMT_VYUY v4l2_fourcc('V', 'Y', 'U', 'Y') /* 16 YUV 4:2:2 ␣
↪→ */
#define V4L2_PIX_FMT_Y41P v4l2_fourcc('Y', '4', '1', 'P') /* 12 YUV 4:1:1 ␣
↪→ */
#define V4L2_PIX_FMT_YUV444 v4l2_fourcc('Y', '4', '4', '4') /* 16 xxxxyyyy␣
↪→uuuuvvvv */
#define V4L2_PIX_FMT_YUV555 v4l2_fourcc('Y', 'U', 'V', 'O') /* 16 YUV-5-5-5 ␣
↪→ */
#define V4L2_PIX_FMT_YUV565 v4l2_fourcc('Y', 'U', 'V', 'P') /* 16 YUV-5-6-5 ␣
↪→ */
#define V4L2_PIX_FMT_YUV24 v4l2_fourcc('Y', 'U', 'V', '3') /* 24 YUV-8-8-8 ␣
↪→ */
#define V4L2_PIX_FMT_YUV32 v4l2_fourcc('Y', 'U', 'V', '4') /* 32 ␣
↪→YUV-8-8-8-8 */
#define V4L2_PIX_FMT_AYUV32 v4l2_fourcc('A', 'Y', 'U', 'V') /* 32 ␣
↪→AYUV-8-8-8-8 */
#define V4L2_PIX_FMT_XYUV32 v4l2_fourcc('X', 'Y', 'U', 'V') /* 32 ␣
↪→XYUV-8-8-8-8 */
#define V4L2_PIX_FMT_VUYA32 v4l2_fourcc('V', 'U', 'Y', 'A') /* 32 ␣
↪→VUYA-8-8-8-8 */
#define V4L2_PIX_FMT_VUYX32 v4l2_fourcc('V', 'U', 'Y', 'X') /* 32 ␣
↪→VUYX-8-8-8-8 */

3.2. Part I - Video for Linux API 1269

Linux Media Documentation

#define V4L2_PIX_FMT_M420 v4l2_fourcc('M', '4', '2', '0') /* 12 YUV 4:2:0␣
↪→2 lines y, 1 line uv interleaved */

/* two planes -- one Y, one Cr + Cb interleaved */
#define V4L2_PIX_FMT_NV12 v4l2_fourcc('N', 'V', '1', '2') /* 12 Y/CbCr␣
↪→4:2:0 */
#define V4L2_PIX_FMT_NV21 v4l2_fourcc('N', 'V', '2', '1') /* 12 Y/CrCb␣
↪→4:2:0 */
#define V4L2_PIX_FMT_NV16 v4l2_fourcc('N', 'V', '1', '6') /* 16 Y/CbCr␣
↪→4:2:2 */
#define V4L2_PIX_FMT_NV61 v4l2_fourcc('N', 'V', '6', '1') /* 16 Y/CrCb␣
↪→4:2:2 */
#define V4L2_PIX_FMT_NV24 v4l2_fourcc('N', 'V', '2', '4') /* 24 Y/CbCr␣
↪→4:4:4 */
#define V4L2_PIX_FMT_NV42 v4l2_fourcc('N', 'V', '4', '2') /* 24 Y/CrCb␣
↪→4:4:4 */

/* two non contiguous planes - one Y, one Cr + Cb interleaved */
#define V4L2_PIX_FMT_NV12M v4l2_fourcc('N', 'M', '1', '2') /* 12 Y/CbCr␣
↪→4:2:0 */
#define V4L2_PIX_FMT_NV21M v4l2_fourcc('N', 'M', '2', '1') /* 21 Y/CrCb␣
↪→4:2:0 */
#define V4L2_PIX_FMT_NV16M v4l2_fourcc('N', 'M', '1', '6') /* 16 Y/CbCr␣
↪→4:2:2 */
#define V4L2_PIX_FMT_NV61M v4l2_fourcc('N', 'M', '6', '1') /* 16 Y/CrCb␣
↪→4:2:2 */

/* three planes - Y Cb, Cr */
#define V4L2_PIX_FMT_YUV410 v4l2_fourcc('Y', 'U', 'V', '9') /* 9 YUV 4:1:0 ␣
↪→ */
#define V4L2_PIX_FMT_YVU410 v4l2_fourcc('Y', 'V', 'U', '9') /* 9 YVU 4:1:0 ␣
↪→ */
#define V4L2_PIX_FMT_YUV411P v4l2_fourcc('4', '1', '1', 'P') /* 12 YVU411␣
↪→planar */
#define V4L2_PIX_FMT_YUV420 v4l2_fourcc('Y', 'U', '1', '2') /* 12 YUV 4:2:0 ␣
↪→ */
#define V4L2_PIX_FMT_YVU420 v4l2_fourcc('Y', 'V', '1', '2') /* 12 YVU 4:2:0 ␣
↪→ */
#define V4L2_PIX_FMT_YUV422P v4l2_fourcc('4', '2', '2', 'P') /* 16 YVU422␣
↪→planar */

/* three non contiguous planes - Y, Cb, Cr */
#define V4L2_PIX_FMT_YUV420M v4l2_fourcc('Y', 'M', '1', '2') /* 12 YUV420␣
↪→planar */
#define V4L2_PIX_FMT_YVU420M v4l2_fourcc('Y', 'M', '2', '1') /* 12 YVU420␣
↪→planar */
#define V4L2_PIX_FMT_YUV422M v4l2_fourcc('Y', 'M', '1', '6') /* 16 YUV422␣
↪→planar */
#define V4L2_PIX_FMT_YVU422M v4l2_fourcc('Y', 'M', '6', '1') /* 16 YVU422␣
↪→planar */
#define V4L2_PIX_FMT_YUV444M v4l2_fourcc('Y', 'M', '2', '4') /* 24 YUV444␣

1270 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

↪→planar */
#define V4L2_PIX_FMT_YVU444M v4l2_fourcc('Y', 'M', '4', '2') /* 24 YVU444␣
↪→planar */

/* Tiled YUV formats */
#define V4L2_PIX_FMT_NV12_4L4 v4l2_fourcc('V', 'T', '1', '2') /* 12 Y/CbCr␣
↪→4:2:0 4x4 tiles */
#define V4L2_PIX_FMT_NV12_16L16 v4l2_fourcc('H', 'M', '1', '2') /* 12 Y/CbCr␣
↪→4:2:0 16x16 tiles */
#define V4L2_PIX_FMT_NV12_32L32 v4l2_fourcc('S', 'T', '1', '2') /* 12 Y/CbCr␣
↪→4:2:0 32x32 tiles */

/* Tiled YUV formats, non contiguous planes */
#define V4L2_PIX_FMT_NV12MT v4l2_fourcc('T', 'M', '1', '2') /* 12 Y/CbCr␣
↪→4:2:0 64x32 tiles */
#define V4L2_PIX_FMT_NV12MT_16X16 v4l2_fourcc('V', 'M', '1', '2') /* 12 Y/
↪→CbCr 4:2:0 16x16 tiles */

/* Bayer formats - see http://www.siliconimaging.com/RGB%20Bayer.htm */
#define V4L2_PIX_FMT_SBGGR8 v4l2_fourcc('B', 'A', '8', '1') /* 8 BGBG..␣
↪→GRGR.. */
#define V4L2_PIX_FMT_SGBRG8 v4l2_fourcc('G', 'B', 'R', 'G') /* 8 GBGB..␣
↪→RGRG.. */
#define V4L2_PIX_FMT_SGRBG8 v4l2_fourcc('G', 'R', 'B', 'G') /* 8 GRGR..␣
↪→BGBG.. */
#define V4L2_PIX_FMT_SRGGB8 v4l2_fourcc('R', 'G', 'G', 'B') /* 8 RGRG..␣
↪→GBGB.. */
#define V4L2_PIX_FMT_SBGGR10 v4l2_fourcc('B', 'G', '1', '0') /* 10 BGBG..␣
↪→GRGR.. */
#define V4L2_PIX_FMT_SGBRG10 v4l2_fourcc('G', 'B', '1', '0') /* 10 GBGB..␣
↪→RGRG.. */
#define V4L2_PIX_FMT_SGRBG10 v4l2_fourcc('B', 'A', '1', '0') /* 10 GRGR..␣
↪→BGBG.. */
#define V4L2_PIX_FMT_SRGGB10 v4l2_fourcc('R', 'G', '1', '0') /* 10 RGRG..␣
↪→GBGB.. */

/* 10bit raw bayer packed, 5 bytes for every 4 pixels */
#define V4L2_PIX_FMT_SBGGR10P v4l2_fourcc('p', 'B', 'A', 'A')
#define V4L2_PIX_FMT_SGBRG10P v4l2_fourcc('p', 'G', 'A', 'A')
#define V4L2_PIX_FMT_SGRBG10P v4l2_fourcc('p', 'g', 'A', 'A')
#define V4L2_PIX_FMT_SRGGB10P v4l2_fourcc('p', 'R', 'A', 'A')

/* 10bit raw bayer a-law compressed to 8 bits */
#define V4L2_PIX_FMT_SBGGR10ALAW8 v4l2_fourcc('a', 'B', 'A', '8')
#define V4L2_PIX_FMT_SGBRG10ALAW8 v4l2_fourcc('a', 'G', 'A', '8')
#define V4L2_PIX_FMT_SGRBG10ALAW8 v4l2_fourcc('a', 'g', 'A', '8')
#define V4L2_PIX_FMT_SRGGB10ALAW8 v4l2_fourcc('a', 'R', 'A', '8')

/* 10bit raw bayer DPCM compressed to 8 bits */
#define V4L2_PIX_FMT_SBGGR10DPCM8 v4l2_fourcc('b', 'B', 'A', '8')
#define V4L2_PIX_FMT_SGBRG10DPCM8 v4l2_fourcc('b', 'G', 'A', '8')
#define V4L2_PIX_FMT_SGRBG10DPCM8 v4l2_fourcc('B', 'D', '1', '0')
#define V4L2_PIX_FMT_SRGGB10DPCM8 v4l2_fourcc('b', 'R', 'A', '8')
#define V4L2_PIX_FMT_SBGGR12 v4l2_fourcc('B', 'G', '1', '2') /* 12 BGBG..␣

3.2. Part I - Video for Linux API 1271

Linux Media Documentation

↪→GRGR.. */
#define V4L2_PIX_FMT_SGBRG12 v4l2_fourcc('G', 'B', '1', '2') /* 12 GBGB..␣
↪→RGRG.. */
#define V4L2_PIX_FMT_SGRBG12 v4l2_fourcc('B', 'A', '1', '2') /* 12 GRGR..␣
↪→BGBG.. */
#define V4L2_PIX_FMT_SRGGB12 v4l2_fourcc('R', 'G', '1', '2') /* 12 RGRG..␣
↪→GBGB.. */

/* 12bit raw bayer packed, 6 bytes for every 4 pixels */
#define V4L2_PIX_FMT_SBGGR12P v4l2_fourcc('p', 'B', 'C', 'C')
#define V4L2_PIX_FMT_SGBRG12P v4l2_fourcc('p', 'G', 'C', 'C')
#define V4L2_PIX_FMT_SGRBG12P v4l2_fourcc('p', 'g', 'C', 'C')
#define V4L2_PIX_FMT_SRGGB12P v4l2_fourcc('p', 'R', 'C', 'C')
#define V4L2_PIX_FMT_SBGGR14 v4l2_fourcc('B', 'G', '1', '4') /* 14 BGBG..␣
↪→GRGR.. */
#define V4L2_PIX_FMT_SGBRG14 v4l2_fourcc('G', 'B', '1', '4') /* 14 GBGB..␣
↪→RGRG.. */
#define V4L2_PIX_FMT_SGRBG14 v4l2_fourcc('G', 'R', '1', '4') /* 14 GRGR..␣
↪→BGBG.. */
#define V4L2_PIX_FMT_SRGGB14 v4l2_fourcc('R', 'G', '1', '4') /* 14 RGRG..␣
↪→GBGB.. */

/* 14bit raw bayer packed, 7 bytes for every 4 pixels */
#define V4L2_PIX_FMT_SBGGR14P v4l2_fourcc('p', 'B', 'E', 'E')
#define V4L2_PIX_FMT_SGBRG14P v4l2_fourcc('p', 'G', 'E', 'E')
#define V4L2_PIX_FMT_SGRBG14P v4l2_fourcc('p', 'g', 'E', 'E')
#define V4L2_PIX_FMT_SRGGB14P v4l2_fourcc('p', 'R', 'E', 'E')
#define V4L2_PIX_FMT_SBGGR16 v4l2_fourcc('B', 'Y', 'R', '2') /* 16 BGBG..␣
↪→GRGR.. */
#define V4L2_PIX_FMT_SGBRG16 v4l2_fourcc('G', 'B', '1', '6') /* 16 GBGB..␣
↪→RGRG.. */
#define V4L2_PIX_FMT_SGRBG16 v4l2_fourcc('G', 'R', '1', '6') /* 16 GRGR..␣
↪→BGBG.. */
#define V4L2_PIX_FMT_SRGGB16 v4l2_fourcc('R', 'G', '1', '6') /* 16 RGRG..␣
↪→GBGB.. */

/* HSV formats */
#define V4L2_PIX_FMT_HSV24 v4l2_fourcc('H', 'S', 'V', '3')
#define V4L2_PIX_FMT_HSV32 v4l2_fourcc('H', 'S', 'V', '4')

/* compressed formats */
#define V4L2_PIX_FMT_MJPEG v4l2_fourcc('M', 'J', 'P', 'G') /* Motion-JPEG ␣
↪→*/
#define V4L2_PIX_FMT_JPEG v4l2_fourcc('J', 'P', 'E', 'G') /* JFIF JPEG ␣
↪→*/
#define V4L2_PIX_FMT_DV v4l2_fourcc('d', 'v', 's', 'd') /* 1394 ␣
↪→*/
#define V4L2_PIX_FMT_MPEG v4l2_fourcc('M', 'P', 'E', 'G') /* MPEG-1/2/4␣
↪→Multiplexed */
#define V4L2_PIX_FMT_H264 v4l2_fourcc('H', '2', '6', '4') /* H264 with␣
↪→start codes */
#define V4L2_PIX_FMT_H264_NO_SC v4l2_fourcc('A', 'V', 'C', '1') /* H264␣
↪→without start codes */

1272 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

#define V4L2_PIX_FMT_H264_MVC v4l2_fourcc('M', '2', '6', '4') /* H264 MVC */
#define V4L2_PIX_FMT_H263 v4l2_fourcc('H', '2', '6', '3') /* H263 ␣
↪→*/
#define V4L2_PIX_FMT_MPEG1 v4l2_fourcc('M', 'P', 'G', '1') /* MPEG-1 ES ␣
↪→*/
#define V4L2_PIX_FMT_MPEG2 v4l2_fourcc('M', 'P', 'G', '2') /* MPEG-2 ES ␣
↪→*/
#define V4L2_PIX_FMT_MPEG2_SLICE v4l2_fourcc('M', 'G', '2', 'S') /* MPEG-2␣
↪→parsed slice data */
#define V4L2_PIX_FMT_MPEG4 v4l2_fourcc('M', 'P', 'G', '4') /* MPEG-4 part 2␣
↪→ES */
#define V4L2_PIX_FMT_XVID v4l2_fourcc('X', 'V', 'I', 'D') /* Xvid ␣
↪→ */
#define V4L2_PIX_FMT_VC1_ANNEX_G v4l2_fourcc('V', 'C', '1', 'G') /* SMPTE 421M␣
↪→Annex G compliant stream */
#define V4L2_PIX_FMT_VC1_ANNEX_L v4l2_fourcc('V', 'C', '1', 'L') /* SMPTE 421M␣
↪→Annex L compliant stream */
#define V4L2_PIX_FMT_VP8 v4l2_fourcc('V', 'P', '8', '0') /* VP8 */
#define V4L2_PIX_FMT_VP8_FRAME v4l2_fourcc('V', 'P', '8', 'F') /* VP8 parsed␣
↪→frame */
#define V4L2_PIX_FMT_VP9 v4l2_fourcc('V', 'P', '9', '0') /* VP9 */
#define V4L2_PIX_FMT_VP9_FRAME v4l2_fourcc('V', 'P', '9', 'F') /* VP9 parsed␣
↪→frame */
#define V4L2_PIX_FMT_HEVC v4l2_fourcc('H', 'E', 'V', 'C') /* HEVC aka H.
↪→265 */
#define V4L2_PIX_FMT_FWHT v4l2_fourcc('F', 'W', 'H', 'T') /* Fast Walsh␣
↪→Hadamard Transform (vicodec) */
#define V4L2_PIX_FMT_FWHT_STATELESS v4l2_fourcc('S', 'F', 'W', 'H') /*␣
↪→Stateless FWHT (vicodec) */
#define V4L2_PIX_FMT_H264_SLICE v4l2_fourcc('S', '2', '6', '4') /* H264 parsed␣
↪→slices */

/* Vendor-specific formats */
#define V4L2_PIX_FMT_CPIA1 v4l2_fourcc('C', 'P', 'I', 'A') /* cpia1 YUV */
#define V4L2_PIX_FMT_WNVA v4l2_fourcc('W', 'N', 'V', 'A') /* Winnov hw␣
↪→compress */
#define V4L2_PIX_FMT_SN9C10X v4l2_fourcc('S', '9', '1', '0') /* SN9C10x␣
↪→compression */
#define V4L2_PIX_FMT_SN9C20X_I420 v4l2_fourcc('S', '9', '2', '0') /* SN9C20x␣
↪→YUV 4:2:0 */
#define V4L2_PIX_FMT_PWC1 v4l2_fourcc('P', 'W', 'C', '1') /* pwc older␣
↪→webcam */
#define V4L2_PIX_FMT_PWC2 v4l2_fourcc('P', 'W', 'C', '2') /* pwc newer␣
↪→webcam */
#define V4L2_PIX_FMT_ET61X251 v4l2_fourcc('E', '6', '2', '5') /* ET61X251␣
↪→compression */
#define V4L2_PIX_FMT_SPCA501 v4l2_fourcc('S', '5', '0', '1') /* YUYV per line␣
↪→*/
#define V4L2_PIX_FMT_SPCA505 v4l2_fourcc('S', '5', '0', '5') /* YYUV per line␣
↪→*/
#define V4L2_PIX_FMT_SPCA508 v4l2_fourcc('S', '5', '0', '8') /* YUVY per line␣

3.2. Part I - Video for Linux API 1273

Linux Media Documentation

↪→*/
#define V4L2_PIX_FMT_SPCA561 v4l2_fourcc('S', '5', '6', '1') /* compressed␣
↪→GBRG bayer */
#define V4L2_PIX_FMT_PAC207 v4l2_fourcc('P', '2', '0', '7') /* compressed␣
↪→BGGR bayer */
#define V4L2_PIX_FMT_MR97310A v4l2_fourcc('M', '3', '1', '0') /* compressed␣
↪→BGGR bayer */
#define V4L2_PIX_FMT_JL2005BCD v4l2_fourcc('J', 'L', '2', '0') /* compressed␣
↪→RGGB bayer */
#define V4L2_PIX_FMT_SN9C2028 v4l2_fourcc('S', 'O', 'N', 'X') /* compressed␣
↪→GBRG bayer */
#define V4L2_PIX_FMT_SQ905C v4l2_fourcc('9', '0', '5', 'C') /* compressed␣
↪→RGGB bayer */
#define V4L2_PIX_FMT_PJPG v4l2_fourcc('P', 'J', 'P', 'G') /* Pixart 73xx␣
↪→JPEG */
#define V4L2_PIX_FMT_OV511 v4l2_fourcc('O', '5', '1', '1') /* ov511 JPEG */
#define V4L2_PIX_FMT_OV518 v4l2_fourcc('O', '5', '1', '8') /* ov518 JPEG */
#define V4L2_PIX_FMT_STV0680 v4l2_fourcc('S', '6', '8', '0') /* stv0680 bayer␣
↪→*/
#define V4L2_PIX_FMT_TM6000 v4l2_fourcc('T', 'M', '6', '0') /* tm5600/tm60x0␣
↪→*/
#define V4L2_PIX_FMT_CIT_YYVYUY v4l2_fourcc('C', 'I', 'T', 'V') /* one line of␣
↪→Y then 1 line of VYUY */
#define V4L2_PIX_FMT_KONICA420 v4l2_fourcc('K', 'O', 'N', 'I') /* YUV420␣
↪→planar in blocks of 256 pixels */
#define V4L2_PIX_FMT_JPGL v4l2_fourcc('J', 'P', 'G', 'L') /* JPEG-Lite */
#define V4L2_PIX_FMT_SE401 v4l2_fourcc('S', '4', '0', '1') /* se401␣
↪→janggu compressed rgb */
#define V4L2_PIX_FMT_S5C_UYVY_JPG v4l2_fourcc('S', '5', 'C', 'I') /* S5C73M3␣
↪→interleaved UYVY/JPEG */
#define V4L2_PIX_FMT_Y8I v4l2_fourcc('Y', '8', 'I', ' ') /* Greyscale␣
↪→8-bit L/R interleaved */
#define V4L2_PIX_FMT_Y12I v4l2_fourcc('Y', '1', '2', 'I') /* Greyscale␣
↪→12-bit L/R interleaved */
#define V4L2_PIX_FMT_Z16 v4l2_fourcc('Z', '1', '6', ' ') /* Depth data␣
↪→16-bit */
#define V4L2_PIX_FMT_MT21C v4l2_fourcc('M', 'T', '2', '1') /* Mediatek␣
↪→compressed block mode */
#define V4L2_PIX_FMT_MM21 v4l2_fourcc('M', 'M', '2', '1') /* Mediatek␣
↪→8-bit block mode, two non-contiguous planes */
#define V4L2_PIX_FMT_INZI v4l2_fourcc('I', 'N', 'Z', 'I') /* Intel Planar␣
↪→Greyscale 10-bit and Depth 16-bit */
#define V4L2_PIX_FMT_CNF4 v4l2_fourcc('C', 'N', 'F', '4') /* Intel 4-bit␣
↪→packed depth confidence information */
#define V4L2_PIX_FMT_HI240 v4l2_fourcc('H', 'I', '2', '4') /* BTTV 8-bit␣
↪→dithered RGB */

/* 10bit raw bayer packed, 32 bytes for every 25 pixels, last LSB 6 bits␣
↪→unused */
#define V4L2_PIX_FMT_IPU3_SBGGR10 v4l2_fourcc('i', 'p', '3', 'b') /*␣
↪→IPU3 packed 10-bit BGGR bayer */

1274 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

#define V4L2_PIX_FMT_IPU3_SGBRG10 v4l2_fourcc('i', 'p', '3', 'g') /*␣
↪→IPU3 packed 10-bit GBRG bayer */
#define V4L2_PIX_FMT_IPU3_SGRBG10 v4l2_fourcc('i', 'p', '3', 'G') /*␣
↪→IPU3 packed 10-bit GRBG bayer */
#define V4L2_PIX_FMT_IPU3_SRGGB10 v4l2_fourcc('i', 'p', '3', 'r') /*␣
↪→IPU3 packed 10-bit RGGB bayer */

/* SDR formats - used only for Software Defined Radio devices */
#define V4L2_SDR_FMT_CU8 v4l2_fourcc('C', 'U', '0', '8') /* IQ u8 */
#define V4L2_SDR_FMT_CU16LE v4l2_fourcc('C', 'U', '1', '6') /* IQ u16le␣
↪→*/
#define V4L2_SDR_FMT_CS8 v4l2_fourcc('C', 'S', '0', '8') /* complex␣
↪→s8 */
#define V4L2_SDR_FMT_CS14LE v4l2_fourcc('C', 'S', '1', '4') /* complex␣
↪→s14le */
#define V4L2_SDR_FMT_RU12LE v4l2_fourcc('R', 'U', '1', '2') /* real␣
↪→u12le */
#define V4L2_SDR_FMT_PCU16BE v4l2_fourcc('P', 'C', '1', '6') /* planar␣
↪→complex u16be */
#define V4L2_SDR_FMT_PCU18BE v4l2_fourcc('P', 'C', '1', '8') /* planar␣
↪→complex u18be */
#define V4L2_SDR_FMT_PCU20BE v4l2_fourcc('P', 'C', '2', '0') /* planar␣
↪→complex u20be */

/* Touch formats - used for Touch devices */
#define V4L2_TCH_FMT_DELTA_TD16 v4l2_fourcc('T', 'D', '1', '6') /* 16-bit␣
↪→signed deltas */
#define V4L2_TCH_FMT_DELTA_TD08 v4l2_fourcc('T', 'D', '0', '8') /* 8-bit␣
↪→signed deltas */
#define V4L2_TCH_FMT_TU16 v4l2_fourcc('T', 'U', '1', '6') /* 16-bit␣
↪→unsigned touch data */
#define V4L2_TCH_FMT_TU08 v4l2_fourcc('T', 'U', '0', '8') /* 8-bit␣
↪→unsigned touch data */

/* Meta-data formats */
#define V4L2_META_FMT_VSP1_HGO v4l2_fourcc('V', 'S', 'P', 'H') /* R-Car␣
↪→VSP1 1-D Histogram */
#define V4L2_META_FMT_VSP1_HGT v4l2_fourcc('V', 'S', 'P', 'T') /* R-Car␣
↪→VSP1 2-D Histogram */
#define V4L2_META_FMT_UVC v4l2_fourcc('U', 'V', 'C', 'H') /* UVC␣
↪→Payload Header metadata */
#define V4L2_META_FMT_D4XX v4l2_fourcc('D', '4', 'X', 'X') /* D4XX␣
↪→Payload Header metadata */
#define V4L2_META_FMT_VIVID v4l2_fourcc('V', 'I', 'V', 'D') /* Vivid␣
↪→Metadata */

/* Vendor specific - used for RK_ISP1 camera sub-system */
#define V4L2_META_FMT_RK_ISP1_PARAMS v4l2_fourcc('R', 'K', '1', 'P') /*␣
↪→Rockchip ISP1 3A Parameters */
#define V4L2_META_FMT_RK_ISP1_STAT_3A v4l2_fourcc('R', 'K', '1', 'S') /*␣
↪→Rockchip ISP1 3A Statistics */

3.2. Part I - Video for Linux API 1275

Linux Media Documentation

/* priv field value to indicates that subsequent fields are valid. */
#define V4L2_PIX_FMT_PRIV_MAGIC 0xfeedcafe

/* Flags */
#define V4L2_PIX_FMT_FLAG_PREMUL_ALPHA 0x00000001
#define V4L2_PIX_FMT_FLAG_SET_CSC 0x00000002

/*
* F O R M A T E N U M E R A T I O N
*/

struct v4l2_fmtdesc {
__u32 index; /* Format number */
__u32 type; /* enum v4l2_buf_type */
__u32 flags;
__u8 description[32]; /* Description string */
__u32 pixelformat; /* Format fourcc */
__u32 mbus_code; /* Media bus code */
__u32 reserved[3];

};

#define V4L2_FMT_FLAG_COMPRESSED 0x0001
#define V4L2_FMT_FLAG_EMULATED 0x0002
#define V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM 0x0004
#define V4L2_FMT_FLAG_DYN_RESOLUTION 0x0008
#define V4L2_FMT_FLAG_ENC_CAP_FRAME_INTERVAL 0x0010
#define V4L2_FMT_FLAG_CSC_COLORSPACE 0x0020
#define V4L2_FMT_FLAG_CSC_XFER_FUNC 0x0040
#define V4L2_FMT_FLAG_CSC_YCBCR_ENC 0x0080
#define V4L2_FMT_FLAG_CSC_HSV_ENC V4L2_FMT_FLAG_CSC_YCBCR_ENC
#define V4L2_FMT_FLAG_CSC_QUANTIZATION 0x0100

/* Frame Size and frame rate enumeration */
/*
* F R A M E S I Z E E N U M E R A T I O N
*/

enum v4l2_frmsizetypes {
V4L2_FRMSIZE_TYPE_DISCRETE = 1,
V4L2_FRMSIZE_TYPE_CONTINUOUS = 2,
V4L2_FRMSIZE_TYPE_STEPWISE = 3,

};

struct v4l2_frmsize_discrete {
__u32 width; /* Frame width [pixel] */
__u32 height; /* Frame height [pixel] */

};

struct v4l2_frmsize_stepwise {
__u32 min_width; /* Minimum frame width [pixel]␣

↪→*/
__u32 max_width; /* Maximum frame width [pixel]␣

1276 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

↪→*/
__u32 step_width; /* Frame width step size␣

↪→[pixel] */
__u32 min_height; /* Minimum frame height␣

↪→[pixel] */
__u32 max_height; /* Maximum frame height␣

↪→[pixel] */
__u32 step_height; /* Frame height step size␣

↪→[pixel] */
};

struct v4l2_frmsizeenum {
__u32 index; /* Frame size number */
__u32 pixel_format; /* Pixel format */
__u32 type; /* Frame size type the device␣

↪→supports. */

union { /* Frame size */
struct v4l2_frmsize_discrete discrete;
struct v4l2_frmsize_stepwise stepwise;

};

__u32 reserved[2]; /* Reserved space for future␣
↪→use */
};

/*
* F R A M E R A T E E N U M E R A T I O N
*/

enum v4l2_frmivaltypes {
V4L2_FRMIVAL_TYPE_DISCRETE = 1,
V4L2_FRMIVAL_TYPE_CONTINUOUS = 2,
V4L2_FRMIVAL_TYPE_STEPWISE = 3,

};

struct v4l2_frmival_stepwise {
struct v4l2_fract min; /* Minimum frame interval [s]␣

↪→*/
struct v4l2_fract max; /* Maximum frame interval [s]␣

↪→*/
struct v4l2_fract step; /* Frame interval step size␣

↪→[s] */
};

struct v4l2_frmivalenum {
__u32 index; /* Frame format index */
__u32 pixel_format; /* Pixel format */
__u32 width; /* Frame width */
__u32 height; /* Frame height */
__u32 type; /* Frame interval type the␣

↪→device supports. */

3.2. Part I - Video for Linux API 1277

Linux Media Documentation

union { /* Frame interval */
struct v4l2_fract discrete;
struct v4l2_frmival_stepwise stepwise;

};

__u32 reserved[2]; /* Reserved space for future␣
↪→use */
};

/*
* T I M E C O D E
*/

struct v4l2_timecode {
__u32 type;
__u32 flags;
__u8 frames;
__u8 seconds;
__u8 minutes;
__u8 hours;
__u8 userbits[4];

};

/* Type */
#define V4L2_TC_TYPE_24FPS 1
#define V4L2_TC_TYPE_25FPS 2
#define V4L2_TC_TYPE_30FPS 3
#define V4L2_TC_TYPE_50FPS 4
#define V4L2_TC_TYPE_60FPS 5

/* Flags */
#define V4L2_TC_FLAG_DROPFRAME 0x0001 /* "drop-frame" mode */
#define V4L2_TC_FLAG_COLORFRAME 0x0002
#define V4L2_TC_USERBITS_field 0x000C
#define V4L2_TC_USERBITS_USERDEFINED 0x0000
#define V4L2_TC_USERBITS_8BITCHARS 0x0008
/* The above is based on SMPTE timecodes */

struct v4l2_jpegcompression {
int quality;

int APPn; /* Number of APP segment to be written,
* must be 0..15 */

int APP_len; /* Length of data in JPEG APPn segment */
char APP_data[60]; /* Data in the JPEG APPn segment. */

int COM_len; /* Length of data in JPEG COM segment */
char COM_data[60]; /* Data in JPEG COM segment */

__u32 jpeg_markers; /* Which markers should go into the JPEG
* output. Unless you exactly know what

1278 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

* you do, leave them untouched.
* Including less markers will make the
* resulting code smaller, but there will
* be fewer applications which can read it.
* The presence of the APP and COM marker
* is influenced by APP_len and COM_len
* ONLY, not by this property! */

#define V4L2_JPEG_MARKER_DHT (1<<3) /* Define Huffman Tables */
#define V4L2_JPEG_MARKER_DQT (1<<4) /* Define Quantization Tables */
#define V4L2_JPEG_MARKER_DRI (1<<5) /* Define Restart Interval */
#define V4L2_JPEG_MARKER_COM (1<<6) /* Comment segment */
#define V4L2_JPEG_MARKER_APP (1<<7) /* App segment, driver will

* always use APP0 */
};

/*
* M E M O R Y - M A P P I N G B U F F E R S
*/

#ifdef __KERNEL__
/*
* This corresponds to the user space version of timeval
* for 64-bit time_t. sparc64 is different from everyone
* else, using the microseconds in the wrong half of the
* second 64-bit word.
*/

struct __kernel_v4l2_timeval {
long long tv_sec;

#if defined(__sparc__) && defined(__arch64__)
int tv_usec;
int __pad;

#else
long long tv_usec;

#endif
};
#endif

struct v4l2_requestbuffers {
__u32 count;
__u32 type; /* enum v4l2_buf_type */
__u32 memory; /* enum v4l2_memory */
__u32 capabilities;
__u8 flags;
__u8 reserved[3];

};

#define V4L2_MEMORY_FLAG_NON_COHERENT (1 << 0)

/* capabilities for struct v4l2_requestbuffers and v4l2_create_buffers */
#define V4L2_BUF_CAP_SUPPORTS_MMAP (1 << 0)

3.2. Part I - Video for Linux API 1279

Linux Media Documentation

#define V4L2_BUF_CAP_SUPPORTS_USERPTR (1 << 1)
#define V4L2_BUF_CAP_SUPPORTS_DMABUF (1 << 2)
#define V4L2_BUF_CAP_SUPPORTS_REQUESTS (1 << 3)
#define V4L2_BUF_CAP_SUPPORTS_ORPHANED_BUFS (1 << 4)
#define V4L2_BUF_CAP_SUPPORTS_M2M_HOLD_CAPTURE_BUF (1 << 5)
#define V4L2_BUF_CAP_SUPPORTS_MMAP_CACHE_HINTS (1 << 6)

/**
* struct v4l2_plane - plane info for multi-planar buffers
* @bytesused: number of bytes occupied by data in the plane (payload)
* @length: size of this plane (NOT the payload) in bytes
* @mem_offset: when memory in the associated struct v4l2_buffer is
* V4L2_MEMORY_MMAP, equals the offset from the start of
* the device memory for this plane (or is a "cookie" that
* should be passed to mmap() called on the video node)
* @userptr: when memory is V4L2_MEMORY_USERPTR, a userspace pointer
* pointing to this plane
* @fd: when memory is V4L2_MEMORY_DMABUF, a userspace file
* descriptor associated with this plane
* @m: union of @mem_offset, @userptr and @fd
* @data_offset: offset in the plane to the start of data; usually 0,
* unless there is a header in front of the data
* @reserved: drivers and applications must zero this array
*
* Multi-planar buffers consist of one or more planes, e.g. an YCbCr buffer
* with two planes can have one plane for Y, and another for interleaved CbCr
* components. Each plane can reside in a separate memory buffer, or even in
* a completely separate memory node (e.g. in embedded devices).
*/

struct v4l2_plane {
__u32 bytesused;
__u32 length;
union {

__u32 mem_offset;
unsigned long userptr;
__s32 fd;

} m;
__u32 data_offset;
__u32 reserved[11];

};

/**
* struct v4l2_buffer - video buffer info
* @index: id number of the buffer
* @type: enum v4l2_buf_type; buffer type (type == *_MPLANE for
* multiplanar buffers);
* @bytesused: number of bytes occupied by data in the buffer (payload);
* unused (set to 0) for multiplanar buffers
* @flags: buffer informational flags
* @field: enum v4l2_field; field order of the image in the buffer
* @timestamp: frame timestamp

1280 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

* @timecode: frame timecode
* @sequence: sequence count of this frame
* @memory: enum v4l2_memory; the method, in which the actual video data is
* passed
* @offset: for non-multiplanar buffers with memory == V4L2_MEMORY_MMAP;
* offset from the start of the device memory for this plane,
* (or a "cookie" that should be passed to mmap() as offset)
* @userptr: for non-multiplanar buffers with memory == V4L2_MEMORY_USERPTR;
* a userspace pointer pointing to this buffer
* @fd: for non-multiplanar buffers with memory == V4L2_MEMORY_DMABUF;
* a userspace file descriptor associated with this buffer
* @planes: for multiplanar buffers; userspace pointer to the array of␣
↪→plane
* info structs for this buffer
* @m: union of @offset, @userptr, @planes and @fd
* @length: size in bytes of the buffer (NOT its payload) for single-plane
* buffers (when type != *_MPLANE); number of elements in the
* planes array for multi-plane buffers
* @reserved2: drivers and applications must zero this field
* @request_fd: fd of the request that this buffer should use
* @reserved: for backwards compatibility with applications that do not know
* about @request_fd
*
* Contains data exchanged by application and driver using one of the Streaming
* I/O methods.
*/

struct v4l2_buffer {
__u32 index;
__u32 type;
__u32 bytesused;
__u32 flags;
__u32 field;

#ifdef __KERNEL__
struct __kernel_v4l2_timeval timestamp;

#else
struct timeval timestamp;

#endif
struct v4l2_timecode timecode;
__u32 sequence;

/* memory location */
__u32 memory;
union {

__u32 offset;
unsigned long userptr;
struct v4l2_plane *planes;
__s32 fd;

} m;
__u32 length;
__u32 reserved2;
union {

3.2. Part I - Video for Linux API 1281

Linux Media Documentation

__s32 request_fd;
__u32 reserved;

};
};

#ifndef __KERNEL__
/**
* v4l2_timeval_to_ns - Convert timeval to nanoseconds
* @tv: pointer to the timeval variable to be converted
*
* Returns the scalar nanosecond representation of the timeval
* parameter.
*/

static inline __u64 v4l2_timeval_to_ns(const struct timeval *tv)
{

return (__u64)tv->tv_sec * 1000000000ULL + tv->tv_usec * 1000;
}
#endif

/* Flags for 'flags' field */
/* Buffer is mapped (flag) */
#define V4L2_BUF_FLAG_MAPPED 0x00000001
/* Buffer is queued for processing */
#define V4L2_BUF_FLAG_QUEUED 0x00000002
/* Buffer is ready */
#define V4L2_BUF_FLAG_DONE 0x00000004
/* Image is a keyframe (I-frame) */
#define V4L2_BUF_FLAG_KEYFRAME 0x00000008
/* Image is a P-frame */
#define V4L2_BUF_FLAG_PFRAME 0x00000010
/* Image is a B-frame */
#define V4L2_BUF_FLAG_BFRAME 0x00000020
/* Buffer is ready, but the data contained within is corrupted. */
#define V4L2_BUF_FLAG_ERROR 0x00000040
/* Buffer is added to an unqueued request */
#define V4L2_BUF_FLAG_IN_REQUEST 0x00000080
/* timecode field is valid */
#define V4L2_BUF_FLAG_TIMECODE 0x00000100
/* Don't return the capture buffer until OUTPUT timestamp changes */
#define V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF 0x00000200
/* Buffer is prepared for queuing */
#define V4L2_BUF_FLAG_PREPARED 0x00000400
/* Cache handling flags */
#define V4L2_BUF_FLAG_NO_CACHE_INVALIDATE 0x00000800
#define V4L2_BUF_FLAG_NO_CACHE_CLEAN 0x00001000
/* Timestamp type */
#define V4L2_BUF_FLAG_TIMESTAMP_MASK 0x0000e000
#define V4L2_BUF_FLAG_TIMESTAMP_UNKNOWN 0x00000000
#define V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC 0x00002000
#define V4L2_BUF_FLAG_TIMESTAMP_COPY 0x00004000
/* Timestamp sources. */

1282 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

#define V4L2_BUF_FLAG_TSTAMP_SRC_MASK 0x00070000
#define V4L2_BUF_FLAG_TSTAMP_SRC_EOF 0x00000000
#define V4L2_BUF_FLAG_TSTAMP_SRC_SOE 0x00010000
/* mem2mem encoder/decoder */
#define V4L2_BUF_FLAG_LAST 0x00100000
/* request_fd is valid */
#define V4L2_BUF_FLAG_REQUEST_FD 0x00800000

/**
* struct v4l2_exportbuffer - export of video buffer as DMABUF file descriptor
*
* @index: id number of the buffer
* @type: enum v4l2_buf_type; buffer type (type == *_MPLANE for
* multiplanar buffers);
* @plane: index of the plane to be exported, 0 for single plane queues
* @flags: flags for newly created file, currently only O_CLOEXEC is
* supported, refer to manual of open syscall for more details
* @fd: file descriptor associated with DMABUF (set by driver)
* @reserved: drivers and applications must zero this array
*
* Contains data used for exporting a video buffer as DMABUF file descriptor.
* The buffer is identified by a 'cookie' returned by VIDIOC_QUERYBUF
* (identical to the cookie used to mmap() the buffer to userspace). All
* reserved fields must be set to zero. The field reserved0 is expected to
* become a structure 'type' allowing an alternative layout of the structure
* content. Therefore this field should not be used for any other extensions.
*/

struct v4l2_exportbuffer {
__u32 type; /* enum v4l2_buf_type */
__u32 index;
__u32 plane;
__u32 flags;
__s32 fd;
__u32 reserved[11];

};

/*
* O V E R L A Y P R E V I E W
*/

struct v4l2_framebuffer {
__u32 capability;
__u32 flags;

/* FIXME: in theory we should pass something like PCI device + memory
* region + offset instead of some physical address */

void *base;
struct {

__u32 width;
__u32 height;
__u32 pixelformat;
__u32 field; /* enum v4l2_field */
__u32 bytesperline; /* for padding, zero if unused␣

3.2. Part I - Video for Linux API 1283

Linux Media Documentation

↪→*/
__u32 sizeimage;
__u32 colorspace; /* enum v4l2_colorspace */
__u32 priv; /* reserved field, set to 0 */

} fmt;
};
/* Flags for the 'capability' field. Read only */
#define V4L2_FBUF_CAP_EXTERNOVERLAY 0x0001
#define V4L2_FBUF_CAP_CHROMAKEY 0x0002
#define V4L2_FBUF_CAP_LIST_CLIPPING 0x0004
#define V4L2_FBUF_CAP_BITMAP_CLIPPING 0x0008
#define V4L2_FBUF_CAP_LOCAL_ALPHA 0x0010
#define V4L2_FBUF_CAP_GLOBAL_ALPHA 0x0020
#define V4L2_FBUF_CAP_LOCAL_INV_ALPHA 0x0040
#define V4L2_FBUF_CAP_SRC_CHROMAKEY 0x0080
/* Flags for the 'flags' field. */
#define V4L2_FBUF_FLAG_PRIMARY 0x0001
#define V4L2_FBUF_FLAG_OVERLAY 0x0002
#define V4L2_FBUF_FLAG_CHROMAKEY 0x0004
#define V4L2_FBUF_FLAG_LOCAL_ALPHA 0x0008
#define V4L2_FBUF_FLAG_GLOBAL_ALPHA 0x0010
#define V4L2_FBUF_FLAG_LOCAL_INV_ALPHA 0x0020
#define V4L2_FBUF_FLAG_SRC_CHROMAKEY 0x0040

struct v4l2_clip {
struct v4l2_rect c;
struct v4l2_clip __user *next;

};

struct v4l2_window {
struct v4l2_rect w;
__u32 field; /* enum v4l2_field */
__u32 chromakey;
struct v4l2_clip *clips;
__u32 clipcount;
void __user *bitmap;
__u8 global_alpha;

};

/*
* C A P T U R E P A R A M E T E R S
*/

struct v4l2_captureparm {
__u32 capability; /* Supported modes */
__u32 capturemode; /* Current mode */
struct v4l2_fract timeperframe; /* Time per frame in seconds */
__u32 extendedmode; /* Driver-specific extensions */
__u32 readbuffers; /* # of buffers for read */
__u32 reserved[4];

};

1284 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

/* Flags for 'capability' and 'capturemode' fields */
#define V4L2_MODE_HIGHQUALITY 0x0001 /* High quality imaging mode */
#define V4L2_CAP_TIMEPERFRAME 0x1000 /* timeperframe field is supported */

struct v4l2_outputparm {
__u32 capability; /* Supported modes */
__u32 outputmode; /* Current mode */
struct v4l2_fract timeperframe; /* Time per frame in seconds */
__u32 extendedmode; /* Driver-specific extensions */
__u32 writebuffers; /* # of buffers for write */
__u32 reserved[4];

};

/*
* I N P U T I M A G E C R O P P I N G
*/

struct v4l2_cropcap {
__u32 type; /* enum v4l2_buf_type */
struct v4l2_rect bounds;
struct v4l2_rect defrect;
struct v4l2_fract pixelaspect;

};

struct v4l2_crop {
__u32 type; /* enum v4l2_buf_type */
struct v4l2_rect c;

};

/**
* struct v4l2_selection - selection info
* @type: buffer type (do not use *_MPLANE types)
* @target: Selection target, used to choose one of possible rectangles;
* defined in v4l2-common.h; V4L2_SEL_TGT_* .
* @flags: constraints flags, defined in v4l2-common.h; V4L2_SEL_FLAG_*.
* @r: coordinates of selection window
* @reserved: for future use, rounds structure size to 64 bytes, set to zero
*
* Hardware may use multiple helper windows to process a video stream.
* The structure is used to exchange this selection areas between
* an application and a driver.
*/

struct v4l2_selection {
__u32 type;
__u32 target;
__u32 flags;
struct v4l2_rect r;
__u32 reserved[9];

};

/*
* A N A L O G V I D E O S T A N D A R D

3.2. Part I - Video for Linux API 1285

Linux Media Documentation

*/

typedef __u64 v4l2_std_id;

/*
* Attention: Keep the V4L2_STD_* bit definitions in sync with
* include/dt-bindings/display/sdtv-standards.h SDTV_STD_* bit definitions.
*/

/* one bit for each */
#define V4L2_STD_PAL_B ((v4l2_std_id)0x00000001)
#define V4L2_STD_PAL_B1 ((v4l2_std_id)0x00000002)
#define V4L2_STD_PAL_G ((v4l2_std_id)0x00000004)
#define V4L2_STD_PAL_H ((v4l2_std_id)0x00000008)
#define V4L2_STD_PAL_I ((v4l2_std_id)0x00000010)
#define V4L2_STD_PAL_D ((v4l2_std_id)0x00000020)
#define V4L2_STD_PAL_D1 ((v4l2_std_id)0x00000040)
#define V4L2_STD_PAL_K ((v4l2_std_id)0x00000080)

#define V4L2_STD_PAL_M ((v4l2_std_id)0x00000100)
#define V4L2_STD_PAL_N ((v4l2_std_id)0x00000200)
#define V4L2_STD_PAL_Nc ((v4l2_std_id)0x00000400)
#define V4L2_STD_PAL_60 ((v4l2_std_id)0x00000800)

#define V4L2_STD_NTSC_M ((v4l2_std_id)0x00001000) /* BTSC */
#define V4L2_STD_NTSC_M_JP ((v4l2_std_id)0x00002000) /* EIA-J */
#define V4L2_STD_NTSC_443 ((v4l2_std_id)0x00004000)
#define V4L2_STD_NTSC_M_KR ((v4l2_std_id)0x00008000) /* FM A2 */

#define V4L2_STD_SECAM_B ((v4l2_std_id)0x00010000)
#define V4L2_STD_SECAM_D ((v4l2_std_id)0x00020000)
#define V4L2_STD_SECAM_G ((v4l2_std_id)0x00040000)
#define V4L2_STD_SECAM_H ((v4l2_std_id)0x00080000)
#define V4L2_STD_SECAM_K ((v4l2_std_id)0x00100000)
#define V4L2_STD_SECAM_K1 ((v4l2_std_id)0x00200000)
#define V4L2_STD_SECAM_L ((v4l2_std_id)0x00400000)
#define V4L2_STD_SECAM_LC ((v4l2_std_id)0x00800000)

/* ATSC/HDTV */
#define V4L2_STD_ATSC_8_VSB ((v4l2_std_id)0x01000000)
#define V4L2_STD_ATSC_16_VSB ((v4l2_std_id)0x02000000)

/* FIXME:
Although std_id is 64 bits, there is an issue on PPC32 architecture that
makes switch(__u64) to break. So, there's a hack on v4l2-common.c rounding
this value to 32 bits.
As, currently, the max value is for V4L2_STD_ATSC_16_VSB (30 bits wide),
it should work fine. However, if needed to add more than two standards,
v4l2-common.c should be fixed.

*/

/*

1286 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

* Some macros to merge video standards in order to make live easier for the
* drivers and V4L2 applications
*/

/*
* "Common" NTSC/M - It should be noticed that V4L2_STD_NTSC_443 is
* Missing here.
*/

#define V4L2_STD_NTSC (V4L2_STD_NTSC_M |\
V4L2_STD_NTSC_M_JP |\
V4L2_STD_NTSC_M_KR)

/* Secam macros */
#define V4L2_STD_SECAM_DK (V4L2_STD_SECAM_D |\

V4L2_STD_SECAM_K |\
V4L2_STD_SECAM_K1)

/* All Secam Standards */
#define V4L2_STD_SECAM (V4L2_STD_SECAM_B |\

V4L2_STD_SECAM_G |\
V4L2_STD_SECAM_H |\
V4L2_STD_SECAM_DK |\
V4L2_STD_SECAM_L |\
V4L2_STD_SECAM_LC)

/* PAL macros */
#define V4L2_STD_PAL_BG (V4L2_STD_PAL_B |\

V4L2_STD_PAL_B1 |\
V4L2_STD_PAL_G)

#define V4L2_STD_PAL_DK (V4L2_STD_PAL_D |\
V4L2_STD_PAL_D1 |\
V4L2_STD_PAL_K)

/*
* "Common" PAL - This macro is there to be compatible with the old
* V4L1 concept of "PAL": /BGDKHI.
* Several PAL standards are missing here: /M, /N and /Nc
*/

#define V4L2_STD_PAL (V4L2_STD_PAL_BG |\
V4L2_STD_PAL_DK |\
V4L2_STD_PAL_H |\
V4L2_STD_PAL_I)

/* Chroma "agnostic" standards */
#define V4L2_STD_B (V4L2_STD_PAL_B |\

V4L2_STD_PAL_B1 |\
V4L2_STD_SECAM_B)

#define V4L2_STD_G (V4L2_STD_PAL_G |\
V4L2_STD_SECAM_G)

#define V4L2_STD_H (V4L2_STD_PAL_H |\
V4L2_STD_SECAM_H)

#define V4L2_STD_L (V4L2_STD_SECAM_L |\
V4L2_STD_SECAM_LC)

#define V4L2_STD_GH (V4L2_STD_G |\
V4L2_STD_H)

#define V4L2_STD_DK (V4L2_STD_PAL_DK |\

3.2. Part I - Video for Linux API 1287

Linux Media Documentation

V4L2_STD_SECAM_DK)
#define V4L2_STD_BG (V4L2_STD_B |\

V4L2_STD_G)
#define V4L2_STD_MN (V4L2_STD_PAL_M |\

V4L2_STD_PAL_N |\
V4L2_STD_PAL_Nc |\
V4L2_STD_NTSC)

/* Standards where MTS/BTSC stereo could be found */
#define V4L2_STD_MTS (V4L2_STD_NTSC_M |\

V4L2_STD_PAL_M |\
V4L2_STD_PAL_N |\
V4L2_STD_PAL_Nc)

/* Standards for Countries with 60Hz Line frequency */
#define V4L2_STD_525_60 (V4L2_STD_PAL_M |\

V4L2_STD_PAL_60 |\
V4L2_STD_NTSC |\
V4L2_STD_NTSC_443)

/* Standards for Countries with 50Hz Line frequency */
#define V4L2_STD_625_50 (V4L2_STD_PAL |\

V4L2_STD_PAL_N |\
V4L2_STD_PAL_Nc |\
V4L2_STD_SECAM)

#define V4L2_STD_ATSC (V4L2_STD_ATSC_8_VSB |\
V4L2_STD_ATSC_16_VSB)

/* Macros with none and all analog standards */
#define V4L2_STD_UNKNOWN 0
#define V4L2_STD_ALL (V4L2_STD_525_60 |\

V4L2_STD_625_50)

struct v4l2_standard {
__u32 index;
v4l2_std_id id;
__u8 name[24];
struct v4l2_fract frameperiod; /* Frames, not fields */
__u32 framelines;
__u32 reserved[4];

};

/*
* D V B T T I M I N G S
*/

/** struct v4l2_bt_timings - BT.656/BT.1120 timing data
* @width: total width of the active video in pixels
* @height: total height of the active video in lines
* @interlaced: Interlaced or progressive
* @polarities: Positive or negative polarities
* @pixelclock: Pixel clock in HZ. Ex. 74.25MHz->74250000

1288 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

* @hfrontporch:Horizontal front porch in pixels
* @hsync: Horizontal Sync length in pixels
* @hbackporch: Horizontal back porch in pixels
* @vfrontporch:Vertical front porch in lines
* @vsync: Vertical Sync length in lines
* @vbackporch: Vertical back porch in lines
* @il_vfrontporch:Vertical front porch for the even field
* (aka field 2) of interlaced field formats
* @il_vsync: Vertical Sync length for the even field
* (aka field 2) of interlaced field formats
* @il_vbackporch:Vertical back porch for the even field
* (aka field 2) of interlaced field formats
* @standards: Standards the timing belongs to
* @flags: Flags
* @picture_aspect: The picture aspect ratio (hor/vert).
* @cea861_vic: VIC code as per the CEA-861 standard.
* @hdmi_vic: VIC code as per the HDMI standard.
* @reserved: Reserved fields, must be zeroed.
*
* A note regarding vertical interlaced timings: height refers to the total
* height of the active video frame (= two fields). The blanking timings refer
* to the blanking of each field. So the height of the total frame is
* calculated as follows:
*
* tot_height = height + vfrontporch + vsync + vbackporch +
* il_vfrontporch + il_vsync + il_vbackporch
*
* The active height of each field is height / 2.
*/

struct v4l2_bt_timings {
__u32 width;
__u32 height;
__u32 interlaced;
__u32 polarities;
__u64 pixelclock;
__u32 hfrontporch;
__u32 hsync;
__u32 hbackporch;
__u32 vfrontporch;
__u32 vsync;
__u32 vbackporch;
__u32 il_vfrontporch;
__u32 il_vsync;
__u32 il_vbackporch;
__u32 standards;
__u32 flags;
struct v4l2_fract picture_aspect;
__u8 cea861_vic;
__u8 hdmi_vic;
__u8 reserved[46];

} __attribute__ ((packed));

3.2. Part I - Video for Linux API 1289

Linux Media Documentation

/* Interlaced or progressive format */
#define V4L2_DV_PROGRESSIVE 0
#define V4L2_DV_INTERLACED 1

/* Polarities. If bit is not set, it is assumed to be negative polarity */
#define V4L2_DV_VSYNC_POS_POL 0x00000001
#define V4L2_DV_HSYNC_POS_POL 0x00000002

/* Timings standards */
#define V4L2_DV_BT_STD_CEA861 (1 << 0) /* CEA-861 Digital TV Profile */
#define V4L2_DV_BT_STD_DMT (1 << 1) /* VESA Discrete Monitor Timings */
#define V4L2_DV_BT_STD_CVT (1 << 2) /* VESA Coordinated Video Timings */
#define V4L2_DV_BT_STD_GTF (1 << 3) /* VESA Generalized Timings Formula␣
↪→*/
#define V4L2_DV_BT_STD_SDI (1 << 4) /* SDI Timings */

/* Flags */

/*
* CVT/GTF specific: timing uses reduced blanking (CVT) or the 'Secondary
* GTF' curve (GTF). In both cases the horizontal and/or vertical blanking
* intervals are reduced, allowing a higher resolution over the same
* bandwidth. This is a read-only flag.
*/

#define V4L2_DV_FL_REDUCED_BLANKING (1 << 0)
/*
* CEA-861 specific: set for CEA-861 formats with a framerate of a multiple
* of six. These formats can be optionally played at 1 / 1.001 speed.
* This is a read-only flag.
*/

#define V4L2_DV_FL_CAN_REDUCE_FPS (1 << 1)
/*
* CEA-861 specific: only valid for video transmitters, the flag is cleared
* by receivers.
* If the framerate of the format is a multiple of six, then the pixelclock
* used to set up the transmitter is divided by 1.001 to make it compatible
* with 60 Hz based standards such as NTSC and PAL-M that use a framerate of
* 29.97 Hz. Otherwise this flag is cleared. If the transmitter can't generate
* such frequencies, then the flag will also be cleared.
*/

#define V4L2_DV_FL_REDUCED_FPS (1 << 2)
/*
* Specific to interlaced formats: if set, then field 1 is really one half-line
* longer and field 2 is really one half-line shorter, so each field has
* exactly the same number of half-lines. Whether half-lines can be detected
* or used depends on the hardware.
*/

#define V4L2_DV_FL_HALF_LINE (1 << 3)
/*
* If set, then this is a Consumer Electronics (CE) video format. Such formats

1290 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

* differ from other formats (commonly called IT formats) in that if RGB
* encoding is used then by default the RGB values use limited range (i.e.
* use the range 16-235) as opposed to 0-255. All formats defined in CEA-861
* except for the 640x480 format are CE formats.
*/

#define V4L2_DV_FL_IS_CE_VIDEO (1 << 4)
/* Some formats like SMPTE-125M have an interlaced signal with a odd
* total height. For these formats, if this flag is set, the first
* field has the extra line. If not, it is the second field.
*/

#define V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE (1 << 5)
/*
* If set, then the picture_aspect field is valid. Otherwise assume that the
* pixels are square, so the picture aspect ratio is the same as the width to
* height ratio.
*/

#define V4L2_DV_FL_HAS_PICTURE_ASPECT (1 << 6)
/*
* If set, then the cea861_vic field is valid and contains the Video
* Identification Code as per the CEA-861 standard.
*/

#define V4L2_DV_FL_HAS_CEA861_VIC (1 << 7)
/*
* If set, then the hdmi_vic field is valid and contains the Video
* Identification Code as per the HDMI standard (HDMI Vendor Specific
* InfoFrame).
*/

#define V4L2_DV_FL_HAS_HDMI_VIC (1 << 8)
/*
* CEA-861 specific: only valid for video receivers.
* If set, then HW can detect the difference between regular FPS and
* 1000/1001 FPS. Note: This flag is only valid for HDMI VIC codes with
* the V4L2_DV_FL_CAN_REDUCE_FPS flag set.
*/

#define V4L2_DV_FL_CAN_DETECT_REDUCED_FPS (1 << 9)

/* A few useful defines to calculate the total blanking and frame sizes */
#define V4L2_DV_BT_BLANKING_WIDTH(bt) \

((bt)->hfrontporch + (bt)->hsync + (bt)->hbackporch)
#define V4L2_DV_BT_FRAME_WIDTH(bt) \

((bt)->width + V4L2_DV_BT_BLANKING_WIDTH(bt))
#define V4L2_DV_BT_BLANKING_HEIGHT(bt) \

((bt)->vfrontporch + (bt)->vsync + (bt)->vbackporch + \
(bt)->il_vfrontporch + (bt)->il_vsync + (bt)->il_vbackporch)

#define V4L2_DV_BT_FRAME_HEIGHT(bt) \
((bt)->height + V4L2_DV_BT_BLANKING_HEIGHT(bt))

/** struct v4l2_dv_timings - DV timings
* @type: the type of the timings
* @bt: BT656/1120 timings
*/

3.2. Part I - Video for Linux API 1291

Linux Media Documentation

struct v4l2_dv_timings {
__u32 type;
union {

struct v4l2_bt_timings bt;
__u32 reserved[32];

};
} __attribute__ ((packed));

/* Values for the type field */
#define V4L2_DV_BT_656_1120 0 /* BT.656/1120 timing type */

/** struct v4l2_enum_dv_timings - DV timings enumeration
* @index: enumeration index
* @pad: the pad number for which to enumerate timings (used with
* v4l-subdev nodes only)
* @reserved: must be zeroed
* @timings: the timings for the given index
*/

struct v4l2_enum_dv_timings {
__u32 index;
__u32 pad;
__u32 reserved[2];
struct v4l2_dv_timings timings;

};

/** struct v4l2_bt_timings_cap - BT.656/BT.1120 timing capabilities
* @min_width: width in pixels
* @max_width: width in pixels
* @min_height: height in lines
* @max_height: height in lines
* @min_pixelclock: Pixel clock in HZ. Ex. 74.25MHz->74250000
* @max_pixelclock: Pixel clock in HZ. Ex. 74.25MHz->74250000
* @standards: Supported standards
* @capabilities: Supported capabilities
* @reserved: Must be zeroed
*/

struct v4l2_bt_timings_cap {
__u32 min_width;
__u32 max_width;
__u32 min_height;
__u32 max_height;
__u64 min_pixelclock;
__u64 max_pixelclock;
__u32 standards;
__u32 capabilities;
__u32 reserved[16];

} __attribute__ ((packed));

/* Supports interlaced formats */
#define V4L2_DV_BT_CAP_INTERLACED (1 << 0)
/* Supports progressive formats */

1292 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

#define V4L2_DV_BT_CAP_PROGRESSIVE (1 << 1)
/* Supports CVT/GTF reduced blanking */
#define V4L2_DV_BT_CAP_REDUCED_BLANKING (1 << 2)
/* Supports custom formats */
#define V4L2_DV_BT_CAP_CUSTOM (1 << 3)

/** struct v4l2_dv_timings_cap - DV timings capabilities
* @type: the type of the timings (same as in struct v4l2_dv_timings)
* @pad: the pad number for which to query capabilities (used with
* v4l-subdev nodes only)
* @bt: the BT656/1120 timings capabilities
*/

struct v4l2_dv_timings_cap {
__u32 type;
__u32 pad;
__u32 reserved[2];
union {

struct v4l2_bt_timings_cap bt;
__u32 raw_data[32];

};
};

/*
* V I D E O I N P U T S
*/

struct v4l2_input {
__u32 index; /* Which input */
__u8 name[32]; /* Label */
__u32 type; /* Type of input */
__u32 audioset; /* Associated audios (bitfield) */
__u32 tuner; /* enum v4l2_tuner_type */
v4l2_std_id std;
__u32 status;
__u32 capabilities;
__u32 reserved[3];

};

/* Values for the 'type' field */
#define V4L2_INPUT_TYPE_TUNER 1
#define V4L2_INPUT_TYPE_CAMERA 2
#define V4L2_INPUT_TYPE_TOUCH 3

/* field 'status' - general */
#define V4L2_IN_ST_NO_POWER 0x00000001 /* Attached device is off */
#define V4L2_IN_ST_NO_SIGNAL 0x00000002
#define V4L2_IN_ST_NO_COLOR 0x00000004

/* field 'status' - sensor orientation */
/* If sensor is mounted upside down set both bits */
#define V4L2_IN_ST_HFLIP 0x00000010 /* Frames are flipped horizontally */
#define V4L2_IN_ST_VFLIP 0x00000020 /* Frames are flipped vertically */

3.2. Part I - Video for Linux API 1293

Linux Media Documentation

/* field 'status' - analog */
#define V4L2_IN_ST_NO_H_LOCK 0x00000100 /* No horizontal sync lock */
#define V4L2_IN_ST_COLOR_KILL 0x00000200 /* Color killer is active */
#define V4L2_IN_ST_NO_V_LOCK 0x00000400 /* No vertical sync lock */
#define V4L2_IN_ST_NO_STD_LOCK 0x00000800 /* No standard format lock */

/* field 'status' - digital */
#define V4L2_IN_ST_NO_SYNC 0x00010000 /* No synchronization lock */
#define V4L2_IN_ST_NO_EQU 0x00020000 /* No equalizer lock */
#define V4L2_IN_ST_NO_CARRIER 0x00040000 /* Carrier recovery failed */

/* field 'status' - VCR and set-top box */
#define V4L2_IN_ST_MACROVISION 0x01000000 /* Macrovision detected */
#define V4L2_IN_ST_NO_ACCESS 0x02000000 /* Conditional access denied */
#define V4L2_IN_ST_VTR 0x04000000 /* VTR time constant */

/* capabilities flags */
#define V4L2_IN_CAP_DV_TIMINGS 0x00000002 /* Supports S_DV_TIMINGS */
#define V4L2_IN_CAP_CUSTOM_TIMINGS V4L2_IN_CAP_DV_TIMINGS /* For␣
↪→compatibility */
#define V4L2_IN_CAP_STD 0x00000004 /* Supports S_STD */
#define V4L2_IN_CAP_NATIVE_SIZE 0x00000008 /* Supports setting native␣
↪→size */

/*
* V I D E O O U T P U T S
*/

struct v4l2_output {
__u32 index; /* Which output */
__u8 name[32]; /* Label */
__u32 type; /* Type of output */
__u32 audioset; /* Associated audios (bitfield) */
__u32 modulator; /* Associated modulator */
v4l2_std_id std;
__u32 capabilities;
__u32 reserved[3];

};
/* Values for the 'type' field */
#define V4L2_OUTPUT_TYPE_MODULATOR 1
#define V4L2_OUTPUT_TYPE_ANALOG 2
#define V4L2_OUTPUT_TYPE_ANALOGVGAOVERLAY 3

/* capabilities flags */
#define V4L2_OUT_CAP_DV_TIMINGS 0x00000002 /* Supports S_DV_TIMINGS */
#define V4L2_OUT_CAP_CUSTOM_TIMINGS V4L2_OUT_CAP_DV_TIMINGS /* For␣
↪→compatibility */
#define V4L2_OUT_CAP_STD 0x00000004 /* Supports S_STD */
#define V4L2_OUT_CAP_NATIVE_SIZE 0x00000008 /* Supports setting native␣
↪→size */

1294 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

/*
* C O N T R O L S
*/

struct v4l2_control {
__u32 id;
__s32 value;

};

struct v4l2_ext_control {
__u32 id;
__u32 size;
__u32 reserved2[1];
union {

__s32 value;
__s64 value64;
char __user *string;
__u8 __user *p_u8;
__u16 __user *p_u16;
__u32 __user *p_u32;
struct v4l2_area __user *p_area;
struct v4l2_ctrl_h264_sps __user *p_h264_sps;
struct v4l2_ctrl_h264_pps *p_h264_pps;
struct v4l2_ctrl_h264_scaling_matrix __user *p_h264_scaling_

↪→matrix;
struct v4l2_ctrl_h264_pred_weights __user *p_h264_pred_weights;
struct v4l2_ctrl_h264_slice_params __user *p_h264_slice_params;
struct v4l2_ctrl_h264_decode_params __user *p_h264_decode_

↪→params;
struct v4l2_ctrl_fwht_params __user *p_fwht_params;
struct v4l2_ctrl_vp8_frame __user *p_vp8_frame;
struct v4l2_ctrl_mpeg2_sequence __user *p_mpeg2_sequence;
struct v4l2_ctrl_mpeg2_picture __user *p_mpeg2_picture;
struct v4l2_ctrl_mpeg2_quantisation __user *p_mpeg2_

↪→quantisation;
struct v4l2_ctrl_vp9_compressed_hdr __user *p_vp9_compressed_

↪→hdr_probs;
struct v4l2_ctrl_vp9_frame __user *p_vp9_frame;
void __user *ptr;

};
} __attribute__ ((packed));

struct v4l2_ext_controls {
union {

#ifndef __KERNEL__
__u32 ctrl_class;

#endif
__u32 which;

};
__u32 count;
__u32 error_idx;
__s32 request_fd;

3.2. Part I - Video for Linux API 1295

Linux Media Documentation

__u32 reserved[1];
struct v4l2_ext_control *controls;

};

#define V4L2_CTRL_ID_MASK (0x0fffffff)
#ifndef __KERNEL__
#define V4L2_CTRL_ID2CLASS(id) ((id) & 0x0fff0000UL)
#endif
#define V4L2_CTRL_ID2WHICH(id) ((id) & 0x0fff0000UL)
#define V4L2_CTRL_DRIVER_PRIV(id) (((id) & 0xffff) >= 0x1000)
#define V4L2_CTRL_MAX_DIMS (4)
#define V4L2_CTRL_WHICH_CUR_VAL 0
#define V4L2_CTRL_WHICH_DEF_VAL 0x0f000000
#define V4L2_CTRL_WHICH_REQUEST_VAL 0x0f010000

enum v4l2_ctrl_type {
V4L2_CTRL_TYPE_INTEGER = 1,
V4L2_CTRL_TYPE_BOOLEAN = 2,
V4L2_CTRL_TYPE_MENU = 3,
V4L2_CTRL_TYPE_BUTTON = 4,
V4L2_CTRL_TYPE_INTEGER64 = 5,
V4L2_CTRL_TYPE_CTRL_CLASS = 6,
V4L2_CTRL_TYPE_STRING = 7,
V4L2_CTRL_TYPE_BITMASK = 8,
V4L2_CTRL_TYPE_INTEGER_MENU = 9,

/* Compound types are >= 0x0100 */
V4L2_CTRL_COMPOUND_TYPES = 0x0100,
V4L2_CTRL_TYPE_U8 = 0x0100,
V4L2_CTRL_TYPE_U16 = 0x0101,
V4L2_CTRL_TYPE_U32 = 0x0102,
V4L2_CTRL_TYPE_AREA = 0x0106,

V4L2_CTRL_TYPE_HDR10_CLL_INFO = 0x0110,
V4L2_CTRL_TYPE_HDR10_MASTERING_DISPLAY = 0x0111,

V4L2_CTRL_TYPE_H264_SPS = 0x0200,
V4L2_CTRL_TYPE_H264_PPS = 0x0201,
V4L2_CTRL_TYPE_H264_SCALING_MATRIX = 0x0202,
V4L2_CTRL_TYPE_H264_SLICE_PARAMS = 0x0203,
V4L2_CTRL_TYPE_H264_DECODE_PARAMS = 0x0204,
V4L2_CTRL_TYPE_H264_PRED_WEIGHTS = 0x0205,

V4L2_CTRL_TYPE_FWHT_PARAMS = 0x0220,

V4L2_CTRL_TYPE_VP8_FRAME = 0x0240,

V4L2_CTRL_TYPE_MPEG2_QUANTISATION = 0x0250,
V4L2_CTRL_TYPE_MPEG2_SEQUENCE = 0x0251,
V4L2_CTRL_TYPE_MPEG2_PICTURE = 0x0252,

1296 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

V4L2_CTRL_TYPE_VP9_COMPRESSED_HDR = 0x0260,
V4L2_CTRL_TYPE_VP9_FRAME = 0x0261,

};

/* Used in the VIDIOC_QUERYCTRL ioctl for querying controls */
struct v4l2_queryctrl {

__u32 id;
__u32 type; /* enum v4l2_ctrl_type */
__u8 name[32]; /* Whatever */
__s32 minimum; /* Note signedness */
__s32 maximum;
__s32 step;
__s32 default_value;
__u32 flags;
__u32 reserved[2];

};

/* Used in the VIDIOC_QUERY_EXT_CTRL ioctl for querying extended controls */
struct v4l2_query_ext_ctrl {

__u32 id;
__u32 type;
char name[32];
__s64 minimum;
__s64 maximum;
__u64 step;
__s64 default_value;
__u32 flags;
__u32 elem_size;
__u32 elems;
__u32 nr_of_dims;
__u32 dims[V4L2_CTRL_MAX_DIMS];
__u32 reserved[32];

};

/* Used in the VIDIOC_QUERYMENU ioctl for querying menu items */
struct v4l2_querymenu {

__u32 id;
__u32 index;
union {

__u8 name[32]; /* Whatever */
__s64 value;

};
__u32 reserved;

} __attribute__ ((packed));

/* Control flags */
#define V4L2_CTRL_FLAG_DISABLED 0x0001
#define V4L2_CTRL_FLAG_GRABBED 0x0002
#define V4L2_CTRL_FLAG_READ_ONLY 0x0004
#define V4L2_CTRL_FLAG_UPDATE 0x0008
#define V4L2_CTRL_FLAG_INACTIVE 0x0010

3.2. Part I - Video for Linux API 1297

Linux Media Documentation

#define V4L2_CTRL_FLAG_SLIDER 0x0020
#define V4L2_CTRL_FLAG_WRITE_ONLY 0x0040
#define V4L2_CTRL_FLAG_VOLATILE 0x0080
#define V4L2_CTRL_FLAG_HAS_PAYLOAD 0x0100
#define V4L2_CTRL_FLAG_EXECUTE_ON_WRITE 0x0200
#define V4L2_CTRL_FLAG_MODIFY_LAYOUT 0x0400

/* Query flags, to be ORed with the control ID */
#define V4L2_CTRL_FLAG_NEXT_CTRL 0x80000000
#define V4L2_CTRL_FLAG_NEXT_COMPOUND 0x40000000

/* User-class control IDs defined by V4L2 */
#define V4L2_CID_MAX_CTRLS 1024
/* IDs reserved for driver specific controls */
#define V4L2_CID_PRIVATE_BASE 0x08000000

/*
* T U N I N G
*/

struct v4l2_tuner {
__u32 index;
__u8 name[32];
__u32 type; /* enum v4l2_tuner_type */
__u32 capability;
__u32 rangelow;
__u32 rangehigh;
__u32 rxsubchans;
__u32 audmode;
__s32 signal;
__s32 afc;
__u32 reserved[4];

};

struct v4l2_modulator {
__u32 index;
__u8 name[32];
__u32 capability;
__u32 rangelow;
__u32 rangehigh;
__u32 txsubchans;
__u32 type; /* enum v4l2_tuner_type */
__u32 reserved[3];

};

/* Flags for the 'capability' field */
#define V4L2_TUNER_CAP_LOW 0x0001
#define V4L2_TUNER_CAP_NORM 0x0002
#define V4L2_TUNER_CAP_HWSEEK_BOUNDED 0x0004
#define V4L2_TUNER_CAP_HWSEEK_WRAP 0x0008
#define V4L2_TUNER_CAP_STEREO 0x0010
#define V4L2_TUNER_CAP_LANG2 0x0020

1298 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

#define V4L2_TUNER_CAP_SAP 0x0020
#define V4L2_TUNER_CAP_LANG1 0x0040
#define V4L2_TUNER_CAP_RDS 0x0080
#define V4L2_TUNER_CAP_RDS_BLOCK_IO 0x0100
#define V4L2_TUNER_CAP_RDS_CONTROLS 0x0200
#define V4L2_TUNER_CAP_FREQ_BANDS 0x0400
#define V4L2_TUNER_CAP_HWSEEK_PROG_LIM 0x0800
#define V4L2_TUNER_CAP_1HZ 0x1000

/* Flags for the 'rxsubchans' field */
#define V4L2_TUNER_SUB_MONO 0x0001
#define V4L2_TUNER_SUB_STEREO 0x0002
#define V4L2_TUNER_SUB_LANG2 0x0004
#define V4L2_TUNER_SUB_SAP 0x0004
#define V4L2_TUNER_SUB_LANG1 0x0008
#define V4L2_TUNER_SUB_RDS 0x0010

/* Values for the 'audmode' field */
#define V4L2_TUNER_MODE_MONO 0x0000
#define V4L2_TUNER_MODE_STEREO 0x0001
#define V4L2_TUNER_MODE_LANG2 0x0002
#define V4L2_TUNER_MODE_SAP 0x0002
#define V4L2_TUNER_MODE_LANG1 0x0003
#define V4L2_TUNER_MODE_LANG1_LANG2 0x0004

struct v4l2_frequency {
__u32 tuner;
__u32 type; /* enum v4l2_tuner_type */
__u32 frequency;
__u32 reserved[8];

};

#define V4L2_BAND_MODULATION_VSB (1 << 1)
#define V4L2_BAND_MODULATION_FM (1 << 2)
#define V4L2_BAND_MODULATION_AM (1 << 3)

struct v4l2_frequency_band {
__u32 tuner;
__u32 type; /* enum v4l2_tuner_type */
__u32 index;
__u32 capability;
__u32 rangelow;
__u32 rangehigh;
__u32 modulation;
__u32 reserved[9];

};

struct v4l2_hw_freq_seek {
__u32 tuner;
__u32 type; /* enum v4l2_tuner_type */
__u32 seek_upward;

3.2. Part I - Video for Linux API 1299

Linux Media Documentation

__u32 wrap_around;
__u32 spacing;
__u32 rangelow;
__u32 rangehigh;
__u32 reserved[5];

};

/*
* R D S
*/

struct v4l2_rds_data {
__u8 lsb;
__u8 msb;
__u8 block;

} __attribute__ ((packed));

#define V4L2_RDS_BLOCK_MSK 0x7
#define V4L2_RDS_BLOCK_A 0
#define V4L2_RDS_BLOCK_B 1
#define V4L2_RDS_BLOCK_C 2
#define V4L2_RDS_BLOCK_D 3
#define V4L2_RDS_BLOCK_C_ALT 4
#define V4L2_RDS_BLOCK_INVALID 7

#define V4L2_RDS_BLOCK_CORRECTED 0x40
#define V4L2_RDS_BLOCK_ERROR 0x80

/*
* A U D I O
*/

struct v4l2_audio {
__u32 index;
__u8 name[32];
__u32 capability;
__u32 mode;
__u32 reserved[2];

};

/* Flags for the 'capability' field */
#define V4L2_AUDCAP_STEREO 0x00001
#define V4L2_AUDCAP_AVL 0x00002

/* Flags for the 'mode' field */
#define V4L2_AUDMODE_AVL 0x00001

struct v4l2_audioout {
__u32 index;
__u8 name[32];
__u32 capability;
__u32 mode;

1300 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

__u32 reserved[2];
};

/*
* M P E G S E R V I C E S
*/

#if 1
#define V4L2_ENC_IDX_FRAME_I (0)
#define V4L2_ENC_IDX_FRAME_P (1)
#define V4L2_ENC_IDX_FRAME_B (2)
#define V4L2_ENC_IDX_FRAME_MASK (0xf)

struct v4l2_enc_idx_entry {
__u64 offset;
__u64 pts;
__u32 length;
__u32 flags;
__u32 reserved[2];

};

#define V4L2_ENC_IDX_ENTRIES (64)
struct v4l2_enc_idx {

__u32 entries;
__u32 entries_cap;
__u32 reserved[4];
struct v4l2_enc_idx_entry entry[V4L2_ENC_IDX_ENTRIES];

};

#define V4L2_ENC_CMD_START (0)
#define V4L2_ENC_CMD_STOP (1)
#define V4L2_ENC_CMD_PAUSE (2)
#define V4L2_ENC_CMD_RESUME (3)

/* Flags for V4L2_ENC_CMD_STOP */
#define V4L2_ENC_CMD_STOP_AT_GOP_END (1 << 0)

struct v4l2_encoder_cmd {
__u32 cmd;
__u32 flags;
union {

struct {
__u32 data[8];

} raw;
};

};

/* Decoder commands */
#define V4L2_DEC_CMD_START (0)
#define V4L2_DEC_CMD_STOP (1)
#define V4L2_DEC_CMD_PAUSE (2)
#define V4L2_DEC_CMD_RESUME (3)

3.2. Part I - Video for Linux API 1301

Linux Media Documentation

#define V4L2_DEC_CMD_FLUSH (4)

/* Flags for V4L2_DEC_CMD_START */
#define V4L2_DEC_CMD_START_MUTE_AUDIO (1 << 0)

/* Flags for V4L2_DEC_CMD_PAUSE */
#define V4L2_DEC_CMD_PAUSE_TO_BLACK (1 << 0)

/* Flags for V4L2_DEC_CMD_STOP */
#define V4L2_DEC_CMD_STOP_TO_BLACK (1 << 0)
#define V4L2_DEC_CMD_STOP_IMMEDIATELY (1 << 1)

/* Play format requirements (returned by the driver): */

/* The decoder has no special format requirements */
#define V4L2_DEC_START_FMT_NONE (0)
/* The decoder requires full GOPs */
#define V4L2_DEC_START_FMT_GOP (1)

/* The structure must be zeroed before use by the application
This ensures it can be extended safely in the future. */

struct v4l2_decoder_cmd {
__u32 cmd;
__u32 flags;
union {

struct {
__u64 pts;

} stop;

struct {
/* 0 or 1000 specifies normal speed,

1 specifies forward single stepping,
-1 specifies backward single stepping,
>1: playback at speed/1000 of the normal speed,
<-1: reverse playback at (-speed/1000) of the␣

↪→normal speed. */
__s32 speed;
__u32 format;

} start;

struct {
__u32 data[16];

} raw;
};

};
#endif

/*
* D A T A S E R V I C E S (V B I)
*
* Data services API by Michael Schimek

1302 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

*/

/* Raw VBI */
struct v4l2_vbi_format {

__u32 sampling_rate; /* in 1 Hz */
__u32 offset;
__u32 samples_per_line;
__u32 sample_format; /* V4L2_PIX_FMT_* */
__s32 start[2];
__u32 count[2];
__u32 flags; /* V4L2_VBI_* */
__u32 reserved[2]; /* must be zero */

};

/* VBI flags */
#define V4L2_VBI_UNSYNC (1 << 0)
#define V4L2_VBI_INTERLACED (1 << 1)

/* ITU-R start lines for each field */
#define V4L2_VBI_ITU_525_F1_START (1)
#define V4L2_VBI_ITU_525_F2_START (264)
#define V4L2_VBI_ITU_625_F1_START (1)
#define V4L2_VBI_ITU_625_F2_START (314)

/* Sliced VBI
*
* This implements is a proposal V4L2 API to allow SLICED VBI
* required for some hardware encoders. It should change without
* notice in the definitive implementation.
*/

struct v4l2_sliced_vbi_format {
__u16 service_set;
/* service_lines[0][...] specifies lines 0-23 (1-23 used) of the first␣

↪→field
service_lines[1][...] specifies lines 0-23 (1-23 used) of the␣

↪→second field
(equals frame lines 313-336 for 625 line video
standards, 263-286 for 525 line standards) */

__u16 service_lines[2][24];
__u32 io_size;
__u32 reserved[2]; /* must be zero */

};

/* Teletext World System Teletext
(WST), defined on ITU-R BT.653-2 */

#define V4L2_SLICED_TELETEXT_B (0x0001)
/* Video Program System, defined on ETS 300 231*/
#define V4L2_SLICED_VPS (0x0400)
/* Closed Caption, defined on EIA-608 */
#define V4L2_SLICED_CAPTION_525 (0x1000)

3.2. Part I - Video for Linux API 1303

Linux Media Documentation

/* Wide Screen System, defined on ITU-R BT1119.1 */
#define V4L2_SLICED_WSS_625 (0x4000)

#define V4L2_SLICED_VBI_525 (V4L2_SLICED_CAPTION_525)
#define V4L2_SLICED_VBI_625 (V4L2_SLICED_TELETEXT_B | V4L2_SLICED_
↪→VPS | V4L2_SLICED_WSS_625)

struct v4l2_sliced_vbi_cap {
__u16 service_set;
/* service_lines[0][...] specifies lines 0-23 (1-23 used) of the first␣

↪→field
service_lines[1][...] specifies lines 0-23 (1-23 used) of the␣

↪→second field
(equals frame lines 313-336 for 625 line video
standards, 263-286 for 525 line standards) */

__u16 service_lines[2][24];
__u32 type; /* enum v4l2_buf_type */
__u32 reserved[3]; /* must be 0 */

};

struct v4l2_sliced_vbi_data {
__u32 id;
__u32 field; /* 0: first field, 1: second field */
__u32 line; /* 1-23 */
__u32 reserved; /* must be 0 */
__u8 data[48];

};

/*
* Sliced VBI data inserted into MPEG Streams
*/

/*
* V4L2_MPEG_STREAM_VBI_FMT_IVTV:
*
* Structure of payload contained in an MPEG 2 Private Stream 1 PES Packet in␣
↪→an
* MPEG-2 Program Pack that contains V4L2_MPEG_STREAM_VBI_FMT_IVTV Sliced VBI
* data
*
* Note, the MPEG-2 Program Pack and Private Stream 1 PES packet header
* definitions are not included here. See the MPEG-2 specifications for␣
↪→details
* on these headers.
*/

/* Line type IDs */
#define V4L2_MPEG_VBI_IVTV_TELETEXT_B (1)
#define V4L2_MPEG_VBI_IVTV_CAPTION_525 (4)
#define V4L2_MPEG_VBI_IVTV_WSS_625 (5)
#define V4L2_MPEG_VBI_IVTV_VPS (7)

1304 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

struct v4l2_mpeg_vbi_itv0_line {
__u8 id; /* One of V4L2_MPEG_VBI_IVTV_* above */
__u8 data[42]; /* Sliced VBI data for the line */

} __attribute__ ((packed));

struct v4l2_mpeg_vbi_itv0 {
__le32 linemask[2]; /* Bitmasks of VBI service lines present */
struct v4l2_mpeg_vbi_itv0_line line[35];

} __attribute__ ((packed));

struct v4l2_mpeg_vbi_ITV0 {
struct v4l2_mpeg_vbi_itv0_line line[36];

} __attribute__ ((packed));

#define V4L2_MPEG_VBI_IVTV_MAGIC0 "itv0"
#define V4L2_MPEG_VBI_IVTV_MAGIC1 "ITV0"

struct v4l2_mpeg_vbi_fmt_ivtv {
__u8 magic[4];
union {

struct v4l2_mpeg_vbi_itv0 itv0;
struct v4l2_mpeg_vbi_ITV0 ITV0;

};
} __attribute__ ((packed));

/*
* A G G R E G A T E S T R U C T U R E S
*/

/**
* struct v4l2_plane_pix_format - additional, per-plane format definition
* @sizeimage: maximum size in bytes required for data, for which
* this plane will be used
* @bytesperline: distance in bytes between the leftmost pixels in two
* adjacent lines
* @reserved: drivers and applications must zero this array
*/

struct v4l2_plane_pix_format {
__u32 sizeimage;
__u32 bytesperline;
__u16 reserved[6];

} __attribute__ ((packed));

/**
* struct v4l2_pix_format_mplane - multiplanar format definition
* @width: image width in pixels
* @height: image height in pixels
* @pixelformat: little endian four character code (fourcc)
* @field: enum v4l2_field; field order (for interlaced video)
* @colorspace: enum v4l2_colorspace; supplemental to pixelformat

3.2. Part I - Video for Linux API 1305

Linux Media Documentation

* @plane_fmt: per-plane information
* @num_planes: number of planes for this format
* @flags: format flags (V4L2_PIX_FMT_FLAG_*)
* @ycbcr_enc: enum v4l2_ycbcr_encoding, Y'CbCr encoding
* @hsv_enc: enum v4l2_hsv_encoding, HSV encoding
* @quantization: enum v4l2_quantization, colorspace quantization
* @xfer_func: enum v4l2_xfer_func, colorspace transfer function
* @reserved: drivers and applications must zero this array
*/

struct v4l2_pix_format_mplane {
__u32 width;
__u32 height;
__u32 pixelformat;
__u32 field;
__u32 colorspace;

struct v4l2_plane_pix_format plane_fmt[VIDEO_MAX_PLANES];
__u8 num_planes;
__u8 flags;
union {

__u8 ycbcr_enc;
__u8 hsv_enc;

};
__u8 quantization;
__u8 xfer_func;
__u8 reserved[7];

} __attribute__ ((packed));

/**
* struct v4l2_sdr_format - SDR format definition
* @pixelformat: little endian four character code (fourcc)
* @buffersize: maximum size in bytes required for data
* @reserved: drivers and applications must zero this array
*/

struct v4l2_sdr_format {
__u32 pixelformat;
__u32 buffersize;
__u8 reserved[24];

} __attribute__ ((packed));

/**
* struct v4l2_meta_format - metadata format definition
* @dataformat: little endian four character code (fourcc)
* @buffersize: maximum size in bytes required for data
*/

struct v4l2_meta_format {
__u32 dataformat;
__u32 buffersize;

} __attribute__ ((packed));

/**

1306 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

* struct v4l2_format - stream data format
* @type: enum v4l2_buf_type; type of the data stream
* @pix: definition of an image format
* @pix_mp: definition of a multiplanar image format
* @win: definition of an overlaid image
* @vbi: raw VBI capture or output parameters
* @sliced: sliced VBI capture or output parameters
* @raw_data: placeholder for future extensions and custom formats
* @fmt: union of @pix, @pix_mp, @win, @vbi, @sliced, @sdr, @meta
* and @raw_data
*/

struct v4l2_format {
__u32 type;
union {

struct v4l2_pix_format pix; /* V4L2_BUF_TYPE_
↪→VIDEO_CAPTURE */

struct v4l2_pix_format_mplane pix_mp; /* V4L2_BUF_TYPE_
↪→VIDEO_CAPTURE_MPLANE */

struct v4l2_window win; /* V4L2_BUF_TYPE_
↪→VIDEO_OVERLAY */

struct v4l2_vbi_format vbi; /* V4L2_BUF_TYPE_VBI_
↪→CAPTURE */

struct v4l2_sliced_vbi_format sliced; /* V4L2_BUF_TYPE_
↪→SLICED_VBI_CAPTURE */

struct v4l2_sdr_format sdr; /* V4L2_BUF_TYPE_SDR_
↪→CAPTURE */

struct v4l2_meta_format meta; /* V4L2_BUF_TYPE_META_
↪→CAPTURE */

__u8 raw_data[200]; /* user-defined */
} fmt;

};

/* Stream type-dependent parameters
*/

struct v4l2_streamparm {
__u32 type; /* enum v4l2_buf_type */
union {

struct v4l2_captureparm capture;
struct v4l2_outputparm output;
__u8 raw_data[200]; /* user-defined */

} parm;
};

/*
* E V E N T S
*/

#define V4L2_EVENT_ALL 0
#define V4L2_EVENT_VSYNC 1
#define V4L2_EVENT_EOS 2
#define V4L2_EVENT_CTRL 3

3.2. Part I - Video for Linux API 1307

Linux Media Documentation

#define V4L2_EVENT_FRAME_SYNC 4
#define V4L2_EVENT_SOURCE_CHANGE 5
#define V4L2_EVENT_MOTION_DET 6
#define V4L2_EVENT_PRIVATE_START 0x08000000

/* Payload for V4L2_EVENT_VSYNC */
struct v4l2_event_vsync {

/* Can be V4L2_FIELD_ANY, _NONE, _TOP or _BOTTOM */
__u8 field;

} __attribute__ ((packed));

/* Payload for V4L2_EVENT_CTRL */
#define V4L2_EVENT_CTRL_CH_VALUE (1 << 0)
#define V4L2_EVENT_CTRL_CH_FLAGS (1 << 1)
#define V4L2_EVENT_CTRL_CH_RANGE (1 << 2)

struct v4l2_event_ctrl {
__u32 changes;
__u32 type;
union {

__s32 value;
__s64 value64;

};
__u32 flags;
__s32 minimum;
__s32 maximum;
__s32 step;
__s32 default_value;

};

struct v4l2_event_frame_sync {
__u32 frame_sequence;

};

#define V4L2_EVENT_SRC_CH_RESOLUTION (1 << 0)

struct v4l2_event_src_change {
__u32 changes;

};

#define V4L2_EVENT_MD_FL_HAVE_FRAME_SEQ (1 << 0)

/**
* struct v4l2_event_motion_det - motion detection event
* @flags: if V4L2_EVENT_MD_FL_HAVE_FRAME_SEQ is set, then the
* frame_sequence field is valid.
* @frame_sequence: the frame sequence number associated with this event.
* @region_mask: which regions detected motion.
*/

struct v4l2_event_motion_det {
__u32 flags;

1308 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

__u32 frame_sequence;
__u32 region_mask;

};

struct v4l2_event {
__u32 type;
union {

struct v4l2_event_vsync vsync;
struct v4l2_event_ctrl ctrl;
struct v4l2_event_frame_sync frame_sync;
struct v4l2_event_src_change src_change;
struct v4l2_event_motion_det motion_det;
__u8 data[64];

} u;
__u32 pending;
__u32 sequence;

#ifdef __KERNEL__
struct __kernel_timespec timestamp;

#else
struct timespec timestamp;

#endif
__u32 id;
__u32 reserved[8];

};

#define V4L2_EVENT_SUB_FL_SEND_INITIAL (1 << 0)
#define V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK (1 << 1)

struct v4l2_event_subscription {
__u32 type;
__u32 id;
__u32 flags;
__u32 reserved[5];

};

/*
* A D V A N C E D D E B U G G I N G
*
* NOTE: EXPERIMENTAL API, NEVER RELY ON THIS IN APPLICATIONS!
* FOR DEBUGGING, TESTING AND INTERNAL USE ONLY!
*/

/* VIDIOC_DBG_G_REGISTER and VIDIOC_DBG_S_REGISTER */

#define V4L2_CHIP_MATCH_BRIDGE 0 /* Match against chip ID on the bridge␣
↪→(0 for the bridge) */
#define V4L2_CHIP_MATCH_SUBDEV 4 /* Match against subdev index */

/* The following four defines are no longer in use */
#define V4L2_CHIP_MATCH_HOST V4L2_CHIP_MATCH_BRIDGE
#define V4L2_CHIP_MATCH_I2C_DRIVER 1 /* Match against I2C driver name */

3.2. Part I - Video for Linux API 1309

Linux Media Documentation

#define V4L2_CHIP_MATCH_I2C_ADDR 2 /* Match against I2C 7-bit address */
#define V4L2_CHIP_MATCH_AC97 3 /* Match against ancillary AC97 chip */

struct v4l2_dbg_match {
__u32 type; /* Match type */
union { /* Match this chip, meaning determined by type */

__u32 addr;
char name[32];

};
} __attribute__ ((packed));

struct v4l2_dbg_register {
struct v4l2_dbg_match match;
__u32 size; /* register size in bytes */
__u64 reg;
__u64 val;

} __attribute__ ((packed));

#define V4L2_CHIP_FL_READABLE (1 << 0)
#define V4L2_CHIP_FL_WRITABLE (1 << 1)

/* VIDIOC_DBG_G_CHIP_INFO */
struct v4l2_dbg_chip_info {

struct v4l2_dbg_match match;
char name[32];
__u32 flags;
__u32 reserved[32];

} __attribute__ ((packed));

/**
* struct v4l2_create_buffers - VIDIOC_CREATE_BUFS argument
* @index: on return, index of the first created buffer
* @count: entry: number of requested buffers,
* return: number of created buffers
* @memory: enum v4l2_memory; buffer memory type
* @format: frame format, for which buffers are requested
* @capabilities: capabilities of this buffer type.
* @flags: additional buffer management attributes (ignored unless the
* queue has V4L2_BUF_CAP_SUPPORTS_MMAP_CACHE_HINTS capability
* and configured for MMAP streaming I/O).
* @reserved: future extensions
*/

struct v4l2_create_buffers {
__u32 index;
__u32 count;
__u32 memory;
struct v4l2_format format;
__u32 capabilities;
__u32 flags;
__u32 reserved[6];

};

1310 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

/*
* I O C T L C O D E S F O R V I D E O D E V I C E S
*
*/

#define VIDIOC_QUERYCAP _IOR('V', 0, struct v4l2_capability)
#define VIDIOC_ENUM_FMT _IOWR('V', 2, struct v4l2_fmtdesc)
#define VIDIOC_G_FMT _IOWR('V', 4, struct v4l2_format)
#define VIDIOC_S_FMT _IOWR('V', 5, struct v4l2_format)
#define VIDIOC_REQBUFS _IOWR('V', 8, struct v4l2_requestbuffers)
#define VIDIOC_QUERYBUF _IOWR('V', 9, struct v4l2_buffer)
#define VIDIOC_G_FBUF _IOR('V', 10, struct v4l2_framebuffer)
#define VIDIOC_S_FBUF _IOW('V', 11, struct v4l2_framebuffer)
#define VIDIOC_OVERLAY _IOW('V', 14, int)
#define VIDIOC_QBUF _IOWR('V', 15, struct v4l2_buffer)
#define VIDIOC_EXPBUF _IOWR('V', 16, struct v4l2_exportbuffer)
#define VIDIOC_DQBUF _IOWR('V', 17, struct v4l2_buffer)
#define VIDIOC_STREAMON _IOW('V', 18, int)
#define VIDIOC_STREAMOFF _IOW('V', 19, int)
#define VIDIOC_G_PARM _IOWR('V', 21, struct v4l2_streamparm)
#define VIDIOC_S_PARM _IOWR('V', 22, struct v4l2_streamparm)
#define VIDIOC_G_STD _IOR('V', 23, v4l2_std_id)
#define VIDIOC_S_STD _IOW('V', 24, v4l2_std_id)
#define VIDIOC_ENUMSTD _IOWR('V', 25, struct v4l2_standard)
#define VIDIOC_ENUMINPUT _IOWR('V', 26, struct v4l2_input)
#define VIDIOC_G_CTRL _IOWR('V', 27, struct v4l2_control)
#define VIDIOC_S_CTRL _IOWR('V', 28, struct v4l2_control)
#define VIDIOC_G_TUNER _IOWR('V', 29, struct v4l2_tuner)
#define VIDIOC_S_TUNER _IOW('V', 30, struct v4l2_tuner)
#define VIDIOC_G_AUDIO _IOR('V', 33, struct v4l2_audio)
#define VIDIOC_S_AUDIO _IOW('V', 34, struct v4l2_audio)
#define VIDIOC_QUERYCTRL _IOWR('V', 36, struct v4l2_queryctrl)
#define VIDIOC_QUERYMENU _IOWR('V', 37, struct v4l2_querymenu)
#define VIDIOC_G_INPUT _IOR('V', 38, int)
#define VIDIOC_S_INPUT _IOWR('V', 39, int)
#define VIDIOC_G_EDID _IOWR('V', 40, struct v4l2_edid)
#define VIDIOC_S_EDID _IOWR('V', 41, struct v4l2_edid)
#define VIDIOC_G_OUTPUT _IOR('V', 46, int)
#define VIDIOC_S_OUTPUT _IOWR('V', 47, int)
#define VIDIOC_ENUMOUTPUT _IOWR('V', 48, struct v4l2_output)
#define VIDIOC_G_AUDOUT _IOR('V', 49, struct v4l2_audioout)
#define VIDIOC_S_AUDOUT _IOW('V', 50, struct v4l2_audioout)
#define VIDIOC_G_MODULATOR _IOWR('V', 54, struct v4l2_modulator)
#define VIDIOC_S_MODULATOR _IOW('V', 55, struct v4l2_modulator)
#define VIDIOC_G_FREQUENCY _IOWR('V', 56, struct v4l2_frequency)
#define VIDIOC_S_FREQUENCY _IOW('V', 57, struct v4l2_frequency)
#define VIDIOC_CROPCAP _IOWR('V', 58, struct v4l2_cropcap)
#define VIDIOC_G_CROP _IOWR('V', 59, struct v4l2_crop)
#define VIDIOC_S_CROP _IOW('V', 60, struct v4l2_crop)
#define VIDIOC_G_JPEGCOMP _IOR('V', 61, struct v4l2_jpegcompression)
#define VIDIOC_S_JPEGCOMP _IOW('V', 62, struct v4l2_jpegcompression)

3.2. Part I - Video for Linux API 1311

Linux Media Documentation

#define VIDIOC_QUERYSTD _IOR('V', 63, v4l2_std_id)
#define VIDIOC_TRY_FMT _IOWR('V', 64, struct v4l2_format)
#define VIDIOC_ENUMAUDIO _IOWR('V', 65, struct v4l2_audio)
#define VIDIOC_ENUMAUDOUT _IOWR('V', 66, struct v4l2_audioout)
#define VIDIOC_G_PRIORITY _IOR('V', 67, __u32) /* enum v4l2_priority */
#define VIDIOC_S_PRIORITY _IOW('V', 68, __u32) /* enum v4l2_priority */
#define VIDIOC_G_SLICED_VBI_CAP _IOWR('V', 69, struct v4l2_sliced_vbi_cap)
#define VIDIOC_LOG_STATUS _IO('V', 70)
#define VIDIOC_G_EXT_CTRLS _IOWR('V', 71, struct v4l2_ext_controls)
#define VIDIOC_S_EXT_CTRLS _IOWR('V', 72, struct v4l2_ext_controls)
#define VIDIOC_TRY_EXT_CTRLS _IOWR('V', 73, struct v4l2_ext_controls)
#define VIDIOC_ENUM_FRAMESIZES _IOWR('V', 74, struct v4l2_frmsizeenum)
#define VIDIOC_ENUM_FRAMEINTERVALS _IOWR('V', 75, struct v4l2_frmivalenum)
#define VIDIOC_G_ENC_INDEX _IOR('V', 76, struct v4l2_enc_idx)
#define VIDIOC_ENCODER_CMD _IOWR('V', 77, struct v4l2_encoder_cmd)
#define VIDIOC_TRY_ENCODER_CMD _IOWR('V', 78, struct v4l2_encoder_cmd)

/*
* Experimental, meant for debugging, testing and internal use.
* Only implemented if CONFIG_VIDEO_ADV_DEBUG is defined.
* You must be root to use these ioctls. Never use these in applications!
*/

#define VIDIOC_DBG_S_REGISTER _IOW('V', 79, struct v4l2_dbg_register)
#define VIDIOC_DBG_G_REGISTER _IOWR('V', 80, struct v4l2_dbg_register)

#define VIDIOC_S_HW_FREQ_SEEK _IOW('V', 82, struct v4l2_hw_freq_seek)
#define VIDIOC_S_DV_TIMINGS _IOWR('V', 87, struct v4l2_dv_timings)
#define VIDIOC_G_DV_TIMINGS _IOWR('V', 88, struct v4l2_dv_timings)
#define VIDIOC_DQEVENT _IOR('V', 89, struct v4l2_event)
#define VIDIOC_SUBSCRIBE_EVENT _IOW('V', 90, struct v4l2_event_subscription)
#define VIDIOC_UNSUBSCRIBE_EVENT _IOW('V', 91, struct v4l2_event_subscription)
#define VIDIOC_CREATE_BUFS _IOWR('V', 92, struct v4l2_create_buffers)
#define VIDIOC_PREPARE_BUF _IOWR('V', 93, struct v4l2_buffer)
#define VIDIOC_G_SELECTION _IOWR('V', 94, struct v4l2_selection)
#define VIDIOC_S_SELECTION _IOWR('V', 95, struct v4l2_selection)
#define VIDIOC_DECODER_CMD _IOWR('V', 96, struct v4l2_decoder_cmd)
#define VIDIOC_TRY_DECODER_CMD _IOWR('V', 97, struct v4l2_decoder_cmd)
#define VIDIOC_ENUM_DV_TIMINGS _IOWR('V', 98, struct v4l2_enum_dv_timings)
#define VIDIOC_QUERY_DV_TIMINGS _IOR('V', 99, struct v4l2_dv_timings)
#define VIDIOC_DV_TIMINGS_CAP _IOWR('V', 100, struct v4l2_dv_timings_cap)
#define VIDIOC_ENUM_FREQ_BANDS _IOWR('V', 101, struct v4l2_frequency_band)

/*
* Experimental, meant for debugging, testing and internal use.
* Never use this in applications!
*/

#define VIDIOC_DBG_G_CHIP_INFO _IOWR('V', 102, struct v4l2_dbg_chip_info)

#define VIDIOC_QUERY_EXT_CTRL _IOWR('V', 103, struct v4l2_query_ext_ctrl)

/* Reminder: when adding new ioctls please add support for them to

1312 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

drivers/media/v4l2-core/v4l2-compat-ioctl32.c as well! */

#define BASE_VIDIOC_PRIVATE 192 /* 192-255 are private */

/* Deprecated definitions kept for backwards compatibility */
#ifndef __KERNEL__
#define V4L2_PIX_FMT_HM12 V4L2_PIX_FMT_NV12_16L16
#define V4L2_PIX_FMT_SUNXI_TILED_NV12 V4L2_PIX_FMT_NV12_32L32
#endif

#endif /* _UAPI__LINUX_VIDEODEV2_H */

3.2.10 Video Capture Example

3.2.10.1 file: media/v4l/capture.c

/*
* V4L2 video capture example
*
* This program can be used and distributed without restrictions.
*
* This program is provided with the V4L2 API
* see https://linuxtv.org/docs.php for more information
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include <getopt.h> /* getopt_long() */

#include <fcntl.h> /* low-level i/o */
#include <unistd.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <sys/ioctl.h>

#include <linux/videodev2.h>

#define CLEAR(x) memset(&(x), 0, sizeof(x))

enum io_method {
IO_METHOD_READ,
IO_METHOD_MMAP,
IO_METHOD_USERPTR,

};

struct buffer {
void *start;
size_t length;

};

3.2. Part I - Video for Linux API 1313

Linux Media Documentation

static char *dev_name;
static enum io_method io = IO_METHOD_MMAP;
static int fd = -1;
struct buffer *buffers;
static unsigned int n_buffers;
static int out_buf;
static int force_format;
static int frame_count = 70;

static void errno_exit(const char *s)
{

fprintf(stderr, "%s error %d, %s\n", s, errno, strerror(errno));
exit(EXIT_FAILURE);

}

static int xioctl(int fh, int request, void *arg)
{

int r;

do {
r = ioctl(fh, request, arg);

} while (-1 == r && EINTR == errno);

return r;
}

static void process_image(const void *p, int size)
{

if (out_buf)
fwrite(p, size, 1, stdout);

fflush(stderr);
fprintf(stderr, ".");
fflush(stdout);

}

static int read_frame(void)
{

struct v4l2_buffer buf;
unsigned int i;

switch (io) {
case IO_METHOD_READ:

if (-1 == read(fd, buffers[0].start, buffers[0].length)) {
switch (errno) {
case EAGAIN:

return 0;

case EIO:
/* Could ignore EIO, see spec. */

/* fall through */

default:
errno_exit("read");

}

1314 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

}

process_image(buffers[0].start, buffers[0].length);
break;

case IO_METHOD_MMAP:
CLEAR(buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;

if (-1 == xioctl(fd, VIDIOC_DQBUF, &buf)) {
switch (errno) {
case EAGAIN:

return 0;

case EIO:
/* Could ignore EIO, see spec. */

/* fall through */

default:
errno_exit("VIDIOC_DQBUF");

}
}

assert(buf.index < n_buffers);

process_image(buffers[buf.index].start, buf.bytesused);

if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");

break;

case IO_METHOD_USERPTR:
CLEAR(buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_USERPTR;

if (-1 == xioctl(fd, VIDIOC_DQBUF, &buf)) {
switch (errno) {
case EAGAIN:

return 0;

case EIO:
/* Could ignore EIO, see spec. */

/* fall through */

default:
errno_exit("VIDIOC_DQBUF");

}
}

for (i = 0; i < n_buffers; ++i)
if (buf.m.userptr == (unsigned long)buffers[i].start

3.2. Part I - Video for Linux API 1315

Linux Media Documentation

&& buf.length == buffers[i].length)
break;

assert(i < n_buffers);

process_image((void *)buf.m.userptr, buf.bytesused);

if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");

break;
}

return 1;
}

static void mainloop(void)
{

unsigned int count;

count = frame_count;

while (count-- > 0) {
for (;;) {

fd_set fds;
struct timeval tv;
int r;

FD_ZERO(&fds);
FD_SET(fd, &fds);

/* Timeout. */
tv.tv_sec = 2;
tv.tv_usec = 0;

r = select(fd + 1, &fds, NULL, NULL, &tv);

if (-1 == r) {
if (EINTR == errno)

continue;
errno_exit("select");

}

if (0 == r) {
fprintf(stderr, "select timeout\n");
exit(EXIT_FAILURE);

}

if (read_frame())
break;

/* EAGAIN - continue select loop. */
}

}
}

static void stop_capturing(void)
{

enum v4l2_buf_type type;

1316 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

switch (io) {
case IO_METHOD_READ:

/* Nothing to do. */
break;

case IO_METHOD_MMAP:
case IO_METHOD_USERPTR:

type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (-1 == xioctl(fd, VIDIOC_STREAMOFF, &type))

errno_exit("VIDIOC_STREAMOFF");
break;

}
}

static void start_capturing(void)
{

unsigned int i;
enum v4l2_buf_type type;

switch (io) {
case IO_METHOD_READ:

/* Nothing to do. */
break;

case IO_METHOD_MMAP:
for (i = 0; i < n_buffers; ++i) {

struct v4l2_buffer buf;

CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = i;

if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");

}
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (-1 == xioctl(fd, VIDIOC_STREAMON, &type))

errno_exit("VIDIOC_STREAMON");
break;

case IO_METHOD_USERPTR:
for (i = 0; i < n_buffers; ++i) {

struct v4l2_buffer buf;

CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_USERPTR;
buf.index = i;
buf.m.userptr = (unsigned long)buffers[i].start;
buf.length = buffers[i].length;

if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");

}
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

3.2. Part I - Video for Linux API 1317

Linux Media Documentation

if (-1 == xioctl(fd, VIDIOC_STREAMON, &type))
errno_exit("VIDIOC_STREAMON");

break;
}

}

static void uninit_device(void)
{

unsigned int i;

switch (io) {
case IO_METHOD_READ:

free(buffers[0].start);
break;

case IO_METHOD_MMAP:
for (i = 0; i < n_buffers; ++i)

if (-1 == munmap(buffers[i].start, buffers[i].length))
errno_exit("munmap");

break;

case IO_METHOD_USERPTR:
for (i = 0; i < n_buffers; ++i)

free(buffers[i].start);
break;

}

free(buffers);
}

static void init_read(unsigned int buffer_size)
{

buffers = calloc(1, sizeof(*buffers));

if (!buffers) {
fprintf(stderr, "Out of memory\n");
exit(EXIT_FAILURE);

}

buffers[0].length = buffer_size;
buffers[0].start = malloc(buffer_size);

if (!buffers[0].start) {
fprintf(stderr, "Out of memory\n");
exit(EXIT_FAILURE);

}
}

static void init_mmap(void)
{

struct v4l2_requestbuffers req;

CLEAR(req);

req.count = 4;
req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req.memory = V4L2_MEMORY_MMAP;

1318 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

if (-1 == xioctl(fd, VIDIOC_REQBUFS, &req)) {
if (EINVAL == errno) {

fprintf(stderr, "%s does not support "
"memory mappingn", dev_name);

exit(EXIT_FAILURE);
} else {

errno_exit("VIDIOC_REQBUFS");
}

}

if (req.count < 2) {
fprintf(stderr, "Insufficient buffer memory on %s\n",

dev_name);
exit(EXIT_FAILURE);

}

buffers = calloc(req.count, sizeof(*buffers));

if (!buffers) {
fprintf(stderr, "Out of memory\n");
exit(EXIT_FAILURE);

}

for (n_buffers = 0; n_buffers < req.count; ++n_buffers) {
struct v4l2_buffer buf;

CLEAR(buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = n_buffers;

if (-1 == xioctl(fd, VIDIOC_QUERYBUF, &buf))
errno_exit("VIDIOC_QUERYBUF");

buffers[n_buffers].length = buf.length;
buffers[n_buffers].start =

mmap(NULL /* start anywhere */,
buf.length,
PROT_READ | PROT_WRITE /* required */,
MAP_SHARED /* recommended */,
fd, buf.m.offset);

if (MAP_FAILED == buffers[n_buffers].start)
errno_exit("mmap");

}
}

static void init_userp(unsigned int buffer_size)
{

struct v4l2_requestbuffers req;

CLEAR(req);

req.count = 4;
req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

3.2. Part I - Video for Linux API 1319

Linux Media Documentation

req.memory = V4L2_MEMORY_USERPTR;

if (-1 == xioctl(fd, VIDIOC_REQBUFS, &req)) {
if (EINVAL == errno) {

fprintf(stderr, "%s does not support "
"user pointer i/on", dev_name);

exit(EXIT_FAILURE);
} else {

errno_exit("VIDIOC_REQBUFS");
}

}

buffers = calloc(4, sizeof(*buffers));

if (!buffers) {
fprintf(stderr, "Out of memory\n");
exit(EXIT_FAILURE);

}

for (n_buffers = 0; n_buffers < 4; ++n_buffers) {
buffers[n_buffers].length = buffer_size;
buffers[n_buffers].start = malloc(buffer_size);

if (!buffers[n_buffers].start) {
fprintf(stderr, "Out of memory\n");
exit(EXIT_FAILURE);

}
}

}

static void init_device(void)
{

struct v4l2_capability cap;
struct v4l2_cropcap cropcap;
struct v4l2_crop crop;
struct v4l2_format fmt;
unsigned int min;

if (-1 == xioctl(fd, VIDIOC_QUERYCAP, &cap)) {
if (EINVAL == errno) {

fprintf(stderr, "%s is no V4L2 device\n",
dev_name);

exit(EXIT_FAILURE);
} else {

errno_exit("VIDIOC_QUERYCAP");
}

}

if (!(cap.capabilities & V4L2_CAP_VIDEO_CAPTURE)) {
fprintf(stderr, "%s is no video capture device\n",

dev_name);
exit(EXIT_FAILURE);

}

switch (io) {
case IO_METHOD_READ:

if (!(cap.capabilities & V4L2_CAP_READWRITE)) {

1320 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

fprintf(stderr, "%s does not support read i/o\n",
dev_name);

exit(EXIT_FAILURE);
}
break;

case IO_METHOD_MMAP:
case IO_METHOD_USERPTR:

if (!(cap.capabilities & V4L2_CAP_STREAMING)) {
fprintf(stderr, "%s does not support streaming i/o\n",

dev_name);
exit(EXIT_FAILURE);

}
break;

}

/* Select video input, video standard and tune here. */

CLEAR(cropcap);

cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (0 == xioctl(fd, VIDIOC_CROPCAP, &cropcap)) {
crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
crop.c = cropcap.defrect; /* reset to default */

if (-1 == xioctl(fd, VIDIOC_S_CROP, &crop)) {
switch (errno) {
case EINVAL:

/* Cropping not supported. */
break;

default:
/* Errors ignored. */
break;

}
}

} else {
/* Errors ignored. */

}

CLEAR(fmt);

fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (force_format) {

fmt.fmt.pix.width = 640;
fmt.fmt.pix.height = 480;
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV;
fmt.fmt.pix.field = V4L2_FIELD_INTERLACED;

if (-1 == xioctl(fd, VIDIOC_S_FMT, &fmt))
errno_exit("VIDIOC_S_FMT");

/* Note VIDIOC_S_FMT may change width and height. */
} else {

3.2. Part I - Video for Linux API 1321

Linux Media Documentation

/* Preserve original settings as set by v4l2-ctl for example */
if (-1 == xioctl(fd, VIDIOC_G_FMT, &fmt))

errno_exit("VIDIOC_G_FMT");
}

/* Buggy driver paranoia. */
min = fmt.fmt.pix.width * 2;
if (fmt.fmt.pix.bytesperline < min)

fmt.fmt.pix.bytesperline = min;
min = fmt.fmt.pix.bytesperline * fmt.fmt.pix.height;
if (fmt.fmt.pix.sizeimage < min)

fmt.fmt.pix.sizeimage = min;

switch (io) {
case IO_METHOD_READ:

init_read(fmt.fmt.pix.sizeimage);
break;

case IO_METHOD_MMAP:
init_mmap();
break;

case IO_METHOD_USERPTR:
init_userp(fmt.fmt.pix.sizeimage);
break;

}
}

static void close_device(void)
{

if (-1 == close(fd))
errno_exit("close");

fd = -1;
}

static void open_device(void)
{

struct stat st;

if (-1 == stat(dev_name, &st)) {
fprintf(stderr, "Cannot identify '%s': %d, %s\n",

dev_name, errno, strerror(errno));
exit(EXIT_FAILURE);

}

if (!S_ISCHR(st.st_mode)) {
fprintf(stderr, "%s is no devicen", dev_name);
exit(EXIT_FAILURE);

}

fd = open(dev_name, O_RDWR /* required */ | O_NONBLOCK, 0);

if (-1 == fd) {
fprintf(stderr, "Cannot open '%s': %d, %s\n",

dev_name, errno, strerror(errno));
exit(EXIT_FAILURE);

1322 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

}
}

static void usage(FILE *fp, int argc, char **argv)
{

fprintf(fp,
"Usage: %s [options]\n\n"
"Version 1.3\n"
"Options:\n"
"-d | --device name Video device name [%s]\n"
"-h | --help Print this message\n"
"-m | --mmap Use memory mapped buffers [default]\n"
"-r | --read Use read() calls\n"
"-u | --userp Use application allocated buffers\n"
"-o | --output Outputs stream to stdout\n"
"-f | --format Force format to 640x480 YUYV\n"
"-c | --count Number of frames to grab [%i]\n"
"",
argv[0], dev_name, frame_count);

}

static const char short_options[] = "d:hmruofc:";

static const struct option
long_options[] = {

{ "device", required_argument, NULL, 'd' },
{ "help", no_argument, NULL, 'h' },
{ "mmap", no_argument, NULL, 'm' },
{ "read", no_argument, NULL, 'r' },
{ "userp", no_argument, NULL, 'u' },
{ "output", no_argument, NULL, 'o' },
{ "format", no_argument, NULL, 'f' },
{ "count", required_argument, NULL, 'c' },
{ 0, 0, 0, 0 }

};

int main(int argc, char **argv)
{

dev_name = "/dev/video0";

for (;;) {
int idx;
int c;

c = getopt_long(argc, argv,
short_options, long_options, &idx);

if (-1 == c)
break;

switch (c) {
case 0: /* getopt_long() flag */

break;

case 'd':
dev_name = optarg;
break;

3.2. Part I - Video for Linux API 1323

Linux Media Documentation

case 'h':
usage(stdout, argc, argv);
exit(EXIT_SUCCESS);

case 'm':
io = IO_METHOD_MMAP;
break;

case 'r':
io = IO_METHOD_READ;
break;

case 'u':
io = IO_METHOD_USERPTR;
break;

case 'o':
out_buf++;
break;

case 'f':
force_format++;
break;

case 'c':
errno = 0;
frame_count = strtol(optarg, NULL, 0);
if (errno)

errno_exit(optarg);
break;

default:
usage(stderr, argc, argv);
exit(EXIT_FAILURE);

}
}

open_device();
init_device();
start_capturing();
mainloop();
stop_capturing();
uninit_device();
close_device();
fprintf(stderr, "\n");
return 0;

}

1324 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

3.2.11 Video Grabber example using libv4l

This program demonstrates how to grab V4L2 images in ppm format by using libv4l handlers.
The advantage is that this grabber can potentially work with any V4L2 driver.

3.2.11.1 file: media/v4l/v4l2grab.c

/* V4L2 video picture grabber
Copyright (C) 2009 Mauro Carvalho Chehab <mchehab@kernel.org>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation version 2 of the License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <linux/videodev2.h>
#include "../libv4l/include/libv4l2.h"

#define CLEAR(x) memset(&(x), 0, sizeof(x))

struct buffer {
void *start;
size_t length;

};

static void xioctl(int fh, int request, void *arg)
{

int r;

do {
r = v4l2_ioctl(fh, request, arg);

} while (r == -1 && ((errno == EINTR) || (errno == EAGAIN)));

if (r == -1) {
fprintf(stderr, "error %d, %s\n", errno, strerror(errno));
exit(EXIT_FAILURE);

}
}

int main(int argc, char **argv)
{

struct v4l2_format fmt;

3.2. Part I - Video for Linux API 1325

Linux Media Documentation

struct v4l2_buffer buf;
struct v4l2_requestbuffers req;
enum v4l2_buf_type type;
fd_set fds;
struct timeval tv;
int r, fd = -1;
unsigned int i, n_buffers;
char *dev_name = "/dev/video0";
char out_name[256];
FILE *fout;
struct buffer *buffers;

fd = v4l2_open(dev_name, O_RDWR | O_NONBLOCK, 0);
if (fd < 0) {

perror("Cannot open device");
exit(EXIT_FAILURE);

}

CLEAR(fmt);
fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
fmt.fmt.pix.width = 640;
fmt.fmt.pix.height = 480;
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_RGB24;
fmt.fmt.pix.field = V4L2_FIELD_INTERLACED;
xioctl(fd, VIDIOC_S_FMT, &fmt);
if (fmt.fmt.pix.pixelformat != V4L2_PIX_FMT_RGB24) {

printf("Libv4l didn't accept RGB24 format. Can't proceed.\n");
exit(EXIT_FAILURE);

}
if ((fmt.fmt.pix.width != 640) || (fmt.fmt.pix.height != 480))

printf("Warning: driver is sending image at %dx%d\n",
fmt.fmt.pix.width, fmt.fmt.pix.height);

CLEAR(req);
req.count = 2;
req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req.memory = V4L2_MEMORY_MMAP;
xioctl(fd, VIDIOC_REQBUFS, &req);

buffers = calloc(req.count, sizeof(*buffers));
for (n_buffers = 0; n_buffers < req.count; ++n_buffers) {

CLEAR(buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = n_buffers;

xioctl(fd, VIDIOC_QUERYBUF, &buf);

buffers[n_buffers].length = buf.length;
buffers[n_buffers].start = v4l2_mmap(NULL, buf.length,

PROT_READ | PROT_WRITE, MAP_SHARED,
fd, buf.m.offset);

if (MAP_FAILED == buffers[n_buffers].start) {
perror("mmap");
exit(EXIT_FAILURE);

1326 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

}
}

for (i = 0; i < n_buffers; ++i) {
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = i;
xioctl(fd, VIDIOC_QBUF, &buf);

}
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

xioctl(fd, VIDIOC_STREAMON, &type);
for (i = 0; i < 20; i++) {

do {
FD_ZERO(&fds);
FD_SET(fd, &fds);

/* Timeout. */
tv.tv_sec = 2;
tv.tv_usec = 0;

r = select(fd + 1, &fds, NULL, NULL, &tv);
} while ((r == -1 && (errno = EINTR)));
if (r == -1) {

perror("select");
return errno;

}

CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
xioctl(fd, VIDIOC_DQBUF, &buf);

sprintf(out_name, "out%03d.ppm", i);
fout = fopen(out_name, "w");
if (!fout) {

perror("Cannot open image");
exit(EXIT_FAILURE);

}
fprintf(fout, "P6\n%d %d 255\n",

fmt.fmt.pix.width, fmt.fmt.pix.height);
fwrite(buffers[buf.index].start, buf.bytesused, 1, fout);
fclose(fout);

xioctl(fd, VIDIOC_QBUF, &buf);
}

type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
xioctl(fd, VIDIOC_STREAMOFF, &type);
for (i = 0; i < n_buffers; ++i)

v4l2_munmap(buffers[i].start, buffers[i].length);
v4l2_close(fd);

return 0;
}

3.2. Part I - Video for Linux API 1327

Linux Media Documentation

3.2.12 References

3.2.12.1 CEA 608-E

title CEA-608-E R-2014 “Line 21 Data Services”
author Consumer Electronics Association (http://www.ce.org)

3.2.12.2 EN 300 294

title EN 300 294 “625-line television Wide Screen Signalling (WSS)”
author European Telecommunication Standards Institute (http://www.etsi.org)

3.2.12.3 ETS 300 231

title ETS 300 231 “Specification of the domestic video Programme Delivery Control
system (PDC)”

author European Telecommunication Standards Institute (http://www.etsi.org)

3.2.12.4 ETS 300 706

title ETS 300 706 “Enhanced Teletext specification”
author European Telecommunication Standards Institute (http://www.etsi.org)

3.2.12.5 ISO 13818-1

title ITU-T Rec. H.222.0 | ISO/IEC 13818-1 “Information technology — Generic cod-
ing of moving pictures and associated audio information: Systems”

author International Telecommunication Union (http://www.itu.ch), International
Organisation for Standardisation (http://www.iso.ch)

3.2.12.6 ISO 13818-2

title ITU-T Rec. H.262 | ISO/IEC 13818-2 “Information technology — Generic coding
of moving pictures and associated audio information: Video”

author International Telecommunication Union (http://www.itu.ch), International
Organisation for Standardisation (http://www.iso.ch)

1328 Chapter 3. Linux Media Infrastructure userspace API

http://www.ce.org
http://www.etsi.org
http://www.etsi.org
http://www.etsi.org
http://www.itu.ch
http://www.iso.ch
http://www.itu.ch
http://www.iso.ch

Linux Media Documentation

3.2.12.7 ITU BT.470

title ITU-R Recommendation BT.470-6 “Conventional Television Systems”
author International Telecommunication Union (http://www.itu.ch)

3.2.12.8 ITU BT.601

title ITU-R Recommendation BT.601-5 “Studio Encoding Parameters of Digital Tele-
vision for Standard 4:3 and Wide-Screen 16:9 Aspect Ratios”

author International Telecommunication Union (http://www.itu.ch)

3.2.12.9 ITU BT.653

title ITU-R Recommendation BT.653-3 “Teletext systems”
author International Telecommunication Union (http://www.itu.ch)

3.2.12.10 ITU BT.709

title ITU-R Recommendation BT.709-5 “Parameter values for the HDTV standards for
production and international programme exchange”

author International Telecommunication Union (http://www.itu.ch)

3.2.12.11 ITU BT.1119

title ITU-R Recommendation BT.1119 “625-line television Wide Screen Signalling
(WSS)”

author International Telecommunication Union (http://www.itu.ch)

3.2.12.12 ITU-T Rec. H.264 Specification (04/2017 Edition)

title ITU-T Recommendation H.264 “Advanced Video Coding for Generic Audiovisual
Services”

author International Telecommunication Union (http://www.itu.ch)

3.2.12.13 ITU H.265/HEVC

title ITU-T Rec. H.265 | ISO/IEC 23008-2 “High Efficiency Video Coding”
author International Telecommunication Union (http://www.itu.ch), International

Organisation for Standardisation (http://www.iso.ch)

3.2. Part I - Video for Linux API 1329

http://www.itu.ch
http://www.itu.ch
http://www.itu.ch
http://www.itu.ch
http://www.itu.ch
http://www.itu.ch
http://www.itu.ch
http://www.iso.ch

Linux Media Documentation

3.2.12.14 JFIF

title JPEG File Interchange Format
subtitle Version 1.02
author Independent JPEG Group (http://www.ijg.org)

3.2.12.15 ITU-T.81

title ITU-T Recommendation T.81 “Information Technology — Digital Compression
and Coding of Continous-Tone Still Images — Requirements and Guidelines”

author International Telecommunication Union (http://www.itu.int)

3.2.12.16 W3C JPEG JFIF

title JPEG JFIF
author The World Wide Web Consortium (http://www.w3.org)

3.2.12.17 SMPTE 12M

title SMPTE 12M-1999 “Television, Audio and Film - Time and Control Code”

author Society of Motion Picture and Television Engineers (http://www.smpte.org)

3.2.12.18 SMPTE 170M

title SMPTE 170M-1999 “Television - Composite Analog Video Signal - NTSC for Stu-
dio Applications”

author Society of Motion Picture and Television Engineers (http://www.smpte.org)

3.2.12.19 SMPTE 240M

title SMPTE 240M-1999 “Television - Signal Parameters - 1125-Line High-Definition
Production”

author Society of Motion Picture and Television Engineers (http://www.smpte.org)

3.2.12.20 SMPTE RP 431-2

title SMPTE RP 431-2:2011 “D-Cinema Quality - Reference Projector and Environ-
ment”

author Society of Motion Picture and Television Engineers (http://www.smpte.org)

1330 Chapter 3. Linux Media Infrastructure userspace API

http://www.ijg.org
http://www.itu.int
http://www.w3.org
http://www.smpte.org
http://www.smpte.org
http://www.smpte.org
http://www.smpte.org

Linux Media Documentation

3.2.12.21 SMPTE ST 2084

title SMPTE ST 2084:2014 “High Dynamic Range Electro-Optical Transfer Function
of Master Reference Displays”

author Society of Motion Picture and Television Engineers (http://www.smpte.org)

3.2.12.22 sRGB

title IEC 61966-2-1 ed1.0 “Multimedia systems and equipment - Colourmeasurement
and management - Part 2-1: Colour management - Default RGB colour space -
sRGB”

author International Electrotechnical Commission (http://www.iec.ch)

3.2.12.23 sYCC

title IEC 61966-2-1-am1 ed1.0 “Amendment 1 - Multimedia systems and equipment -
Colour measurement and management - Part 2-1: Colour management - Default
RGB colour space - sRGB”

author International Electrotechnical Commission (http://www.iec.ch)

3.2.12.24 xvYCC

title IEC 61966-2-4 ed1.0 “Multimedia systems and equipment - Colourmeasurement
and management - Part 2-4: Colour management - Extended-gamut YCC colour
space for video applications - xvYCC”

author International Electrotechnical Commission (http://www.iec.ch)

3.2.12.25 opRGB

title IEC 61966-2-5 “Multimedia systems and equipment - Colour measurement and
management - Part 2-5: Colour management - Optional RGB colour space -
opRGB”

author International Electrotechnical Commission (http://www.iec.ch)

3.2.12.26 ITU BT.2020

title ITU-R Recommendation BT.2020 (08/2012) “Parameter values for ultra-high
definition television systems for production and international programme ex-
change”

author International Telecommunication Union (http://www.itu.ch)

3.2. Part I - Video for Linux API 1331

http://www.smpte.org
http://www.iec.ch
http://www.iec.ch
http://www.iec.ch
http://www.iec.ch
http://www.itu.ch

Linux Media Documentation

3.2.12.27 EBU Tech 3213

title E.B.U. Standard for Chromaticity Tolerances for Studio Monitors
author European Broadcast Union (http://www.ebu.ch)

3.2.12.28 EBU Tech 3321

title E.B.U. guidelines for Consumer Flat Panel Displays (FPDs)
author European Broadcast Union (http://www.ebu.ch)

3.2.12.29 IEC 62106

title Specification of the radio data system (RDS) for VHF/FM sound broadcasting in
the frequency range from 87,5 to 108,0 MHz

author International Electrotechnical Commission (http://www.iec.ch)

3.2.12.30 NRSC-4-B

title NRSC-4-B: United States RBDS Standard
author National Radio Systems Committee (http://www.nrscstandards.org)

3.2.12.31 ISO 12232:2006

title Photography — Digital still cameras — Determination of exposure index, ISO
speed ratings, standard output sensitivity, and recommended exposure index

author International Organization for Standardization (http://www.iso.org)

3.2.12.32 CEA-861-E

title A DTV Profile for Uncompressed High Speed Digital Interfaces
author Consumer Electronics Association (http://www.ce.org)

3.2.12.33 VESA DMT

title VESA and Industry Standards and Guidelines for Computer Display Monitor
Timing (DMT)

author Video Electronics Standards Association (http://www.vesa.org)

1332 Chapter 3. Linux Media Infrastructure userspace API

http://www.ebu.ch
http://www.ebu.ch
http://www.iec.ch
http://www.nrscstandards.org
http://www.iso.org
http://www.ce.org
http://www.vesa.org

Linux Media Documentation

3.2.12.34 EDID

title VESA Enhanced Extended Display Identification Data Standard
subtitle Release A, Revision 2
author Video Electronics Standards Association (http://www.vesa.org)

3.2.12.35 HDCP

title High-bandwidth Digital Content Protection System
subtitle Revision 1.3
author Digital Content Protection LLC (http://www.digital-cp.com)

3.2.12.36 HDMI

title High-Definition Multimedia Interface
subtitle Specification Version 1.4a
author HDMI Licensing LLC (http://www.hdmi.org)

3.2.12.37 HDMI2

title High-Definition Multimedia Interface
subtitle Specification Version 2.0
author HDMI Licensing LLC (http://www.hdmi.org)

3.2.12.38 DP

title VESA DisplayPort Standard
subtitle Version 1, Revision 2
author Video Electronics Standards Association (http://www.vesa.org)

3.2.12.39 poynton

title Digital Video and HDTV, Algorithms and Interfaces
author Charles Poynton

3.2. Part I - Video for Linux API 1333

http://www.vesa.org
http://www.digital-cp.com
http://www.hdmi.org
http://www.hdmi.org
http://www.vesa.org

Linux Media Documentation

3.2.12.40 colimg

title Color Imaging: Fundamentals and Applications
author Erik Reinhard et al.

3.2.12.41 VP8

title RFC 6386: “VP8 Data Format and Decoding Guide”
author

J. Bankoski et al.

3.2.12.42 VP9

title VP9 Bitstream & Decoding Process Specification

author Adrian Grange (Google), Peter de Rivaz (Argon Design), Jonathan Hunt (Ar-
gon Design)

3.2.13 Revision and Copyright

Authors, in alphabetical order:

• Ailus, Sakari <sakari.ailus@iki.fi>

– Subdev selections API.
• Carvalho Chehab, Mauro <mchehab+samsung@kernel.org>

– Documented libv4l, designed and added v4l2grab example, Remote Controller chap-
ter.

• Dirks, Bill

– Original author of the V4L2 API and documentation.
• Figa, Tomasz <tfiga@chromium.org>

– Documented the memory-to-memory decoder interface.
– Documented the memory-to-memory encoder interface.

• H Schimek, Michael <mschimek@gmx.at>

– Original author of the V4L2 API and documentation.
• Karicheri, Muralidharan <m-karicheri2@ti.com>

– Documented the Digital Video timings API.
• Osciak, Pawel <posciak@chromium.org>

– Documented the memory-to-memory decoder interface.
– Documented the memory-to-memory encoder interface.

• Osciak, Pawel <pawel@osciak.com>

1334 Chapter 3. Linux Media Infrastructure userspace API

mailto:sakari.ailus@iki.fi
mailto:mchehab+samsung@kernel.org
mailto:tfiga@chromium.org
mailto:mschimek@gmx.at
mailto:m-karicheri2@ti.com
mailto:posciak@chromium.org
mailto:pawel@osciak.com

Linux Media Documentation

– Designed and documented the multi-planar API.
• Palosaari, Antti <crope@iki.fi>

– SDR API.
• Ribalda, Ricardo

– Introduce HSV formats and other minor changes.
• Rubli, Martin

– Designed and documented the VIDIOC_ENUM_FRAMESIZES and VID-
IOC_ENUM_FRAMEINTERVALS ioctls.

• Walls, Andy <awalls@md.metrocast.net>

– Documented the fielded V4L2_MPEG_STREAM_VBI_FMT_IVTV MPEG stream embed-
ded, sliced VBI data format in this specification.

• Verkuil, Hans <hverkuil@xs4all.nl>

– Designed and documented the VIDIOC_LOG_STATUS ioctl, the extended control ioctls,
major parts of the sliced VBI API, the MPEG encoder and decoder APIs and the DV
Timings API.

Copyright © 1999-2018: Bill Dirks, Michael H. Schimek, Hans Verkuil, Martin Rubli, Andy
Walls, Muralidharan Karicheri, Mauro Carvalho Chehab, Pawel Osciak, Sakari Ailus & Antti
Palosaari, Tomasz Figa

Except when explicitly stated as GPL, programming examples within this part can be used and
distributed without restrictions.

3.2.14 Revision History

revision 4.10 / 2016-07-15 (rr)
Introduce HSV formats.

revision 4.5 / 2015-10-29 (rr)
Extend VIDIOC_G_EXT_CTRLS;. Replace ctrl_class with a new union with ctrl_class and which.
Which is used to select the current value of the control or the default value.

revision 4.4 / 2015-05-26 (ap)
Renamed V4L2_TUNER_ADC to V4L2_TUNER_SDR. Added V4L2_CID_RF_TUNER_RF_GAIN
control. Added transmitter support for Software Defined Radio (SDR) Interface.

revision 4.1 / 2015-02-13 (mcc)

Fix documentation for media controller device nodes and add support for DVB device nodes.
Add support for Tuner sub-device.

revision 3.19 / 2014-12-05 (hv)
Rewrote Colorspace chapter, added new enum v4l2_ycbcr_encoding and enum
v4l2_quantization fields to struct v4l2_pix_format, struct v4l2_pix_format_mplane
and struct v4l2_mbus_framefmt.

revision 3.17 / 2014-08-04 (lp, hv)

3.2. Part I - Video for Linux API 1335

mailto:crope@iki.fi
mailto:awalls@md.metrocast.net
mailto:hverkuil@xs4all.nl

Linux Media Documentation

Extended struct v4l2_pix_format. Added format flags. Added compound control types and
VIDIOC_QUERY_EXT_CTRL.

revision 3.15 / 2014-02-03 (hv, ap)
Update several sections of “Common API Elements”: “Opening and Closing Devices” “Querying
Capabilities”, “Application Priority”, “Video Inputs and Outputs”, “Audio Inputs and Outputs”
“Tuners and Modulators”, “Video Standards” and “Digital Video (DV) Timings”. Added SDR
API.

revision 3.14 / 2013-11-25 (rr)
Set width and height as unsigned on v4l2_rect.

revision 3.11 / 2013-05-26 (hv)
Remove obsolete VIDIOC_DBG_G_CHIP_IDENT ioctl.

revision 3.10 / 2013-03-25 (hv)
Remove obsolete and unused DV_PRESET ioctls: VIDIOC_G_DV_PRESET, VID-
IOC_S_DV_PRESET, VIDIOC_QUERY_DV_PRESET and VIDIOC_ENUM_DV_PRESET.
Remove the related v4l2_input/output capability flags V4L2_IN_CAP_PRESETS and
V4L2_OUT_CAP_PRESETS. Added VIDIOC_DBG_G_CHIP_INFO.

revision 3.9 / 2012-12-03 (sa, sn)
Added timestamp types to v4l2_buffer. Added V4L2_EVENT_CTRL_CH_RANGE control event
changes flag.

revision 3.6 / 2012-07-02 (hv)
Added VIDIOC_ENUM_FREQ_BANDS.

revision 3.5 / 2012-05-07 (sa, sn, hv)
Added V4L2_CTRL_TYPE_INTEGER_MENU and V4L2 subdev selections API. Improved
the description of V4L2_CID_COLORFX control, added V4L2_CID_COLORFX_CBCR
control. Added camera controls V4L2_CID_AUTO_EXPOSURE_BIAS,
V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE, V4L2_CID_IMAGE_STABILIZATION,
V4L2_CID_ISO_SENSITIVITY, V4L2_CID_ISO_SENSITIVITY_AUTO, V4L2_CID_EXPOSURE_METERING,
V4L2_CID_SCENE_MODE, V4L2_CID_3A_LOCK, V4L2_CID_AUTO_FOCUS_START,
V4L2_CID_AUTO_FOCUS_STOP, V4L2_CID_AUTO_FOCUS_STATUS and
V4L2_CID_AUTO_FOCUS_RANGE. Added VIDIOC_ENUM_DV_TIMINGS, VID-
IOC_QUERY_DV_TIMINGS and VIDIOC_DV_TIMINGS_CAP.

revision 3.4 / 2012-01-25 (sn)
Added JPEG compression control class.

revision 3.3 / 2012-01-11 (hv)
Added device_caps field to struct v4l2_capabilities.

revision 3.2 / 2011-08-26 (hv)
Added V4L2_CTRL_FLAG_VOLATILE.

revision 3.1 / 2011-06-27 (mcc, po, hv)

Documented that VIDIOC_QUERYCAP now returns a per-subsystem version instead of a per-
driver one. Standardize an error code for invalid ioctl. Added V4L2_CTRL_TYPE_BITMASK.

1336 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

revision 2.6.39 / 2011-03-01 (mcc, po)

Removed VIDIOC_*_OLD from videodev2.h header and update it to reflect latest changes.
Added the multi-planar API.

revision 2.6.37 / 2010-08-06 (hv)
Removed obsolete vtx (videotext) API.

revision 2.6.33 / 2009-12-03 (mk)

Added documentation for the Digital Video timings API.

revision 2.6.32 / 2009-08-31 (mcc)

Now, revisions will match the kernel version where the V4L2 API changes will be used by the
Linux Kernel. Also added Remote Controller chapter.

revision 0.29 / 2009-08-26 (ev)
Added documentation for string controls and for FM Transmitter controls.

revision 0.28 / 2009-08-26 (gl)
Added V4L2_CID_BAND_STOP_FILTER documentation.

revision 0.27 / 2009-08-15 (mcc)

Added libv4l and Remote Controller documentation; added v4l2grab and keytable application
examples.

revision 0.26 / 2009-07-23 (hv)
Finalized the RDS capture API. Added modulator and RDS encoder capabilities. Added support
for string controls.

revision 0.25 / 2009-01-18 (hv)
Added pixel formats VYUY, NV16 and NV61, and changed the debug
ioctls VIDIOC_DBG_G/S_REGISTER and VIDIOC_DBG_G_CHIP_IDENT. Added
camera controls V4L2_CID_ZOOM_ABSOLUTE, V4L2_CID_ZOOM_RELATIVE,
V4L2_CID_ZOOM_CONTINUOUS and V4L2_CID_PRIVACY.

revision 0.24 / 2008-03-04 (mhs)

Added pixel formats Y16 and SBGGR16, new controls and a camera controls class. Removed
VIDIOC_G/S_MPEGCOMP.

revision 0.23 / 2007-08-30 (mhs)

Fixed a typo in VIDIOC_DBG_G/S_REGISTER. Clarified the byte order of packed pixel formats.

revision 0.22 / 2007-08-29 (mhs)

Added the Video Output Overlay interface, newMPEG controls, V4L2_FIELD_INTERLACED_TB
and V4L2_FIELD_INTERLACED_BT, VIDIOC_DBG_G/S_REGISTER, VID-
IOC_(TRY_)ENCODER_CMD, VIDIOC_G_CHIP_IDENT, VIDIOC_G_ENC_INDEX, new pixel
formats. Clarifications in the cropping chapter, about RGB pixel formats, the mmap(), poll(),
select(), read() and write() functions. Typographical fixes.

revision 0.21 / 2006-12-19 (mhs)

Fixed a link in the VIDIOC_G_EXT_CTRLS section.

3.2. Part I - Video for Linux API 1337

Linux Media Documentation

revision 0.20 / 2006-11-24 (mhs)

Clarified the purpose of the audioset field in struct v4l2_input and v4l2_output.

revision 0.19 / 2006-10-19 (mhs)

Documented V4L2_PIX_FMT_RGB444.

revision 0.18 / 2006-10-18 (mhs)

Added the description of extended controls by Hans Verkuil. Linked V4L2_PIX_FMT_MPEG to
V4L2_CID_MPEG_STREAM_TYPE.

revision 0.17 / 2006-10-12 (mhs)

Corrected V4L2_PIX_FMT_HM12 description.

revision 0.16 / 2006-10-08 (mhs)

VIDIOC_ENUM_FRAMESIZES and VIDIOC_ENUM_FRAMEINTERVALS are now part of the
API.

revision 0.15 / 2006-09-23 (mhs)

Cleaned up the bibliography, added BT.653 and BT.1119. capture.c/start_capturing() for
user pointer I/O did not initialize the buffer index. Documented the V4L MPEG and MJPEG
VID_TYPEs and V4L2_PIX_FMT_SBGGR8. Updated the list of reserved pixel formats. See the
history chapter for API changes.

revision 0.14 / 2006-09-14 (mr)

Added VIDIOC_ENUM_FRAMESIZES and VIDIOC_ENUM_FRAMEINTERVALS proposal for
frame format enumeration of digital devices.

revision 0.13 / 2006-04-07 (mhs)

Corrected the description of struct v4l2_window clips. New V4L2_STD_ and
V4L2_TUNER_MODE_LANG1_LANG2 defines.

revision 0.12 / 2006-02-03 (mhs)

Corrected the description of struct v4l2_captureparm and v4l2_outputparm.

revision 0.11 / 2006-01-27 (mhs)

Improved the description of struct v4l2_tuner.

revision 0.10 / 2006-01-10 (mhs)

VIDIOC_G_INPUT and VIDIOC_S_PARM clarifications.

revision 0.9 / 2005-11-27 (mhs)

Improved the 525 line numbering diagram. Hans Verkuil and I rewrote the sliced VBI sec-
tion. He also contributed a VIDIOC_LOG_STATUS page. Fixed VIDIOC_S_STD call in the video
standard selection example. Various updates.

revision 0.8 / 2004-10-04 (mhs)

Somehow a piece of junk slipped into the capture example, removed.

revision 0.7 / 2004-09-19 (mhs)

Fixed video standard selection, control enumeration, downscaling and aspect example. Added
read and user pointer i/o to video capture example.

1338 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

revision 0.6 / 2004-08-01 (mhs)

v4l2_buffer changes, added video capture example, various corrections.

revision 0.5 / 2003-11-05 (mhs)

Pixel format erratum.

revision 0.4 / 2003-09-17 (mhs)

Corrected source and Makefile to generate a PDF. SGML fixes. Added latest API changes.
Closed gaps in the history chapter.

revision 0.3 / 2003-02-05 (mhs)

Another draft, more corrections.

revision 0.2 / 2003-01-15 (mhs)

Second draft, with corrections pointed out by Gerd Knorr.

revision 0.1 / 2002-12-01 (mhs)

First draft, based on documentation by Bill Dirks and discussions on the V4L mailing list.

3.3 Part II - Digital TV API

Note: This API is also known as Linux DVB API.
It it was originally written to support the European digital TV standard (DVB), and later ex-
tended to support all digital TV standards.

In order to avoid confusion, within this document, it was opted to refer to it, and to associated
hardware as Digital TV.
The word DVB is reserved to be used for:
• the Digital TV API version (e. g. DVB API version 3 or DVB API version 5);

• digital TV data types (enums, structs, defines, etc);

• digital TV device nodes (/dev/dvb/...);

• the European DVB standard.

Version 5.10

3.3.1 Introduction

3.3.1.1 What you need to know

The reader of this document is required to have some knowledge in the area of digital video
broadcasting (Digital TV) and should be familiar with part I of the MPEG2 specification ISO/IEC
13818 (aka ITU-T H.222), i.e you should know what a program/transport stream (PS/TS) is and
what is meant by a packetized elementary stream (PES) or an I-frame.

Various Digital TV standards documents are available for download at:

3.3. Part II - Digital TV API 1339

Linux Media Documentation

• European standards (DVB): http://www.dvb.org and/or http://www.etsi.org.

• American standards (ATSC): https://www.atsc.org/standards/

• Japanese standards (ISDB): http://www.dibeg.org/

It is also necessary to know how to access Linux devices and how to use ioctl calls. This also
includes the knowledge of C or C++.

3.3.1.2 History

The first API for Digital TV cards we used at Convergence in late 1999 was an extension of the
Video4Linux API which was primarily developed for frame grabber cards. As such it was not
really well suited to be used for Digital TV cards and their new features like recording MPEG
streams and filtering several section and PES data streams at the same time.

In early 2000, Convergence was approached by Nokia with a proposal for a new standard Linux
Digital TV API. As a commitment to the development of terminals based on open standards,
Nokia and Convergence made it available to all Linux developers and published it on https:
//linuxtv.org in September 2000. With the Linux driver for the Siemens/Hauppauge DVB PCI
card, Convergence provided a first implementation of the Linux Digital TV API. Convergence
was the maintainer of the Linux Digital TV API in the early days.

Now, the API is maintained by the LinuxTV community (i.e. you, the reader of this document).
The Linux Digital TV API is constantly reviewed and improved together with the improvements
at the subsystem’s core at the Kernel.

3.3.1.3 Overview

Fig. 19: Components of a Digital TV card/STB

1340 Chapter 3. Linux Media Infrastructure userspace API

http://www.dvb.org
http://www.etsi.org
https://www.atsc.org/standards/
http://www.dibeg.org/
https://linuxtv.org
https://linuxtv.org

Linux Media Documentation

A Digital TV card or set-top-box (STB) usually consists of the following main hardware compo-
nents:

Frontend consisting of tuner and digital TV demodulator Here the raw signal reaches
the digital TV hardware from a satellite dish or antenna or directly from cable. The fron-
tend down-converts and demodulates this signal into an MPEG transport stream (TS). In
case of a satellite frontend, this includes a facility for satellite equipment control (SEC),
which allows control of LNB polarization, multi feed switches or dish rotors.

Conditional Access (CA) hardware like CI adapters and smartcard slots The complete
TS is passed through the CA hardware. Programs to which the user has access (controlled
by the smart card) are decoded in real time and re-inserted into the TS.

Note: Not every digital TV hardware provides conditional access hardware.

Demultiplexer which filters the incoming Digital TV MPEG-TS stream The demulti-
plexer splits the TS into its components like audio and video streams. Besides usually
several of such audio and video streams it also contains data streams with information
about the programs offered in this or other streams of the same provider.

Audio and video decoder The main targets of the demultiplexer are audio and video de-
coders. After decoding, they pass on the uncompressed audio and video to the computer
screen or to a TV set.

Note: Modern hardware usually doesn’t have a separate decoder hardware, as such
functionality can be provided by the main CPU, by the graphics adapter of the system
or by a signal processing hardware embedded on a Systems on a Chip (SoC) integrated
circuit.

It may also not be needed for certain usages (e.g. for data-only uses like “internet over
satellite”).

Components of a Digital TV card/STB shows a crude schematic of the control and data flow
between those components.

3.3.1.4 Linux Digital TV Devices

The Linux Digital TV API lets you control these hardware components through currently six
Unix-style character devices for video, audio, frontend, demux, CA and IP-over-DVB networking.
The video and audio devices control the MPEG2 decoder hardware, the frontend device the
tuner and the Digital TV demodulator. The demux device gives you control over the PES and
section filters of the hardware. If the hardware does not support filtering these filters can be
implemented in software. Finally, the CA device controls all the conditional access capabilities
of the hardware. It can depend on the individual security requirements of the platform, if and
how many of the CA functions are made available to the application through this device.

All devices can be found in the /dev tree under /dev/dvb. The individual devices are called:

• /dev/dvb/adapterN/audioM,

• /dev/dvb/adapterN/videoM,

• /dev/dvb/adapterN/frontendM,

3.3. Part II - Digital TV API 1341

Linux Media Documentation

• /dev/dvb/adapterN/netM,

• /dev/dvb/adapterN/demuxM,

• /dev/dvb/adapterN/dvrM,

• /dev/dvb/adapterN/caM,

where N enumerates the Digital TV cards in a system starting from 0, and M enumerates the
devices of each type within each adapter, starting from 0, too. We will omit the “/dev/dvb/
adapterN/” in the further discussion of these devices.

More details about the data structures and function calls of all the devices are described in the
following chapters.

3.3.1.5 API include files

For each of the Digital TV devices a corresponding include file exists. The Digital TV API include
files should be included in application sources with a partial path like:

#include <linux/dvb/ca.h>

#include <linux/dvb/dmx.h>

#include <linux/dvb/frontend.h>

#include <linux/dvb/net.h>

To enable applications to support different API version, an additional include file linux/
dvb/version.h exists, which defines the constant DVB_API_VERSION. This document describes
DVB_API_VERSION 5.10.

3.3.2 Digital TV Frontend API

The Digital TV frontend API was designed to support three groups of delivery systems: Terres-
trial, cable and Satellite. Currently, the following delivery systems are supported:

• Terrestrial systems: DVB-T, DVB-T2, ATSC, ATSC M/H, ISDB-T, DVB-H, DTMB, CMMB

• Cable systems: DVB-C Annex A/C, ClearQAM (DVB-C Annex B)

• Satellite systems: DVB-S, DVB-S2, DVB Turbo, ISDB-S, DSS

The Digital TV frontend controls several sub-devices including:

• Tuner

• Digital TV demodulator

• Low noise amplifier (LNA)

• Satellite Equipment Control (SEC)1.
1 On Satellite systems, the API support for the Satellite Equipment Control (SEC) allows to power control and

to send/receive signals to control the antenna subsystem, selecting the polarization and choosing the Intermediate
Frequency IF) of the Low Noise Block Converter Feed Horn (LNBf). It supports the DiSEqC and V-SEC protocols.
The DiSEqC (digital SEC) specification is available at Eutelsat.

1342 Chapter 3. Linux Media Infrastructure userspace API

http://www.eutelsat.com/satellites/4_5_5.html

Linux Media Documentation

The frontend can be accessed through /dev/dvb/adapter?/frontend?. Data types and ioctl
definitions can be accessed by including linux/dvb/frontend.h in your application.

Note: Transmission via the internet (DVB-IP) and MMT (MPEG Media Transport) is not yet
handled by this API but a future extension is possible.

3.3.2.1 Querying frontend information

Usually, the first thing to do when the frontend is opened is to check the frontend capabilities.
This is done using ioctl FE_GET_INFO. This ioctl will enumerate the Digital TV API version and
other characteristics about the frontend, and can be opened either in read only or read/write
mode.

3.3.2.2 Querying frontend status and statistics

Once FE_SET_PROPERTY is called, the frontend will run a kernel thread that will periodically
check for the tuner lock status and provide statistics about the quality of the signal.

The information about the frontend tuner locking status can be queried using ioctl
FE_READ_STATUS.

Signal statistics are provided via ioctl FE_SET_PROPERTY, FE_GET_PROPERTY.

Note: Most statistics require the demodulator to be fully locked (e. g. with FE_HAS_LOCK bit
set). See Frontend statistics indicators for more details.

3.3.2.3 Property types

Tuning into a Digital TV physical channel and starting decoding it requires changing a set
of parameters, in order to control the tuner, the demodulator, the Linear Low-noise Amplifier
(LNA) and to set the antenna subsystem via Satellite Equipment Control - SEC (on satellite
systems). The actual parameters are specific to each particular digital TV standards, and may
change as the digital TV specs evolves.

In the past (up to DVB API version 3 - DVBv3), the strategy used was to have a union with
the parameters needed to tune for DVB-S, DVB-C, DVB-T and ATSC delivery systems grouped
there. The problem is that, as the second generation standards appeared, the size of such union
was not big enough to group the structs that would be required for those new standards. Also,
extending it would break userspace.

So, the legacy union/struct based approach was deprecated, in favor of a properties set ap-
proach. On such approach, FE_GET_PROPERTY and FE_SET_PROPERTY are used to setup the
frontend and read its status.

The actual action is determined by a set of dtv_property cmd/data pairs. With one single ioctl,
is possible to get/set up to 64 properties.

This section describes the new and recommended way to set the frontend, with supports all
digital TV delivery systems.

3.3. Part II - Digital TV API 1343

Linux Media Documentation

Note:
1. On Linux DVB API version 3, setting a frontend was done via struct

dvb_frontend_parameters.

2. Don’t use DVB API version 3 calls on hardware with supports newer standards. Such API
provides no support or a very limited support to new standards and/or new hardware.

3. Nowadays, most frontends support multiple delivery systems. Only with DVB API version 5
calls it is possible to switch between the multiple delivery systems supported by a frontend.

4. DVB API version 5 is also called S2API, as the first new standard added to it was DVB-S2.

Example: in order to set the hardware to tune into a DVB-C channel at 651 kHz, modulated
with 256-QAM, FEC 3/4 and symbol rate of 5.217 Mbauds, those properties should be sent to
FE_SET_PROPERTY ioctl:

DTV_DELIVERY_SYSTEM = SYS_DVBC_ANNEX_A

DTV_FREQUENCY = 651000000

DTV_MODULATION = QAM_256

DTV_INVERSION = INVERSION_AUTO

DTV_SYMBOL_RATE = 5217000

DTV_INNER_FEC = FEC_3_4

DTV_TUNE

The code that would that would do the above is show in Example: Setting digital TV frontend
properties.

Listing 1: Example: Setting digital TV frontend prop-
erties

#include <stdio.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/dvb/frontend.h>

static struct dtv_property props[] = {
{ .cmd = DTV_DELIVERY_SYSTEM, .u.data = SYS_DVBC_ANNEX_A },
{ .cmd = DTV_FREQUENCY, .u.data = 651000000 },
{ .cmd = DTV_MODULATION, .u.data = QAM_256 },
{ .cmd = DTV_INVERSION, .u.data = INVERSION_AUTO },
{ .cmd = DTV_SYMBOL_RATE, .u.data = 5217000 },
{ .cmd = DTV_INNER_FEC, .u.data = FEC_3_4 },
{ .cmd = DTV_TUNE }

};

static struct dtv_properties dtv_prop = {
.num = 6, .props = props

};

int main(void)
{

int fd = open("/dev/dvb/adapter0/frontend0", O_RDWR);

1344 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

if (!fd) {
perror ("open");
return -1;

}
if (ioctl(fd, FE_SET_PROPERTY, &dtv_prop) == -1) {

perror("ioctl");
return -1;

}
printf("Frontend set\\n");
return 0;

}

Attention: While it is possible to directly call the Kernel code like the above example, it is
strongly recommended to use libdvbv5, as it provides abstraction to work with the supported
digital TV standards and provides methods for usual operations like program scanning and
to read/write channel descriptor files.

Digital TV property parameters

There are several different Digital TV parameters that can be used by FE_SET_PROPERTY and
FE_GET_PROPERTY ioctls. This section describes each of them. Please notice, however, that
only a subset of them are needed to setup a frontend.

DTV_UNDEFINED

Used internally. A GET/SET operation for it won’t change or return anything.

DTV_TUNE

Interpret the cache of data, build either a traditional frontend tunerequest so we can pass
validation in the FE_SET_FRONTEND ioctl.

DTV_CLEAR

Reset a cache of data specific to the frontend here. This does not effect hardware.

3.3. Part II - Digital TV API 1345

https://linuxtv.org/docs/libdvbv5/index.html

Linux Media Documentation

DTV_FREQUENCY

Frequency of the digital TV transponder/channel.

Note:
1. For satellite delivery systems, the frequency is in kHz.

2. For cable and terrestrial delivery systems, the frequency is in Hz.

3. On most delivery systems, the frequency is the center frequency of the transpon-
der/channel. The exception is for ISDB-T, where the main carrier has a 1/7 offset from
the center.

4. For ISDB-T, the channels are usually transmitted with an offset of about 143kHz. E.g. a
valid frequency could be 474,143 kHz. The stepping is bound to the bandwidth of the
channel which is typically 6MHz.

5. In ISDB-Tsb, the channel consists of only one or three segments the frequency step is
429kHz, 3*429 respectively.

DTV_MODULATION

Specifies the frontend modulation type for delivery systems that supports more multiple mod-
ulations.

The modulation can be one of the types defined by enum fe_modulation.

Most of the digital TV standards offers more than one possible modulation type.

The table below presents a summary of the types of modulation types supported by each delivery
system, as currently defined by specs.

Standard Modulation types
ATSC (version 1) 8-VSB and 16-VSB.
DMTB 4-QAM, 16-QAM, 32-QAM, 64-QAM and 4-QAM-NR.
DVB-C Annex A/C 16-QAM, 32-QAM, 64-QAM and 256-QAM.
DVB-C Annex B 64-QAM.
DVB-T QPSK, 16-QAM and 64-QAM.
DVB-T2 QPSK, 16-QAM, 64-QAM and 256-QAM.
DVB-S No need to set. It supports only QPSK.
DVB-S2 QPSK, 8-PSK, 16-APSK and 32-APSK.
ISDB-T QPSK, DQPSK, 16-QAM and 64-QAM.
ISDB-S 8-PSK, QPSK and BPSK.

Note: Please notice that some of the above modulation types may not be defined currently at
the Kernel. The reason is simple: no driver needed such definition yet.

1346 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

DTV_BANDWIDTH_HZ

Bandwidth for the channel, in HZ.

Should be set only for terrestrial delivery systems.

Possible values: 1712000, 5000000, 6000000, 7000000, 8000000, 10000000.

Terrestrial Standard Possible values for bandwidth
ATSC (version 1) No need to set. It is always 6MHz.
DMTB No need to set. It is always 8MHz.
DVB-T 6MHz, 7MHz and 8MHz.
DVB-T2 1.172 MHz, 5MHz, 6MHz, 7MHz, 8MHz and 10MHz
ISDB-T 5MHz, 6MHz, 7MHz and 8MHz, although most places use 6MHz.

Note:
1. For ISDB-Tsb, the bandwidth can vary depending on the number of connected segments.

It can be easily derived from other parameters (DTV_ISDBT_SB_SEGMENT_IDX,
DTV_ISDBT_SB_SEGMENT_COUNT).

2. On Satellite and Cable delivery systems, the bandwidth depends on the symbol rate. So,
the Kernel will silently ignore any setting DTV_BANDWIDTH_HZ. I will however fill it back
with a bandwidth estimation.

Such bandwidth estimation takes into account the symbol rate set with
DTV_SYMBOL_RATE, and the rolloff factor, with is fixed for DVB-C and DVB-S.

For DVB-S2, the rolloff should also be set via DTV_ROLLOFF.

DTV_INVERSION

Specifies if the frontend should do spectral inversion or not.

The acceptable values are defined by fe_spectral_inversion.

DTV_DISEQC_MASTER

Currently not implemented.

3.3. Part II - Digital TV API 1347

Linux Media Documentation

DTV_SYMBOL_RATE

Used on cable and satellite delivery systems.

Digital TV symbol rate, in bauds (symbols/second).

DTV_INNER_FEC

Used on cable and satellite delivery systems.

The acceptable values are defined by fe_code_rate.

DTV_VOLTAGE

Used on satellite delivery systems.

The voltage is usually used with non-DiSEqC capable LNBs to switch the polarzation (horizon-
tal/vertical). When using DiSEqC epuipment this voltage has to be switched consistently to the
DiSEqC commands as described in the DiSEqC spec.

The acceptable values are defined by fe_sec_voltage.

DTV_TONE

Currently not used.

DTV_PILOT

Used on DVB-S2.

Sets DVB-S2 pilot.

The acceptable values are defined by fe_pilot.

DTV_ROLLOFF

Used on DVB-S2.

Sets DVB-S2 rolloff.

The acceptable values are defined by fe_rolloff.

1348 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

DTV_DISEQC_SLAVE_REPLY

Currently not implemented.

DTV_FE_CAPABILITY_COUNT

Currently not implemented.

DTV_FE_CAPABILITY

Currently not implemented.

DTV_DELIVERY_SYSTEM

Specifies the type of the delivery system.

The acceptable values are defined by fe_delivery_system.

DTV_ISDBT_PARTIAL_RECEPTION

Used only on ISDB.

If DTV_ISDBT_SOUND_BROADCASTING is ‘0’ this bit-field represents whether the channel is in par-
tial reception mode or not.

If ‘1’ DTV_ISDBT_LAYERA_* values are assigned to the center segment and
DTV_ISDBT_LAYERA_SEGMENT_COUNT has to be ‘1’.

If in addition DTV_ISDBT_SOUND_BROADCASTING is ‘1’ DTV_ISDBT_PARTIAL_RECEPTION repre-
sents whether this ISDB-Tsb channel is consisting of one segment and layer or three segments
and two layers.

Possible values: 0, 1, -1 (AUTO)

DTV_ISDBT_SOUND_BROADCASTING

Used only on ISDB.

This field represents whether the other DTV_ISDBT_*-parameters are referring to an ISDB-T
and an ISDB-Tsb channel. (See also DTV_ISDBT_PARTIAL_RECEPTION).

Possible values: 0, 1, -1 (AUTO)

3.3. Part II - Digital TV API 1349

Linux Media Documentation

DTV_ISDBT_SB_SUBCHANNEL_ID

Used only on ISDB.

This field only applies if DTV_ISDBT_SOUND_BROADCASTING is ‘1’.

(Note of the author: This might not be the correct description of the SUBCHANNEL-ID in all
details, but it is my understanding of the technical background needed to program a device)

An ISDB-Tsb channel (1 or 3 segments) can be broadcasted alone or in a set of connected ISDB-
Tsb channels. In this set of channels every channel can be received independently. The number
of connected ISDB-Tsb segment can vary, e.g. depending on the frequency spectrum bandwidth
available.

Example: Assume 8 ISDB-Tsb connected segments are broadcasted. The broadcaster has sev-
eral possibilities to put those channels in the air: Assuming a normal 13-segment ISDB-T spec-
trum he can align the 8 segments from position 1-8 to 5-13 or anything in between.

The underlying layer of segments are subchannels: each segment is consisting of several sub-
channels with a predefined IDs. A sub-channel is used to help the demodulator to synchronize
on the channel.

An ISDB-T channel is always centered over all sub-channels. As for the example above, in
ISDB-Tsb it is no longer as simple as that.

The DTV_ISDBT_SB_SUBCHANNEL_ID parameter is used to give the sub-channel ID of the seg-
ment to be demodulated.

Possible values: 0 .. 41, -1 (AUTO)

DTV_ISDBT_SB_SEGMENT_IDX

Used only on ISDB.

This field only applies if DTV_ISDBT_SOUND_BROADCASTING is ‘1’.

DTV_ISDBT_SB_SEGMENT_IDX gives the index of the segment to be demodulated for an ISDB-Tsb
channel where several of them are transmitted in the connected manner.

Possible values: 0 .. DTV_ISDBT_SB_SEGMENT_COUNT - 1

Note: This value cannot be determined by an automatic channel search.

DTV_ISDBT_SB_SEGMENT_COUNT

Used only on ISDB.

This field only applies if DTV_ISDBT_SOUND_BROADCASTING is ‘1’.

DTV_ISDBT_SB_SEGMENT_COUNT gives the total count of connected ISDB-Tsb channels.

Possible values: 1 .. 13

Note: This value cannot be determined by an automatic channel search.

1350 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

DTV-ISDBT-LAYER[A-C] parameters

Used only on ISDB.

ISDB-T channels can be coded hierarchically. As opposed to DVB-T in ISDB-T hierarchical
layers can be decoded simultaneously. For that reason a ISDB-T demodulator has 3 Viterbi and
3 Reed-Solomon decoders.

ISDB-T has 3 hierarchical layers which each can use a part of the available segments. The total
number of segments over all layers has to 13 in ISDB-T.

There are 3 parameter sets, for Layers A, B and C.

DTV_ISDBT_LAYER_ENABLED

Used only on ISDB.

Hierarchical reception in ISDB-T is achieved by enabling or disabling layers in the decoding
process. Setting all bits of DTV_ISDBT_LAYER_ENABLED to ‘1’ forces all layers (if applicable) to
be demodulated. This is the default.

If the channel is in the partial reception mode (DTV_ISDBT_PARTIAL_RECEPTION = 1) the central
segment can be decoded independently of the other 12 segments. In that mode layer A has to
have a SEGMENT_COUNT of 1.

In ISDB-Tsb only layer A is used, it can be 1 or 3 in ISDB-Tsb according to
DTV_ISDBT_PARTIAL_RECEPTION. SEGMENT_COUNT must be filled accordingly.

Only the values of the first 3 bits are used. Other bits will be silently ignored:

DTV_ISDBT_LAYER_ENABLED bit 0: layer A enabled

DTV_ISDBT_LAYER_ENABLED bit 1: layer B enabled

DTV_ISDBT_LAYER_ENABLED bit 2: layer C enabled

DTV_ISDBT_LAYER_ENABLED bits 3-31: unused

DTV_ISDBT_LAYER[A-C]_FEC

Used only on ISDB.

The Forward Error Correction mechanism used by a given ISDB Layer, as defined by
fe_code_rate.

Possible values are: FEC_AUTO, FEC_1_2, FEC_2_3, FEC_3_4, FEC_5_6, FEC_7_8

3.3. Part II - Digital TV API 1351

Linux Media Documentation

DTV_ISDBT_LAYER[A-C]_MODULATION

Used only on ISDB.

The modulation used by a given ISDB Layer, as defined by fe_modulation.

Possible values are: QAM_AUTO, QPSK, QAM_16, QAM_64, DQPSK

Note:
1. If layer C is DQPSK, then layer B has to be DQPSK.

2. If layer B is DQPSK and DTV_ISDBT_PARTIAL_RECEPTION= 0, then layer has to be DQPSK.

DTV_ISDBT_LAYER[A-C]_SEGMENT_COUNT

Used only on ISDB.

Possible values: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, -1 (AUTO)

Note: Truth table for DTV_ISDBT_SOUND_BROADCASTING and DTV_ISDBT_PARTIAL_RECEPTION
and LAYER[A-C]_SEGMENT_COUNT

Table 248: Truth table for ISDB-T Sound Broadcast-
ing

Partial Reception Sound Broadcasting Layer A width Layer B width Layer C width total width
0 0 1 .. 13 1 .. 13 1 .. 13 13
1 0 1 1 .. 13 1 .. 13 13
0 1 1 0 0 1
1 1 1 2 0 13

DTV_ISDBT_LAYER[A-C]_TIME_INTERLEAVING

Used only on ISDB.

Valid values: 0, 1, 2, 4, -1 (AUTO)

when DTV_ISDBT_SOUND_BROADCASTING is active, value 8 is also valid.

Note: The real time interleaving length depends on the mode (fft-size). The values here are
referring to what can be found in the TMCC-structure, as shown in the table below.

isdbt_layer_interleaving_table

Table 249: ISDB-T time interleaving modes
DTV_ISDBT_LAYER[A-C]_TIME_INTERLEAVINGMode 1 (2K FFT) Mode 2 (4K FFT) Mode 3 (8K FFT)
0 0 0 0
1 4 2 1
2 8 4 2
4 16 8 4

1352 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

DTV_ATSCMH_FIC_VER

Used only on ATSC-MH.

Version number of the FIC (Fast Information Channel) signaling data.

FIC is used for relaying information to allow rapid service acquisition by the receiver.

Possible values: 0, 1, 2, 3, …, 30, 31

DTV_ATSCMH_PARADE_ID

Used only on ATSC-MH.

Parade identification number

A parade is a collection of up to eight MH groups, conveying one or two ensembles.

Possible values: 0, 1, 2, 3, …, 126, 127

DTV_ATSCMH_NOG

Used only on ATSC-MH.

Number of MH groups per MH subframe for a designated parade.

Possible values: 1, 2, 3, 4, 5, 6, 7, 8

DTV_ATSCMH_TNOG

Used only on ATSC-MH.

Total number of MH groups including all MH groups belonging to all MH parades in one MH
subframe.

Possible values: 0, 1, 2, 3, …, 30, 31

DTV_ATSCMH_SGN

Used only on ATSC-MH.

Start group number.

Possible values: 0, 1, 2, 3, …, 14, 15

3.3. Part II - Digital TV API 1353

Linux Media Documentation

DTV_ATSCMH_PRC

Used only on ATSC-MH.

Parade repetition cycle.

Possible values: 1, 2, 3, 4, 5, 6, 7, 8

DTV_ATSCMH_RS_FRAME_MODE

Used only on ATSC-MH.

Reed Solomon (RS) frame mode.

The acceptable values are defined by atscmh_rs_frame_mode.

DTV_ATSCMH_RS_FRAME_ENSEMBLE

Used only on ATSC-MH.

Reed Solomon(RS) frame ensemble.

The acceptable values are defined by atscmh_rs_frame_ensemble.

DTV_ATSCMH_RS_CODE_MODE_PRI

Used only on ATSC-MH.

Reed Solomon (RS) code mode (primary).

The acceptable values are defined by atscmh_rs_code_mode.

DTV_ATSCMH_RS_CODE_MODE_SEC

Used only on ATSC-MH.

Reed Solomon (RS) code mode (secondary).

The acceptable values are defined by atscmh_rs_code_mode.

DTV_ATSCMH_SCCC_BLOCK_MODE

Used only on ATSC-MH.

Series Concatenated Convolutional Code Block Mode.

The acceptable values are defined by atscmh_sccc_block_mode.

1354 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

DTV_ATSCMH_SCCC_CODE_MODE_A

Used only on ATSC-MH.

Series Concatenated Convolutional Code Rate.

The acceptable values are defined by atscmh_sccc_code_mode.

DTV_ATSCMH_SCCC_CODE_MODE_B

Used only on ATSC-MH.

Series Concatenated Convolutional Code Rate.

Possible values are the same as documented on enum atscmh_sccc_code_mode.

DTV_ATSCMH_SCCC_CODE_MODE_C

Used only on ATSC-MH.

Series Concatenated Convolutional Code Rate.

Possible values are the same as documented on enum atscmh_sccc_code_mode.

DTV_ATSCMH_SCCC_CODE_MODE_D

Used only on ATSC-MH.

Series Concatenated Convolutional Code Rate.

Possible values are the same as documented on enum atscmh_sccc_code_mode.

DTV_API_VERSION

Returns the major/minor version of the Digital TV API

DTV_CODE_RATE_HP

Used on terrestrial transmissions.

The acceptable values are defined by fe_transmit_mode.

3.3. Part II - Digital TV API 1355

Linux Media Documentation

DTV_CODE_RATE_LP

Used on terrestrial transmissions.

The acceptable values are defined by fe_transmit_mode.

DTV_GUARD_INTERVAL

The acceptable values are defined by fe_guard_interval.

Note:
1. If DTV_GUARD_INTERVAL is set the GUARD_INTERVAL_AUTO the hardware will try to find the
correct guard interval (if capable) and will use TMCC to fill in the missing parameters.

2. Intervals GUARD_INTERVAL_1_128, GUARD_INTERVAL_19_128 and GUARD_INTERVAL_19_256
are used only for DVB-T2 at present.

3. Intervals GUARD_INTERVAL_PN420, GUARD_INTERVAL_PN595 and GUARD_INTERVAL_PN945
are used only for DMTB at the present. On such standard, only those intervals and
GUARD_INTERVAL_AUTO are valid.

DTV_TRANSMISSION_MODE

Used only on OFTM-based standards, e. g. DVB-T/T2, ISDB-T, DTMB.

Specifies the FFT size (with corresponds to the approximate number of carriers) used by the
standard.

The acceptable values are defined by fe_transmit_mode.

Note:
1. ISDB-T supports three carrier/symbol-size: 8K, 4K, 2K. It is calledmode on such standard,
and are numbered from 1 to 3:

Mode FFT size Transmission mode
1 2K TRANSMISSION_MODE_2K
2 4K TRANSMISSION_MODE_4K
3 8K TRANSMISSION_MODE_8K

2. If DTV_TRANSMISSION_MODE is set the TRANSMISSION_MODE_AUTO the hardware will try to
find the correct FFT-size (if capable) and will use TMCC to fill in the missing parameters.

3. DVB-T specifies 2K and 8K as valid sizes.

4. DVB-T2 specifies 1K, 2K, 4K, 8K, 16K and 32K.

5. DTMB specifies C1 and C3780.

1356 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

DTV_HIERARCHY

Used only on DVB-T and DVB-T2.

Frontend hierarchy.

The acceptable values are defined by fe_hierarchy.

DTV_STREAM_ID

Used on DVB-S2, DVB-T2 and ISDB-S.

DVB-S2, DVB-T2 and ISDB-S support the transmission of several streams on a single trans-
port stream. This property enables the digital TV driver to handle substream filtering, when
supported by the hardware. By default, substream filtering is disabled.

For DVB-S2 and DVB-T2, the valid substream id range is from 0 to 255.

For ISDB, the valid substream id range is from 1 to 65535.

To disable it, you should use the special macro NO_STREAM_ID_FILTER.

Note: any value outside the id range also disables filtering.

DTV_DVBT2_PLP_ID_LEGACY

Obsolete, replaced with DTV_STREAM_ID.

DTV_ENUM_DELSYS

A Multi standard frontend needs to advertise the delivery systems provided. Applications need
to enumerate the provided delivery systems, before using any other operation with the frontend.
Prior to it’s introduction, FE_GET_INFO was used to determine a frontend type. A frontend
which provides more than a single delivery system, FE_GET_INFO doesn’t help much. Appli-
cations which intends to use a multistandard frontend must enumerate the delivery systems
associated with it, rather than trying to use FE_GET_INFO. In the case of a legacy frontend, the
result is just the same as with FE_GET_INFO, but in a more structured format

The acceptable values are defined by fe_delivery_system.

DTV_INTERLEAVING

Time interleaving to be used.

The acceptable values are defined by fe_interleaving.

3.3. Part II - Digital TV API 1357

Linux Media Documentation

DTV_LNA

Low-noise amplifier.

Hardware might offer controllable LNA which can be set manually using that parameter. Usu-
ally LNA could be found only from terrestrial devices if at all.

Possible values: 0, 1, LNA_AUTO

0, LNA off

1, LNA on

use the special macro LNA_AUTO to set LNA auto

DTV_SCRAMBLING_SEQUENCE_INDEX

Used on DVB-S2.

This 18 bit field, when present, carries the index of the DVB-S2 physical layer scrambling se-
quence as defined in clause 5.5.4 of EN 302 307. There is no explicit signalling method to
convey scrambling sequence index to the receiver. If S2 satellite delivery system descriptor is
available it can be used to read the scrambling sequence index (EN 300 468 table 41).

By default, gold scrambling sequence index 0 is used.

The valid scrambling sequence index range is from 0 to 262142.

Frontend statistics indicators

The values are returned via dtv_property.stat. If the property is supported, dtv_property.
stat.len is bigger than zero.

For most delivery systems, dtv_property.stat.len will be 1 if the stats is supported, and the
properties will return a single value for each parameter.

It should be noted, however, that new OFDM delivery systems like ISDB can use different mod-
ulation types for each group of carriers. On such standards, up to 3 groups of statistics can
be provided, and dtv_property.stat.len is updated to reflect the “global” metrics, plus one
metric per each carrier group (called “layer” on ISDB).

So, in order to be consistent with other delivery systems, the first value at dtv_property.stat.
dtv_stats array refers to the global metric. The other elements of the array represent each
layer, starting from layer A(index 1), layer B (index 2) and so on.

The number of filled elements are stored at dtv_property.stat.len.

Each element of the dtv_property.stat.dtv_stats array consists on two elements:

• svalue or uvalue, where svalue is for signed values of the measure (dB measures) and
uvalue is for unsigned values (counters, relative scale)

• scale - Scale for the value. It can be:

– FE_SCALE_NOT_AVAILABLE - The parameter is supported by the frontend, but it was
not possible to collect it (could be a transitory or permanent condition)

– FE_SCALE_DECIBEL - parameter is a signed value, measured in 1/1000 dB

1358 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

– FE_SCALE_RELATIVE - parameter is a unsigned value, where 0 means 0% and 65535
means 100%.

– FE_SCALE_COUNTER - parameter is a unsigned value that counts the occurrence of an
event, like bit error, block error, or lapsed time.

DTV_STAT_SIGNAL_STRENGTH

Indicates the signal strength level at the analog part of the tuner or of the demod.

Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was not complete
yet.

• FE_SCALE_DECIBEL - signal strength is in 0.001 dBm units, power measured in miliwatts.
This value is generally negative.

• FE_SCALE_RELATIVE - The frontend provides a 0% to 100% measurement for power (actu-
ally, 0 to 65535).

DTV_STAT_CNR

Indicates the Signal to Noise ratio for the main carrier.

Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was not complete
yet.

• FE_SCALE_DECIBEL - Signal/Noise ratio is in 0.001 dB units.

• FE_SCALE_RELATIVE - The frontend provides a 0% to 100% measurement for Signal/Noise
(actually, 0 to 65535).

DTV_STAT_PRE_ERROR_BIT_COUNT

Measures the number of bit errors before the forward error correction (FEC) on the inner coding
block (before Viterbi, LDPC or other inner code).

This measure is taken during the same interval as DTV_STAT_PRE_TOTAL_BIT_COUNT.

In order to get the BER (Bit Error Rate) measurement, it should be divided by
DTV_STAT_PRE_TOTAL_BIT_COUNT.

This measurement is monotonically increased, as the frontend gets more bit count measure-
ments. The frontend may reset it when a channel/transponder is tuned.

Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was not complete
yet.

• FE_SCALE_COUNTER - Number of error bits counted before the inner coding.

3.3. Part II - Digital TV API 1359

Linux Media Documentation

DTV_STAT_PRE_TOTAL_BIT_COUNT

Measures the amount of bits received before the inner code block, during the same period as
DTV_STAT_PRE_ERROR_BIT_COUNT measurement was taken.

It should be noted that this measurement can be smaller than the total amount of bits on the
transport stream, as the frontend may need to manually restart the measurement, losing some
data between each measurement interval.

This measurement is monotonically increased, as the frontend gets more bit count measure-
ments. The frontend may reset it when a channel/transponder is tuned.

Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was not complete
yet.

• FE_SCALE_COUNTER - Number of bits counted while measuring
DTV_STAT_PRE_ERROR_BIT_COUNT.

DTV_STAT_POST_ERROR_BIT_COUNT

Measures the number of bit errors after the forward error correction (FEC) done by inner code
block (after Viterbi, LDPC or other inner code).

This measure is taken during the same interval as DTV_STAT_POST_TOTAL_BIT_COUNT.

In order to get the BER (Bit Error Rate) measurement, it should be divided by
DTV_STAT_POST_TOTAL_BIT_COUNT.

This measurement is monotonically increased, as the frontend gets more bit count measure-
ments. The frontend may reset it when a channel/transponder is tuned.

Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was not complete
yet.

• FE_SCALE_COUNTER - Number of error bits counted after the inner coding.

DTV_STAT_POST_TOTAL_BIT_COUNT

Measures the amount of bits received after the inner coding, during the same period as
DTV_STAT_POST_ERROR_BIT_COUNT measurement was taken.

It should be noted that this measurement can be smaller than the total amount of bits on the
transport stream, as the frontend may need to manually restart the measurement, losing some
data between each measurement interval.

This measurement is monotonically increased, as the frontend gets more bit count measure-
ments. The frontend may reset it when a channel/transponder is tuned.

Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was not complete
yet.

1360 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

• FE_SCALE_COUNTER - Number of bits counted while measuring
DTV_STAT_POST_ERROR_BIT_COUNT.

DTV_STAT_ERROR_BLOCK_COUNT

Measures the number of block errors after the outer forward error correction coding (after
Reed-Solomon or other outer code).

This measurement is monotonically increased, as the frontend gets more bit count measure-
ments. The frontend may reset it when a channel/transponder is tuned.

Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was not complete
yet.

• FE_SCALE_COUNTER - Number of error blocks counted after the outer coding.

DTV-STAT_TOTAL_BLOCK_COUNT

Measures the total number of blocks received during the same period as
DTV_STAT_ERROR_BLOCK_COUNT measurement was taken.

It can be used to calculate the PER indicator, by dividing DTV_STAT_ERROR_BLOCK_COUNT
by DTV-STAT_TOTAL_BLOCK_COUNT.

Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was not complete
yet.

• FE_SCALE_COUNTER - Number of blocks counted while measuring
DTV_STAT_ERROR_BLOCK_COUNT.

Properties used on terrestrial delivery systems

DVB-T delivery system

The following parameters are valid for DVB-T:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_MODULATION

• DTV_BANDWIDTH_HZ

• DTV_INVERSION

• DTV_CODE_RATE_HP

3.3. Part II - Digital TV API 1361

Linux Media Documentation

• DTV_CODE_RATE_LP

• DTV_GUARD_INTERVAL

• DTV_TRANSMISSION_MODE

• DTV_HIERARCHY

• DTV_LNA

In addition, the DTV QoS statistics are also valid.

DVB-T2 delivery system

DVB-T2 support is currently in the early stages of development, so expect that this section
maygrow and become more detailed with time.

The following parameters are valid for DVB-T2:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_MODULATION

• DTV_BANDWIDTH_HZ

• DTV_INVERSION

• DTV_CODE_RATE_HP

• DTV_CODE_RATE_LP

• DTV_GUARD_INTERVAL

• DTV_TRANSMISSION_MODE

• DTV_HIERARCHY

• DTV_STREAM_ID

• DTV_LNA

In addition, the DTV QoS statistics are also valid.

ISDB-T delivery system

This ISDB-T/ISDB-Tsb API extension should reflect all information needed to tune any ISDB-
T/ISDB-Tsb hardware. Of course it is possible that some very sophisticated devices won’t need
certain parameters to tune.

The information given here should help application writers to know how to handle ISDB-T and
ISDB-Tsb hardware using the Linux Digital TV API.

1362 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

The details given here about ISDB-T and ISDB-Tsb are just enough to basically show the de-
pendencies between the needed parameter values, but surely some information is left out. For
more detailed information see the following documents:

ARIB STD-B31 - “Transmission System for Digital Terrestrial Television Broadcasting” and

ARIB TR-B14 - “Operational Guidelines for Digital Terrestrial Television Broadcasting”.

In order to understand the ISDB specific parameters, one has to have some knowledge the
channel structure in ISDB-T and ISDB-Tsb. I.e. it has to be known to the reader that an ISDB-T
channel consists of 13 segments, that it can have up to 3 layer sharing those segments, and
things like that.

The following parameters are valid for ISDB-T:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_BANDWIDTH_HZ

• DTV_INVERSION

• DTV_GUARD_INTERVAL

• DTV_TRANSMISSION_MODE

• DTV_ISDBT_LAYER_ENABLED

• DTV_ISDBT_PARTIAL_RECEPTION

• DTV_ISDBT_SOUND_BROADCASTING

• DTV_ISDBT_SB_SUBCHANNEL_ID

• DTV_ISDBT_SB_SEGMENT_IDX

• DTV_ISDBT_SB_SEGMENT_COUNT

• DTV_ISDBT_LAYERA_FEC

• DTV_ISDBT_LAYERA_MODULATION

• DTV_ISDBT_LAYERA_SEGMENT_COUNT

• DTV_ISDBT_LAYERA_TIME_INTERLEAVING

• DTV_ISDBT_LAYERB_FEC

• DTV_ISDBT_LAYERB_MODULATION

• DTV_ISDBT_LAYERB_SEGMENT_COUNT

• DTV_ISDBT_LAYERB_TIME_INTERLEAVING

• DTV_ISDBT_LAYERC_FEC

• DTV_ISDBT_LAYERC_MODULATION

• DTV_ISDBT_LAYERC_SEGMENT_COUNT

3.3. Part II - Digital TV API 1363

Linux Media Documentation

• DTV_ISDBT_LAYERC_TIME_INTERLEAVING

In addition, the DTV QoS statistics are also valid.

ATSC delivery system

The following parameters are valid for ATSC:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_MODULATION

• DTV_BANDWIDTH_HZ

In addition, the DTV QoS statistics are also valid.

ATSC-MH delivery system

The following parameters are valid for ATSC-MH:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_BANDWIDTH_HZ

• DTV_ATSCMH_FIC_VER

• DTV_ATSCMH_PARADE_ID

• DTV_ATSCMH_NOG

• DTV_ATSCMH_TNOG

• DTV_ATSCMH_SGN

• DTV_ATSCMH_PRC

• DTV_ATSCMH_RS_FRAME_MODE

• DTV_ATSCMH_RS_FRAME_ENSEMBLE

• DTV_ATSCMH_RS_CODE_MODE_PRI

• DTV_ATSCMH_RS_CODE_MODE_SEC

• DTV_ATSCMH_SCCC_BLOCK_MODE

• DTV_ATSCMH_SCCC_CODE_MODE_A

1364 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

• DTV_ATSCMH_SCCC_CODE_MODE_B

• DTV_ATSCMH_SCCC_CODE_MODE_C

• DTV_ATSCMH_SCCC_CODE_MODE_D

In addition, the DTV QoS statistics are also valid.

DTMB delivery system

The following parameters are valid for DTMB:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_MODULATION

• DTV_BANDWIDTH_HZ

• DTV_INVERSION

• DTV_INNER_FEC

• DTV_GUARD_INTERVAL

• DTV_TRANSMISSION_MODE

• DTV_INTERLEAVING

• DTV_LNA

In addition, the DTV QoS statistics are also valid.

Properties used on cable delivery systems

DVB-C delivery system

The DVB-C Annex-A is the widely used cable standard. Transmission uses QAM modulation.

The DVB-C Annex-C is optimized for 6MHz, and is used in Japan. It supports a subset of the
Annex A modulation types, and a roll-off of 0.13, instead of 0.15

The following parameters are valid for DVB-C Annex A/C:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_MODULATION

3.3. Part II - Digital TV API 1365

Linux Media Documentation

• DTV_INVERSION

• DTV_SYMBOL_RATE

• DTV_INNER_FEC

• DTV_LNA

In addition, the DTV QoS statistics are also valid.

DVB-C Annex B delivery system

The DVB-C Annex-B is only used on a few Countries like the United States.

The following parameters are valid for DVB-C Annex B:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_MODULATION

• DTV_INVERSION

• DTV_LNA

In addition, the DTV QoS statistics are also valid.

Properties used on satellite delivery systems

DVB-S delivery system

The following parameters are valid for DVB-S:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_INVERSION

• DTV_SYMBOL_RATE

• DTV_INNER_FEC

• DTV_VOLTAGE

• DTV_TONE

1366 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

In addition, the DTV QoS statistics are also valid.

Future implementations might add those two missing parameters:

• DTV_DISEQC_MASTER

• DTV_DISEQC_SLAVE_REPLY

DVB-S2 delivery system

In addition to all parameters valid for DVB-S, DVB-S2 supports the following parameters:

• DTV_MODULATION

• DTV_PILOT

• DTV_ROLLOFF

• DTV_STREAM_ID

• DTV_SCRAMBLING_SEQUENCE_INDEX

In addition, the DTV QoS statistics are also valid.

Turbo code delivery system

In addition to all parameters valid for DVB-S, turbo code supports the following parameters:

• DTV_MODULATION

ISDB-S delivery system

The following parameters are valid for ISDB-S:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_INVERSION

• DTV_SYMBOL_RATE

• DTV_INNER_FEC

• DTV_VOLTAGE

• DTV_STREAM_ID

3.3. Part II - Digital TV API 1367

Linux Media Documentation

Frontend uAPI data types

enum fe_caps
Frontend capabilities

Constants
FE_IS_STUPID There’s something wrong at the frontend, and it can’t report its capabilities.

FE_CAN_INVERSION_AUTO Can auto-detect frequency spectral band inversion

FE_CAN_FEC_1_2 Supports FEC 1/2

FE_CAN_FEC_2_3 Supports FEC 2/3

FE_CAN_FEC_3_4 Supports FEC 3/4

FE_CAN_FEC_4_5 Supports FEC 4/5

FE_CAN_FEC_5_6 Supports FEC 5/6

FE_CAN_FEC_6_7 Supports FEC 6/7

FE_CAN_FEC_7_8 Supports FEC 7/8

FE_CAN_FEC_8_9 Supports FEC 8/9

FE_CAN_FEC_AUTO Can auto-detect FEC

FE_CAN_QPSK Supports QPSK modulation

FE_CAN_QAM_16 Supports 16-QAM modulation

FE_CAN_QAM_32 Supports 32-QAM modulation

FE_CAN_QAM_64 Supports 64-QAM modulation

FE_CAN_QAM_128 Supports 128-QAM modulation

FE_CAN_QAM_256 Supports 256-QAM modulation

FE_CAN_QAM_AUTO Can auto-detect QAM modulation

FE_CAN_TRANSMISSION_MODE_AUTO Can auto-detect transmission mode

FE_CAN_BANDWIDTH_AUTO Can auto-detect bandwidth

FE_CAN_GUARD_INTERVAL_AUTO Can auto-detect guard interval

FE_CAN_HIERARCHY_AUTO Can auto-detect hierarchy

FE_CAN_8VSB Supports 8-VSB modulation

FE_CAN_16VSB Supporta 16-VSB modulation

FE_HAS_EXTENDED_CAPS Unused

FE_CAN_MULTISTREAM Supports multistream filtering

FE_CAN_TURBO_FEC Supports “turbo FEC” modulation

FE_CAN_2G_MODULATION Supports “2nd generation” modulation, e. g. DVB-S2, DVB-T2, DVB-
C2

FE_NEEDS_BENDING Unused

1368 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

FE_CAN_RECOVER Can recover from a cable unplug automatically

FE_CAN_MUTE_TS Can stop spurious TS data output

struct dvb_frontend_info
Frontend properties and capabilities

Definition

struct dvb_frontend_info {
char name[128];
enum fe_type type;
__u32 frequency_min;
__u32 frequency_max;
__u32 frequency_stepsize;
__u32 frequency_tolerance;
__u32 symbol_rate_min;
__u32 symbol_rate_max;
__u32 symbol_rate_tolerance;
__u32 notifier_delay;
enum fe_caps caps;

};

Members
name Name of the frontend

type DEPRECATED. Should not be used on modern programs, as a frontend may have more
than one type. In order to get the support types of a given frontend, use DTV_ENUM_DELSYS
instead.

frequency_min Minimal frequency supported by the frontend.

frequency_max Minimal frequency supported by the frontend.

frequency_stepsize All frequencies are multiple of this value.

frequency_tolerance Frequency tolerance.

symbol_rate_min Minimal symbol rate, in bauds (for Cable/Satellite systems).

symbol_rate_max Maximal symbol rate, in bauds (for Cable/Satellite systems).

symbol_rate_tolerance Maximal symbol rate tolerance, in ppm (for Cable/Satellite systems).

notifier_delay DEPRECATED. Not used by any driver.
caps Capabilities supported by the frontend, as specified in enum fe_caps.

Description
struct dvb_diseqc_master_cmd

DiSEqC master command

Definition

struct dvb_diseqc_master_cmd {
__u8 msg[6];
__u8 msg_len;

};

3.3. Part II - Digital TV API 1369

Linux Media Documentation

Members
msg

DiSEqC message to be sent. It contains a 3 bytes header with: framing + address +
command, and an optional argument of up to 3 bytes of data.

msg_len

Length of the DiSEqC message. Valid values are 3 to 6.

Description
Check out the DiSEqC bus spec available on http://www.eutelsat.org/ for the possible messages
that can be used.

struct dvb_diseqc_slave_reply
DiSEqC received data

Definition

struct dvb_diseqc_slave_reply {
__u8 msg[4];
__u8 msg_len;
int timeout;

};

Members
msg

DiSEqC message buffer to store a message received via DiSEqC. It contains one byte
header with: framing and an optional argument of up to 3 bytes of data.

msg_len

Length of the DiSEqC message. Valid values are 0 to 4, where 0 means no message.

timeout

Return from ioctl after timeout ms with errorcode when no message was received.

Description
Check out the DiSEqC bus spec available on http://www.eutelsat.org/ for the possible messages
that can be used.

enum fe_sec_voltage
DC Voltage used to feed the LNBf

Constants
SEC_VOLTAGE_13 Output 13V to the LNBf

SEC_VOLTAGE_18 Output 18V to the LNBf

SEC_VOLTAGE_OFF Don’t feed the LNBf with a DC voltage

enum fe_sec_tone_mode
Type of tone to be send to the LNBf.

Constants
SEC_TONE_ON Sends a 22kHz tone burst to the antenna.

1370 Chapter 3. Linux Media Infrastructure userspace API

http://www.eutelsat.org/
http://www.eutelsat.org/

Linux Media Documentation

SEC_TONE_OFF Don’t send a 22kHz tone to the antenna (except if the FE_DISEQC_* ioctls are
called).

enum fe_sec_mini_cmd
Type of mini burst to be sent

Constants
SEC_MINI_A Sends a mini-DiSEqC 22kHz ‘0’ Tone Burst to select satellite-A

SEC_MINI_B Sends a mini-DiSEqC 22kHz ‘1’ Data Burst to select satellite-B

enum fe_status
Enumerates the possible frontend status.

Constants
FE_NONE The frontend doesn’t have any kind of lock. That’s the initial frontend status

FE_HAS_SIGNAL Has found something above the noise level.

FE_HAS_CARRIER Has found a signal.

FE_HAS_VITERBI FEC inner coding (Viterbi, LDPC or other inner code). is stable.

FE_HAS_SYNC Synchronization bytes was found.

FE_HAS_LOCK Digital TV were locked and everything is working.

FE_TIMEDOUT Fo lock within the last about 2 seconds.

FE_REINIT Frontend was reinitialized, application is recommended to reset DiSEqC, tone and
parameters.

enum fe_spectral_inversion
Type of inversion band

Constants
INVERSION_OFF Don’t do spectral band inversion.

INVERSION_ON Do spectral band inversion.

INVERSION_AUTO Autodetect spectral band inversion.

Description
This parameter indicates if spectral inversion should be presumed or not. In the automatic
setting (INVERSION_AUTO) the hardware will try to figure out the correct setting by itself. If the
hardware doesn’t support, the dvb_frontend will try to lock at the carrier first with inversion
off. If it fails, it will try to enable inversion.

enum fe_code_rate
Type of Forward Error Correction (FEC)

Constants
FEC_NONE No Forward Error Correction Code

FEC_1_2 Forward Error Correction Code 1/2

FEC_2_3 Forward Error Correction Code 2/3

FEC_3_4 Forward Error Correction Code 3/4

3.3. Part II - Digital TV API 1371

Linux Media Documentation

FEC_4_5 Forward Error Correction Code 4/5

FEC_5_6 Forward Error Correction Code 5/6

FEC_6_7 Forward Error Correction Code 6/7

FEC_7_8 Forward Error Correction Code 7/8

FEC_8_9 Forward Error Correction Code 8/9

FEC_AUTO Autodetect Error Correction Code

FEC_3_5 Forward Error Correction Code 3/5

FEC_9_10 Forward Error Correction Code 9/10

FEC_2_5 Forward Error Correction Code 2/5

Description
Please note that not all FEC types are supported by a given standard.

enum fe_modulation
Type of modulation/constellation

Constants
QPSK QPSK modulation

QAM_16 16-QAM modulation

QAM_32 32-QAM modulation

QAM_64 64-QAM modulation

QAM_128 128-QAM modulation

QAM_256 256-QAM modulation

QAM_AUTO Autodetect QAM modulation

VSB_8 8-VSB modulation

VSB_16 16-VSB modulation

PSK_8 8-PSK modulation

APSK_16 16-APSK modulation

APSK_32 32-APSK modulation

DQPSK DQPSK modulation

QAM_4_NR 4-QAM-NR modulation

Description
Please note that not all modulations are supported by a given standard.

enum fe_transmit_mode
Transmission mode

Constants
TRANSMISSION_MODE_2K

Transmission mode 2K

1372 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

TRANSMISSION_MODE_8K

Transmission mode 8K

TRANSMISSION_MODE_AUTO

Autodetect transmission mode. The hardware will try to find the correct FFT-size (if
capable) to fill in the missing parameters.

TRANSMISSION_MODE_4K

Transmission mode 4K

TRANSMISSION_MODE_1K

Transmission mode 1K

TRANSMISSION_MODE_16K

Transmission mode 16K

TRANSMISSION_MODE_32K

Transmission mode 32K

TRANSMISSION_MODE_C1

Single Carrier (C=1) transmission mode (DTMB only)

TRANSMISSION_MODE_C3780

Multi Carrier (C=3780) transmission mode (DTMB only)

Description
Please note that not all transmission modes are supported by a given standard.

enum fe_guard_interval
Guard interval

Constants
GUARD_INTERVAL_1_32 Guard interval 1/32

GUARD_INTERVAL_1_16 Guard interval 1/16

GUARD_INTERVAL_1_8 Guard interval 1/8

GUARD_INTERVAL_1_4 Guard interval 1/4

GUARD_INTERVAL_AUTO Autodetect the guard interval

GUARD_INTERVAL_1_128 Guard interval 1/128

GUARD_INTERVAL_19_128 Guard interval 19/128

GUARD_INTERVAL_19_256 Guard interval 19/256

GUARD_INTERVAL_PN420 PN length 420 (1/4)

GUARD_INTERVAL_PN595 PN length 595 (1/6)

GUARD_INTERVAL_PN945 PN length 945 (1/9)

Description
Please note that not all guard intervals are supported by a given standard.

3.3. Part II - Digital TV API 1373

Linux Media Documentation

enum fe_hierarchy
Hierarchy

Constants
HIERARCHY_NONE No hierarchy

HIERARCHY_1 Hierarchy 1

HIERARCHY_2 Hierarchy 2

HIERARCHY_4 Hierarchy 4

HIERARCHY_AUTO Autodetect hierarchy (if supported)

Description
Please note that not all hierarchy types are supported by a given standard.

enum fe_interleaving
Interleaving

Constants
INTERLEAVING_NONE No interleaving.

INTERLEAVING_AUTO Auto-detect interleaving.

INTERLEAVING_240 Interleaving of 240 symbols.

INTERLEAVING_720 Interleaving of 720 symbols.

Description
Please note that, currently, only DTMB uses it.

enum fe_pilot
Type of pilot tone

Constants
PILOT_ON Pilot tones enabled

PILOT_OFF Pilot tones disabled

PILOT_AUTO Autodetect pilot tones

enum fe_rolloff
Rolloff factor

Constants
ROLLOFF_35 Roloff factor: α=35%

ROLLOFF_20 Roloff factor: α=20%

ROLLOFF_25 Roloff factor: α=25%

ROLLOFF_AUTO Auto-detect the roloff factor.

Description
enum fe_delivery_system

Type of the delivery system

1374 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Constants
SYS_UNDEFINED

Undefined standard. Generally, indicates an error

SYS_DVBC_ANNEX_A

Cable TV: DVB-C following ITU-T J.83 Annex A spec

SYS_DVBC_ANNEX_B

Cable TV: DVB-C following ITU-T J.83 Annex B spec (ClearQAM)

SYS_DVBT

Terrestrial TV: DVB-T

SYS_DSS

Satellite TV: DSS (not fully supported)

SYS_DVBS

Satellite TV: DVB-S

SYS_DVBS2

Satellite TV: DVB-S2

SYS_DVBH

Terrestrial TV (mobile): DVB-H (standard deprecated)

SYS_ISDBT

Terrestrial TV: ISDB-T

SYS_ISDBS

Satellite TV: ISDB-S

SYS_ISDBC

Cable TV: ISDB-C (no drivers yet)

SYS_ATSC

Terrestrial TV: ATSC

SYS_ATSCMH

Terrestrial TV (mobile): ATSC-M/H

SYS_DTMB

Terrestrial TV: DTMB

SYS_CMMB

Terrestrial TV (mobile): CMMB (not fully supported)

SYS_DAB

Digital audio: DAB (not fully supported)

SYS_DVBT2

3.3. Part II - Digital TV API 1375

Linux Media Documentation

Terrestrial TV: DVB-T2

SYS_TURBO

Satellite TV: DVB-S Turbo

SYS_DVBC_ANNEX_C

Cable TV: DVB-C following ITU-T J.83 Annex C spec

enum atscmh_sccc_block_mode
Type of Series Concatenated Convolutional Code Block Mode.

Constants
ATSCMH_SCCC_BLK_SEP

Separate SCCC: the SCCC outer code mode shall be set independently for each Group
Region (A, B, C, D)

ATSCMH_SCCC_BLK_COMB

Combined SCCC: all four Regions shall have the same SCCC outer code mode.

ATSCMH_SCCC_BLK_RES

Reserved. Shouldn’t be used.

enum atscmh_sccc_code_mode
Type of Series Concatenated Convolutional Code Rate.

Constants
ATSCMH_SCCC_CODE_HLF

The outer code rate of a SCCC Block is 1/2 rate.

ATSCMH_SCCC_CODE_QTR

The outer code rate of a SCCC Block is 1/4 rate.

ATSCMH_SCCC_CODE_RES

Reserved. Should not be used.

enum atscmh_rs_frame_ensemble
Reed Solomon(RS) frame ensemble.

Constants
ATSCMH_RSFRAME_ENS_PRI Primary Ensemble.

ATSCMH_RSFRAME_ENS_SEC Secondary Ensemble.

enum atscmh_rs_frame_mode
Reed Solomon (RS) frame mode.

Constants
ATSCMH_RSFRAME_PRI_ONLY

Single Frame: There is only a primary RS Frame for all Group Regions.

ATSCMH_RSFRAME_PRI_SEC

1376 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Dual Frame: There are two separate RS Frames: Primary RS Frame for Group Region
A and B and Secondary RS Frame for Group Region C and D.

ATSCMH_RSFRAME_RES

Reserved. Shouldn’t be used.

enum atscmh_rs_code_mode

Constants
ATSCMH_RSCODE_211_187 Reed Solomon code (211,187).

ATSCMH_RSCODE_223_187 Reed Solomon code (223,187).

ATSCMH_RSCODE_235_187 Reed Solomon code (235,187).

ATSCMH_RSCODE_RES Reserved. Shouldn’t be used.

enum fecap_scale_params
scale types for the quality parameters.

Constants
FE_SCALE_NOT_AVAILABLE That QoS measure is not available. That could indicate a temporary

or a permanent condition.

FE_SCALE_DECIBEL The scale is measured in 0.001 dB steps, typically used on signal measures.

FE_SCALE_RELATIVE The scale is a relative percentual measure, ranging from 0 (0%) to 0xffff
(100%).

FE_SCALE_COUNTER The scale counts the occurrence of an event, like bit error, block error,
lapsed time.

struct dtv_stats
Used for reading a DTV status property

Definition

struct dtv_stats {
__u8 scale;
union {
__u64 uvalue;
__s64 svalue;

};
};

Members
scale

Filled with enum fecap_scale_params - the scale in usage for that parameter

{unnamed_union} anonymous

uvalue

unsigned integer value of the measure, used when scale is either FE_SCALE_RELATIVE
or FE_SCALE_COUNTER.

svalue

3.3. Part II - Digital TV API 1377

Linux Media Documentation

integer value of the measure, for FE_SCALE_DECIBEL, used for dB measures. The unit
is 0.001 dB.

Description
For most delivery systems, this will return a single value for each parameter.

It should be noticed, however, that new OFDM delivery systems like ISDB can use different
modulation types for each group of carriers. On such standards, up to 8 groups of statistics can
be provided, one for each carrier group (called “layer” on ISDB).

In order to be consistent with other delivery systems, the first value refers to the entire set of
carriers (“global”).

scale should use the value FE_SCALE_NOT_AVAILABLE when the value for the entire group of
carriers or from one specific layer is not provided by the hardware.

len should be filled with the latest filled status + 1.
In other words, for ISDB, those values should be filled like:

u.st.stat.svalue[0] = global statistics;
u.st.stat.scale[0] = FE_SCALE_DECIBEL;
u.st.stat.value[1] = layer A statistics;
u.st.stat.scale[1] = FE_SCALE_NOT_AVAILABLE (if not available);
u.st.stat.svalue[2] = layer B statistics;
u.st.stat.scale[2] = FE_SCALE_DECIBEL;
u.st.stat.svalue[3] = layer C statistics;
u.st.stat.scale[3] = FE_SCALE_DECIBEL;
u.st.len = 4;

struct dtv_fe_stats
store Digital TV frontend statistics

Definition

struct dtv_fe_stats {
__u8 len;
struct dtv_stats stat[MAX_DTV_STATS];

};

Members
len length of the statistics - if zero, stats is disabled.

stat array with digital TV statistics.

Description
On most standards, len can either be 0 or 1. However, for ISDB, each layer is modulated in
separate. So, each layer may have its own set of statistics. If so, stat[0] carries on a global
value for the property. Indexes 1 to 3 means layer A to B.

struct dtv_property
store one of frontend command and its value

Definition

struct dtv_property {
__u32 cmd;
__u32 reserved[3];

1378 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

union {
__u32 data;
struct dtv_fe_stats st;
struct {
__u8 data[32];
__u32 len;
__u32 reserved1[3];
void *reserved2;

} buffer;
} u;
int result;

};

Members
cmd Digital TV command.

reserved Not used.

u Union with the values for the command.

u.data A unsigned 32 bits integer with command value.

u.st a struct dtv_fe_stats array of statistics.

u.buffer Struct to store bigger properties. Currently unused.

u.buffer.data an unsigned 32-bits array.

u.buffer.len number of elements of the buffer.

u.buffer.reserved1 Reserved.

u.buffer.reserved2 Reserved.

result Currently unused.

struct dtv_properties
a set of command/value pairs.

Definition

struct dtv_properties {
__u32 num;
struct dtv_property *props;

};

Members
num amount of commands stored at the struct.

props a pointer to struct dtv_property.

3.3. Part II - Digital TV API 1379

Linux Media Documentation

3.3.2.4 Frontend Function Calls

Digital TV frontend open()

Name

fe-open - Open a frontend device

Synopsis

#include <fcntl.h>

int open(const char *device_name, int flags)

Arguments

device_name Device to be opened.

flags Open flags. Access can either be O_RDWR or O_RDONLY.

Multiple opens are allowed with O_RDONLY. In this mode, only query and read ioctls are
allowed.

Only one open is allowed in O_RDWR. In this mode, all ioctls are allowed.

When the O_NONBLOCK flag is given, the system calls may return EAGAIN error code when
no data is available or when the device driver is temporarily busy.

Other flags have no effect.

Description

This system call opens a named frontend device (/dev/dvb/adapter?/frontend?) for subse-
quent use. Usually the first thing to do after a successful open is to find out the frontend type
with ioctl FE_GET_INFO.

The device can be opened in read-only mode, which only allows monitoring of device status and
statistics, or read/write mode, which allows any kind of use (e.g. performing tuning operations.)

In a system with multiple front-ends, it is usually the case that multiple devices cannot be
open in read/write mode simultaneously. As long as a front-end device is opened in read/write
mode, other open() calls in read/write mode will either fail or block, depending on whether
non-blocking or blocking mode was specified. A front-end device opened in blocking mode can
later be put into non-blocking mode (and vice versa) using the F_SETFL command of the fcntl
system call. This is a standard system call, documented in the Linux manual page for fcntl.
When an open() call has succeeded, the device will be ready for use in the specified mode. This
implies that the corresponding hardware is powered up, and that other front-ends may have
been powered down to make that possible.

1380 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success open() returns the new file descriptor. On error, -1 is returned, and the errno
variable is set appropriately.

Possible error codes are:

On success 0 is returned, and ca_slot_info is filled.

On error -1 is returned, and the errno variable is set appropriately.

EPERM The caller has no permission to access the device.
EBUSY The the device driver is already in use.
EMFILE The process already has the maximum number of files open.
ENFILE The limit on the total number of files open on the system has been reached.

The generic error codes are described at the Generic Error Codes chapter.

Digital TV frontend close()

Name

fe-close - Close a frontend device

Synopsis

#include <unistd.h>

int close(int fd)

Arguments

fd File descriptor returned by open().

Description

This system call closes a previously opened front-end device. After closing a front-end device,
its corresponding hardware might be powered down automatically.

3.3. Part II - Digital TV API 1381

Linux Media Documentation

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_GET_INFO

Name

FE_GET_INFO - Query Digital TV frontend capabilities and returns information about the - front-
end. This call only requires read-only access to the device.

Synopsis

FE_GET_INFO

int ioctl(int fd, FE_GET_INFO, struct dvb_frontend_info *argp)

Arguments

fd File descriptor returned by open().

argp pointer to struct dvb_frontend_info

Description

All Digital TV frontend devices support the ioctl FE_GET_INFO ioctl. It is used to identify kernel
devices compatible with this specification and to obtain information about driver and hardware
capabilities. The ioctl takes a pointer to dvb_frontend_info which is filled by the driver. When
the driver is not compatible with this specification the ioctl returns an error.

frontend capabilities

Capabilities describe what a frontend can do. Some capabilities are supported only on some
specific frontend types.

The frontend capabilities are described at fe_caps.

1382 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_READ_STATUS

Name

FE_READ_STATUS - Returns status information about the front-end. This call only requires -
read-only access to the device

Synopsis

FE_READ_STATUS

int ioctl(int fd, FE_READ_STATUS, unsigned int *status)

Arguments

fd File descriptor returned by open().

status pointer to a bitmask integer filled with the values defined by enum fe_status.

Description

All Digital TV frontend devices support the FE_READ_STATUS ioctl. It is used to check about the
locking status of the frontend after being tuned. The ioctl takes a pointer to an integer where
the status will be written.

Note: The size of status is actually sizeof(enum fe_status), with varies according with the
architecture. This needs to be fixed in the future.

int fe_status

The fe_status parameter is used to indicate the current state and/or state changes of the fron-
tend hardware. It is produced using the enum fe_status values on a bitmask

3.3. Part II - Digital TV API 1383

Linux Media Documentation

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_SET_PROPERTY, FE_GET_PROPERTY

Name

FE_SET_PROPERTY - FE_GET_PROPERTY - FE_SET_PROPERTY sets one or more frontend
properties. - FE_GET_PROPERTY returns one or more frontend properties.

Synopsis

FE_GET_PROPERTY

int ioctl(int fd, FE_GET_PROPERTY, struct dtv_properties *argp)

FE_SET_PROPERTY

int ioctl(int fd, FE_SET_PROPERTY, struct dtv_properties *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct dtv_properties.

Description

All Digital TV frontend devices support the FE_SET_PROPERTY and FE_GET_PROPERTY ioctls. The
supported properties and statistics depends on the delivery system and on the device:

• FE_SET_PROPERTY:

– This ioctl is used to set one or more frontend properties.
– This is the basic command to request the frontend to tune into some frequency and to
start decoding the digital TV signal.

– This call requires read/write access to the device.

Note: At return, the values aren’t updated to reflect the actual parameters used. If the actual
parameters are needed, an explicit call to FE_GET_PROPERTY is needed.

• FE_GET_PROPERTY:

– This ioctl is used to get properties and statistics from the frontend.

1384 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

– No properties are changed, and statistics aren’t reset.
– This call only requires read-only access to the device.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_DISEQC_RESET_OVERLOAD

Name

FE_DISEQC_RESET_OVERLOAD - Restores the power to the antenna subsystem, if it was pow-
ered off due - to power overload.

Synopsis

FE_DISEQC_RESET_OVERLOAD

int ioctl(int fd, FE_DISEQC_RESET_OVERLOAD, NULL)

Arguments

fd File descriptor returned by open().

Description

If the bus has been automatically powered off due to power overload, this ioctl call restores the
power to the bus. The call requires read/write access to the device. This call has no effect if
the device is manually powered off. Not all Digital TV adapters support this ioctl.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

3.3. Part II - Digital TV API 1385

Linux Media Documentation

ioctl FE_DISEQC_SEND_MASTER_CMD

Name

FE_DISEQC_SEND_MASTER_CMD - Sends a DiSEqC command

Synopsis

FE_DISEQC_SEND_MASTER_CMD

int ioctl(int fd, FE_DISEQC_SEND_MASTER_CMD, struct dvb_diseqc_master_cmd
*argp)

Arguments

fd File descriptor returned by open().

argp pointer to struct dvb_diseqc_master_cmd

Description

Sends the DiSEqC command pointed by dvb_diseqc_master_cmd to the antenna subsystem.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_DISEQC_RECV_SLAVE_REPLY

Name

FE_DISEQC_RECV_SLAVE_REPLY - Receives reply from a DiSEqC 2.0 command

Synopsis

FE_DISEQC_RECV_SLAVE_REPLY

int ioctl(int fd, FE_DISEQC_RECV_SLAVE_REPLY, struct dvb_diseqc_slave_reply
*argp)

1386 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Arguments

fd File descriptor returned by open().

argp pointer to struct dvb_diseqc_slave_reply.

Description

Receives reply from a DiSEqC 2.0 command.

The received message is stored at the buffer pointed by argp.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_DISEQC_SEND_BURST

Name

FE_DISEQC_SEND_BURST - Sends a 22KHz tone burst for 2x1 mini DiSEqC satellite selection.

Synopsis

FE_DISEQC_SEND_BURST

int ioctl(int fd, FE_DISEQC_SEND_BURST, enum fe_sec_mini_cmd tone)

Arguments

fd File descriptor returned by open().

tone An integer enumered value described at fe_sec_mini_cmd.

Description

This ioctl is used to set the generation of a 22kHz tone burst for mini DiSEqC satellite selection
for 2x1 switches. This call requires read/write permissions.

It provides support for what’s specified at Digital Satellite Equipment Control (DiSEqC) - Simple
“ToneBurst” Detection Circuit specification.

3.3. Part II - Digital TV API 1387

http://www.eutelsat.com/files/contributed/satellites/pdf/Diseqc/associated%20docs/simple_tone_burst_detec.pdf
http://www.eutelsat.com/files/contributed/satellites/pdf/Diseqc/associated%20docs/simple_tone_burst_detec.pdf

Linux Media Documentation

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_SET_TONE

Name

FE_SET_TONE - Sets/resets the generation of the continuous 22kHz tone.

Synopsis

FE_SET_TONE

int ioctl(int fd, FE_SET_TONE, enum fe_sec_tone_mode tone)

Arguments

fd File descriptor returned by open().

tone an integer enumered value described at fe_sec_tone_mode

Description

This ioctl is used to set the generation of the continuous 22kHz tone. This call requires
read/write permissions.

Usually, satellite antenna subsystems require that the digital TV device to send a 22kHz tone in
order to select between high/low band on some dual-band LNBf. It is also used to send signals
to DiSEqC equipment, but this is done using the DiSEqC ioctls.

Attention: If more than one device is connected to the same antenna, setting a tone may
interfere on other devices, as they may lose the capability of selecting the band. So, it is
recommended that applications would change to SEC_TONE_OFF when the device is not
used.

1388 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_SET_VOLTAGE

Name

FE_SET_VOLTAGE - Allow setting the DC level sent to the antenna subsystem.

Synopsis

FE_SET_VOLTAGE

int ioctl(int fd, FE_SET_VOLTAGE, enum fe_sec_voltage voltage)

Arguments

fd File descriptor returned by open().

voltage an integer enumered value described at fe_sec_voltage

Description

This ioctl allows to set the DC voltage level sent through the antenna cable to 13V, 18V or off.

Usually, a satellite antenna subsystems require that the digital TV device to send a DC voltage
to feed power to the LNBf. Depending on the LNBf type, the polarization or the intermediate
frequency (IF) of the LNBf can controlled by the voltage level. Other devices (for example,
the ones that implement DISEqC and multipoint LNBf’s don’t need to control the voltage level,
provided that either 13V or 18V is sent to power up the LNBf.

Attention: if more than one device is connected to the same antenna, setting a voltage
level may interfere on other devices, as they may lose the capability of setting polarization
or IF. So, on those cases, setting the voltage to SEC_VOLTAGE_OFF while the device is not
is used is recommended.

3.3. Part II - Digital TV API 1389

Linux Media Documentation

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_ENABLE_HIGH_LNB_VOLTAGE

Name

FE_ENABLE_HIGH_LNB_VOLTAGE - Select output DC level between normal LNBf voltages or
higher LNBf - voltages.

Synopsis

FE_ENABLE_HIGH_LNB_VOLTAGE

int ioctl(int fd, FE_ENABLE_HIGH_LNB_VOLTAGE, unsigned int high)

Arguments

fd File descriptor returned by open().

high Valid flags:

• 0 - normal 13V and 18V.

• >0 - enables slightly higher voltages instead of 13/18V, in order to compensate for
long antenna cables.

Description

Select output DC level between normal LNBf voltages or higher LNBf voltages between 0 (nor-
mal) or a value grater than 0 for higher voltages.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

1390 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

ioctl FE_SET_FRONTEND_TUNE_MODE

Name

FE_SET_FRONTEND_TUNE_MODE - Allow setting tuner mode flags to the frontend.

Synopsis

FE_SET_FRONTEND_TUNE_MODE

int ioctl(int fd, FE_SET_FRONTEND_TUNE_MODE, unsigned int flags)

Arguments

fd File descriptor returned by open().

flags Valid flags:

• 0 - normal tune mode

• FE_TUNE_MODE_ONESHOT - When set, this flag will disable any zigzagging or other “nor-
mal” tuning behaviour. Additionally, there will be no automatic monitoring of the lock
status, and hence no frontend events will be generated. If a frontend device is closed,
this flag will be automatically turned off when the device is reopened read-write.

Description

Allow setting tuner mode flags to the frontend, between 0 (normal) or FE_TUNE_MODE_ONESHOT
mode

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

3.3.3 Digital TV Demux Device

The Digital TV demux device controls the MPEG-TS filters for the digital TV. If the driver and
hardware supports, those filters are implemented at the hardware. Otherwise, the Kernel pro-
vides a software emulation.

It can be accessed through /dev/adapter?/demux?. Data types and ioctl definitions can be
accessed by including linux/dvb/dmx.h in your application.

3.3. Part II - Digital TV API 1391

Linux Media Documentation

3.3.3.1 Demux Data Types

enum dmx_output
Output for the demux.

Constants
DMX_OUT_DECODER

Streaming directly to decoder.

DMX_OUT_TAP

Output going to a memory buffer (to be retrieved via the read command). Delivers
the stream output to the demux device on which the ioctl is called.

DMX_OUT_TS_TAP

Output multiplexed into a new TS (to be retrieved by reading from the logical DVR
device). Routes output to the logical DVR device /dev/dvb/adapter?/dvr?, which
delivers a TS multiplexed from all filters for whichDMX_OUT_TS_TAPwas specified.

DMX_OUT_TSDEMUX_TAP

Like DMX_OUT_TS_TAP but retrieved from the DMX device.

enum dmx_input
Input from the demux.

Constants
DMX_IN_FRONTEND Input from a front-end device.

DMX_IN_DVR Input from the logical DVR device.

enum dmx_ts_pes
type of the PES filter.

Constants
DMX_PES_AUDIO0 first audio PID. Also referred as DMX_PES_AUDIO.
DMX_PES_VIDEO0 first video PID. Also referred as DMX_PES_VIDEO.
DMX_PES_TELETEXT0 first teletext PID. Also referred as DMX_PES_TELETEXT.
DMX_PES_SUBTITLE0 first subtitle PID. Also referred as DMX_PES_SUBTITLE.
DMX_PES_PCR0 first Program Clock Reference PID. Also referred as DMX_PES_PCR.
DMX_PES_AUDIO1 second audio PID.

DMX_PES_VIDEO1 second video PID.

DMX_PES_TELETEXT1 second teletext PID.

DMX_PES_SUBTITLE1 second subtitle PID.

DMX_PES_PCR1 second Program Clock Reference PID.

DMX_PES_AUDIO2 third audio PID.

DMX_PES_VIDEO2 third video PID.

DMX_PES_TELETEXT2 third teletext PID.

1392 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

DMX_PES_SUBTITLE2 third subtitle PID.

DMX_PES_PCR2 third Program Clock Reference PID.

DMX_PES_AUDIO3 fourth audio PID.

DMX_PES_VIDEO3 fourth video PID.

DMX_PES_TELETEXT3 fourth teletext PID.

DMX_PES_SUBTITLE3 fourth subtitle PID.

DMX_PES_PCR3 fourth Program Clock Reference PID.

DMX_PES_OTHER any other PID.

struct dmx_filter
Specifies a section header filter.

Definition

struct dmx_filter {
__u8 filter[DMX_FILTER_SIZE];
__u8 mask[DMX_FILTER_SIZE];
__u8 mode[DMX_FILTER_SIZE];

};

Members
filter bit array with bits to be matched at the section header.

mask bits that are valid at the filter bit array.

mode mode of match: if bit is zero, it will match if equal (positive match); if bit is one, it will
match if the bit is negated.

Note
All arrays in this struct have a size of DMX_FILTER_SIZE (16 bytes).

struct dmx_sct_filter_params
Specifies a section filter.

Definition

struct dmx_sct_filter_params {
__u16 pid;
struct dmx_filter filter;
__u32 timeout;
__u32 flags;

#define DMX_CHECK_CRC 1;
#define DMX_ONESHOT 2;
#define DMX_IMMEDIATE_START 4;
};

Members
pid PID to be filtered.

filter section header filter, as defined by struct dmx_filter.

timeout maximum time to filter, in milliseconds.

3.3. Part II - Digital TV API 1393

Linux Media Documentation

flags extra flags for the section filter.

Description
Carries the configuration for a MPEG-TS section filter.

The flags can be:
• DMX_CHECK_CRC - only deliver sections where the CRC check succeeded;

• DMX_ONESHOT - disable the section filter after one section has been delivered;

• DMX_IMMEDIATE_START - Start filter immediately without requiring a DMX_START.

struct dmx_pes_filter_params
Specifies Packetized Elementary Stream (PES) filter parameters.

Definition

struct dmx_pes_filter_params {
__u16 pid;
enum dmx_input input;
enum dmx_output output;
enum dmx_ts_pes pes_type;
__u32 flags;

};

Members
pid PID to be filtered.

input Demux input, as specified by enum dmx_input.

output Demux output, as specified by enum dmx_output.

pes_type Type of the pes filter, as specified by enum dmx_pes_type.

flags Demux PES flags.

struct dmx_stc
Stores System Time Counter (STC) information.

Definition

struct dmx_stc {
unsigned int num;
unsigned int base;
__u64 stc;

};

Members
num input data: number of the STC, from 0 to N.

base output: divisor for STC to get 90 kHz clock.

stc output: stc in base * 90 kHz units.
enum dmx_buffer_flags

DMX memory-mapped buffer flags

Constants
DMX_BUFFER_FLAG_HAD_CRC32_DISCARD

1394 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Indicates that the Kernel discarded one or more frames due to wrong CRC32 check-
sum.

DMX_BUFFER_FLAG_TEI

Indicates that the Kernel has detected a Transport Error indicator (TEI) on a filtered
pid.

DMX_BUFFER_PKT_COUNTER_MISMATCH

Indicates that the Kernel has detected a packet counter mismatch on a filtered pid.

DMX_BUFFER_FLAG_DISCONTINUITY_DETECTED

Indicates that the Kernel has detected one or more frame discontinuity.

DMX_BUFFER_FLAG_DISCONTINUITY_INDICATOR

Received at least one packet with a frame discontinuity indicator.

struct dmx_buffer
dmx buffer info

Definition

struct dmx_buffer {
__u32 index;
__u32 bytesused;
__u32 offset;
__u32 length;
__u32 flags;
__u32 count;

};

Members
index id number of the buffer

bytesused number of bytes occupied by data in the buffer (payload);

offset for buffers with memory == DMX_MEMORY_MMAP; offset from the start of the device
memory for this plane, (or a “cookie” that should be passed to mmap() as offset)

length size in bytes of the buffer

flags bit array of buffer flags as defined by enum dmx_buffer_flags. Filled only at DMX_DQBUF.

count monotonic counter for filled buffers. Helps to identify data stream loses. Filled only at
DMX_DQBUF.

Description
Contains data exchanged by application and driver using one of the streaming I/O methods.

Please notice that, for DMX_QBUF, only index should be filled. On DMX_DQBUF calls, all fields will
be filled by the Kernel.

struct dmx_requestbuffers
request dmx buffer information

Definition

3.3. Part II - Digital TV API 1395

Linux Media Documentation

struct dmx_requestbuffers {
__u32 count;
__u32 size;

};

Members
count number of requested buffers,

size size in bytes of the requested buffer

Description
Contains data used for requesting a dmx buffer. All reserved fields must be set to zero.

struct dmx_exportbuffer
export of dmx buffer as DMABUF file descriptor

Definition

struct dmx_exportbuffer {
__u32 index;
__u32 flags;
__s32 fd;

};

Members
index id number of the buffer

flags flags for newly created file, currently only O_CLOEXEC is supported, refer to manual of
open syscall for more details

fd file descriptor associated with DMABUF (set by driver)

Description
Contains data used for exporting a dmx buffer as DMABUF file descriptor. The buffer is iden-
tified by a ‘cookie’ returned by DMX_QUERYBUF (identical to the cookie used to mmap() the
buffer to userspace). All reserved fields must be set to zero. The field reserved0 is expected
to become a structure ‘type’ allowing an alternative layout of the structure content. Therefore
this field should not be used for any other extensions.

3.3.3.2 Demux Function Calls

Digital TV demux open()

Name

Digital TV demux open()

1396 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Synopsis

int open(const char *deviceName, int flags)

Arguments

name Name of specific Digital TV demux device.

flags A bit-wise OR of the following flags:

O_RDONLY read-only access
O_RDWR read/write access
O_NONBLOCK open in non-blocking mode (blocking mode is the default)

Description

This system call, used with a device name of /dev/dvb/adapter?/demux?, allocates a new filter
and returns a handle which can be used for subsequent control of that filter. This call has to
be made for each filter to be used, i.e. every returned file descriptor is a reference to a single
filter. /dev/dvb/adapter?/dvr? is a logical device to be used for retrieving Transport Streams
for digital video recording. When reading from this device a transport stream containing the
packets from all PES filters set in the corresponding demux device (/dev/dvb/adapter?/demux?
) having the output set to DMX_OUT_TS_TAP. A recorded Transport Stream is replayed by writing
to this device.

The significance of blocking or non-blocking mode is described in the documentation for func-
tions where there is a difference. It does not affect the semantics of the open() call itself. A
device opened in blocking mode can later be put into non-blocking mode (and vice versa) using
the F_SETFL command of the fcntl system call.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EMFILE “Too many open files”, i.e. no more filters available.

The generic error codes are described at the Generic Error Codes chapter.

3.3. Part II - Digital TV API 1397

Linux Media Documentation

Digital TV demux close()

Name

Digital TV demux close()

Synopsis

int close(int fd)

Arguments

fd File descriptor returned by a previous call to open().

Description

This system call deactivates and deallocates a filter that was previously allocated via the open()
call.

Return Value

On success 0 is returned.

On error, -1 is returned and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

Digital TV demux read()

Name

Digital TV demux read()

Synopsis

size_t read(int fd, void *buf, size_t count)

1398 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Arguments

fd

File descriptor returned by a previous call to open().

buf Buffer to be filled

count Max number of bytes to read

Description

This system call returns filtered data, which might be section or Packetized Elementary Stream
(PES) data. The filtered data is transferred from the driver’s internal circular buffer to buf.
The maximum amount of data to be transferred is implied by count.

Note: if a section filter created with DMX_CHECK_CRC flag set, data that fails on CRC check will
be silently ignored.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EWOULDBLOCK No data to return and O_NONBLOCK was specified.
EOVERFLOW The filtered data was not read from the buffer in due time, resulting in non-

read data being lost. The buffer is flushed.
ETIMEDOUT The section was not loaded within the stated timeout period. See ioctl

DMX_SET_FILTER for how to set a timeout.
EFAULT The driver failed to write to the callers buffer due to an invalid *buf pointer.

The generic error codes are described at the Generic Error Codes chapter.

Digital TV demux write()

Name

Digital TV demux write()

3.3. Part II - Digital TV API 1399

Linux Media Documentation

Synopsis

ssize_t write(int fd, const void *buf, size_t count)

Arguments

fd File descriptor returned by a previous call to open().

buf Buffer with data to be written

count Number of bytes at the buffer

Description

This system call is only provided by the logical device /dev/dvb/adapter?/dvr?, associated
with the physical demux device that provides the actual DVR functionality. It is used for replay of
a digitally recorded Transport Stream. Matching filters have to be defined in the corresponding
physical demux device, /dev/dvb/adapter?/demux?. The amount of data to be transferred is
implied by count.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EWOULDBLOCK No data was written. This might happen if O_NONBLOCK was specified and
there is no more buffer space available (if O_NONBLOCK is not specified the
function will block until buffer space is available).

EBUSY This error code indicates that there are conflicting requests. The correspond-
ing demux device is setup to receive data from the front- end. Make sure that
these filters are stopped and that the filters with input set to DMX_IN_DVR are
started.

The generic error codes are described at the Generic Error Codes chapter.

Digital TV mmap()

Name

dmx-mmap - Map device memory into application address space

Warning: this API is still experimental

1400 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Synopsis

#include <unistd.h>
#include <sys/mman.h>

void *mmap(void *start, size_t length, int prot, int flags, int fd, off_t offset)

Arguments

start Map the buffer to this address in the application’s address space. When the MAP_FIXED
flag is specified, start must be a multiple of the pagesize and mmap will fail when the
specified address cannot be used. Use of this option is discouraged; applications should
just specify a NULL pointer here.

length Length of the memory area to map. This must be a multiple of the DVB packet length
(188, on most drivers).

prot The prot argument describes the desired memory protection. Regardless of the device
type and the direction of data exchange it should be set to PROT_READ | PROT_WRITE, per-
mitting read and write access to image buffers. Drivers should support at least this com-
bination of flags.

flags The flags parameter specifies the type of the mapped object, mapping options and
whether modifications made to the mapped copy of the page are private to the process
or are to be shared with other references.

MAP_FIXED requests that the driver selects no other address than the one specified. If the
specified address cannot be used, mmap() will fail. If MAP_FIXED is specified, start must
be a multiple of the pagesize. Use of this option is discouraged.

One of the MAP_SHARED or MAP_PRIVATE flags must be set. MAP_SHARED allows applications
to share the mapped memory with other (e. g. child-) processes.

Note: The Linux Digital TV applications should not set the MAP_PRIVATE, MAP_DENYWRITE,
MAP_EXECUTABLE or MAP_ANON flags.

fd File descriptor returned by open().

offset Offset of the buffer in device memory, as returned by ioctl DMX_QUERYBUF ioctl.

Description

The mmap() function asks to map length bytes starting at offset in the memory of the device
specified by fd into the application address space, preferably at address start. This latter
address is a hint only, and is usually specified as 0.

Suitable length and offset parameters are queried with the ioctl DMX_QUERYBUF ioctl. Buffers
must be allocated with the ioctl DMX_REQBUFS ioctl before they can be queried.

To unmap buffers the munmap() function is used.

3.3. Part II - Digital TV API 1401

Linux Media Documentation

Return Value

On success mmap() returns a pointer to themapped buffer. On error MAP_FAILED (-1) is returned,
and the errno variable is set appropriately. Possible error codes are:

EBADF fd is not a valid file descriptor.

EACCES fd is not open for reading and writing.

EINVAL The start or length or offset are not suitable. (E. g. they are too large, or not
aligned on a PAGESIZE boundary.)

The flags or prot value is not supported.

No buffers have been allocated with the ioctl DMX_REQBUFS ioctl.

ENOMEM Not enough physical or virtual memory was available to complete the request.

DVB munmap()

Name

dmx-munmap - Unmap device memory

Warning: This API is still experimental.

Synopsis

#include <unistd.h>
#include <sys/mman.h>

int munmap(void *start, size_t length)

Arguments

start Address of the mapped buffer as returned by the mmap() function.

length Length of the mapped buffer. This must be the same value as given to mmap().

Description

Unmaps a previously with the mmap() function mapped buffer and frees it, if possible.

1402 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success munmap() returns 0, on failure -1 and the errno variable is set appropriately:

EINVAL The start or length is incorrect, or no buffers have been mapped yet.

DMX_START

Name

DMX_START

Synopsis

DMX_START

int ioctl(int fd, DMX_START)

Arguments

fd File descriptor returned by open().

Description

This ioctl call is used to start the actual filtering operation defined via the ioctl calls
DMX_SET_FILTER or DMX_SET_PES_FILTER.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EINVAL Invalid argument, i.e. no filtering parameters provided via the
DMX_SET_FILTER or DMX_SET_PES_FILTER ioctls.

EBUSY This error code indicates that there are conflicting requests. There are active
filters filtering data from another input source. Make sure that these filters
are stopped before starting this filter.

The generic error codes are described at the Generic Error Codes chapter.

3.3. Part II - Digital TV API 1403

Linux Media Documentation

DMX_STOP

Name

DMX_STOP

Synopsis

DMX_STOP

int ioctl(int fd, DMX_STOP)

Arguments

fd File descriptor returned by open().

Description

This ioctl call is used to stop the actual filtering operation defined via the ioctl calls
DMX_SET_FILTER or DMX_SET_PES_FILTER and started via the DMX_START command.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

DMX_SET_FILTER

Name

DMX_SET_FILTER

Synopsis

DMX_SET_FILTER

int ioctl(int fd, DMX_SET_FILTER, struct dmx_sct_filter_params *params)

1404 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Arguments

fd File descriptor returned by open().

params

Pointer to structure containing filter parameters.

Description

This ioctl call sets up a filter according to the filter and mask parameters provided. A timeout
may be defined stating number of seconds to wait for a section to be loaded. A value of 0
means that no timeout should be applied. Finally there is a flag field where it is possible to
state whether a section should be CRC-checked, whether the filter should be a “one-shot” filter,
i.e. if the filtering operation should be stopped after the first section is received, and whether
the filtering operation should be started immediately (without waiting for a DMX_START ioctl
call). If a filter was previously set-up, this filter will be canceled, and the receive buffer will be
flushed.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

DMX_SET_PES_FILTER

Name

DMX_SET_PES_FILTER

Synopsis

DMX_SET_PES_FILTER

int ioctl(int fd, DMX_SET_PES_FILTER, struct dmx_pes_filter_params *params)

Arguments

fd File descriptor returned by open().

params Pointer to structure containing filter parameters.

3.3. Part II - Digital TV API 1405

Linux Media Documentation

Description

This ioctl call sets up a PES filter according to the parameters provided. By a PES filter is meant
a filter that is based just on the packet identifier (PID), i.e. no PES header or payload filtering
capability is supported.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EBUSY This error code indicates that there are conflicting requests. There are active
filters filtering data from another input source. Make sure that these filters
are stopped before starting this filter.

The generic error codes are described at the Generic Error Codes chapter.

DMX_SET_BUFFER_SIZE

Name

DMX_SET_BUFFER_SIZE

Synopsis

DMX_SET_BUFFER_SIZE

int ioctl(int fd, DMX_SET_BUFFER_SIZE, unsigned long size)

Arguments

fd File descriptor returned by open().

size Unsigned long size

Description

This ioctl call is used to set the size of the circular buffer used for filtered data. The default size
is two maximum sized sections, i.e. if this function is not called a buffer size of 2 * 4096 bytes
will be used.

1406 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

DMX_GET_STC

Name

DMX_GET_STC

Synopsis

DMX_GET_STC

int ioctl(int fd, DMX_GET_STC, struct dmx_stc *stc)

Arguments

fd File descriptor returned by open().

stc Pointer to dmx_stc where the stc data is to be stored.

Description

This ioctl call returns the current value of the system time counter (which is driven by a PES
filter of type DMX_PES_PCR). Some hardware supports more than one STC, so you must specify
which one by setting the num field of stc before the ioctl (range 0…n). The result is returned in
form of a ratio with a 64 bit numerator and a 32 bit denominator, so the real 90kHz STC value
is stc->stc / stc->base.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EINVAL Invalid stc number.

The generic error codes are described at the Generic Error Codes chapter.

3.3. Part II - Digital TV API 1407

Linux Media Documentation

DMX_GET_PES_PIDS

Name

DMX_GET_PES_PIDS

Synopsis

DMX_GET_PES_PIDS

int ioctl(fd, DMX_GET_PES_PIDS, __u16 pids[5])

Arguments

fd File descriptor returned by open().

pids Array used to store 5 Program IDs.

Description

This ioctl allows to query a DVB device to return the first PID used by audio, video, textext,
subtitle and PCR programs on a given service. They’re stored as:

PID element position content
pids[DMX_PES_AUDIO] 0 first audio PID
pids[DMX_PES_VIDEO] 1 first video PID
pids[DMX_PES_TELETEXT] 2 first teletext PID
pids[DMX_PES_SUBTITLE] 3 first subtitle PID
pids[DMX_PES_PCR] 4 first Program Clock Reference PID

Note: A value equal to 0xffff means that the PID was not filled by the Kernel.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

1408 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

DMX_ADD_PID

Name

DMX_ADD_PID

Synopsis

DMX_ADD_PID

int ioctl(fd, DMX_ADD_PID, __u16 *pid)

Arguments

fd File descriptor returned by open().

pid PID number to be filtered.

Description

This ioctl call allows to add multiple PIDs to a transport stream filter previously set up with
DMX_SET_PES_FILTER and output equal to DMX_OUT_TSDEMUX_TAP.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

DMX_REMOVE_PID

Name

DMX_REMOVE_PID

Synopsis

DMX_REMOVE_PID

int ioctl(fd, DMX_REMOVE_PID, __u16 *pid)

3.3. Part II - Digital TV API 1409

Linux Media Documentation

Arguments

fd File descriptor returned by open().

pid PID of the PES filter to be removed.

Description

This ioctl call allows to remove a PID when multiple PIDs are set on a transport stream filter,
e. g. a filter previously set up with output equal to DMX_OUT_TSDEMUX_TAP, created via either
DMX_SET_PES_FILTER or DMX_ADD_PID.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

ioctl DMX_REQBUFS

Name

DMX_REQBUFS - Initiate Memory Mapping and/or DMA buffer I/O

Warning: this API is still experimental

Synopsis

DMX_REQBUFS

int ioctl(int fd, DMX_REQBUFS, struct dmx_requestbuffers *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct dmx_requestbuffers.

1410 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Description

This ioctl is used to initiate a memory mapped or DMABUF based demux I/O.

Memory mapped buffers are located in device memory and must be allocated with this ioctl
before they can be mapped into the application’s address space. User buffers are allocated
by applications themselves, and this ioctl is merely used to switch the driver into user pointer
I/O mode and to setup some internal structures. Similarly, DMABUF buffers are allocated by
applications through a device driver, and this ioctl only configures the driver into DMABUF I/O
mode without performing any direct allocation.

To allocate device buffers applications initialize all fields of the struct dmx_requestbuffers
structure. They set the count field to the desired number of buffers, and size to the size of
each buffer.

When the ioctl is called with a pointer to this structure, the driver will attempt to allocate the
requested number of buffers and it stores the actual number allocated in the count field. The
count can be smaller than the number requested, even zero, when the driver runs out of free
memory. A larger number is also possible when the driver requires more buffers to function
correctly. The actual allocated buffer size can is returned at size, and can be smaller than
what’s requested.

When this I/O method is not supported, the ioctl returns an EOPNOTSUPP error code.

Applications can call ioctl DMX_REQBUFS again to change the number of buffers, however this
cannot succeed when any buffers are still mapped. A count value of zero frees all buffers, after
aborting or finishing any DMA in progress.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EOPNOTSUPP The the requested I/O method is not supported.

ioctl DMX_QUERYBUF

Name

DMX_QUERYBUF - Query the status of a buffer

Warning: this API is still experimental

3.3. Part II - Digital TV API 1411

Linux Media Documentation

Synopsis

DMX_QUERYBUF

int ioctl(int fd, DMX_QUERYBUF, struct dvb_buffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct dvb_buffer.

Description

This ioctl is part of the mmap streaming I/O method. It can be used to query the status of a
buffer at any time after buffers have been allocated with the ioctl DMX_REQBUFS ioctl.

Applications set the index field. Valid index numbers range from zero to the number of buffers
allocated with ioctl DMX_REQBUFS (struct dvb_requestbuffers count) minus one.

After calling ioctl DMX_QUERYBUF with a pointer to this structure, drivers return an error
code or fill the rest of the structure.

On success, the offset will contain the offset of the buffer from the start of the device memory,
the length field its size, and the bytesused the number of bytes occupied by data in the buffer
(payload).

Return Value

On success 0 is returned, the offset will contain the offset of the buffer from the start of the
device memory, the length field its size, and the bytesused the number of bytes occupied by
data in the buffer (payload).

On error it returns -1 and the errno variable is set appropriately. The generic error codes are
described at the Generic Error Codes chapter.

EINVAL The index is out of bounds.

ioctl DMX_EXPBUF

Name

DMX_EXPBUF - Export a buffer as a DMABUF file descriptor.

Warning: this API is still experimental

1412 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Synopsis

DMX_EXPBUF

int ioctl(int fd, DMX_EXPBUF, struct dmx_exportbuffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct dmx_exportbuffer.

Description

This ioctl is an extension to the memory mapping I/O method. It can be used to export a buffer
as a DMABUF file at any time after buffers have been allocated with the ioctl DMX_REQBUFS
ioctl.

To export a buffer, applications fill struct dmx_exportbuffer. Applications must set the index
field. Valid index numbers range from zero to the number of buffers allocated with ioctl
DMX_REQBUFS (struct dmx_requestbuffers count) minus one. Additional flags may be posted
in the flags field. Refer to a manual for open() for details. Currently only O_CLOEXEC,
O_RDONLY, O_WRONLY, and O_RDWR are supported. All other fields must be set to zero. In the
case of multi-planar API, every plane is exported separately using multiple ioctl DMX_EXPBUF
calls.

After calling ioctl DMX_EXPBUF the fd field will be set by a driver, on success. This is a
DMABUF file descriptor. The application may pass it to other DMABUF-aware devices. It is
recommended to close a DMABUF file when it is no longer used to allow the associated mem-
ory to be reclaimed.

Examples

int buffer_export(int v4lfd, enum dmx_buf_type bt, int index, int *dmafd)
{

struct dmx_exportbuffer expbuf;

memset(&expbuf, 0, sizeof(expbuf));
expbuf.type = bt;
expbuf.index = index;
if (ioctl(v4lfd, DMX_EXPBUF, &expbuf) == -1) {

perror("DMX_EXPBUF");
return -1;

}

*dmafd = expbuf.fd;

return 0;
}

3.3. Part II - Digital TV API 1413

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL A queue is not in MMAP mode or DMABUF exporting is not supported or flags or
index fields are invalid.

ioctl DMX_QBUF, DMX_DQBUF

Name

DMX_QBUF - DMX_DQBUF - Exchange a buffer with the driver

Warning: this API is still experimental

Synopsis

DMX_QBUF

int ioctl(int fd, DMX_QBUF, struct dmx_buffer *argp)

DMX_DQBUF

int ioctl(int fd, DMX_DQBUF, struct dmx_buffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct dmx_buffer.

Description

Applications call the DMX_QBUF ioctl to enqueue an empty (capturing) or filled (output) buffer in
the driver’s incoming queue. The semantics depend on the selected I/O method.

To enqueue a buffer applications set the index field. Valid index numbers range from zero to
the number of buffers allocated with ioctl DMX_REQBUFS (struct dmx_requestbuffers count)
minus one. The contents of the struct dmx_buffer returned by a ioctl DMX_QUERYBUF ioctl
will do as well.

When DMX_QBUF is called with a pointer to this structure, it locks the memory pages of the
buffer in physical memory, so they cannot be swapped out to disk. Buffers remain locked until
dequeued, until the device is closed.

Applications call the DMX_DQBUF ioctl to dequeue a filled (capturing) buffer from the driver’s
outgoing queue. They just set the index field with the buffer ID to be queued. When DMX_DQBUF
is called with a pointer to struct dmx_buffer, the driver fills the remaining fields or returns an
error code.

1414 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

By default DMX_DQBUF blocks when no buffer is in the outgoing queue. When the O_NONBLOCK
flag was given to the open() function, DMX_DQBUF returns immediately with an EAGAIN error
code when no buffer is available.

The struct dmx_buffer structure is specified in Buffers.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EAGAIN Non-blocking I/O has been selected using O_NONBLOCK and no buffer was in the out-
going queue.

EINVAL The index is out of bounds, or no buffers have been allocated yet.
EIO DMX_DQBUF failed due to an internal error. Can also indicate temporary problems like signal

loss or CRC errors.

3.3.4 Digital TV CA Device

The Digital TV CA device controls the conditional access hardware. It can be accessed through
/dev/dvb/adapter?/ca?. Data types and ioctl definitions can be accessed by including linux/
dvb/ca.h in your application.

Note: There are three ioctls at this API that aren’t documented: CA_GET_MSG,
CA_SEND_MSG and CA_SET_DESCR. Documentation for them are welcome.

3.3.4.1 CA Data Types

struct ca_slot_info
CA slot interface types and info.

Definition

struct ca_slot_info {
int num;
int type;

#define CA_CI 1;
#define CA_CI_LINK 2;
#define CA_CI_PHYS 4;
#define CA_DESCR 8;
#define CA_SC 128;
unsigned int flags;

#define CA_CI_MODULE_PRESENT 1;
#define CA_CI_MODULE_READY 2;
};

Members
num slot number.

type slot type.

3.3. Part II - Digital TV API 1415

Linux Media Documentation

flags flags applicable to the slot.

Description
This struct stores the CA slot information.

type can be:
• CA_CI - CI high level interface;

• CA_CI_LINK - CI link layer level interface;

• CA_CI_PHYS - CI physical layer level interface;

• CA_DESCR - built-in descrambler;

• CA_SC -simple smart card interface.

flags can be:
• CA_CI_MODULE_PRESENT - module (or card) inserted;

• CA_CI_MODULE_READY - module is ready for usage.

struct ca_descr_info
descrambler types and info.

Definition

struct ca_descr_info {
unsigned int num;
unsigned int type;

#define CA_ECD 1;
#define CA_NDS 2;
#define CA_DSS 4;
};

Members
num number of available descramblers (keys).

type type of supported scrambling system.

Description
Identifies the number of descramblers and their type.

type can be:
• CA_ECD - European Common Descrambler (ECD) hardware;

• CA_NDS - Videoguard (NDS) hardware;

• CA_DSS - Distributed Sample Scrambling (DSS) hardware.

struct ca_caps
CA slot interface capabilities.

Definition

struct ca_caps {
unsigned int slot_num;
unsigned int slot_type;
unsigned int descr_num;

1416 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

unsigned int descr_type;
};

Members
slot_num total number of CA card and module slots.

slot_type bitmap with all supported types as defined at struct ca_slot_info (e. g. CA_CI,
CA_CI_LINK, etc).

descr_num total number of descrambler slots (keys)

descr_type bitmap with all supported types as defined at struct ca_descr_info (e. g.
CA_ECD, CA_NDS, etc).

struct ca_msg
a message to/from a CI-CAM

Definition

struct ca_msg {
unsigned int index;
unsigned int type;
unsigned int length;
unsigned char msg[256];

};

Members
index unused

type unused

length length of the message

msg message

Description
This struct carries a message to be send/received from a CI CA module.

struct ca_descr
CA descrambler control words info

Definition

struct ca_descr {
unsigned int index;
unsigned int parity;
unsigned char cw[8];

};

Members
index CA Descrambler slot

parity control words parity, where 0 means even and 1 means odd

cw CA Descrambler control words

3.3. Part II - Digital TV API 1417

Linux Media Documentation

3.3.4.2 CA Function Calls

Digital TV CA open()

Name

Digital TV CA open()

Synopsis

int open(const char *name, int flags)

Arguments

name Name of specific Digital TV CA device.

flags A bit-wise OR of the following flags:

O_RDONLY read-only access
O_RDWR read/write access
O_NONBLOCK open in non-blocking mode (blocking mode is the default)

Description

This system call opens a named ca device (e.g. /dev/dvb/adapter?/ca?) for subsequent use.

When an open() call has succeeded, the device will be ready for use. The significance of block-
ing or non-blocking mode is described in the documentation for functions where there is a
difference. It does not affect the semantics of the open() call itself. A device opened in block-
ing mode can later be put into non-blocking mode (and vice versa) using the F_SETFL command
of the fcntl system call. This is a standard system call, documented in the Linux manual page
for fcntl. Only one user can open the CA Device in O_RDWRmode. All other attempts to open the
device in this mode will fail, and an error code will be returned.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

1418 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Digital TV CA close()

Name

Digital TV CA close()

Synopsis

int close(int fd)

Arguments

fd File descriptor returned by a previous call to open().

Description

This system call closes a previously opened CA device.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

CA_RESET

Name

CA_RESET

Synopsis

CA_RESET

int ioctl(fd, CA_RESET)

3.3. Part II - Digital TV API 1419

Linux Media Documentation

Arguments

fd File descriptor returned by a previous call to open().

Description

Puts the Conditional Access hardware on its initial state. It should be called before start using
the CA hardware.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

CA_GET_CAP

Name

CA_GET_CAP

Synopsis

CA_GET_CAP

int ioctl(fd, CA_GET_CAP, struct ca_caps *caps)

Arguments

fd File descriptor returned by a previous call to open().

caps Pointer to struct ca_caps.

Description

Queries the Kernel for information about the available CA and descrambler slots, and their
types.

1420 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned and ca_caps is filled.

On error, -1 is returned and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

CA_GET_SLOT_INFO

Name

CA_GET_SLOT_INFO

Synopsis

CA_GET_SLOT_INFO

int ioctl(fd, CA_GET_SLOT_INFO, struct ca_slot_info *info)

Arguments

fd File descriptor returned by a previous call to open().

info Pointer to struct ca_slot_info.

Description

Returns information about a CA slot identified by ca_slot_info.slot_num.

Return Value

On success 0 is returned, and ca_slot_info is filled.

On error -1 is returned, and the errno variable is set appropriately.

ENODEV the slot is not available.

The generic error codes are described at the Generic Error Codes chapter.

3.3. Part II - Digital TV API 1421

Linux Media Documentation

CA_GET_DESCR_INFO

Name

CA_GET_DESCR_INFO

Synopsis

CA_GET_DESCR_INFO

int ioctl(fd, CA_GET_DESCR_INFO, struct ca_descr_info *desc)

Arguments

fd File descriptor returned by a previous call to open().

desc Pointer to struct ca_descr_info.

Description

Returns information about all descrambler slots.

Return Value

On success 0 is returned, and ca_descr_info is filled.

On error -1 is returned, and the errno variable is set appropriately. The generic error codes
are described at the Generic Error Codes chapter.

CA_GET_MSG

Name

CA_GET_MSG

Synopsis

CA_GET_MSG

int ioctl(fd, CA_GET_MSG, struct ca_msg *msg)

1422 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Arguments

fd File descriptor returned by a previous call to open().

msg Pointer to struct ca_msg.

Description

Receives a message via a CI CA module.

Note: Please notice that, on most drivers, this is done by reading from the /dev/adapter?/ca?
device node.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

CA_SEND_MSG

Name

CA_SEND_MSG

Synopsis

CA_SEND_MSG

int ioctl(fd, CA_SEND_MSG, struct ca_msg *msg)

Arguments

fd File descriptor returned by a previous call to open().

msg Pointer to struct ca_msg.

3.3. Part II - Digital TV API 1423

Linux Media Documentation

Description

Sends a message via a CI CA module.

Note: Please notice that, on most drivers, this is done by writing to the /dev/adapter?/ca?
device node.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

CA_SET_DESCR

Name

CA_SET_DESCR

Synopsis

CA_SET_DESCR

int ioctl(fd, CA_SET_DESCR, struct ca_descr *desc)

Arguments

fd File descriptor returned by a previous call to open().

msg Pointer to struct ca_descr.

Description

CA_SET_DESCR is used for feeding descrambler CA slots with descrambling keys (referred as
control words).

1424 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

3.3.4.3 The High level CI API

Note: This documentation is outdated.

This document describes the high level CI API as in accordance to the Linux DVB API.

With the High Level CI approach any new card with almost any random architecture can be
implemented with this style, the definitions inside the switch statement can be easily adapted
for any card, thereby eliminating the need for any additional ioctls.

The disadvantage is that the driver/hardware has to manage the rest. For the application pro-
grammer it would be as simple as sending/receiving an array to/from the CI ioctls as defined in
the Linux DVB API. No changes have been made in the API to accommodate this feature.

Why the need for another CI interface?

This is one of the most commonly asked question. Well a nice question. Strictly speaking this
is not a new interface.

The CI interface is defined in the DVB API in ca.h as:

typedef struct ca_slot_info {
int num; /* slot number */

int type; /* CA interface this slot supports */
#define CA_CI 1 /* CI high level interface */
#define CA_CI_LINK 2 /* CI link layer level interface */
#define CA_CI_PHYS 4 /* CI physical layer level interface */
#define CA_DESCR 8 /* built-in descrambler */
#define CA_SC 128 /* simple smart card interface */

unsigned int flags;
#define CA_CI_MODULE_PRESENT 1 /* module (or card) inserted */
#define CA_CI_MODULE_READY 2
} ca_slot_info_t;

This CI interface follows the CI high level interface, which is not implemented by most applica-
tions. Hence this area is revisited.

This CI interface is quite different in the case that it tries to accommodate all other CI based
devices, that fall into the other categories.

This means that this CI interface handles the EN50221 style tags in the Application layer only
and no session management is taken care of by the application. The driver/hardware will take
care of all that.

3.3. Part II - Digital TV API 1425

Linux Media Documentation

This interface is purely an EN50221 interface exchanging APDU’s. This means that no session
management, link layer or a transport layer do exist in this case in the application to driver
communication. It is as simple as that. The driver/hardware has to take care of that.

With this High Level CI interface, the interface can be defined with the regular ioctls.

All these ioctls are also valid for the High level CI interface

#define CA_RESET _IO(‘o’, 128) #define CA_GET_CAP _IOR(‘o’, 129, ca_caps_t) #define
CA_GET_SLOT_INFO _IOR(‘o’, 130, ca_slot_info_t) #define CA_GET_DESCR_INFO _IOR(‘o’,
131, ca_descr_info_t) #define CA_GET_MSG _IOR(‘o’, 132, ca_msg_t) #define CA_SEND_MSG
_IOW(‘o’, 133, ca_msg_t) #define CA_SET_DESCR _IOW(‘o’, 134, ca_descr_t)

On querying the device, the device yields information thus:

CA_GET_SLOT_INFO

Command = [info]
APP: Number=[1]
APP: Type=[1]
APP: flags=[1]
APP: CI High level interface
APP: CA/CI Module Present

CA_GET_CAP

Command = [caps]
APP: Slots=[1]
APP: Type=[1]
APP: Descrambler keys=[16]
APP: Type=[1]

CA_SEND_MSG

Descriptors(Program Level)=[09 06 06 04 05 50 ff f1]
Found CA descriptor @ program level

(20) ES type=[2] ES pid=[201] ES length =[0 (0x0)]
(25) ES type=[4] ES pid=[301] ES length =[0 (0x0)]
ca_message length is 25 (0x19) bytes
EN50221 CA MSG=[9f 80 32 19 03 01 2d d1 f0 08 01 09 06 06 04 05 50 ff f1 02 e0 c9 00␣
↪→00 04 e1 2d 00 00]

Not all ioctl’s are implemented in the driver from the API, the other features of the hardware that
cannot be implemented by the API are achieved using the CA_GET_MSG and CA_SEND_MSG
ioctls. An EN50221 style wrapper is used to exchange the data to maintain compatibility with
other hardware.

/* a message to/from a CI-CAM */
typedef struct ca_msg {

unsigned int index;
unsigned int type;
unsigned int length;
unsigned char msg[256];

} ca_msg_t;

The flow of data can be described thus,

1426 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

App (User)

parse

|
|
v

en50221 APDU (package)

| | | High Level CI driver
| | |
| v |
| en50221 APDU (unpackage) |
| | |
| | |
| v |
| sanity checks |
| | |
| | |
| v |
do (H/W dep)

| Hardware
|
v

The High Level CI interface uses the EN50221 DVB standard, following a standard ensures
futureproofness.

3.3.5 Digital TV Network API

The Digital TV net device controls the mapping of data packages that are part of a transport
stream to be mapped into a virtual network interface, visible through the standard Linux net-
work protocol stack.

Currently, two encapsulations are supported:

• Multi Protocol Encapsulation (MPE)

• Ultra Lightweight Encapsulation (ULE)

In order to create the Linux virtual network interfaces, an application needs to tell to the Kernel
what are the PIDs and the encapsulation types that are present on the transport stream. This
is done through /dev/dvb/adapter?/net? device node. The data will be available via virtual
dvb?_? network interfaces, and will be controlled/routed via the standard ip tools (like ip, route,
netstat, ifconfig, etc).

Data types and ioctl definitions are defined via linux/dvb/net.h header.

3.3. Part II - Digital TV API 1427

http://en.wikipedia.org/wiki/Multiprotocol_Encapsulation
http://en.wikipedia.org/wiki/Unidirectional_Lightweight_Encapsulation

Linux Media Documentation

3.3.5.1 Digital TV net Function Calls

Net Data Types

struct dvb_net_if
describes a DVB network interface

Definition

struct dvb_net_if {
__u16 pid;
__u16 if_num;
__u8 feedtype;

#define DVB_NET_FEEDTYPE_MPE 0 ;
#define DVB_NET_FEEDTYPE_ULE 1 ;
};

Members
pid Packet ID (PID) of the MPEG-TS that contains data

if_num number of the Digital TV interface.

feedtype Encapsulation type of the feed.

Description
A MPEG-TS stream may contain packet IDs with IP packages on it. This struct describes it, and
the type of encoding.

feedtype can be:
• DVB_NET_FEEDTYPE_MPE for MPE encoding

• DVB_NET_FEEDTYPE_ULE for ULE encoding.

ioctl NET_ADD_IF

Name

NET_ADD_IF - Creates a new network interface for a given Packet ID.

Synopsis

NET_ADD_IF

int ioctl(int fd, NET_ADD_IF, struct dvb_net_if *net_if)

1428 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Arguments

fd File descriptor returned by open().

net_if pointer to struct dvb_net_if

Description

The NET_ADD_IF ioctl system call selects the Packet ID (PID) that contains a TCP/IP traffic, the
type of encapsulation to be used (MPE or ULE) and the interface number for the new interface
to be created. When the system call successfully returns, a new virtual network interface is
created.

The struct dvb_net_if::ifnum field will be filled with the number of the created interface.

Return Value

On success 0 is returned, and ca_slot_info is filled.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

ioctl NET_REMOVE_IF

Name

NET_REMOVE_IF - Removes a network interface.

Synopsis

NET_REMOVE_IF

int ioctl(int fd, NET_REMOVE_IF, int ifnum)

Arguments

fd File descriptor returned by open().

net_if number of the interface to be removed

3.3. Part II - Digital TV API 1429

Linux Media Documentation

Description

The NET_REMOVE_IF ioctl deletes an interface previously created via NET_ADD_IF.

Return Value

On success 0 is returned, and ca_slot_info is filled.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

ioctl NET_GET_IF

Name

NET_GET_IF - Read the configuration data of an interface created via - NET_ADD_IF.

Synopsis

NET_GET_IF

int ioctl(int fd, NET_GET_IF, struct dvb_net_if *net_if)

Arguments

fd File descriptor returned by open().

net_if pointer to struct dvb_net_if

Description

The NET_GET_IF ioctl uses the interface number given by the struct dvb_net_if::ifnum field
and fills the content of struct dvb_net_if with the packet ID and encapsulation type used on
such interface. If the interface was not created yet with NET_ADD_IF, it will return -1 and fill
the errno with EINVAL error code.

Return Value

On success 0 is returned, and ca_slot_info is filled.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

1430 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

3.3.6 Digital TV Deprecated APIs

The APIs described here should not be used on new drivers or applications.
The DVBv3 frontend API has issues with new delivery systems, including DVB-S2, DVB-T2,
ISDB, etc.

Attention: The APIs described here doesn’t necessarily reflect the current code implemen-
tation, as this section of the document was written for DVB version 1, while the code reflects
DVB version 3 implementation.

3.3.6.1 Digital TV Frontend legacy API (a. k. a. DVBv3)

The usage of this API is deprecated, as it doesn’t support all digital TV standards, doesn’t
provide good statistics measurements and provides incomplete information. This is kept only
to support legacy applications.

Frontend Legacy Data Types

Frontend type

For historical reasons, frontend types are named by the type of modulation used in transmission.
The fontend types are given by fe_type_t type, defined as:

fe_type

Table 250: Frontend types
fe_type Description DTV_DELIVERY_SYSTEM equivalent type

FE_QPSK
For DVB-S
standard

SYS_DVBS

FE_QAM
For DVB-C
annex A
standard

SYS_DVBC_ANNEX_A

FE_OFDM
For DVB-T
standard

SYS_DVBT

FE_ATSC
For ATSC
standard
(terres-
trial) or
for DVB-
C Annex
B (cable)
used in US.

SYS_ATSC (terrestrial) or
SYS_DVBC_ANNEX_B (cable)

Newer formats like DVB-S2, ISDB-T, ISDB-S and DVB-T2 are not described at the above, as
they’re supported via the new FE_GET_PROPERTY/FE_GET_SET_PROPERTY ioctl’s, using the
DTV_DELIVERY_SYSTEM parameter.

3.3. Part II - Digital TV API 1431

Linux Media Documentation

In the old days, struct dvb_frontend_info used to contain fe_type_t field to indicate the de-
livery systems, filled with either FE_QPSK, FE_QAM, FE_OFDM or FE_ATSC. While this is still
filled to keep backward compatibility, the usage of this field is deprecated, as it can report
just one delivery system, but some devices support multiple delivery systems. Please use
DTV_ENUM_DELSYS instead.

On devices that support multiple delivery systems, struct dvb_frontend_info::fe_type_t is
filled with the currently standard, as selected by the last call to FE_SET_PROPERTY using the
DTV_DELIVERY_SYSTEM property.

Frontend bandwidth

fe_bandwidth

Table 251: enum fe_bandwidth
ID Description

BANDWIDTH_AUTO
Autodetect bandwidth (if supported)

BANDWIDTH_1_712_MHZ
1.712 MHz

BANDWIDTH_5_MHZ
5 MHz

BANDWIDTH_6_MHZ
6 MHz

BANDWIDTH_7_MHZ
7 MHz

BANDWIDTH_8_MHZ
8 MHz

BANDWIDTH_10_MHZ
10 MHz

dvb_frontend_parameters

frontend parameters

The kind of parameters passed to the frontend device for tuning depend on the kind of hardware
you are using.

The struct dvb_frontend_parameters uses a union with specific per-system parameters. How-
ever, as newer delivery systems required more data, the structure size weren’t enough to fit,
and just extending its size would break the existing applications. So, those parameters were re-
placed by the usage of FE_GET_PROPERTY/FE_SET_PROPERTY ioctl’s. The new API is flexible
enough to add new parameters to existing delivery systems, and to add newer delivery systems.

So, newer applications should use FE_GET_PROPERTY/FE_SET_PROPERTY instead, in order
to be able to support the newer System Delivery like DVB-S2, DVB-T2, DVB-C2, ISDB, etc.

All kinds of parameters are combined as a union in the dvb_frontend_parameters structure:

struct dvb_frontend_parameters {
uint32_t frequency; /* (absolute) frequency in Hz for QAM/OFDM */

/* intermediate frequency in kHz for QPSK */
fe_spectral_inversion_t inversion;
union {

1432 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

struct dvb_qpsk_parameters qpsk;
struct dvb_qam_parameters qam;
struct dvb_ofdm_parameters ofdm;
struct dvb_vsb_parameters vsb;

} u;
};

In the case of QPSK frontends the frequency field specifies the intermediate frequency, i.e.
the offset which is effectively added to the local oscillator frequency (LOF) of the LNB. The
intermediate frequency has to be specified in units of kHz. For QAM and OFDM frontends the
frequency specifies the absolute frequency and is given in Hz.

dvb_qpsk_parameters

QPSK parameters

For satellite QPSK frontends you have to use the dvb_qpsk_parameters structure:

struct dvb_qpsk_parameters {
uint32_t symbol_rate; /* symbol rate in Symbols per second */
fe_code_rate_t fec_inner; /* forward error correction (see above) */

};

dvb_qam_parameters

QAM parameters

for cable QAM frontend you use the dvb_qam_parameters structure:

struct dvb_qam_parameters {
uint32_t symbol_rate; /* symbol rate in Symbols per second */
fe_code_rate_t fec_inner; /* forward error correction (see above) */
fe_modulation_t modulation; /* modulation type (see above) */

};

dvb_vsb_parameters

VSB parameters

ATSC frontends are supported by the dvb_vsb_parameters structure:

struct dvb_vsb_parameters {
fe_modulation_t modulation; /* modulation type (see above) */

};

dvb_ofdm_parameters

3.3. Part II - Digital TV API 1433

Linux Media Documentation

OFDM parameters

DVB-T frontends are supported by the dvb_ofdm_parameters structure:

struct dvb_ofdm_parameters {
fe_bandwidth_t bandwidth;
fe_code_rate_t code_rate_HP; /* high priority stream code rate */
fe_code_rate_t code_rate_LP; /* low priority stream code rate */
fe_modulation_t constellation; /* modulation type (see above) */
fe_transmit_mode_t transmission_mode;
fe_guard_interval_t guard_interval;
fe_hierarchy_t hierarchy_information;

};

dvb_frontend_event

frontend events

struct dvb_frontend_event {
fe_status_t status;
struct dvb_frontend_parameters parameters;

};

Frontend Legacy Function Calls

Those functions are defined at DVB version 3. The support is kept in the kernel due to compat-
ibility issues only. Their usage is strongly not recommended

FE_READ_BER

Name

FE_READ_BER

Attention: This ioctl is deprecated.

Synopsis

FE_READ_BER

int ioctl(int fd, FE_READ_BER, uint32_t *ber)

1434 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Arguments

fd File descriptor returned by open().

ber The bit error rate is stored into *ber.

Description

This ioctl call returns the bit error rate for the signal currently received/demodulated by the
front-end. For this command, read-only access to the device is sufficient.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

FE_READ_SNR

Name

FE_READ_SNR

Attention: This ioctl is deprecated.

Synopsis

FE_READ_SNR

int ioctl(int fd, FE_READ_SNR, int16_t *snr)

Arguments

fd File descriptor returned by open().

snr The signal-to-noise ratio is stored into *snr.

3.3. Part II - Digital TV API 1435

Linux Media Documentation

Description

This ioctl call returns the signal-to-noise ratio for the signal currently received by the front-end.
For this command, read-only access to the device is sufficient.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

FE_READ_SIGNAL_STRENGTH

Name

FE_READ_SIGNAL_STRENGTH

Attention: This ioctl is deprecated.

Synopsis

FE_READ_SIGNAL_STRENGTH

int ioctl(int fd, FE_READ_SIGNAL_STRENGTH, uint16_t *strength)

Arguments

fd File descriptor returned by open().

strength The signal strength value is stored into *strength.

Description

This ioctl call returns the signal strength value for the signal currently received by the front-end.
For this command, read-only access to the device is sufficient.

1436 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

FE_READ_UNCORRECTED_BLOCKS

Name

FE_READ_UNCORRECTED_BLOCKS

Attention: This ioctl is deprecated.

Synopsis

FE_READ_UNCORRECTED_BLOCKS

int ioctl(int fd, FE_READ_UNCORRECTED_BLOCKS, uint32_t *ublocks)

Arguments

fd File descriptor returned by open().

ublocks The total number of uncorrected blocks seen by the driver so far.

Description

This ioctl call returns the number of uncorrected blocks detected by the device driver during
its lifetime. For meaningful measurements, the increment in block count during a specific time
interval should be calculated. For this command, read-only access to the device is sufficient.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

3.3. Part II - Digital TV API 1437

Linux Media Documentation

FE_SET_FRONTEND

Attention: This ioctl is deprecated.

Name

FE_SET_FRONTEND

Synopsis

FE_SET_FRONTEND

int ioctl(int fd, FE_SET_FRONTEND, struct dvb_frontend_parameters *p)

Arguments

fd File descriptor returned by open().

p Points to parameters for tuning operation.

Description

This ioctl call starts a tuning operation using specified parameters. The result of this call will
be successful if the parameters were valid and the tuning could be initiated. The result of the
tuning operation in itself, however, will arrive asynchronously as an event (see documentation
for FE_GET_EVENT and FrontendEvent.) If a new FE_SET_FRONTEND operation is initiated
before the previous one was completed, the previous operation will be aborted in favor of the
new one. This command requires read/write access to the device.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EINVAL Maximum supported symbol rate reached.

Generic error codes are described at the Generic Error Codes chapter.

1438 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

FE_GET_FRONTEND

Name

FE_GET_FRONTEND

Attention: This ioctl is deprecated.

Synopsis

FE_GET_FRONTEND

int ioctl(int fd, FE_GET_FRONTEND, struct dvb_frontend_parameters *p)

Arguments

fd File descriptor returned by open().

p Points to parameters for tuning operation.

Description

This ioctl call queries the currently effective frontend parameters. For this command, read-only
access to the device is sufficient.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EINVAL Maximum supported symbol rate reached.

Generic error codes are described at the Generic Error Codes chapter.

FE_GET_EVENT

Name

FE_GET_EVENT

Attention: This ioctl is deprecated.

3.3. Part II - Digital TV API 1439

Linux Media Documentation

Synopsis

FE_GET_EVENT

int ioctl(int fd, FE_GET_EVENT, struct dvb_frontend_event *ev)

Arguments

fd File descriptor returned by open().

ev Points to the location where the event, if any, is to be stored.

Description

This ioctl call returns a frontend event if available. If an event is not available, the behavior
depends on whether the device is in blocking or non-blocking mode. In the latter case, the call
fails immediately with errno set to EWOULDBLOCK. In the former case, the call blocks until an
event becomes available.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EWOULDBLOCK There is no event pending, and the device is in non-blocking mode.
EOVERFLOW Overflow in event queue - one or more events were lost.

Generic error codes are described at the Generic Error Codes chapter.

FE_DISHNETWORK_SEND_LEGACY_CMD

Name

FE_DISHNETWORK_SEND_LEGACY_CMD

Synopsis

FE_DISHNETWORK_SEND_LEGACY_CMD

int ioctl(int fd, FE_DISHNETWORK_SEND_LEGACY_CMD, unsigned long cmd)

1440 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Arguments

fd File descriptor returned by open().

cmd Sends the specified raw cmd to the dish via DISEqC.

Description

Warning: This is a very obscure legacy command, used only at stv0299 driver. Should not
be used on newer drivers.

It provides a non-standard method for selecting Diseqc voltage on the frontend, for Dish Net-
work legacy switches.

As support for this ioctl were added in 2004, this means that such dishes were already legacy
in 2004.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

3.3.7 Examples

In the past, we used to have a set of examples here. However, those examples got out of date
and doesn’t even compile nowadays.

Also, nowadays, the best is to use the libdvbv5 DVB API nowadays, with is fully documented.

Please refer to the libdvbv5 for updated/recommended examples.

3.3.8 Digital TV uAPI header files

3.3.8.1 Digital TV uAPI headers

frontend.h

/* SPDX-License-Identifier: LGPL-2.1+ WITH Linux-syscall-note */
/*
* frontend.h
*
* Copyright (C) 2000 Marcus Metzler <marcus@convergence.de>
* Ralph Metzler <ralph@convergence.de>
* Holger Waechtler <holger@convergence.de>
* Andre Draszik <ad@convergence.de>
* for convergence integrated media GmbH

3.3. Part II - Digital TV API 1441

https://linuxtv.org/docs/libdvbv5/index.html
mailto:marcus@convergence.de
mailto:ralph@convergence.de
mailto:holger@convergence.de
mailto:ad@convergence.de

Linux Media Documentation

*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*/

#ifndef _DVBFRONTEND_H_
#define _DVBFRONTEND_H_

#include <linux/types.h>

/**
* enum fe_caps - Frontend capabilities
*
* @FE_IS_STUPID: There's something wrong at the
* frontend, and it can't report its
* capabilities.
* @FE_CAN_INVERSION_AUTO: Can auto-detect frequency spectral
* band inversion
* @FE_CAN_FEC_1_2: Supports FEC 1/2
* @FE_CAN_FEC_2_3: Supports FEC 2/3
* @FE_CAN_FEC_3_4: Supports FEC 3/4
* @FE_CAN_FEC_4_5: Supports FEC 4/5
* @FE_CAN_FEC_5_6: Supports FEC 5/6
* @FE_CAN_FEC_6_7: Supports FEC 6/7
* @FE_CAN_FEC_7_8: Supports FEC 7/8
* @FE_CAN_FEC_8_9: Supports FEC 8/9
* @FE_CAN_FEC_AUTO: Can auto-detect FEC
* @FE_CAN_QPSK: Supports QPSK modulation
* @FE_CAN_QAM_16: Supports 16-QAM modulation
* @FE_CAN_QAM_32: Supports 32-QAM modulation
* @FE_CAN_QAM_64: Supports 64-QAM modulation
* @FE_CAN_QAM_128: Supports 128-QAM modulation
* @FE_CAN_QAM_256: Supports 256-QAM modulation
* @FE_CAN_QAM_AUTO: Can auto-detect QAM modulation
* @FE_CAN_TRANSMISSION_MODE_AUTO: Can auto-detect transmission mode
* @FE_CAN_BANDWIDTH_AUTO: Can auto-detect bandwidth
* @FE_CAN_GUARD_INTERVAL_AUTO: Can auto-detect guard interval
* @FE_CAN_HIERARCHY_AUTO: Can auto-detect hierarchy
* @FE_CAN_8VSB: Supports 8-VSB modulation

1442 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

* @FE_CAN_16VSB: Supporta 16-VSB modulation
* @FE_HAS_EXTENDED_CAPS: Unused
* @FE_CAN_MULTISTREAM: Supports multistream filtering
* @FE_CAN_TURBO_FEC: Supports "turbo FEC" modulation
* @FE_CAN_2G_MODULATION: Supports "2nd generation" modulation,
* e. g. DVB-S2, DVB-T2, DVB-C2
* @FE_NEEDS_BENDING: Unused
* @FE_CAN_RECOVER: Can recover from a cable unplug
* automatically
* @FE_CAN_MUTE_TS: Can stop spurious TS data output
*/

enum fe_caps {
FE_IS_STUPID = 0,
FE_CAN_INVERSION_AUTO = 0x1,
FE_CAN_FEC_1_2 = 0x2,
FE_CAN_FEC_2_3 = 0x4,
FE_CAN_FEC_3_4 = 0x8,
FE_CAN_FEC_4_5 = 0x10,
FE_CAN_FEC_5_6 = 0x20,
FE_CAN_FEC_6_7 = 0x40,
FE_CAN_FEC_7_8 = 0x80,
FE_CAN_FEC_8_9 = 0x100,
FE_CAN_FEC_AUTO = 0x200,
FE_CAN_QPSK = 0x400,
FE_CAN_QAM_16 = 0x800,
FE_CAN_QAM_32 = 0x1000,
FE_CAN_QAM_64 = 0x2000,
FE_CAN_QAM_128 = 0x4000,
FE_CAN_QAM_256 = 0x8000,
FE_CAN_QAM_AUTO = 0x10000,
FE_CAN_TRANSMISSION_MODE_AUTO = 0x20000,
FE_CAN_BANDWIDTH_AUTO = 0x40000,
FE_CAN_GUARD_INTERVAL_AUTO = 0x80000,
FE_CAN_HIERARCHY_AUTO = 0x100000,
FE_CAN_8VSB = 0x200000,
FE_CAN_16VSB = 0x400000,
FE_HAS_EXTENDED_CAPS = 0x800000,
FE_CAN_MULTISTREAM = 0x4000000,
FE_CAN_TURBO_FEC = 0x8000000,
FE_CAN_2G_MODULATION = 0x10000000,
FE_NEEDS_BENDING = 0x20000000,
FE_CAN_RECOVER = 0x40000000,
FE_CAN_MUTE_TS = 0x80000000

};

/*
* DEPRECATED: Should be kept just due to backward compatibility.
*/

enum fe_type {
FE_QPSK,
FE_QAM,

3.3. Part II - Digital TV API 1443

Linux Media Documentation

FE_OFDM,
FE_ATSC

};

/**
* struct dvb_frontend_info - Frontend properties and capabilities
*
* @name: Name of the frontend
* @type: ****DEPRECATED****.
* Should not be used on modern programs,
* as a frontend may have more than one type.
* In order to get the support types of a given
* frontend, use :c:type:`DTV_ENUM_DELSYS`
* instead.
* @frequency_min: Minimal frequency supported by the frontend.
* @frequency_max: Minimal frequency supported by the frontend.
* @frequency_stepsize: All frequencies are multiple of this value.
* @frequency_tolerance: Frequency tolerance.
* @symbol_rate_min: Minimal symbol rate, in bauds
* (for Cable/Satellite systems).
* @symbol_rate_max: Maximal symbol rate, in bauds
* (for Cable/Satellite systems).
* @symbol_rate_tolerance: Maximal symbol rate tolerance, in ppm
* (for Cable/Satellite systems).
* @notifier_delay: ****DEPRECATED****. Not used by any driver.
* @caps: Capabilities supported by the frontend,
* as specified in &enum fe_caps.
*
* .. note:
*
* #. The frequencies are specified in Hz for Terrestrial and Cable
* systems.
* #. The frequencies are specified in kHz for Satellite systems.
*/

struct dvb_frontend_info {
char name[128];
enum fe_type type; /* DEPRECATED. Use DTV_ENUM_DELSYS instead */
__u32 frequency_min;
__u32 frequency_max;
__u32 frequency_stepsize;
__u32 frequency_tolerance;
__u32 symbol_rate_min;
__u32 symbol_rate_max;
__u32 symbol_rate_tolerance;
__u32 notifier_delay; /* DEPRECATED */
enum fe_caps caps;

};

/**
* struct dvb_diseqc_master_cmd - DiSEqC master command
*

1444 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

* @msg:
* DiSEqC message to be sent. It contains a 3 bytes header with:
* framing + address + command, and an optional argument
* of up to 3 bytes of data.
* @msg_len:
* Length of the DiSEqC message. Valid values are 3 to 6.
*
* Check out the DiSEqC bus spec available on http://www.eutelsat.org/ for
* the possible messages that can be used.
*/

struct dvb_diseqc_master_cmd {
__u8 msg[6];
__u8 msg_len;

};

/**
* struct dvb_diseqc_slave_reply - DiSEqC received data
*
* @msg:
* DiSEqC message buffer to store a message received via DiSEqC.
* It contains one byte header with: framing and
* an optional argument of up to 3 bytes of data.
* @msg_len:
* Length of the DiSEqC message. Valid values are 0 to 4,
* where 0 means no message.
* @timeout:
* Return from ioctl after timeout ms with errorcode when
* no message was received.
*
* Check out the DiSEqC bus spec available on http://www.eutelsat.org/ for
* the possible messages that can be used.
*/

struct dvb_diseqc_slave_reply {
__u8 msg[4];
__u8 msg_len;
int timeout;

};

/**
* enum fe_sec_voltage - DC Voltage used to feed the LNBf
*
* @SEC_VOLTAGE_13: Output 13V to the LNBf
* @SEC_VOLTAGE_18: Output 18V to the LNBf
* @SEC_VOLTAGE_OFF: Don't feed the LNBf with a DC voltage
*/

enum fe_sec_voltage {
SEC_VOLTAGE_13,
SEC_VOLTAGE_18,
SEC_VOLTAGE_OFF

};

3.3. Part II - Digital TV API 1445

Linux Media Documentation

/**
* enum fe_sec_tone_mode - Type of tone to be send to the LNBf.
* @SEC_TONE_ON: Sends a 22kHz tone burst to the antenna.
* @SEC_TONE_OFF: Don't send a 22kHz tone to the antenna (except
* if the ``FE_DISEQC_*`` ioctls are called).
*/

enum fe_sec_tone_mode {
SEC_TONE_ON,
SEC_TONE_OFF

};

/**
* enum fe_sec_mini_cmd - Type of mini burst to be sent
*
* @SEC_MINI_A: Sends a mini-DiSEqC 22kHz '0' Tone Burst to select
* satellite-A
* @SEC_MINI_B: Sends a mini-DiSEqC 22kHz '1' Data Burst to select
* satellite-B
*/

enum fe_sec_mini_cmd {
SEC_MINI_A,
SEC_MINI_B

};

/**
* enum fe_status - Enumerates the possible frontend status.
* @FE_NONE: The frontend doesn't have any kind of lock.
* That's the initial frontend status
* @FE_HAS_SIGNAL: Has found something above the noise level.
* @FE_HAS_CARRIER: Has found a signal.
* @FE_HAS_VITERBI: FEC inner coding (Viterbi, LDPC or other inner code).
* is stable.
* @FE_HAS_SYNC: Synchronization bytes was found.
* @FE_HAS_LOCK: Digital TV were locked and everything is working.
* @FE_TIMEDOUT: Fo lock within the last about 2 seconds.
* @FE_REINIT: Frontend was reinitialized, application is recommended
* to reset DiSEqC, tone and parameters.
*/

enum fe_status {
FE_NONE = 0x00,
FE_HAS_SIGNAL = 0x01,
FE_HAS_CARRIER = 0x02,
FE_HAS_VITERBI = 0x04,
FE_HAS_SYNC = 0x08,
FE_HAS_LOCK = 0x10,
FE_TIMEDOUT = 0x20,
FE_REINIT = 0x40,

};

/**
* enum fe_spectral_inversion - Type of inversion band

1446 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

*
* @INVERSION_OFF: Don't do spectral band inversion.
* @INVERSION_ON: Do spectral band inversion.
* @INVERSION_AUTO: Autodetect spectral band inversion.
*
* This parameter indicates if spectral inversion should be presumed or
* not. In the automatic setting (``INVERSION_AUTO``) the hardware will try
* to figure out the correct setting by itself. If the hardware doesn't
* support, the %dvb_frontend will try to lock at the carrier first with
* inversion off. If it fails, it will try to enable inversion.
*/

enum fe_spectral_inversion {
INVERSION_OFF,
INVERSION_ON,
INVERSION_AUTO

};

/**
* enum fe_code_rate - Type of Forward Error Correction (FEC)
*
*
* @FEC_NONE: No Forward Error Correction Code
* @FEC_1_2: Forward Error Correction Code 1/2
* @FEC_2_3: Forward Error Correction Code 2/3
* @FEC_3_4: Forward Error Correction Code 3/4
* @FEC_4_5: Forward Error Correction Code 4/5
* @FEC_5_6: Forward Error Correction Code 5/6
* @FEC_6_7: Forward Error Correction Code 6/7
* @FEC_7_8: Forward Error Correction Code 7/8
* @FEC_8_9: Forward Error Correction Code 8/9
* @FEC_AUTO: Autodetect Error Correction Code
* @FEC_3_5: Forward Error Correction Code 3/5
* @FEC_9_10: Forward Error Correction Code 9/10
* @FEC_2_5: Forward Error Correction Code 2/5
*
* Please note that not all FEC types are supported by a given standard.
*/

enum fe_code_rate {
FEC_NONE = 0,
FEC_1_2,
FEC_2_3,
FEC_3_4,
FEC_4_5,
FEC_5_6,
FEC_6_7,
FEC_7_8,
FEC_8_9,
FEC_AUTO,
FEC_3_5,
FEC_9_10,
FEC_2_5,

3.3. Part II - Digital TV API 1447

Linux Media Documentation

};

/**
* enum fe_modulation - Type of modulation/constellation
* @QPSK: QPSK modulation
* @QAM_16: 16-QAM modulation
* @QAM_32: 32-QAM modulation
* @QAM_64: 64-QAM modulation
* @QAM_128: 128-QAM modulation
* @QAM_256: 256-QAM modulation
* @QAM_AUTO: Autodetect QAM modulation
* @VSB_8: 8-VSB modulation
* @VSB_16: 16-VSB modulation
* @PSK_8: 8-PSK modulation
* @APSK_16: 16-APSK modulation
* @APSK_32: 32-APSK modulation
* @DQPSK: DQPSK modulation
* @QAM_4_NR: 4-QAM-NR modulation
*
* Please note that not all modulations are supported by a given standard.
*
*/

enum fe_modulation {
QPSK,
QAM_16,
QAM_32,
QAM_64,
QAM_128,
QAM_256,
QAM_AUTO,
VSB_8,
VSB_16,
PSK_8,
APSK_16,
APSK_32,
DQPSK,
QAM_4_NR,

};

/**
* enum fe_transmit_mode - Transmission mode
*
* @TRANSMISSION_MODE_AUTO:
* Autodetect transmission mode. The hardware will try to find the
* correct FFT-size (if capable) to fill in the missing parameters.
* @TRANSMISSION_MODE_1K:
* Transmission mode 1K
* @TRANSMISSION_MODE_2K:
* Transmission mode 2K
* @TRANSMISSION_MODE_8K:
* Transmission mode 8K

1448 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

* @TRANSMISSION_MODE_4K:
* Transmission mode 4K
* @TRANSMISSION_MODE_16K:
* Transmission mode 16K
* @TRANSMISSION_MODE_32K:
* Transmission mode 32K
* @TRANSMISSION_MODE_C1:
* Single Carrier (C=1) transmission mode (DTMB only)
* @TRANSMISSION_MODE_C3780:
* Multi Carrier (C=3780) transmission mode (DTMB only)
*
* Please note that not all transmission modes are supported by a given
* standard.
*/

enum fe_transmit_mode {
TRANSMISSION_MODE_2K,
TRANSMISSION_MODE_8K,
TRANSMISSION_MODE_AUTO,
TRANSMISSION_MODE_4K,
TRANSMISSION_MODE_1K,
TRANSMISSION_MODE_16K,
TRANSMISSION_MODE_32K,
TRANSMISSION_MODE_C1,
TRANSMISSION_MODE_C3780,

};

/**
* enum fe_guard_interval - Guard interval
*
* @GUARD_INTERVAL_AUTO: Autodetect the guard interval
* @GUARD_INTERVAL_1_128: Guard interval 1/128
* @GUARD_INTERVAL_1_32: Guard interval 1/32
* @GUARD_INTERVAL_1_16: Guard interval 1/16
* @GUARD_INTERVAL_1_8: Guard interval 1/8
* @GUARD_INTERVAL_1_4: Guard interval 1/4
* @GUARD_INTERVAL_19_128: Guard interval 19/128
* @GUARD_INTERVAL_19_256: Guard interval 19/256
* @GUARD_INTERVAL_PN420: PN length 420 (1/4)
* @GUARD_INTERVAL_PN595: PN length 595 (1/6)
* @GUARD_INTERVAL_PN945: PN length 945 (1/9)
*
* Please note that not all guard intervals are supported by a given standard.
*/

enum fe_guard_interval {
GUARD_INTERVAL_1_32,
GUARD_INTERVAL_1_16,
GUARD_INTERVAL_1_8,
GUARD_INTERVAL_1_4,
GUARD_INTERVAL_AUTO,
GUARD_INTERVAL_1_128,
GUARD_INTERVAL_19_128,

3.3. Part II - Digital TV API 1449

Linux Media Documentation

GUARD_INTERVAL_19_256,
GUARD_INTERVAL_PN420,
GUARD_INTERVAL_PN595,
GUARD_INTERVAL_PN945,

};

/**
* enum fe_hierarchy - Hierarchy
* @HIERARCHY_NONE: No hierarchy
* @HIERARCHY_AUTO: Autodetect hierarchy (if supported)
* @HIERARCHY_1: Hierarchy 1
* @HIERARCHY_2: Hierarchy 2
* @HIERARCHY_4: Hierarchy 4
*
* Please note that not all hierarchy types are supported by a given standard.
*/

enum fe_hierarchy {
HIERARCHY_NONE,
HIERARCHY_1,
HIERARCHY_2,
HIERARCHY_4,
HIERARCHY_AUTO

};

/**
* enum fe_interleaving - Interleaving
* @INTERLEAVING_NONE: No interleaving.
* @INTERLEAVING_AUTO: Auto-detect interleaving.
* @INTERLEAVING_240: Interleaving of 240 symbols.
* @INTERLEAVING_720: Interleaving of 720 symbols.
*
* Please note that, currently, only DTMB uses it.
*/

enum fe_interleaving {
INTERLEAVING_NONE,
INTERLEAVING_AUTO,
INTERLEAVING_240,
INTERLEAVING_720,

};

/* DVBv5 property Commands */

#define DTV_UNDEFINED 0
#define DTV_TUNE 1
#define DTV_CLEAR 2
#define DTV_FREQUENCY 3
#define DTV_MODULATION 4
#define DTV_BANDWIDTH_HZ 5
#define DTV_INVERSION 6
#define DTV_DISEQC_MASTER 7
#define DTV_SYMBOL_RATE 8

1450 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

#define DTV_INNER_FEC 9
#define DTV_VOLTAGE 10
#define DTV_TONE 11
#define DTV_PILOT 12
#define DTV_ROLLOFF 13
#define DTV_DISEQC_SLAVE_REPLY 14

/* Basic enumeration set for querying unlimited capabilities */
#define DTV_FE_CAPABILITY_COUNT 15
#define DTV_FE_CAPABILITY 16
#define DTV_DELIVERY_SYSTEM 17

/* ISDB-T and ISDB-Tsb */
#define DTV_ISDBT_PARTIAL_RECEPTION 18
#define DTV_ISDBT_SOUND_BROADCASTING 19

#define DTV_ISDBT_SB_SUBCHANNEL_ID 20
#define DTV_ISDBT_SB_SEGMENT_IDX 21
#define DTV_ISDBT_SB_SEGMENT_COUNT 22

#define DTV_ISDBT_LAYERA_FEC 23
#define DTV_ISDBT_LAYERA_MODULATION 24
#define DTV_ISDBT_LAYERA_SEGMENT_COUNT 25
#define DTV_ISDBT_LAYERA_TIME_INTERLEAVING 26

#define DTV_ISDBT_LAYERB_FEC 27
#define DTV_ISDBT_LAYERB_MODULATION 28
#define DTV_ISDBT_LAYERB_SEGMENT_COUNT 29
#define DTV_ISDBT_LAYERB_TIME_INTERLEAVING 30

#define DTV_ISDBT_LAYERC_FEC 31
#define DTV_ISDBT_LAYERC_MODULATION 32
#define DTV_ISDBT_LAYERC_SEGMENT_COUNT 33
#define DTV_ISDBT_LAYERC_TIME_INTERLEAVING 34

#define DTV_API_VERSION 35

#define DTV_CODE_RATE_HP 36
#define DTV_CODE_RATE_LP 37
#define DTV_GUARD_INTERVAL 38
#define DTV_TRANSMISSION_MODE 39
#define DTV_HIERARCHY 40

#define DTV_ISDBT_LAYER_ENABLED 41

#define DTV_STREAM_ID 42
#define DTV_ISDBS_TS_ID_LEGACY DTV_STREAM_ID
#define DTV_DVBT2_PLP_ID_LEGACY 43

#define DTV_ENUM_DELSYS 44

3.3. Part II - Digital TV API 1451

Linux Media Documentation

/* ATSC-MH */
#define DTV_ATSCMH_FIC_VER 45
#define DTV_ATSCMH_PARADE_ID 46
#define DTV_ATSCMH_NOG 47
#define DTV_ATSCMH_TNOG 48
#define DTV_ATSCMH_SGN 49
#define DTV_ATSCMH_PRC 50
#define DTV_ATSCMH_RS_FRAME_MODE 51
#define DTV_ATSCMH_RS_FRAME_ENSEMBLE 52
#define DTV_ATSCMH_RS_CODE_MODE_PRI 53
#define DTV_ATSCMH_RS_CODE_MODE_SEC 54
#define DTV_ATSCMH_SCCC_BLOCK_MODE 55
#define DTV_ATSCMH_SCCC_CODE_MODE_A 56
#define DTV_ATSCMH_SCCC_CODE_MODE_B 57
#define DTV_ATSCMH_SCCC_CODE_MODE_C 58
#define DTV_ATSCMH_SCCC_CODE_MODE_D 59

#define DTV_INTERLEAVING 60
#define DTV_LNA 61

/* Quality parameters */
#define DTV_STAT_SIGNAL_STRENGTH 62
#define DTV_STAT_CNR 63
#define DTV_STAT_PRE_ERROR_BIT_COUNT 64
#define DTV_STAT_PRE_TOTAL_BIT_COUNT 65
#define DTV_STAT_POST_ERROR_BIT_COUNT 66
#define DTV_STAT_POST_TOTAL_BIT_COUNT 67
#define DTV_STAT_ERROR_BLOCK_COUNT 68
#define DTV_STAT_TOTAL_BLOCK_COUNT 69

/* Physical layer scrambling */
#define DTV_SCRAMBLING_SEQUENCE_INDEX 70

#define DTV_MAX_COMMAND DTV_SCRAMBLING_SEQUENCE_INDEX

/**
* enum fe_pilot - Type of pilot tone
*
* @PILOT_ON: Pilot tones enabled
* @PILOT_OFF: Pilot tones disabled
* @PILOT_AUTO: Autodetect pilot tones
*/

enum fe_pilot {
PILOT_ON,
PILOT_OFF,
PILOT_AUTO,

};

/**
* enum fe_rolloff - Rolloff factor
* @ROLLOFF_35: Roloff factor: α=35%

1452 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

* @ROLLOFF_20: Roloff factor: α=20%
* @ROLLOFF_25: Roloff factor: α=25%
* @ROLLOFF_AUTO: Auto-detect the roloff factor.
*
* .. note:
*
* Roloff factor of 35% is implied on DVB-S. On DVB-S2, it is default.
*/

enum fe_rolloff {
ROLLOFF_35,
ROLLOFF_20,
ROLLOFF_25,
ROLLOFF_AUTO,

};

/**
* enum fe_delivery_system - Type of the delivery system
*
* @SYS_UNDEFINED:
* Undefined standard. Generally, indicates an error
* @SYS_DVBC_ANNEX_A:
* Cable TV: DVB-C following ITU-T J.83 Annex A spec
* @SYS_DVBC_ANNEX_B:
* Cable TV: DVB-C following ITU-T J.83 Annex B spec (ClearQAM)
* @SYS_DVBC_ANNEX_C:
* Cable TV: DVB-C following ITU-T J.83 Annex C spec
* @SYS_ISDBC:
* Cable TV: ISDB-C (no drivers yet)
* @SYS_DVBT:
* Terrestrial TV: DVB-T
* @SYS_DVBT2:
* Terrestrial TV: DVB-T2
* @SYS_ISDBT:
* Terrestrial TV: ISDB-T
* @SYS_ATSC:
* Terrestrial TV: ATSC
* @SYS_ATSCMH:
* Terrestrial TV (mobile): ATSC-M/H
* @SYS_DTMB:
* Terrestrial TV: DTMB
* @SYS_DVBS:
* Satellite TV: DVB-S
* @SYS_DVBS2:
* Satellite TV: DVB-S2
* @SYS_TURBO:
* Satellite TV: DVB-S Turbo
* @SYS_ISDBS:
* Satellite TV: ISDB-S
* @SYS_DAB:
* Digital audio: DAB (not fully supported)
* @SYS_DSS:

3.3. Part II - Digital TV API 1453

Linux Media Documentation

* Satellite TV: DSS (not fully supported)
* @SYS_CMMB:
* Terrestrial TV (mobile): CMMB (not fully supported)
* @SYS_DVBH:
* Terrestrial TV (mobile): DVB-H (standard deprecated)
*/

enum fe_delivery_system {
SYS_UNDEFINED,
SYS_DVBC_ANNEX_A,
SYS_DVBC_ANNEX_B,
SYS_DVBT,
SYS_DSS,
SYS_DVBS,
SYS_DVBS2,
SYS_DVBH,
SYS_ISDBT,
SYS_ISDBS,
SYS_ISDBC,
SYS_ATSC,
SYS_ATSCMH,
SYS_DTMB,
SYS_CMMB,
SYS_DAB,
SYS_DVBT2,
SYS_TURBO,
SYS_DVBC_ANNEX_C,

};

/* backward compatibility definitions for delivery systems */
#define SYS_DVBC_ANNEX_AC SYS_DVBC_ANNEX_A
#define SYS_DMBTH SYS_DTMB /* DMB-TH is legacy name, use DTMB */

/* ATSC-MH specific parameters */

/**
* enum atscmh_sccc_block_mode - Type of Series Concatenated Convolutional
* Code Block Mode.
*
* @ATSCMH_SCCC_BLK_SEP:
* Separate SCCC: the SCCC outer code mode shall be set independently
* for each Group Region (A, B, C, D)
* @ATSCMH_SCCC_BLK_COMB:
* Combined SCCC: all four Regions shall have the same SCCC outer
* code mode.
* @ATSCMH_SCCC_BLK_RES:
* Reserved. Shouldn't be used.
*/

enum atscmh_sccc_block_mode {
ATSCMH_SCCC_BLK_SEP = 0,
ATSCMH_SCCC_BLK_COMB = 1,
ATSCMH_SCCC_BLK_RES = 2,

1454 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

};

/**
* enum atscmh_sccc_code_mode - Type of Series Concatenated Convolutional
* Code Rate.
*
* @ATSCMH_SCCC_CODE_HLF:
* The outer code rate of a SCCC Block is 1/2 rate.
* @ATSCMH_SCCC_CODE_QTR:
* The outer code rate of a SCCC Block is 1/4 rate.
* @ATSCMH_SCCC_CODE_RES:
* Reserved. Should not be used.
*/

enum atscmh_sccc_code_mode {
ATSCMH_SCCC_CODE_HLF = 0,
ATSCMH_SCCC_CODE_QTR = 1,
ATSCMH_SCCC_CODE_RES = 2,

};

/**
* enum atscmh_rs_frame_ensemble - Reed Solomon(RS) frame ensemble.
*
* @ATSCMH_RSFRAME_ENS_PRI: Primary Ensemble.
* @ATSCMH_RSFRAME_ENS_SEC: Secondary Ensemble.
*/

enum atscmh_rs_frame_ensemble {
ATSCMH_RSFRAME_ENS_PRI = 0,
ATSCMH_RSFRAME_ENS_SEC = 1,

};

/**
* enum atscmh_rs_frame_mode - Reed Solomon (RS) frame mode.
*
* @ATSCMH_RSFRAME_PRI_ONLY:
* Single Frame: There is only a primary RS Frame for all Group
* Regions.
* @ATSCMH_RSFRAME_PRI_SEC:
* Dual Frame: There are two separate RS Frames: Primary RS Frame for
* Group Region A and B and Secondary RS Frame for Group Region C and
* D.
* @ATSCMH_RSFRAME_RES:
* Reserved. Shouldn't be used.
*/

enum atscmh_rs_frame_mode {
ATSCMH_RSFRAME_PRI_ONLY = 0,
ATSCMH_RSFRAME_PRI_SEC = 1,
ATSCMH_RSFRAME_RES = 2,

};

/**
* enum atscmh_rs_code_mode

3.3. Part II - Digital TV API 1455

Linux Media Documentation

* @ATSCMH_RSCODE_211_187: Reed Solomon code (211,187).
* @ATSCMH_RSCODE_223_187: Reed Solomon code (223,187).
* @ATSCMH_RSCODE_235_187: Reed Solomon code (235,187).
* @ATSCMH_RSCODE_RES: Reserved. Shouldn't be used.
*/

enum atscmh_rs_code_mode {
ATSCMH_RSCODE_211_187 = 0,
ATSCMH_RSCODE_223_187 = 1,
ATSCMH_RSCODE_235_187 = 2,
ATSCMH_RSCODE_RES = 3,

};

#define NO_STREAM_ID_FILTER (~0U)
#define LNA_AUTO (~0U)

/**
* enum fecap_scale_params - scale types for the quality parameters.
*
* @FE_SCALE_NOT_AVAILABLE: That QoS measure is not available. That
* could indicate a temporary or a permanent
* condition.
* @FE_SCALE_DECIBEL: The scale is measured in 0.001 dB steps, typically
* used on signal measures.
* @FE_SCALE_RELATIVE: The scale is a relative percentual measure,
* ranging from 0 (0%) to 0xffff (100%).
* @FE_SCALE_COUNTER: The scale counts the occurrence of an event, like
* bit error, block error, lapsed time.
*/

enum fecap_scale_params {
FE_SCALE_NOT_AVAILABLE = 0,
FE_SCALE_DECIBEL,
FE_SCALE_RELATIVE,
FE_SCALE_COUNTER

};

/**
* struct dtv_stats - Used for reading a DTV status property
*
* @scale:
* Filled with enum fecap_scale_params - the scale in usage
* for that parameter
*
* @svalue:
* integer value of the measure, for %FE_SCALE_DECIBEL,
* used for dB measures. The unit is 0.001 dB.
*
* @uvalue:
* unsigned integer value of the measure, used when @scale is
* either %FE_SCALE_RELATIVE or %FE_SCALE_COUNTER.
*
* For most delivery systems, this will return a single value for each

1456 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

* parameter.
*
* It should be noticed, however, that new OFDM delivery systems like
* ISDB can use different modulation types for each group of carriers.
* On such standards, up to 8 groups of statistics can be provided, one
* for each carrier group (called "layer" on ISDB).
*
* In order to be consistent with other delivery systems, the first
* value refers to the entire set of carriers ("global").
*
* @scale should use the value %FE_SCALE_NOT_AVAILABLE when
* the value for the entire group of carriers or from one specific layer
* is not provided by the hardware.
*
* @len should be filled with the latest filled status + 1.
*
* In other words, for ISDB, those values should be filled like::
*
* u.st.stat.svalue[0] = global statistics;
* u.st.stat.scale[0] = FE_SCALE_DECIBEL;
* u.st.stat.value[1] = layer A statistics;
* u.st.stat.scale[1] = FE_SCALE_NOT_AVAILABLE (if not available);
* u.st.stat.svalue[2] = layer B statistics;
* u.st.stat.scale[2] = FE_SCALE_DECIBEL;
* u.st.stat.svalue[3] = layer C statistics;
* u.st.stat.scale[3] = FE_SCALE_DECIBEL;
* u.st.len = 4;
*/

struct dtv_stats {
__u8 scale; /* enum fecap_scale_params type */
union {

__u64 uvalue; /* for counters and relative scales */
__s64 svalue; /* for 0.001 dB measures */

};
} __attribute__ ((packed));

#define MAX_DTV_STATS 4

/**
* struct dtv_fe_stats - store Digital TV frontend statistics
*
* @len: length of the statistics - if zero, stats is disabled.
* @stat: array with digital TV statistics.
*
* On most standards, @len can either be 0 or 1. However, for ISDB, each
* layer is modulated in separate. So, each layer may have its own set
* of statistics. If so, stat[0] carries on a global value for the property.
* Indexes 1 to 3 means layer A to B.
*/

struct dtv_fe_stats {
__u8 len;

3.3. Part II - Digital TV API 1457

Linux Media Documentation

struct dtv_stats stat[MAX_DTV_STATS];
} __attribute__ ((packed));

/**
* struct dtv_property - store one of frontend command and its value
*
* @cmd: Digital TV command.
* @reserved: Not used.
* @u: Union with the values for the command.
* @u.data: A unsigned 32 bits integer with command value.
* @u.buffer: Struct to store bigger properties.
* Currently unused.
* @u.buffer.data: an unsigned 32-bits array.
* @u.buffer.len: number of elements of the buffer.
* @u.buffer.reserved1: Reserved.
* @u.buffer.reserved2: Reserved.
* @u.st: a &struct dtv_fe_stats array of statistics.
* @result: Currently unused.
*
*/

struct dtv_property {
__u32 cmd;
__u32 reserved[3];
union {

__u32 data;
struct dtv_fe_stats st;
struct {

__u8 data[32];
__u32 len;
__u32 reserved1[3];
void *reserved2;

} buffer;
} u;
int result;

} __attribute__ ((packed));

/* num of properties cannot exceed DTV_IOCTL_MAX_MSGS per ioctl */
#define DTV_IOCTL_MAX_MSGS 64

/**
* struct dtv_properties - a set of command/value pairs.
*
* @num: amount of commands stored at the struct.
* @props: a pointer to &struct dtv_property.
*/

struct dtv_properties {
__u32 num;
struct dtv_property *props;

};

/*

1458 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

* When set, this flag will disable any zigzagging or other "normal" tuning
* behavior. Additionally, there will be no automatic monitoring of the lock
* status, and hence no frontend events will be generated. If a frontend device
* is closed, this flag will be automatically turned off when the device is
* reopened read-write.
*/

#define FE_TUNE_MODE_ONESHOT 0x01

/* Digital TV Frontend API calls */

#define FE_GET_INFO _IOR('o', 61, struct dvb_frontend_info)

#define FE_DISEQC_RESET_OVERLOAD _IO('o', 62)
#define FE_DISEQC_SEND_MASTER_CMD _IOW('o', 63, struct dvb_diseqc_master_cmd)
#define FE_DISEQC_RECV_SLAVE_REPLY _IOR('o', 64, struct dvb_diseqc_slave_reply)
#define FE_DISEQC_SEND_BURST _IO('o', 65) /* fe_sec_mini_cmd_t */

#define FE_SET_TONE _IO('o', 66) /* fe_sec_tone_mode_t */
#define FE_SET_VOLTAGE _IO('o', 67) /* fe_sec_voltage_t */
#define FE_ENABLE_HIGH_LNB_VOLTAGE _IO('o', 68) /* int */

#define FE_READ_STATUS _IOR('o', 69, fe_status_t)
#define FE_READ_BER _IOR('o', 70, __u32)
#define FE_READ_SIGNAL_STRENGTH _IOR('o', 71, __u16)
#define FE_READ_SNR _IOR('o', 72, __u16)
#define FE_READ_UNCORRECTED_BLOCKS _IOR('o', 73, __u32)

#define FE_SET_FRONTEND_TUNE_MODE _IO('o', 81) /* unsigned int */
#define FE_GET_EVENT _IOR('o', 78, struct dvb_frontend_event)

#define FE_DISHNETWORK_SEND_LEGACY_CMD _IO('o', 80) /* unsigned int */

#define FE_SET_PROPERTY _IOW('o', 82, struct dtv_properties)
#define FE_GET_PROPERTY _IOR('o', 83, struct dtv_properties)

#if defined(__DVB_CORE__) || !defined(__KERNEL__)

/*
* DEPRECATED: Everything below is deprecated in favor of DVBv5 API
*
* The DVBv3 only ioctls, structs and enums should not be used on
* newer programs, as it doesn't support the second generation of
* digital TV standards, nor supports newer delivery systems.
* They also don't support modern frontends with usually support multiple
* delivery systems.
*
* Drivers shouldn't use them.
*
* New applications should use DVBv5 delivery system instead
*/

3.3. Part II - Digital TV API 1459

Linux Media Documentation

/*
*/

enum fe_bandwidth {
BANDWIDTH_8_MHZ,
BANDWIDTH_7_MHZ,
BANDWIDTH_6_MHZ,
BANDWIDTH_AUTO,
BANDWIDTH_5_MHZ,
BANDWIDTH_10_MHZ,
BANDWIDTH_1_712_MHZ,

};

/* This is kept for legacy userspace support */
typedef enum fe_sec_voltage fe_sec_voltage_t;
typedef enum fe_caps fe_caps_t;
typedef enum fe_type fe_type_t;
typedef enum fe_sec_tone_mode fe_sec_tone_mode_t;
typedef enum fe_sec_mini_cmd fe_sec_mini_cmd_t;
typedef enum fe_status fe_status_t;
typedef enum fe_spectral_inversion fe_spectral_inversion_t;
typedef enum fe_code_rate fe_code_rate_t;
typedef enum fe_modulation fe_modulation_t;
typedef enum fe_transmit_mode fe_transmit_mode_t;
typedef enum fe_bandwidth fe_bandwidth_t;
typedef enum fe_guard_interval fe_guard_interval_t;
typedef enum fe_hierarchy fe_hierarchy_t;
typedef enum fe_pilot fe_pilot_t;
typedef enum fe_rolloff fe_rolloff_t;
typedef enum fe_delivery_system fe_delivery_system_t;

/* DVBv3 structs */

struct dvb_qpsk_parameters {
__u32 symbol_rate; /* symbol rate in Symbols per second */
fe_code_rate_t fec_inner; /* forward error correction (see above)␣

↪→*/
};

struct dvb_qam_parameters {
__u32 symbol_rate; /* symbol rate in Symbols per second */
fe_code_rate_t fec_inner; /* forward error correction (see above) */
fe_modulation_t modulation; /* modulation type (see above) */

};

struct dvb_vsb_parameters {
fe_modulation_t modulation; /* modulation type (see above) */

};

struct dvb_ofdm_parameters {
fe_bandwidth_t bandwidth;

1460 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

fe_code_rate_t code_rate_HP; /* high priority stream code rate */
fe_code_rate_t code_rate_LP; /* low priority stream code rate */
fe_modulation_t constellation; /* modulation type (see above) */
fe_transmit_mode_t transmission_mode;
fe_guard_interval_t guard_interval;
fe_hierarchy_t hierarchy_information;

};

struct dvb_frontend_parameters {
__u32 frequency; /* (absolute) frequency in Hz for DVB-C/DVB-T/ATSC */

/* intermediate frequency in kHz for DVB-S */
fe_spectral_inversion_t inversion;
union {

struct dvb_qpsk_parameters qpsk; /* DVB-S */
struct dvb_qam_parameters qam; /* DVB-C */
struct dvb_ofdm_parameters ofdm; /* DVB-T */
struct dvb_vsb_parameters vsb; /* ATSC */

} u;
};

struct dvb_frontend_event {
fe_status_t status;
struct dvb_frontend_parameters parameters;

};

/* DVBv3 API calls */

#define FE_SET_FRONTEND _IOW('o', 76, struct dvb_frontend_
↪→parameters)
#define FE_GET_FRONTEND _IOR('o', 77, struct dvb_frontend_
↪→parameters)

#endif

#endif /*_DVBFRONTEND_H_*/

dmx.h

/* SPDX-License-Identifier: LGPL-2.1+ WITH Linux-syscall-note */
/*
* dmx.h
*
* Copyright (C) 2000 Marcus Metzler <marcus@convergence.de>
* & Ralph Metzler <ralph@convergence.de>
* for convergence integrated media GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.

3.3. Part II - Digital TV API 1461

mailto:marcus@convergence.de
mailto:ralph@convergence.de

Linux Media Documentation

*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*/

#ifndef _UAPI_DVBDMX_H_
#define _UAPI_DVBDMX_H_

#include <linux/types.h>
#ifndef __KERNEL__
#include <time.h>
#endif

#define DMX_FILTER_SIZE 16

/**
* enum dmx_output - Output for the demux.
*
* @:c:type:DMX_OUT_DECODER <dmx_output>:
* Streaming directly to decoder.
* @:c:type:DMX_OUT_TAP <dmx_output>:
* Output going to a memory buffer (to be retrieved via the read command).
* Delivers the stream output to the demux device on which the ioctl
* is called.
* @:c:type:DMX_OUT_TS_TAP <dmx_output>:
* Output multiplexed into a new TS (to be retrieved by reading from the
* logical DVR device). Routes output to the logical DVR device
* ``/dev/dvb/adapter?/dvr?``, which delivers a TS multiplexed from all
* filters for which @:c:type:DMX_OUT_TS_TAP <dmx_output> was specified.
* @:c:type:DMX_OUT_TSDEMUX_TAP <dmx_output>:
* Like @:c:type:DMX_OUT_TS_TAP <dmx_output> but retrieved from the DMX␣
↪→device.
*/

enum dmx_output {
DMX_OUT_DECODER,
DMX_OUT_TAP,
DMX_OUT_TS_TAP,
DMX_OUT_TSDEMUX_TAP

};

/**
* dmx_input - Input from the demux.
*
* @:c:type:DMX_IN_FRONTEND <dmx_input>: Input from a front-end device.

1462 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

* @:c:type:DMX_IN_DVR <dmx_input>: Input from the logical DVR device.
*/

dmx_input {
DMX_IN_FRONTEND,
DMX_IN_DVR

};

/**
* dmx_ts_pes - type of the PES filter.
*
* @:c:type:DMX_PES_AUDIO0 <dmx_pes_type>: first audio PID. Also referred␣
↪→as @DMX_PES_AUDIO.
* @:c:type:DMX_PES_VIDEO0 <dmx_pes_type>: first video PID. Also referred␣
↪→as @DMX_PES_VIDEO.
* @:c:type:DMX_PES_TELETEXT0 <dmx_pes_type>: first teletext PID. Also␣
↪→referred as @DMX_PES_TELETEXT.
* @:c:type:DMX_PES_SUBTITLE0 <dmx_pes_type>: first subtitle PID. Also␣
↪→referred as @DMX_PES_SUBTITLE.
* @:c:type:DMX_PES_PCR0 <dmx_pes_type>: first Program Clock Reference␣
↪→PID.
* Also referred as @DMX_PES_PCR.
*
* @:c:type:DMX_PES_AUDIO1 <dmx_pes_type>: second audio PID.
* @:c:type:DMX_PES_VIDEO1 <dmx_pes_type>: second video PID.
* @:c:type:DMX_PES_TELETEXT1 <dmx_pes_type>: second teletext PID.
* @:c:type:DMX_PES_SUBTITLE1 <dmx_pes_type>: second subtitle PID.
* @:c:type:DMX_PES_PCR1 <dmx_pes_type>: second Program Clock Reference␣
↪→PID.
*
* @:c:type:DMX_PES_AUDIO2 <dmx_pes_type>: third audio PID.
* @:c:type:DMX_PES_VIDEO2 <dmx_pes_type>: third video PID.
* @:c:type:DMX_PES_TELETEXT2 <dmx_pes_type>: third teletext PID.
* @:c:type:DMX_PES_SUBTITLE2 <dmx_pes_type>: third subtitle PID.
* @:c:type:DMX_PES_PCR2 <dmx_pes_type>: third Program Clock Reference␣
↪→PID.
*
* @:c:type:DMX_PES_AUDIO3 <dmx_pes_type>: fourth audio PID.
* @:c:type:DMX_PES_VIDEO3 <dmx_pes_type>: fourth video PID.
* @:c:type:DMX_PES_TELETEXT3 <dmx_pes_type>: fourth teletext PID.
* @:c:type:DMX_PES_SUBTITLE3 <dmx_pes_type>: fourth subtitle PID.
* @:c:type:DMX_PES_PCR3 <dmx_pes_type>: fourth Program Clock Reference␣
↪→PID.
*
* @:c:type:DMX_PES_OTHER <dmx_pes_type>: any other PID.
*/

dmx_ts_pes {
DMX_PES_AUDIO0,
DMX_PES_VIDEO0,
DMX_PES_TELETEXT0,
DMX_PES_SUBTITLE0,

3.3. Part II - Digital TV API 1463

Linux Media Documentation

DMX_PES_PCR0,

DMX_PES_AUDIO1,
DMX_PES_VIDEO1,
DMX_PES_TELETEXT1,
DMX_PES_SUBTITLE1,
DMX_PES_PCR1,

DMX_PES_AUDIO2,
DMX_PES_VIDEO2,
DMX_PES_TELETEXT2,
DMX_PES_SUBTITLE2,
DMX_PES_PCR2,

DMX_PES_AUDIO3,
DMX_PES_VIDEO3,
DMX_PES_TELETEXT3,
DMX_PES_SUBTITLE3,
DMX_PES_PCR3,

DMX_PES_OTHER
};

#define DMX_PES_AUDIO DMX_PES_AUDIO0
#define DMX_PES_VIDEO DMX_PES_VIDEO0
#define DMX_PES_TELETEXT DMX_PES_TELETEXT0
#define DMX_PES_SUBTITLE DMX_PES_SUBTITLE0
#define DMX_PES_PCR DMX_PES_PCR0

/**
* struct dmx_filter - Specifies a section header filter.
*
* @filter: bit array with bits to be matched at the section header.
* @mask: bits that are valid at the filter bit array.
* @mode: mode of match: if bit is zero, it will match if equal (positive
* match); if bit is one, it will match if the bit is negated.
*
* Note: All arrays in this struct have a size of DMX_FILTER_SIZE (16 bytes).
*/

struct dmx_filter {
__u8 filter[DMX_FILTER_SIZE];
__u8 mask[DMX_FILTER_SIZE];
__u8 mode[DMX_FILTER_SIZE];

};

/**
* struct dmx_sct_filter_params - Specifies a section filter.
*
* @pid: PID to be filtered.
* @filter: section header filter, as defined by &struct dmx_filter.
* @timeout: maximum time to filter, in milliseconds.

1464 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

* @flags: extra flags for the section filter.
*
* Carries the configuration for a MPEG-TS section filter.
*
* The @flags can be:
*
* - %DMX_CHECK_CRC - only deliver sections where the CRC check succeeded;
* - %DMX_ONESHOT - disable the section filter after one section
* has been delivered;
* - %DMX_IMMEDIATE_START - Start filter immediately without requiring a
* :ref:`DMX_START`.
*/

struct dmx_sct_filter_params {
__u16 pid;
struct dmx_filter filter;
__u32 timeout;
__u32 flags;

#define DMX_CHECK_CRC 1
#define DMX_ONESHOT 2
#define DMX_IMMEDIATE_START 4
};

/**
* struct dmx_pes_filter_params - Specifies Packetized Elementary Stream (PES)
* filter parameters.
*
* @pid: PID to be filtered.
* @input: Demux input, as specified by &enum dmx_input.
* @output: Demux output, as specified by &enum dmx_output.
* @pes_type: Type of the pes filter, as specified by &enum dmx_pes_type.
* @flags: Demux PES flags.
*/

struct dmx_pes_filter_params {
__u16 pid;
dmx_input input;
enum dmx_output output;
dmx_ts_pes pes_type;
__u32 flags;

};

/**
* struct dmx_stc - Stores System Time Counter (STC) information.
*
* @num: input data: number of the STC, from 0 to N.
* @base: output: divisor for STC to get 90 kHz clock.
* @stc: output: stc in @base * 90 kHz units.
*/

struct dmx_stc {
unsigned int num;
unsigned int base;
__u64 stc;

3.3. Part II - Digital TV API 1465

Linux Media Documentation

};

/**
* enum dmx_buffer_flags - DMX memory-mapped buffer flags
*
* @:c:type:DMX_BUFFER_FLAG_HAD_CRC32_DISCARD <dmx_buffer_flags>:
* Indicates that the Kernel discarded one or more frames due to wrong
* CRC32 checksum.
* @:c:type:DMX_BUFFER_FLAG_TEI <dmx_buffer_flags>:
* Indicates that the Kernel has detected a Transport Error indicator
* (TEI) on a filtered pid.
* @:c:type:DMX_BUFFER_PKT_COUNTER_MISMATCH <dmx_buffer_flags>:
* Indicates that the Kernel has detected a packet counter mismatch
* on a filtered pid.
* @:c:type:DMX_BUFFER_FLAG_DISCONTINUITY_DETECTED <dmx_buffer_flags>:
* Indicates that the Kernel has detected one or more frame discontinuity.
* @:c:type:DMX_BUFFER_FLAG_DISCONTINUITY_INDICATOR <dmx_buffer_flags>:
* Received at least one packet with a frame discontinuity indicator.
*/

enum dmx_buffer_flags {
DMX_BUFFER_FLAG_HAD_CRC32_DISCARD = 1 << 0,
DMX_BUFFER_FLAG_TEI = 1 << 1,
DMX_BUFFER_PKT_COUNTER_MISMATCH = 1 << 2,
DMX_BUFFER_FLAG_DISCONTINUITY_DETECTED = 1 << 3,
DMX_BUFFER_FLAG_DISCONTINUITY_INDICATOR = 1 << 4,

};

/**
* struct dmx_buffer - dmx buffer info
*
* @index: id number of the buffer
* @bytesused: number of bytes occupied by data in the buffer (payload);
* @offset: for buffers with memory == DMX_MEMORY_MMAP;
* offset from the start of the device memory for this plane,
* (or a "cookie" that should be passed to mmap() as offset)
* @length: size in bytes of the buffer
* @flags: bit array of buffer flags as defined by &enum dmx_buffer_flags.
* Filled only at &DMX_DQBUF.
* @count: monotonic counter for filled buffers. Helps to identify
* data stream loses. Filled only at &DMX_DQBUF.
*
* Contains data exchanged by application and driver using one of the streaming
* I/O methods.
*
* Please notice that, for &DMX_QBUF, only @index should be filled.
* On &DMX_DQBUF calls, all fields will be filled by the Kernel.
*/

struct dmx_buffer {
__u32 index;
__u32 bytesused;

1466 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

__u32 offset;
__u32 length;
__u32 flags;
__u32 count;

};

/**
* struct dmx_requestbuffers - request dmx buffer information
*
* @count: number of requested buffers,
* @size: size in bytes of the requested buffer
*
* Contains data used for requesting a dmx buffer.
* All reserved fields must be set to zero.
*/

struct dmx_requestbuffers {
__u32 count;
__u32 size;

};

/**
* struct dmx_exportbuffer - export of dmx buffer as DMABUF file descriptor
*
* @index: id number of the buffer
* @flags: flags for newly created file, currently only O_CLOEXEC is
* supported, refer to manual of open syscall for more details
* @fd: file descriptor associated with DMABUF (set by driver)
*
* Contains data used for exporting a dmx buffer as DMABUF file descriptor.
* The buffer is identified by a 'cookie' returned by DMX_QUERYBUF
* (identical to the cookie used to mmap() the buffer to userspace). All
* reserved fields must be set to zero. The field reserved0 is expected to
* become a structure 'type' allowing an alternative layout of the structure
* content. Therefore this field should not be used for any other extensions.
*/

struct dmx_exportbuffer {
__u32 index;
__u32 flags;
__s32 fd;

};

#define DMX_START _IO('o', 41)
#define DMX_STOP _IO('o', 42)
#define DMX_SET_FILTER _IOW('o', 43, struct dmx_sct_filter_params)
#define DMX_SET_PES_FILTER _IOW('o', 44, struct dmx_pes_filter_params)
#define DMX_SET_BUFFER_SIZE _IO('o', 45)
#define DMX_GET_PES_PIDS _IOR('o', 47, __u16[5])
#define DMX_GET_STC _IOWR('o', 50, struct dmx_stc)
#define DMX_ADD_PID _IOW('o', 51, __u16)
#define DMX_REMOVE_PID _IOW('o', 52, __u16)

3.3. Part II - Digital TV API 1467

Linux Media Documentation

#if !defined(__KERNEL__)

/* This is needed for legacy userspace support */
typedef enum dmx_output dmx_output_t;
typedef dmx_input dmx_input_t;
typedef dmx_ts_pes dmx_pes_type_t;
typedef struct dmx_filter dmx_filter_t;

#endif

#define DMX_REQBUFS _IOWR('o', 60, struct dmx_requestbuffers)
#define DMX_QUERYBUF _IOWR('o', 61, struct dmx_buffer)
#define DMX_EXPBUF _IOWR('o', 62, struct dmx_exportbuffer)
#define DMX_QBUF _IOWR('o', 63, struct dmx_buffer)
#define DMX_DQBUF _IOWR('o', 64, struct dmx_buffer)

#endif /* _DVBDMX_H_ */

ca.h

/* SPDX-License-Identifier: LGPL-2.1+ WITH Linux-syscall-note */
/*
* ca.h
*
* Copyright (C) 2000 Ralph Metzler <ralph@convergence.de>
* & Marcus Metzler <marcus@convergence.de>
* for convergence integrated media GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Lesser Public License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*/

#ifndef _DVBCA_H_
#define _DVBCA_H_

/**
* struct ca_slot_info - CA slot interface types and info.
*

1468 Chapter 3. Linux Media Infrastructure userspace API

mailto:ralph@convergence.de
mailto:marcus@convergence.de

Linux Media Documentation

* @num: slot number.
* @type: slot type.
* @flags: flags applicable to the slot.
*
* This struct stores the CA slot information.
*
* @type can be:
*
* - %CA_CI - CI high level interface;
* - %CA_CI_LINK - CI link layer level interface;
* - %CA_CI_PHYS - CI physical layer level interface;
* - %CA_DESCR - built-in descrambler;
* - %CA_SC -simple smart card interface.
*
* @flags can be:
*
* - %CA_CI_MODULE_PRESENT - module (or card) inserted;
* - %CA_CI_MODULE_READY - module is ready for usage.
*/

struct ca_slot_info {
int num;
int type;

#define CA_CI 1
#define CA_CI_LINK 2
#define CA_CI_PHYS 4
#define CA_DESCR 8
#define CA_SC 128

unsigned int flags;
#define CA_CI_MODULE_PRESENT 1
#define CA_CI_MODULE_READY 2
};

/**
* struct ca_descr_info - descrambler types and info.
*
* @num: number of available descramblers (keys).
* @type: type of supported scrambling system.
*
* Identifies the number of descramblers and their type.
*
* @type can be:
*
* - %CA_ECD - European Common Descrambler (ECD) hardware;
* - %CA_NDS - Videoguard (NDS) hardware;
* - %CA_DSS - Distributed Sample Scrambling (DSS) hardware.
*/

struct ca_descr_info {
unsigned int num;
unsigned int type;

3.3. Part II - Digital TV API 1469

Linux Media Documentation

#define CA_ECD 1
#define CA_NDS 2
#define CA_DSS 4
};

/**
* struct ca_caps - CA slot interface capabilities.
*
* @slot_num: total number of CA card and module slots.
* @slot_type: bitmap with all supported types as defined at
* &struct ca_slot_info (e. g. %CA_CI, %CA_CI_LINK, etc).
* @descr_num: total number of descrambler slots (keys)
* @descr_type: bitmap with all supported types as defined at
* &struct ca_descr_info (e. g. %CA_ECD, %CA_NDS, etc).
*/

struct ca_caps {
unsigned int slot_num;
unsigned int slot_type;
unsigned int descr_num;
unsigned int descr_type;

};

/**
* struct ca_msg - a message to/from a CI-CAM
*
* @index: unused
* @type: unused
* @length: length of the message
* @msg: message
*
* This struct carries a message to be send/received from a CI CA module.
*/

struct ca_msg {
unsigned int index;
unsigned int type;
unsigned int length;
unsigned char msg[256];

};

/**
* struct ca_descr - CA descrambler control words info
*
* @index: CA Descrambler slot
* @parity: control words parity, where 0 means even and 1 means odd
* @cw: CA Descrambler control words
*/

struct ca_descr {
unsigned int index;
unsigned int parity;
unsigned char cw[8];

};

1470 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

#define CA_RESET _IO('o', 128)
#define CA_GET_CAP _IOR('o', 129, struct ca_caps)
#define CA_GET_SLOT_INFO _IOR('o', 130, struct ca_slot_info)
#define CA_GET_DESCR_INFO _IOR('o', 131, struct ca_descr_info)
#define CA_GET_MSG _IOR('o', 132, struct ca_msg)
#define CA_SEND_MSG _IOW('o', 133, struct ca_msg)
#define CA_SET_DESCR _IOW('o', 134, struct ca_descr)

#if !defined(__KERNEL__)

/* This is needed for legacy userspace support */
typedef struct ca_slot_info ca_slot_info_t;
typedef struct ca_descr_info ca_descr_info_t;
typedef struct ca_caps ca_caps_t;
typedef struct ca_msg ca_msg_t;
typedef struct ca_descr ca_descr_t;

#endif

#endif

net.h

/* SPDX-License-Identifier: LGPL-2.1+ WITH Linux-syscall-note */
/*
* net.h
*
* Copyright (C) 2000 Marcus Metzler <marcus@convergence.de>
* & Ralph Metzler <ralph@convergence.de>
* for convergence integrated media GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*/

#ifndef _DVBNET_H_
#define _DVBNET_H_

3.3. Part II - Digital TV API 1471

mailto:marcus@convergence.de
mailto:ralph@convergence.de

Linux Media Documentation

#include <linux/types.h>

/**
* struct dvb_net_if - describes a DVB network interface
*
* @pid: Packet ID (PID) of the MPEG-TS that contains data
* @if_num: number of the Digital TV interface.
* @feedtype: Encapsulation type of the feed.
*
* A MPEG-TS stream may contain packet IDs with IP packages on it.
* This struct describes it, and the type of encoding.
*
* @feedtype can be:
*
* - %DVB_NET_FEEDTYPE_MPE for MPE encoding
* - %DVB_NET_FEEDTYPE_ULE for ULE encoding.
*/

struct dvb_net_if {
__u16 pid;
__u16 if_num;
__u8 feedtype;

#define DVB_NET_FEEDTYPE_MPE 0 /* multi protocol encapsulation */
#define DVB_NET_FEEDTYPE_ULE 1 /* ultra lightweight encapsulation */
};

#define NET_ADD_IF _IOWR('o', 52, struct dvb_net_if)
#define NET_REMOVE_IF _IO('o', 53)
#define NET_GET_IF _IOWR('o', 54, struct dvb_net_if)

/* binary compatibility cruft: */
struct __dvb_net_if_old {

__u16 pid;
__u16 if_num;

};
#define __NET_ADD_IF_OLD _IOWR('o', 52, struct __dvb_net_if_old)
#define __NET_GET_IF_OLD _IOWR('o', 54, struct __dvb_net_if_old)

#endif /*_DVBNET_H_*/

3.3.9 Revision and Copyright

Authors:

• J. K. Metzler, Ralph <rjkm@metzlerbros.de>

• Original author of the Digital TV API documentation.

• O. C. Metzler, Marcus <rjkm@metzlerbros.de>

• Original author of the Digital TV API documentation.

• Carvalho Chehab, Mauro <mchehab+samsung@kernel.org>

1472 Chapter 3. Linux Media Infrastructure userspace API

mailto:rjkm@metzlerbros.de
mailto:rjkm@metzlerbros.de
mailto:mchehab+samsung@kernel.org

Linux Media Documentation

• Ported document to Docbook XML, addition of DVBv5 API, documentation gaps fix.

Copyright © 2002-2003 : Convergence GmbH

Copyright © 2009-2017 : Mauro Carvalho Chehab

3.3.10 Revision History

revision 2.2.0 / 2017-09-01 (mcc)

Most gaps between the uAPI document and the Kernel implementation got fixed for the non-
legacy API.

revision 2.1.0 / 2015-05-29 (mcc)

DocBook improvements and cleanups, in order to document the system calls on a more standard
way and provide more description about the current Digital TV API.

revision 2.0.4 / 2011-05-06 (mcc)

Add more information about DVBv5 API, better describing the frontend GET/SET props ioctl’s.

revision 2.0.3 / 2010-07-03 (mcc)

Add some frontend capabilities flags, present on kernel, but missing at the specs.

revision 2.0.2 / 2009-10-25 (mcc)

documents FE_SET_FRONTEND_TUNE_MODE and FE_DISHETWORK_SEND_LEGACY_CMD
ioctls.

revision 2.0.1 / 2009-09-16 (mcc)

Added ISDB-T test originally written by Patrick Boettcher

revision 2.0.0 / 2009-09-06 (mcc)

Conversion from LaTex to DocBook XML. The contents is the same as the original LaTex version.

revision 1.0.0 / 2003-07-24 (rjkm)
Initial revision on LaTEX.

3.4 Part III - Remote Controller API

3.4.1 Introduction

Currently, most analog and digital devices have a Infrared input for remote controllers. Each
manufacturer has their own type of control. It is not rare for the same manufacturer to ship
different types of controls, depending on the device.

A Remote Controller interface is mapped as a normal evdev/input interface, just like a keyboard
or a mouse. So, it uses all ioctls already defined for any other input devices.

However, remove controllers are more flexible than a normal input device, as the IR receiver
(and/or transmitter) can be used in conjunction with a wide variety of different IR remotes.

In order to allow flexibility, the Remote Controller subsystem allows controlling the RC-specific
attributes via the sysfs class nodes.

3.4. Part III - Remote Controller API 1473

Linux Media Documentation

3.4.2 Remote Controller’s sysfs nodes

As defined at Documentation/ABI/testing/sysfs-class-rc, those are the sysfs nodes that
control the Remote Controllers:

3.4.2.1 /sys/class/rc/

The /sys/class/rc/ class sub-directory belongs to the Remote Controller core and provides a
sysfs interface for configuring infrared remote controller receivers.

3.4.2.2 /sys/class/rc/rcN/

A /sys/class/rc/rcN directory is created for each remote control receiver device where N is
the number of the receiver.

3.4.2.3 /sys/class/rc/rcN/protocols

Reading this file returns a list of available protocols, something like:

rc5 [rc6] nec jvc [sony]

Enabled protocols are shown in [] brackets.

Writing “+proto” will add a protocol to the list of enabled protocols.

Writing “-proto” will remove a protocol from the list of enabled protocols.

Writing “proto” will enable only “proto”.

Writing “none” will disable all protocols.

Write fails with EINVAL if an invalid protocol combination or unknown protocol name is used.

3.4.2.4 /sys/class/rc/rcN/filter

Sets the scancode filter expected value.

Use in combination with /sys/class/rc/rcN/filter_mask to set the expected value of the bits
set in the filter mask. If the hardware supports it then scancodes which do not match the filter
will be ignored. Otherwise the write will fail with an error.

This value may be reset to 0 if the current protocol is altered.

1474 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

3.4.2.5 /sys/class/rc/rcN/filter_mask

Sets the scancode filter mask of bits to compare. Use in combination with /sys/class/rc/rcN/
filter to set the bits of the scancode which should be compared against the expected value.
A value of 0 disables the filter to allow all valid scancodes to be processed.

If the hardware supports it then scancodes which do not match the filter will be ignored. Oth-
erwise the write will fail with an error.

This value may be reset to 0 if the current protocol is altered.

3.4.2.6 /sys/class/rc/rcN/wakeup_protocols

Reading this file returns a list of available protocols to use for the wakeup filter, something like:

rc-5 nec nec-x rc-6-0 rc-6-6a-24 [rc-6-6a-32] rc-6-mce

Note that protocol variants are listed, so nec, sony, rc-5, rc-6 have their different bit length
encodings listed if available.

Note that all protocol variants are listed.

The enabled wakeup protocol is shown in [] brackets.

Only one protocol can be selected at a time.

Writing “proto” will use “proto” for wakeup events.

Writing “none” will disable wakeup.

Write fails with EINVAL if an invalid protocol combination or unknown protocol name is used,
or if wakeup is not supported by the hardware.

3.4.2.7 /sys/class/rc/rcN/wakeup_filter

Sets the scancode wakeup filter expected value. Use in combination with /sys/class/rc/rcN/
wakeup_filter_mask to set the expected value of the bits set in the wakeup filter mask to trigger
a system wake event.

If the hardware supports it and wakeup_filter_mask is not 0 then scancodes which match the
filter will wake the system from e.g. suspend to RAM or power off. Otherwise the write will fail
with an error.

This value may be reset to 0 if the wakeup protocol is altered.

3.4.2.8 /sys/class/rc/rcN/wakeup_filter_mask

Sets the scancode wakeup filter mask of bits to compare. Use in combination with /sys/class/
rc/rcN/wakeup_filter to set the bits of the scancode which should be compared against the
expected value to trigger a system wake event.

If the hardware supports it and wakeup_filter_mask is not 0 then scancodes which match the
filter will wake the system from e.g. suspend to RAM or power off. Otherwise the write will fail
with an error.

This value may be reset to 0 if the wakeup protocol is altered.

3.4. Part III - Remote Controller API 1475

Linux Media Documentation

3.4.3 Remote Controller Protocols and Scancodes

IR is encoded as a series of pulses and spaces, using a protocol. These protocols can encode
e.g. an address (which device should respond) and a command: what it should do. The values
for these are not always consistent across different devices for a given protocol.

Therefore out the output of the IR decoder is a scancode; a single u32 value. Using keymap
tables this can be mapped to linux key codes.

Other things can be encoded too. Some IR protocols encode a toggle bit; this is to distinguish
whether the same button is being held down, or has been released and pressed again. If has
been released and pressed again, the toggle bit will invert from one IR message to the next.

Some remotes have a pointer-type device which can used to control the mouse; some air con-
ditioning systems can have their target temperature target set in IR.

The following are the protocols the kernel knows about and also lists how scancodes are en-
coded for each protocol.

3.4.3.1 rc-5 (RC_PROTO_RC5)

This IR protocol uses manchester encoding to encode 14 bits. There is a detailed description
here https://www.sbprojects.net/knowledge/ir/rc5.php.

The scancode encoding is not consistent with the lirc daemon (lircd) rc5 protocol, or the manch-
ester BPF decoder.

Table 252: rc5 bits scancode mapping
rc-5 bit scancode bit description
1 none Start bit, always set
1 6 (inverted) 2nd start bit in rc5, re-used as 6th command bit
1 none Toggle bit
5 8 to 13 Address
6 0 to 5 Command

There is a variant of rc5 called either rc5x or extended rc5 where there the second stop bit is the
6th commmand bit, but inverted. This is done so it the scancodes and encoding is compatible
with existing schemes. This bit is stored in bit 6 of the scancode, inverted. This is done to keep
it compatible with plain rc-5 where there are two start bits.

3.4.3.2 rc-5-sz (RC_PROTO_RC5_SZ)

This is much like rc-5 but one bit longer. The scancode is encoded differently.

Table 253: rc-5-sz bits scancode mapping
rc-5-sz bits scancode bit description
1 none Start bit, always set
1 13 Address bit
1 none Toggle bit
6 6 to 11 Address
6 0 to 5 Command

1476 Chapter 3. Linux Media Infrastructure userspace API

https://www.sbprojects.net/knowledge/ir/rc5.php

Linux Media Documentation

3.4.3.3 rc-5x-20 (RC_PROTO_RC5X_20)

This rc-5 extended to encoded 20 bits. The is a 3555 microseconds space after the 8th bit.

Table 254: rc-5x-20 bits scancode mapping
rc-5-sz bits scancode bit description
1 none Start bit, always set
1 14 Address bit
1 none Toggle bit
5 16 to 20 Address
6 8 to 13 Address
6 0 to 5 Command

3.4.3.4 jvc (RC_PROTO_JVC)

The jvc protocol is much like nec, without the inverted values. It is described here https://www.
sbprojects.net/knowledge/ir/jvc.php.

The scancode is a 16 bits value, where the address is the lower 8 bits and the command the
higher 8 bits; this is reversed from IR order.

3.4.3.5 sony-12 (RC_PROTO_SONY12)

The sony protocol is a pulse-width encoding. There are three variants, which just differ in
number of bits and scancode encoding.

Table 255: sony-12 bits scancode mapping
sony-12 bits scancode bit description
5 16 to 20 device
7 0 to 6 function

3.4.3.6 sony-15 (RC_PROTO_SONY15)

The sony protocol is a pulse-width encoding. There are three variants, which just differ in
number of bits and scancode encoding.

Table 256: sony-12 bits scancode mapping
sony-12 bits scancode bit description
8 16 to 23 device
7 0 to 6 function

3.4. Part III - Remote Controller API 1477

https://www.sbprojects.net/knowledge/ir/jvc.php
https://www.sbprojects.net/knowledge/ir/jvc.php

Linux Media Documentation

3.4.3.7 sony-20 (RC_PROTO_SONY20)

The sony protocol is a pulse-width encoding. There are three variants, which just differ in
number of bits and scancode encoding.

Table 257: sony-20 bits scancode mapping
sony-20 bits scancode bit description
5 16 to 20 device
7 0 to 7 device
8 8 to 15 extended bits

3.4.3.8 nec (RC_PROTO_NEC)

The nec protocol encodes an 8 bit address and an 8 bit command. It is described here https:
//www.sbprojects.net/knowledge/ir/nec.php. Note that the protocol sends least significant bit
first.

As a check, the nec protocol sends the address and command twice; the second time it is in-
verted. This is done for verification.

A plain nec IR message has 16 bits; the high 8 bits are the address and the low 8 bits are the
command.

3.4.3.9 nec-x (RC_PROTO_NECX)

Extended nec has a 16 bit address and a 8 bit command. This is encoded as a 24 bit value as
you would expect, with the lower 8 bits the command and the upper 16 bits the address.

3.4.3.10 nec-32 (RC_PROTO_NEC32)

nec-32 does not send an inverted address or an inverted command; the entire message, all 32
bits, are used.

For this to be decoded correctly, the second 8 bits must not be the inverted value of the first,
and also the last 8 bits must not be the inverted value of the third 8 bit value.

The scancode has a somewhat unusual encoding.

Table 258: nec-32 bits scancode mapping
nec-32 bits scancode bit
First 8 bits 16 to 23
Second 8 bits 24 to 31
Third 8 bits 0 to 7
Fourth 8 bits 8 to 15

1478 Chapter 3. Linux Media Infrastructure userspace API

https://www.sbprojects.net/knowledge/ir/nec.php
https://www.sbprojects.net/knowledge/ir/nec.php

Linux Media Documentation

3.4.3.11 sanyo (RC_PROTO_SANYO)

The sanyo protocol is like the nec protocol, but with 13 bits address rather than 8 bits. Both the
address and the command are followed by their inverted versions, but these are not present in
the scancodes.

Bis 8 to 20 of the scancode is the 13 bits address, and the lower 8 bits are the command.

3.4.3.12 mcir2-kbd (RC_PROTO_MCIR2_KBD)

This protocol is generated by the Microsoft MCE keyboard for keyboard events. Refer to the
ir-mce_kbd-decoder.c to see how it is encoded.

3.4.3.13 mcir2-mse (RC_PROTO_MCIR2_MSE)

This protocol is generated by the Microsoft MCE keyboard for pointer events. Refer to the
ir-mce_kbd-decoder.c to see how it is encoded.

3.4.3.14 rc-6-0 (RC_PROTO_RC6_0)

This is the rc-6 in mode 0. rc-6 is described here https://www.sbprojects.net/knowledge/ir/rc6.
php. The scancode is the exact 16 bits as in the protocol. There is also a toggle bit.

3.4.3.15 rc-6-6a-20 (RC_PROTO_RC6_6A_20)

This is the rc-6 in mode 6a, 20 bits. rc-6 is described here https://www.sbprojects.net/
knowledge/ir/rc6.php. The scancode is the exact 20 bits as in the protocol. There is also a
toggle bit.

3.4.3.16 rc-6-6a-24 (RC_PROTO_RC6_6A_24)

This is the rc-6 in mode 6a, 24 bits. rc-6 is described here https://www.sbprojects.net/
knowledge/ir/rc6.php. The scancode is the exact 24 bits as in the protocol. There is also a
toggle bit.

3.4.3.17 rc-6-6a-32 (RC_PROTO_RC6_6A_32)

This is the rc-6 in mode 6a, 32 bits. rc-6 is described here https://www.sbprojects.net/
knowledge/ir/rc6.php. The upper 16 bits are the vendor, and the lower 16 bits are the vendor-
specific bits. This protocol is for the non-Microsoft MCE variant (vendor != 0x800f).

3.4. Part III - Remote Controller API 1479

https://www.sbprojects.net/knowledge/ir/rc6.php
https://www.sbprojects.net/knowledge/ir/rc6.php
https://www.sbprojects.net/knowledge/ir/rc6.php
https://www.sbprojects.net/knowledge/ir/rc6.php
https://www.sbprojects.net/knowledge/ir/rc6.php
https://www.sbprojects.net/knowledge/ir/rc6.php
https://www.sbprojects.net/knowledge/ir/rc6.php
https://www.sbprojects.net/knowledge/ir/rc6.php

Linux Media Documentation

3.4.3.18 rc-6-mce (RC_PROTO_RC6_MCE)

This is the rc-6 in mode 6a, 32 bits. The upper 16 bits are the vendor, and the lower 16 bits are
the vendor-specific bits. This protocol is for the Microsoft MCE variant (vendor = 0x800f). The
toggle bit in the protocol itself is ignored, and the 16th bit should be takes as the toggle bit.

3.4.3.19 sharp (RC_PROTO_SHARP)

This is a protocol used by Sharp VCRs, is described here https://www.sbprojects.net/knowledge/
ir/sharp.php. There is a very long (40ms) space between the normal and inverted values, and
some IR receivers cannot decode this.

There is a 5 bit address and a 8 bit command. In the scancode the address is in bits 8 to 12,
and the command in bits 0 to 7.

3.4.3.20 xmp (RC_PROTO_XMP)

This protocol has several versions and only version 1 is supported. Refer to the decoder (ir-
xmp-decoder.c) to see how it is encoded.

3.4.3.21 cec (RC_PROTO_CEC)

This is not an IR protocol, this is a protocol over CEC. The CEC infrastructure uses rc-core for
handling CEC commands, so that they can easily be remapped.

3.4.3.22 imon (RC_PROTO_IMON)

This protocol is used by Antec Veris/SoundGraph iMON remotes.

The protocol describes both button presses and pointer movements. The protocol encodes 31
bits, and the scancode is simply the 31 bits with the top bit always 0.

3.4.3.23 rc-mm-12 (RC_PROTO_RCMM12)

The rc-mm protocol is described here https://www.sbprojects.net/knowledge/ir/rcmm.php. The
scancode is simply the 12 bits.

3.4.3.24 rc-mm-24 (RC_PROTO_RCMM24)

The rc-mm protocol is described here https://www.sbprojects.net/knowledge/ir/rcmm.php. The
scancode is simply the 24 bits.

1480 Chapter 3. Linux Media Infrastructure userspace API

https://www.sbprojects.net/knowledge/ir/sharp.php
https://www.sbprojects.net/knowledge/ir/sharp.php
https://www.sbprojects.net/knowledge/ir/rcmm.php
https://www.sbprojects.net/knowledge/ir/rcmm.php

Linux Media Documentation

3.4.3.25 rc-mm-32 (RC_PROTO_RCMM32)

The rc-mm protocol is described here https://www.sbprojects.net/knowledge/ir/rcmm.php. The
scancode is simply the 32 bits.

3.4.3.26 xbox-dvd (RC_PROTO_XBOX_DVD)

This protocol is used by XBox DVD Remote, which was made for the original XBox. There is no
in-kernel decoder or encoder for this protocol. The usb device decodes the protocol. There is
a BPF decoder available in v4l-utils.

3.4.4 Remote controller tables

Unfortunately, for several years, there was no effort to create uniform IR keycodes for different
devices. This caused the same IR keyname to be mapped completely differently on different IR
devices. This resulted that the same IR keyname to be mapped completely different on different
IR’s. Due to that, V4L2 API now specifies a standard for mapping Media keys on IR.

This standard should be used by both V4L/DVB drivers and userspace applications

The modules register the remote as keyboard within the linux input layer. This means that the
IR key strokes will look like normal keyboard key strokes (if CONFIG_INPUT_KEYBOARD is
enabled). Using the event devices (CONFIG_INPUT_EVDEV) it is possible for applications to
access the remote via /dev/input/event devices.

Table 259: IR default keymapping
Key code Meaning Key examples on IR
Numeric keys
KEY_NUMERIC_0 Keyboard digit 0 0
KEY_NUMERIC_1 Keyboard digit 1 1
KEY_NUMERIC_2 Keyboard digit 2 2
KEY_NUMERIC_3 Keyboard digit 3 3
KEY_NUMERIC_4 Keyboard digit 4 4
KEY_NUMERIC_5 Keyboard digit 5 5
KEY_NUMERIC_6 Keyboard digit 6 6
KEY_NUMERIC_7 Keyboard digit 7 7
KEY_NUMERIC_8 Keyboard digit 8 8
KEY_NUMERIC_9 Keyboard digit 9 9
Movie play control
KEY_FORWARD Instantly advance in

time
>> / FORWARD

KEY_BACK Instantly go back in
time

<<< / BACK

KEY_FASTFORWARD Play movie faster
>>> / FORWARD

KEY_REWIND Play movie back REWIND / BACKWARD
KEY_NEXT Select next chapter /

sub-chapter / interval
NEXT / SKIP

Continued on next page

3.4. Part III - Remote Controller API 1481

https://www.sbprojects.net/knowledge/ir/rcmm.php

Linux Media Documentation

Table 259 – continued from previous page
KEY_PREVIOUS Select previous chap-

ter / sub-chapter / in-
terval

<< / PREV / PREVIOUS

KEY_AGAIN Repeat the video or a
video interval

REPEAT / LOOP / RECALL

KEY_PAUSE Pause stream PAUSE / FREEZE
KEY_PLAY Play movie at the nor-

mal timeshift
NORMAL TIMESHIFT / LIVE / >

KEY_PLAYPAUSE Alternate between
play and pause

PLAY / PAUSE

KEY_STOP Stop stream STOP
KEY_RECORD Start/stop recording

stream
CAPTURE / REC / RECORD/PAUSE

KEY_CAMERA Take a picture of the
image

CAMERA ICON / CAPTURE / SNAPSHOT

KEY_SHUFFLE Enable shuffle mode SHUFFLE
KEY_TIME Activate time shift

mode
TIME SHIFT

KEY_TITLE Allow changing the
chapter

CHAPTER

KEY_SUBTITLE Allow changing the
subtitle

SUBTITLE

Image control
KEY_BRIGHTNESSDOWN Decrease Brightness BRIGHTNESS DECREASE
KEY_BRIGHTNESSUP Increase Brightness BRIGHTNESS INCREASE
KEY_ANGLE Switch video camera

angle (on videos with
more than one angle
stored)

ANGLE / SWAP

KEY_EPG Open the Elecrowonic
Play Guide (EPG)

EPG / GUIDE

KEY_TEXT Activate/change
closed caption mode

CLOSED CAPTION/TELETEXT / DVD TEXT
/ TELETEXT / TTX

Audio control
KEY_AUDIO Change audio source AUDIO SOURCE / AUDIO / MUSIC
KEY_MUTE Mute/unmute audio MUTE / DEMUTE / UNMUTE
KEY_VOLUMEDOWN Decrease volume VOLUME- / VOLUME DOWN
KEY_VOLUMEUP Increase volume VOLUME+ / VOLUME UP
KEY_MODE Change sound mode MONO/STEREO
KEY_LANGUAGE Select Language 1ST / 2ND LANGUAGE / DVD LANG /

MTS/SAP / MTS SEL
Channel control
KEY_CHANNEL Go to the next favorite

channel
ALT / CHANNEL / CH SURFING / SURF /
FAV

KEY_CHANNELDOWN Decrease channel se-
quentially

CHANNEL - / CHANNEL DOWN / DOWN

KEY_CHANNELUP Increase channel se-
quentially

CHANNEL + / CHANNEL UP / UP

Continued on next page

1482 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 259 – continued from previous page
KEY_DIGITS Use more than one

digit for channel
PLUS / 100/ 1xx / xxx / -/– / Single Double
Triple Digit

KEY_SEARCH Start channel au-
toscan

SCAN / AUTOSCAN

Colored keys
KEY_BLUE IR Blue key BLUE
KEY_GREEN IR Green Key GREEN
KEY_RED IR Red key RED
KEY_YELLOW IR Yellow key YELLOW
Media selection
KEY_CD Change input source

to Compact Disc
CD

KEY_DVD Change input to DVD DVD / DVD MENU
KEY_EJECTCLOSECD Open/close the

CD/DVD player
->) / CLOSE / OPEN

KEY_MEDIA Turn on/off Media ap-
plication

PC/TV / TURN ON/OFF APP

KEY_PC Selects from TV to PC PC
KEY_RADIO Put into AM/FM radio

mode
RADIO / TV/FM / TV/RADIO / FM /
FM/RADIO

KEY_TV Select tv mode TV / LIVE TV
KEY_TV2 Select Cable mode AIR/CBL
KEY_VCR Select VCR mode VCR MODE / DTR
KEY_VIDEO Alternate between in-

put modes
SOURCE / SELECT / DISPLAY / SWITCH IN-
PUTS / VIDEO

Power control
KEY_POWER Turn on/off computer SYSTEM POWER / COMPUTER POWER
KEY_POWER2 Turn on/off application TV ON/OFF / POWER
KEY_SLEEP Activate sleep timer SLEEP / SLEEP TIMER
KEY_SUSPEND Put computer into sus-

pend mode
STANDBY / SUSPEND

Window control
KEY_CLEAR Stop stream and re-

turn to default input
video/audio

CLEAR / RESET / BOSS KEY

KEY_CYCLEWINDOWS Minimize windows and
move to the next one

ALT-TAB / MINIMIZE / DESKTOP

KEY_FAVORITES Open the favorites
stream window

TV WALL / Favorites

KEY_MENU Call application menu 2ND CONTROLS (USA: MENU) /
DVD/MENU / SHOW/HIDE CTRL

KEY_NEW Open/Close Picture in
Picture

PIP

KEY_OK Send a confirmation
code to application

OK / ENTER / RETURN

KEY_ASPECT_RATIO Select screen aspect
ratio

4:3 16:9 SELECT

Continued on next page

3.4. Part III - Remote Controller API 1483

Linux Media Documentation

Table 259 – continued from previous page
KEY_FULL_SCREEN Put device into

zoom/full screen mode
ZOOM / FULL SCREEN / ZOOM+ / HIDE
PANNEL / SWITCH

Navigation keys
KEY_ESC Cancel current opera-

tion
CANCEL / BACK

KEY_HELP Open a Help window HELP
KEY_HOMEPAGE Navigate to Home-

page
HOME

KEY_INFO Open On Screen Dis-
play

DISPLAY INFORMATION / OSD

KEY_WWW Open the default
browser

WEB

KEY_UP Up key UP
KEY_DOWN Down key DOWN
KEY_LEFT Left key LEFT
KEY_RIGHT Right key RIGHT
Miscellaneous keys
KEY_DOT Return a dot .
KEY_FN Select a function FUNCTION

It should be noted that, sometimes, there some fundamental missing keys at some cheaper IR’s.
Due to that, it is recommended to:

Table 260: Notes
On simpler IR’s, without separate channel keys, you need to map UP as KEY_CHANNELUP
On simpler IR’s, without separate channel keys, you need to map DOWN as KEY_CHANNELDOWN
On simpler IR’s, without separate volume keys, you need to map LEFT as KEY_VOLUMEDOWN
On simpler IR’s, without separate volume keys, you need to map RIGHT as KEY_VOLUMEUP

3.4.5 Changing default Remote Controller mappings

The event interface provides two ioctls to be used against the /dev/input/event device, to allow
changing the default keymapping.

This program demonstrates how to replace the keymap tables.

3.4.5.1 file: uapi/v4l/keytable.c

/* keytable.c - This program allows checking/replacing keys at IR

Copyright (C) 2006-2009 Mauro Carvalho Chehab <mchehab@kernel.org>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, version 2 of the License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

1484 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

GNU General Public License for more details.
*/

#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <linux/input.h>
#include <sys/ioctl.h>

#include "parse.h"

void prtcode (int *codes)
{

struct parse_key *p;

for (p=keynames;p->name!=NULL;p++) {
if (p->value == (unsigned)codes[1]) {

printf("scancode 0x%04x = %s (0x%02x)\\n", codes[0], p->name,␣
↪→codes[1]);

return;
}

}

if (isprint (codes[1]))
printf("scancode %d = '%c' (0x%02x)\\n", codes[0], codes[1], codes[1]);

else
printf("scancode %d = 0x%02x\\n", codes[0], codes[1]);

}

int parse_code(char *string)
{

struct parse_key *p;

for (p=keynames;p->name!=NULL;p++) {
if (!strcasecmp(p->name, string)) {

return p->value;
}

}
return -1;

}

int main (int argc, char *argv[])
{

int fd;
unsigned int i, j;
int codes[2];

if (argc<2 || argc>4) {
printf ("usage: %s <device> to get table; or\\n"

" %s <device> <scancode> <keycode>\\n"
" %s <device> <keycode_file>n",*argv,*argv,*argv);

return -1;
}

3.4. Part III - Remote Controller API 1485

Linux Media Documentation

if ((fd = open(argv[1], O_RDONLY)) < 0) {
perror("Couldn't open input device");
return(-1);

}

if (argc==4) {
int value;

value=parse_code(argv[3]);

if (value==-1) {
value = strtol(argv[3], NULL, 0);
if (errno)

perror("value");
}

codes [0] = (unsigned) strtol(argv[2], NULL, 0);
codes [1] = (unsigned) value;

if(ioctl(fd, EVIOCSKEYCODE, codes))
perror ("EVIOCSKEYCODE");

if(ioctl(fd, EVIOCGKEYCODE, codes)==0)
prtcode(codes);

return 0;
}

if (argc==3) {
FILE *fin;
int value;
char *scancode, *keycode, s[2048];

fin=fopen(argv[2],"r");
if (fin==NULL) {

perror ("opening keycode file");
return -1;

}

/* Clears old table */
for (j = 0; j < 256; j++) {

for (i = 0; i < 256; i++) {
codes[0] = (j << 8) | i;
codes[1] = KEY_RESERVED;
ioctl(fd, EVIOCSKEYCODE, codes);

}
}

while (fgets(s,sizeof(s),fin)) {
scancode=strtok(s,"\\n\\t =:");
if (!scancode) {

perror ("parsing input file scancode");
return -1;

}
if (!strcasecmp(scancode, "scancode")) {

scancode = strtok(NULL,"\\n\\t =:");
if (!scancode) {

perror ("parsing input file scancode");

1486 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

return -1;
}

}

keycode=strtok(NULL,"\\n\\t =:(");
if (!keycode) {

perror ("parsing input file keycode");
return -1;

}

// printf ("parsing %s=%s:", scancode, keycode);
value=parse_code(keycode);
// printf ("\\tvalue=%d\\n",value);

if (value==-1) {
value = strtol(keycode, NULL, 0);
if (errno)

perror("value");
}

codes [0] = (unsigned) strtol(scancode, NULL, 0);
codes [1] = (unsigned) value;

// printf("\\t%04x=%04x\\n",codes[0], codes[1]);
if(ioctl(fd, EVIOCSKEYCODE, codes)) {

fprintf(stderr, "Setting scancode 0x%04x with 0x%04x␣
↪→via ",codes[0], codes[1]);

perror ("EVIOCSKEYCODE");
}

if(ioctl(fd, EVIOCGKEYCODE, codes)==0)
prtcode(codes);

}
return 0;

}

/* Get scancode table */
for (j = 0; j < 256; j++) {

for (i = 0; i < 256; i++) {
codes[0] = (j << 8) | i;
if (!ioctl(fd, EVIOCGKEYCODE, codes) && codes[1] != KEY_

↪→RESERVED)
prtcode(codes);

}
}
return 0;

}

3.4. Part III - Remote Controller API 1487

Linux Media Documentation

3.4.6 LIRC Device Interface

3.4.6.1 Introduction

LIRC stands for Linux Infrared Remote Control. The LIRC device interface is a bi-directional
interface for transporting raw IR and decoded scancodes data between userspace and ker-
nelspace. Fundamentally, it is just a chardev (/dev/lircX, for X = 0, 1, 2, …), with a number of
standard struct file_operations defined on it. With respect to transporting raw IR and decoded
scancodes to and fro, the essential fops are read, write and ioctl.

It is also possible to attach a BPF program to a LIRC device for decoding raw IR into scancodes.

Example dmesg output upon a driver registering w/LIRC:

$ dmesg |grep lirc_dev
rc rc0: lirc_dev: driver mceusb registered at minor = 0, raw IR receiver, raw IR␣
↪→transmitter

What you should see for a chardev:

$ ls -l /dev/lirc*
crw-rw---- 1 root root 248, 0 Jul 2 22:20 /dev/lirc0

Note that the package v4l-utils contains tools for working with LIRC devices:

• ir-ctl: can receive raw IR and transmit IR, as well as query LIRC device features.

• ir-keytable: can load keymaps; allows you to set IR kernel protocols; load BPF IR decoders
and test IR decoding. Some BPF IR decoders are also provided.

3.4.6.2 LIRC modes

LIRC supports some modes of receiving and sending IR codes, as shown on the following table.

LIRC_MODE_SCANCODE

This mode is for both sending and receiving IR.

For transmitting (aka sending), create a struct lirc_scancode with the desired scan-
code set in the scancode member, rc_proto set to the IR protocol, and all other
members set to 0. Write this struct to the lirc device.

For receiving, you read struct lirc_scancode from the LIRC device. The scancode field
is set to the received scancode and the IR protocol is set in rc_proto. If the scancode
maps to a valid key code, this is set in the keycode field, else it is set to KEY_RESERVED.

The flags can have LIRC_SCANCODE_FLAG_TOGGLE set if the toggle bit is set in proto-
cols that support it (e.g. rc-5 and rc-6), or LIRC_SCANCODE_FLAG_REPEAT for when a
repeat is received for protocols that support it (e.g. nec).

In the Sanyo and NEC protocol, if you hold a button on remote, rather than re-
peating the entire scancode, the remote sends a shorter message with no scan-
code, which just means button is held, a “repeat”. When this is received, the
LIRC_SCANCODE_FLAG_REPEAT is set and the scancode and keycode is repeated.

With nec, there is no way to distinguish “button hold” from “repeatedly pressing
the same button”. The rc-5 and rc-6 protocols have a toggle bit. When a button

1488 Chapter 3. Linux Media Infrastructure userspace API

https://git.linuxtv.org/v4l-utils.git/

Linux Media Documentation

is released and pressed again, the toggle bit is inverted. If the toggle bit is set, the
LIRC_SCANCODE_FLAG_TOGGLE is set.

The timestamp field is filled with the time nanoseconds (in CLOCK_MONOTONIC) when
the scancode was decoded.

LIRC_MODE_MODE2

The driver returns a sequence of pulse and space codes to userspace, as a series of
u32 values.

This mode is used only for IR receive.

The upper 8 bits determine the packet type, and the lower 24 bits the payload. Use
LIRC_VALUE() macro to get the payload, and the macro LIRC_MODE2() will give you
the type, which is one of:

LIRC_MODE2_PULSE

Signifies the presence of IR in microseconds.

LIRC_MODE2_SPACE

Signifies absence of IR in microseconds.

LIRC_MODE2_FREQUENCY

If measurement of the carrier frequency was enabled with ioctl
LIRC_SET_MEASURE_CARRIER_MODE then this packet gives you the
carrier frequency in Hertz.

LIRC_MODE2_TIMEOUT

If timeout reports are enabledwith ioctl LIRC_SET_REC_TIMEOUT_REPORTS,
when the timeout set with ioctl LIRC_GET_REC_TIMEOUT and
LIRC_SET_REC_TIMEOUT expires due to no IR being detected, this
packet will be sent, with the number of microseconds with no IR.

LIRC_MODE_PULSE

In pulse mode, a sequence of pulse/space integer values are written to the lirc device
using LIRC write().

The values are alternating pulse and space lengths, in microseconds. The first and
last entry must be a pulse, so there must be an odd number of entries.

This mode is used only for IR send.

3.4.6.3 Data types used by LIRC_MODE_SCANCODE

struct lirc_scancode
decoded scancode with protocol for use with LIRC_MODE_SCANCODE

Definition

struct lirc_scancode {
__u64 timestamp;
__u16 flags;
__u16 rc_proto;
__u32 keycode;

3.4. Part III - Remote Controller API 1489

Linux Media Documentation

__u64 scancode;
};

Members
timestamp Timestamp in nanoseconds using CLOCK_MONOTONIC when IR was decoded.

flags should be 0 for transmit. When receiving scancodes, LIRC_SCANCODE_FLAG_TOGGLE
or LIRC_SCANCODE_FLAG_REPEAT can be set depending on the protocol

rc_proto see enum rc_proto

keycode the translated keycode. Set to 0 for transmit.

scancode the scancode received or to be sent

enum rc_proto
the Remote Controller protocol

Constants
RC_PROTO_UNKNOWN Protocol not known

RC_PROTO_OTHER Protocol known but proprietary

RC_PROTO_RC5 Philips RC5 protocol

RC_PROTO_RC5X_20 Philips RC5x 20 bit protocol

RC_PROTO_RC5_SZ StreamZap variant of RC5

RC_PROTO_JVC JVC protocol

RC_PROTO_SONY12 Sony 12 bit protocol

RC_PROTO_SONY15 Sony 15 bit protocol

RC_PROTO_SONY20 Sony 20 bit protocol

RC_PROTO_NEC NEC protocol

RC_PROTO_NECX Extended NEC protocol

RC_PROTO_NEC32 NEC 32 bit protocol

RC_PROTO_SANYO Sanyo protocol

RC_PROTO_MCIR2_KBD RC6-ish MCE keyboard

RC_PROTO_MCIR2_MSE RC6-ish MCE mouse

RC_PROTO_RC6_0 Philips RC6-0-16 protocol

RC_PROTO_RC6_6A_20 Philips RC6-6A-20 protocol

RC_PROTO_RC6_6A_24 Philips RC6-6A-24 protocol

RC_PROTO_RC6_6A_32 Philips RC6-6A-32 protocol

RC_PROTO_RC6_MCE MCE (Philips RC6-6A-32 subtype) protocol

RC_PROTO_SHARP Sharp protocol

RC_PROTO_XMP XMP protocol

RC_PROTO_CEC CEC protocol

1490 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

RC_PROTO_IMON iMon Pad protocol

RC_PROTO_RCMM12 RC-MM protocol 12 bits

RC_PROTO_RCMM24 RC-MM protocol 24 bits

RC_PROTO_RCMM32 RC-MM protocol 32 bits

RC_PROTO_XBOX_DVD Xbox DVD Movie Playback Kit protocol

RC_PROTO_MAX Maximum value of enum rc_proto

3.4.6.4 BPF based IR decoder

The kernel has support for decoding the most common IR protocols, but there are many pro-
tocols which are not supported. To support these, it is possible to load an BPF program which
does the decoding. This can only be done on LIRC devices which support reading raw IR.

First, using the bpf(2) syscall with the BPF_LOAD_PROG argument, program must be loaded of
type BPF_PROG_TYPE_LIRC_MODE2. Once attached to the LIRC device, this program will be
called for each pulse, space or timeout event on the LIRC device. The context for the BPF pro-
gram is a pointer to a unsigned int, which is a LIRC_MODE_MODE2 value. When the program
has decoded the scancode, it can be submitted using the BPF functions bpf_rc_keydown() or
bpf_rc_repeat(). Mouse or pointermovements can be reported using bpf_rc_pointer_rel().

Once you have the file descriptor for the BPF_PROG_TYPE_LIRC_MODE2 BPF program, it can be
attached to the LIRC device using the bpf(2) syscall. The target must be the file descriptor for
the LIRC device, and the attach type must be BPF_LIRC_MODE2. No more than 64 BPF programs
can be attached to a single LIRC device at a time.

3.4.6.5 LIRC Function Reference

LIRC read()

Name

lirc-read - Read from a LIRC device

Synopsis

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count)

3.4. Part III - Remote Controller API 1491

http://man7.org/linux/man-pages/man2/bpf.2.html
http://man7.org/linux/man-pages/man2/bpf.2.html

Linux Media Documentation

Arguments

fd File descriptor returned by open().

buf Buffer to be filled

count Max number of bytes to read

Description

read() attempts to read up to count bytes from file descriptor fd into the buffer starting at
buf. If count is zero, read() returns zero and has no other results. If count is greater than
SSIZE_MAX, the result is unspecified.

The exact format of the data depends on what LIRC modes a driver uses. Use ioctl
LIRC_GET_FEATURES to get the supported mode, and use ioctls LIRC_GET_REC_MODE and
LIRC_SET_REC_MODE set the current active mode.

The mode LIRC_MODE_MODE2 is for raw IR, in which packets containing an unsigned int value
describing an IR signal are read from the chardev.

Alternatively, LIRC_MODE_SCANCODE can be available, in this mode scancodes which are
either decoded by software decoders, or by hardware decoders. The rc_protomember is set to
the IR protocol used for transmission, and scancode to the decoded scancode, and the keycode
set to the keycode or KEY_RESERVED.

Return Value

On success, the number of bytes read is returned. It is not an error if this number is smaller
than the number of bytes requested, or the amount of data required for one frame. On error,
-1 is returned, and the errno variable is set appropriately.

LIRC write()

Name

lirc-write - Write to a LIRC device

Synopsis

#include <unistd.h>

ssize_t write(int fd, void *buf, size_t count)

1492 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Arguments

fd File descriptor returned by open().

buf Buffer with data to be written

count Number of bytes at the buffer

Description

write() writes up to count bytes to the device referenced by the file descriptor fd from the
buffer starting at buf.

The exact format of the data depends on what mode a driver is in, use ioctl
LIRC_GET_FEATURES to get the supported modes and use ioctls LIRC_GET_SEND_MODE and
LIRC_SET_SEND_MODE set the mode.

When in LIRC_MODE_PULSE mode, the data written to the chardev is a pulse/space sequence
of integer values. Pulses and spaces are only marked implicitly by their position. The data
must start and end with a pulse, therefore, the data must always include an uneven number
of samples. The write function blocks until the data has been transmitted by the hardware. If
more data is provided than the hardware can send, the driver returns EINVAL.

When in LIRC_MODE_SCANCODE mode, one struct lirc_scancode must be written to the
chardev at a time, else EINVAL is returned. Set the desired scancode in the scancode member,
and the IR protocol in the rc_proto: member. All other members must be set to 0, else EINVAL
is returned. If there is no protocol encoder for the protocol or the scancode is not valid for
the specified protocol, EINVAL is returned. The write function blocks until the scancode is
transmitted by the hardware.

Return Value

On success, the number of bytes written is returned. It is not an error if this number is smaller
than the number of bytes requested, or the amount of data required for one frame. On error, -1
is returned, and the errno variable is set appropriately. The generic error codes are described
at the Generic Error Codes chapter.

ioctl LIRC_GET_FEATURES

Name

LIRC_GET_FEATURES - Get the underlying hardware device’s features

3.4. Part III - Remote Controller API 1493

Linux Media Documentation

Synopsis

LIRC_GET_FEATURES

int ioctl(int fd, LIRC_GET_FEATURES, __u32 *features)

Arguments

fd File descriptor returned by open().

features Bitmask with the LIRC features.

Description

Get the underlying hardware device’s features. If a driver does not announce support of certain
features, calling of the corresponding ioctls is undefined.

LIRC features

LIRC_CAN_REC_RAW

Unused. Kept just to avoid breaking uAPI.

LIRC_CAN_REC_PULSE

Unused. Kept just to avoid breaking uAPI. LIRC_MODE_PULSE can only be used for
transmitting.

LIRC_CAN_REC_MODE2

This is raw IR driver for receiving. This means that LIRC_MODE_MODE2 is used. This
also implies that LIRC_MODE_SCANCODE is also supported, as long as the kernel is
recent enough. Use the ioctls LIRC_GET_REC_MODE and LIRC_SET_REC_MODE to
switch modes.

LIRC_CAN_REC_LIRCCODE

Unused. Kept just to avoid breaking uAPI.

LIRC_CAN_REC_SCANCODE

This is a scancode driver for receiving. This means that LIRC_MODE_SCANCODE is
used.

LIRC_CAN_SET_SEND_CARRIER

The driver supports changing the modulation frequency via ioctl
LIRC_SET_SEND_CARRIER.

LIRC_CAN_SET_SEND_DUTY_CYCLE

The driver supports changing the duty cycle using ioctl
LIRC_SET_SEND_DUTY_CYCLE.

LIRC_CAN_SET_TRANSMITTER_MASK

1494 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

The driver supports changing the active transmitter(s) using ioctl
LIRC_SET_TRANSMITTER_MASK.

LIRC_CAN_SET_REC_CARRIER

The driver supports setting the receive carrier frequency using ioctl
LIRC_SET_REC_CARRIER.

LIRC_CAN_SET_REC_DUTY_CYCLE_RANGE

Unused. Kept just to avoid breaking uAPI.

LIRC_CAN_SET_REC_CARRIER_RANGE

The driver supports ioctl LIRC_SET_REC_CARRIER_RANGE.

LIRC_CAN_GET_REC_RESOLUTION

The driver supports ioctl LIRC_GET_REC_RESOLUTION.

LIRC_CAN_SET_REC_TIMEOUT

The driver supports ioctl LIRC_SET_REC_TIMEOUT.

LIRC_CAN_SET_REC_FILTER

Unused. Kept just to avoid breaking uAPI.

LIRC_CAN_MEASURE_CARRIER

The driver supports measuring of the modulation frequency using ioctl
LIRC_SET_MEASURE_CARRIER_MODE.

LIRC_CAN_USE_WIDEBAND_RECEIVER

The driver supports learning mode using ioctl LIRC_SET_WIDEBAND_RECEIVER.

LIRC_CAN_NOTIFY_DECODE

Unused. Kept just to avoid breaking uAPI.

LIRC_CAN_SEND_RAW

Unused. Kept just to avoid breaking uAPI.

LIRC_CAN_SEND_PULSE

The driver supports sending (also called as IR blasting or IR TX) using
LIRC_MODE_PULSE. This implies that LIRC_MODE_SCANCODE is also sup-
ported for transmit, as long as the kernel is recent enough. Use the ioctls
LIRC_GET_SEND_MODE and LIRC_SET_SEND_MODE to switch modes.

LIRC_CAN_SEND_MODE2

Unused. Kept just to avoid breaking uAPI. LIRC_MODE_MODE2 can only be used for
receiving.

LIRC_CAN_SEND_LIRCCODE

Unused. Kept just to avoid breaking uAPI.

3.4. Part III - Remote Controller API 1495

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

ioctls LIRC_GET_SEND_MODE and LIRC_SET_SEND_MODE

Name

LIRC_GET_SEND_MODE/LIRC_SET_SEND_MODE - Get/set current transmit mode.

Synopsis

LIRC_GET_SEND_MODE

int ioctl(int fd, LIRC_GET_SEND_MODE, __u32 *mode)

LIRC_SET_SEND_MODE

int ioctl(int fd, LIRC_SET_SEND_MODE, __u32 *mode)

Arguments

fd File descriptor returned by open().

mode The mode used for transmitting.

Description

Get/set current transmit mode.

Only LIRC_MODE_PULSE and LIRC_MODE_SCANCODE are supported by for IR send, depend-
ing on the driver. Use ioctl LIRC_GET_FEATURES to find out which modes the driver supports.

Return Value

ENODEV Device not available.
ENOTTY Device does not support transmitting.
EINVAL Invalid mode or invalid mode for this device.

1496 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

ioctls LIRC_GET_REC_MODE and LIRC_SET_REC_MODE

Name

LIRC_GET_REC_MODE/LIRC_SET_REC_MODE - Get/set current receive mode.

Synopsis

LIRC_GET_REC_MODE

int ioctl(int fd, LIRC_GET_REC_MODE, __u32 *mode)

LIRC_SET_REC_MODE

int ioctl(int fd, LIRC_SET_REC_MODE, __u32 *mode)

Arguments

fd File descriptor returned by open().

mode Mode used for receive.

Description

Get and set the current receive mode. Only LIRC_MODE_MODE2 and
LIRC_MODE_SCANCODE are supported. Use ioctl LIRC_GET_FEATURES to find out which
modes the driver supports.

Return Value

ENODEV Device not available.
ENOTTY Device does not support receiving.
EINVAL Invalid mode or invalid mode for this device.

ioctl LIRC_GET_REC_RESOLUTION

Name

LIRC_GET_REC_RESOLUTION - Obtain the value of receive resolution, in microseconds.

3.4. Part III - Remote Controller API 1497

Linux Media Documentation

Synopsis

LIRC_GET_REC_RESOLUTION

int ioctl(int fd, LIRC_GET_REC_RESOLUTION, __u32 *microseconds)

Arguments

fd File descriptor returned by open().

microseconds Resolution, in microseconds.

Description

Some receivers have maximum resolution which is defined by internal sample rate or data
format limitations. E.g. it’s common that signals can only be reported in 50 microsecond steps.

This ioctl returns the integer value with such resolution, with can be used by userspace appli-
cations like lircd to automatically adjust the tolerance value.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_SEND_DUTY_CYCLE

Name

LIRC_SET_SEND_DUTY_CYCLE - Set the duty cycle of the carrier signal for IR transmit.

Synopsis

LIRC_SET_SEND_DUTY_CYCLE

int ioctl(int fd, LIRC_SET_SEND_DUTY_CYCLE, __u32 *duty_cycle)

Arguments

fd File descriptor returned by open().

duty_cycle Duty cicle, describing the pulse width in percent (from 1 to 99) of the total cycle.
Values 0 and 100 are reserved.

1498 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Description

Get/set the duty cycle of the carrier signal for IR transmit.

Currently, no special meaning is defined for 0 or 100, but this could be used to switch off carrier
generation in the future, so these values should be reserved.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

ioctls LIRC_GET_MIN_TIMEOUT and LIRC_GET_MAX_TIMEOUT

Name

LIRC_GET_MIN_TIMEOUT / LIRC_GET_MAX_TIMEOUT - Obtain the possible timeout range for
IR receive.

Synopsis

LIRC_GET_MIN_TIMEOUT

int ioctl(int fd, LIRC_GET_MIN_TIMEOUT, __u32 *timeout)

LIRC_GET_MAX_TIMEOUT

int ioctl(int fd, LIRC_GET_MAX_TIMEOUT, __u32 *timeout)

Arguments

fd File descriptor returned by open().

timeout Timeout, in microseconds.

Description

Some devices have internal timers that can be used to detect when there’s no IR activity for
a long time. This can help lircd in detecting that a IR signal is finished and can speed up the
decoding process. Returns an integer value with the minimum/maximum timeout that can be
set.

Note: Some devices have a fixed timeout, in that case both ioctls will return the same
value even though the timeout cannot be changed via ioctl LIRC_GET_REC_TIMEOUT and
LIRC_SET_REC_TIMEOUT.

3.4. Part III - Remote Controller API 1499

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

ioctl LIRC_GET_REC_TIMEOUT and LIRC_SET_REC_TIMEOUT

Name

LIRC_GET_REC_TIMEOUT/LIRC_SET_REC_TIMEOUT - Get/set the integer value for IR inactiv-
ity timeout.

Synopsis

LIRC_GET_REC_TIMEOUT

int ioctl(int fd, LIRC_GET_REC_TIMEOUT, __u32 *timeout)

LIRC_SET_REC_TIMEOUT

int ioctl(int fd, LIRC_SET_REC_TIMEOUT, __u32 *timeout)

Arguments

fd File descriptor returned by open().

timeout Timeout, in microseconds.

Description

Get and set the integer value for IR inactivity timeout.

If supported by the hardware, setting it to 0 disables all hardware timeouts and data should
be reported as soon as possible. If the exact value cannot be set, then the next possible value
greater than the given value should be set.

Note: The range of supported timeout is given by ioctls LIRC_GET_MIN_TIMEOUT and
LIRC_GET_MAX_TIMEOUT.

1500 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_REC_CARRIER

Name

LIRC_SET_REC_CARRIER - Set carrier used to modulate IR receive.

Synopsis

LIRC_SET_REC_CARRIER

int ioctl(int fd, LIRC_SET_REC_CARRIER, __u32 *frequency)

Arguments

fd File descriptor returned by open().

frequency Frequency of the carrier that modulates PWM data, in Hz.

Description

Set receive carrier used to modulate IR PWM pulses and spaces.

Note: If called together with ioctl LIRC_SET_REC_CARRIER_RANGE, this ioctl sets the upper
bound frequency that will be recognized by the device.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_REC_CARRIER_RANGE

Name

LIRC_SET_REC_CARRIER_RANGE - Set lower bound of the carrier used to modulate IR receive.

3.4. Part III - Remote Controller API 1501

Linux Media Documentation

Synopsis

LIRC_SET_REC_CARRIER_RANGE

int ioctl(int fd, LIRC_SET_REC_CARRIER_RANGE, __u32 *frequency)

Arguments

fd File descriptor returned by open().

frequency Frequency of the carrier that modulates PWM data, in Hz.

Description

This ioctl sets the upper range of carrier frequency that will be recognized by the IR receiver.

Note: To set a range use LIRC_SET_REC_CARRIER_RANGE with the lower bound first and
later call LIRC_SET_REC_CARRIER with the upper bound.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_SEND_CARRIER

Name

LIRC_SET_SEND_CARRIER - Set send carrier used to modulate IR TX.

Synopsis

LIRC_SET_SEND_CARRIER

int ioctl(int fd, LIRC_SET_SEND_CARRIER, __u32 *frequency)

Arguments

fd File descriptor returned by open().

frequency Frequency of the carrier to be modulated, in Hz.

1502 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Description

Set send carrier used to modulate IR PWM pulses and spaces.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_TRANSMITTER_MASK

Name

LIRC_SET_TRANSMITTER_MASK - Enables send codes on a given set of transmitters

Synopsis

LIRC_SET_TRANSMITTER_MASK

int ioctl(int fd, LIRC_SET_TRANSMITTER_MASK, __u32 *mask)

Arguments

fd File descriptor returned by open().

mask Mask with channels to enable tx. Channel 0 is the least significant bit.

Description

Some IR TX devices have multiple output channels, in such case,
LIRC_CAN_SET_TRANSMITTER_MASK is returned via ioctl LIRC_GET_FEATURES and
this ioctl sets what channels will send IR codes.

This ioctl enables the given set of transmitters. The first transmitter is encoded by the least
significant bit and so on.

When an invalid bit mask is given, i.e. a bit is set, even though the device does not have so
many transitters, then this ioctl returns the number of available transitters and does nothing
otherwise.

3.4. Part III - Remote Controller API 1503

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_REC_TIMEOUT_REPORTS

Name

LIRC_SET_REC_TIMEOUT_REPORTS - enable or disable timeout reports for IR receive

Synopsis

LIRC_SET_REC_TIMEOUT_REPORTS

int ioctl(int fd, LIRC_SET_REC_TIMEOUT_REPORTS, __u32 *enable)

Arguments

fd File descriptor returned by open().

enable enable = 1 means enable timeout report, enable = 0 means disable timeout reports.

Description

Enable or disable timeout reports for IR receive. By default, timeout reports should be turned
off.

Note: This ioctl is only valid for LIRC_MODE_MODE2.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_MEASURE_CARRIER_MODE

Name

LIRC_SET_MEASURE_CARRIER_MODE - enable or disable measure mode

1504 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Synopsis

LIRC_SET_MEASURE_CARRIER_MODE

int ioctl(int fd, LIRC_SET_MEASURE_CARRIER_MODE, __u32 *enable)

Arguments

fd File descriptor returned by open().

enable enable = 1 means enable measure mode, enable = 0 means disable measure mode.

Description

Enable or disable measure mode. If enabled, from the next key press on, the driver will send
LIRC_MODE2_FREQUENCY packets. By default this should be turned off.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_WIDEBAND_RECEIVER

Name

LIRC_SET_WIDEBAND_RECEIVER - enable wide band receiver.

Synopsis

LIRC_SET_WIDEBAND_RECEIVER

int ioctl(int fd, LIRC_SET_WIDEBAND_RECEIVER, __u32 *enable)

Arguments

fd File descriptor returned by open().

enable enable = 1 means enable wideband receiver, enable = 0 means disable wideband re-
ceiver.

3.4. Part III - Remote Controller API 1505

Linux Media Documentation

Description

Some receivers are equipped with special wide band receiver which is intended to be used to
learn output of existing remote. This ioctl allows enabling or disabling it.

This might be useful of receivers that have otherwise narrow band receiver that prevents them
to be used with some remotes. Wide band receiver might also be more precise. On the other
hand its disadvantage it usually reduced range of reception.

Note: Wide band receiver might be implictly enabled if you enable carrier reports. In that case
it will be disabled as soon as you disable carrier reports. Trying to disable wide band receiver
while carrier reports are active will do nothing.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

3.4.6.6 LIRC Header File

lirc.h

/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
/*
* lirc.h - linux infrared remote control header file
*/

#ifndef _LINUX_LIRC_H
#define _LINUX_LIRC_H

#include <linux/types.h>
#include <linux/ioctl.h>

#define PULSE_BIT 0x01000000
#define PULSE_MASK 0x00FFFFFF

#define LIRC_MODE2_SPACE 0x00000000
#define LIRC_MODE2_PULSE 0x01000000
#define LIRC_MODE2_FREQUENCY 0x02000000
#define LIRC_MODE2_TIMEOUT 0x03000000

#define LIRC_VALUE_MASK 0x00FFFFFF
#define LIRC_MODE2_MASK 0xFF000000

#define LIRC_SPACE(val) (((val)&LIRC_VALUE_MASK) | LIRC_MODE2_SPACE)
#define LIRC_PULSE(val) (((val)&LIRC_VALUE_MASK) | LIRC_MODE2_PULSE)
#define LIRC_FREQUENCY(val) (((val)&LIRC_VALUE_MASK) | LIRC_MODE2_FREQUENCY)
#define LIRC_TIMEOUT(val) (((val)&LIRC_VALUE_MASK) | LIRC_MODE2_TIMEOUT)

1506 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

#define LIRC_VALUE(val) ((val)&LIRC_VALUE_MASK)
#define LIRC_MODE2(val) ((val)&LIRC_MODE2_MASK)

#define LIRC_IS_SPACE(val) (LIRC_MODE2(val) == LIRC_MODE2_SPACE)
#define LIRC_IS_PULSE(val) (LIRC_MODE2(val) == LIRC_MODE2_PULSE)
#define LIRC_IS_FREQUENCY(val) (LIRC_MODE2(val) == LIRC_MODE2_FREQUENCY)
#define LIRC_IS_TIMEOUT(val) (LIRC_MODE2(val) == LIRC_MODE2_TIMEOUT)

/* used heavily by lirc userspace */
#define lirc_t int

/*** lirc compatible hardware features ***/

#define LIRC_MODE2SEND(x) (x)
#define LIRC_SEND2MODE(x) (x)
#define LIRC_MODE2REC(x) ((x) << 16)
#define LIRC_REC2MODE(x) ((x) >> 16)

#define LIRC_MODE_RAW 0x00000001
#define LIRC_MODE_PULSE 0x00000002
#define LIRC_MODE_MODE2 0x00000004
#define LIRC_MODE_SCANCODE 0x00000008
#define LIRC_MODE_LIRCCODE 0x00000010

#define LIRC_CAN_SEND_RAW LIRC_MODE2SEND(LIRC_MODE_RAW)
#define LIRC_CAN_SEND_PULSE LIRC_MODE2SEND(LIRC_MODE_PULSE)
#define LIRC_CAN_SEND_MODE2 LIRC_MODE2SEND(LIRC_MODE_MODE2)
#define LIRC_CAN_SEND_LIRCCODE LIRC_MODE2SEND(LIRC_MODE_LIRCCODE)

#define LIRC_CAN_SEND_MASK 0x0000003f

#define LIRC_CAN_SET_SEND_CARRIER 0x00000100
#define LIRC_CAN_SET_SEND_DUTY_CYCLE 0x00000200
#define LIRC_CAN_SET_TRANSMITTER_MASK 0x00000400

#define LIRC_CAN_REC_RAW LIRC_MODE2REC(LIRC_MODE_RAW)
#define LIRC_CAN_REC_PULSE LIRC_MODE2REC(LIRC_MODE_PULSE)
#define LIRC_CAN_REC_MODE2 LIRC_MODE2REC(LIRC_MODE_MODE2)
#define LIRC_CAN_REC_SCANCODE LIRC_MODE2REC(LIRC_MODE_SCANCODE)
#define LIRC_CAN_REC_LIRCCODE LIRC_MODE2REC(LIRC_MODE_LIRCCODE)

#define LIRC_CAN_REC_MASK LIRC_MODE2REC(LIRC_CAN_SEND_MASK)

#define LIRC_CAN_SET_REC_CARRIER (LIRC_CAN_SET_SEND_CARRIER << 16)
#define LIRC_CAN_SET_REC_DUTY_CYCLE (LIRC_CAN_SET_SEND_DUTY_CYCLE << 16)

#define LIRC_CAN_SET_REC_DUTY_CYCLE_RANGE 0x40000000
#define LIRC_CAN_SET_REC_CARRIER_RANGE 0x80000000
#define LIRC_CAN_GET_REC_RESOLUTION 0x20000000
#define LIRC_CAN_SET_REC_TIMEOUT 0x10000000

3.4. Part III - Remote Controller API 1507

Linux Media Documentation

#define LIRC_CAN_SET_REC_FILTER 0x08000000

#define LIRC_CAN_MEASURE_CARRIER 0x02000000
#define LIRC_CAN_USE_WIDEBAND_RECEIVER 0x04000000

#define LIRC_CAN_SEND(x) ((x)&LIRC_CAN_SEND_MASK)
#define LIRC_CAN_REC(x) ((x)&LIRC_CAN_REC_MASK)

#define LIRC_CAN_NOTIFY_DECODE 0x01000000

/*** IOCTL commands for lirc driver ***/

#define LIRC_GET_FEATURES _IOR('i', 0x00000000, __u32)

#define LIRC_GET_SEND_MODE _IOR('i', 0x00000001, __u32)
#define LIRC_GET_REC_MODE _IOR('i', 0x00000002, __u32)
#define LIRC_GET_REC_RESOLUTION _IOR('i', 0x00000007, __u32)

#define LIRC_GET_MIN_TIMEOUT _IOR('i', 0x00000008, __u32)
#define LIRC_GET_MAX_TIMEOUT _IOR('i', 0x00000009, __u32)

/* code length in bits, currently only for LIRC_MODE_LIRCCODE */
#define LIRC_GET_LENGTH _IOR('i', 0x0000000f, __u32)

#define LIRC_SET_SEND_MODE _IOW('i', 0x00000011, __u32)
#define LIRC_SET_REC_MODE _IOW('i', 0x00000012, __u32)
/* Note: these can reset the according pulse_width */
#define LIRC_SET_SEND_CARRIER _IOW('i', 0x00000013, __u32)
#define LIRC_SET_REC_CARRIER _IOW('i', 0x00000014, __u32)
#define LIRC_SET_SEND_DUTY_CYCLE _IOW('i', 0x00000015, __u32)
#define LIRC_SET_TRANSMITTER_MASK _IOW('i', 0x00000017, __u32)

/*
* when a timeout != 0 is set the driver will send a
* LIRC_MODE2_TIMEOUT data packet, otherwise LIRC_MODE2_TIMEOUT is
* never sent, timeout is disabled by default
*/

#define LIRC_SET_REC_TIMEOUT _IOW('i', 0x00000018, __u32)

/* 1 enables, 0 disables timeout reports in MODE2 */
#define LIRC_SET_REC_TIMEOUT_REPORTS _IOW('i', 0x00000019, __u32)

/*
* if enabled from the next key press on the driver will send
* LIRC_MODE2_FREQUENCY packets
*/

#define LIRC_SET_MEASURE_CARRIER_MODE _IOW('i', 0x0000001d, __u32)

/*
* to set a range use LIRC_SET_REC_CARRIER_RANGE with the
* lower bound first and later LIRC_SET_REC_CARRIER with the upper bound

1508 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

*/
#define LIRC_SET_REC_CARRIER_RANGE _IOW('i', 0x0000001f, __u32)

#define LIRC_SET_WIDEBAND_RECEIVER _IOW('i', 0x00000023, __u32)

/*
* Return the recording timeout, which is either set by
* the ioctl LIRC_SET_REC_TIMEOUT or by the kernel after setting the protocols.
*/

#define LIRC_GET_REC_TIMEOUT _IOR('i', 0x00000024, __u32)

/**
* struct lirc_scancode - decoded scancode with protocol for use with
* LIRC_MODE_SCANCODE
*
* @timestamp: Timestamp in nanoseconds using CLOCK_MONOTONIC when IR
* was decoded.
* @flags: should be 0 for transmit. When receiving scancodes,
* LIRC_SCANCODE_FLAG_TOGGLE or LIRC_SCANCODE_FLAG_REPEAT can be set
* depending on the protocol
* @rc_proto: see enum rc_proto
* @keycode: the translated keycode. Set to 0 for transmit.
* @scancode: the scancode received or to be sent
*/

struct lirc_scancode {
__u64 timestamp;
__u16 flags;
__u16 rc_proto;
__u32 keycode;
__u64 scancode;

};

/* Set if the toggle bit of rc-5 or rc-6 is enabled */
#define LIRC_SCANCODE_FLAG_TOGGLE 1
/* Set if this is a nec or sanyo repeat */
#define LIRC_SCANCODE_FLAG_REPEAT 2

/**
* enum rc_proto - the Remote Controller protocol
*
* @RC_PROTO_UNKNOWN: Protocol not known
* @RC_PROTO_OTHER: Protocol known but proprietary
* @RC_PROTO_RC5: Philips RC5 protocol
* @RC_PROTO_RC5X_20: Philips RC5x 20 bit protocol
* @RC_PROTO_RC5_SZ: StreamZap variant of RC5
* @RC_PROTO_JVC: JVC protocol
* @RC_PROTO_SONY12: Sony 12 bit protocol
* @RC_PROTO_SONY15: Sony 15 bit protocol
* @RC_PROTO_SONY20: Sony 20 bit protocol
* @RC_PROTO_NEC: NEC protocol
* @RC_PROTO_NECX: Extended NEC protocol

3.4. Part III - Remote Controller API 1509

Linux Media Documentation

* @RC_PROTO_NEC32: NEC 32 bit protocol
* @RC_PROTO_SANYO: Sanyo protocol
* @RC_PROTO_MCIR2_KBD: RC6-ish MCE keyboard
* @RC_PROTO_MCIR2_MSE: RC6-ish MCE mouse
* @RC_PROTO_RC6_0: Philips RC6-0-16 protocol
* @RC_PROTO_RC6_6A_20: Philips RC6-6A-20 protocol
* @RC_PROTO_RC6_6A_24: Philips RC6-6A-24 protocol
* @RC_PROTO_RC6_6A_32: Philips RC6-6A-32 protocol
* @RC_PROTO_RC6_MCE: MCE (Philips RC6-6A-32 subtype) protocol
* @RC_PROTO_SHARP: Sharp protocol
* @RC_PROTO_XMP: XMP protocol
* @RC_PROTO_CEC: CEC protocol
* @RC_PROTO_IMON: iMon Pad protocol
* @RC_PROTO_RCMM12: RC-MM protocol 12 bits
* @RC_PROTO_RCMM24: RC-MM protocol 24 bits
* @RC_PROTO_RCMM32: RC-MM protocol 32 bits
* @RC_PROTO_XBOX_DVD: Xbox DVD Movie Playback Kit protocol
* @RC_PROTO_MAX: Maximum value of enum rc_proto
*/

enum rc_proto {
RC_PROTO_UNKNOWN = 0,
RC_PROTO_OTHER = 1,
RC_PROTO_RC5 = 2,
RC_PROTO_RC5X_20 = 3,
RC_PROTO_RC5_SZ = 4,
RC_PROTO_JVC = 5,
RC_PROTO_SONY12 = 6,
RC_PROTO_SONY15 = 7,
RC_PROTO_SONY20 = 8,
RC_PROTO_NEC = 9,
RC_PROTO_NECX = 10,
RC_PROTO_NEC32 = 11,
RC_PROTO_SANYO = 12,
RC_PROTO_MCIR2_KBD = 13,
RC_PROTO_MCIR2_MSE = 14,
RC_PROTO_RC6_0 = 15,
RC_PROTO_RC6_6A_20 = 16,
RC_PROTO_RC6_6A_24 = 17,
RC_PROTO_RC6_6A_32 = 18,
RC_PROTO_RC6_MCE = 19,
RC_PROTO_SHARP = 20,
RC_PROTO_XMP = 21,
RC_PROTO_CEC = 22,
RC_PROTO_IMON = 23,
RC_PROTO_RCMM12 = 24,
RC_PROTO_RCMM24 = 25,
RC_PROTO_RCMM32 = 26,
RC_PROTO_XBOX_DVD = 27,
RC_PROTO_MAX = RC_PROTO_XBOX_DVD,

};

1510 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

#endif

3.4.7 Revision and Copyright

Authors:

• Carvalho Chehab, Mauro <mchehab@kernel.org>

• Initial version.

Copyright © 2009-2016 : Mauro Carvalho Chehab

3.4.8 Revision History

revision 3.15 / 2014-02-06 (mcc)

Added the interface description and the RC sysfs class description.

revision 1.0 / 2009-09-06 (mcc)

Initial revision

3.5 Part IV - Media Controller API

3.5.1 Introduction

Media devices increasingly handle multiple related functions. Many USB cameras include mi-
crophones, video capture hardware can also output video, or SoC camera interfaces also per-
form memory-to-memory operations similar to video codecs.

Independent functions, even when implemented in the same hardware, can be modelled as
separate devices. A USB camera with a microphone will be presented to userspace applications
as V4L2 and ALSA capture devices. The devices’ relationships (when using awebcam, end-users
shouldn’t have to manually select the associated USB microphone), while not made available
directly to applications by the drivers, can usually be retrieved from sysfs.

With more and more advanced SoC devices being introduced, the current approach will not
scale. Device topologies are getting increasingly complex and can’t always be represented by a
tree structure. Hardware blocks are shared between different functions, creating dependencies
between seemingly unrelated devices.

Kernel abstraction APIs such as V4L2 and ALSA provide means for applications to access hard-
ware parameters. As newer hardware expose an increasingly high number of those parameters,
drivers need to guess what applications really require based on limited information, thereby im-
plementing policies that belong to userspace.

The media controller API aims at solving those problems.

3.5. Part IV - Media Controller API 1511

mailto:mchehab@kernel.org

Linux Media Documentation

3.5.2 Media device model

Discovering a device internal topology, and configuring it at runtime, is one of the goals of
the media controller API. To achieve this, hardware devices and Linux Kernel interfaces are
modelled as graph objects on an oriented graph. The object types that constitute the graph
are:

• An entity is a basic media hardware or software building block. It can correspond to a
large variety of logical blocks such as physical hardware devices (CMOS sensor for in-
stance), logical hardware devices (a building block in a System-on-Chip image processing
pipeline), DMA channels or physical connectors.

• An interface is a graph representation of a Linux Kernel userspace API interface, like a
device node or a sysfs file that controls one or more entities in the graph.

• A pad is a data connection endpoint through which an entity can interact with other enti-
ties. Data (not restricted to video) produced by an entity flows from the entity’s output to
one or more entity inputs. Pads should not be confused with physical pins at chip bound-
aries.

• A data link is a point-to-point oriented connection between two pads, either on the same
entity or on different entities. Data flows from a source pad to a sink pad.

• An interface link is a point-to-point bidirectional control connection between a Linux
Kernel interface and an entity.

3.5.3 Types and flags used to represent the media graph elements

Table 261: Media entity functions
MEDIA_ENT_F_UNKNOWN and
MEDIA_ENT_F_V4L2_SUBDEV_UNKNOWN

Unknown entity. That generally indicates that a
driver didn’t initialize properly the entity, which
is a Kernel bug

MEDIA_ENT_F_IO_V4L Data streaming input and/or output entity.
MEDIA_ENT_F_IO_VBI V4L VBI streaming input or output entity
MEDIA_ENT_F_IO_SWRADIO V4L Software Digital Radio (SDR) streaming in-

put or output entity
MEDIA_ENT_F_IO_DTV DVB Digital TV streaming input or output entity
MEDIA_ENT_F_DTV_DEMOD Digital TV demodulator entity.
MEDIA_ENT_F_TS_DEMUX MPEG Transport stream demux entity. Could be

implemented on hardware or in Kernelspace by
the Linux DVB subsystem.

MEDIA_ENT_F_DTV_CA Digital TV Conditional Access module (CAM) en-
tity

MEDIA_ENT_F_DTV_NET_DECAP Digital TV network ULE/MLE desencapsulation
entity. Could be implemented on hardware or in
Kernelspace

MEDIA_ENT_F_CONN_RF Connector for a Radio Frequency (RF) signal.
MEDIA_ENT_F_CONN_SVIDEO Connector for a S-Video signal.
MEDIA_ENT_F_CONN_COMPOSITE Connector for a RGB composite signal.
MEDIA_ENT_F_CAM_SENSOR Camera video sensor entity.
MEDIA_ENT_F_FLASH Flash controller entity.

Continued on next page

1512 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 261 – continued from previous page
MEDIA_ENT_F_LENS Lens controller entity.
MEDIA_ENT_F_ATV_DECODER Analog video decoder, the basic function of the

video decoder is to accept analogue video from a
wide variety of sources such as broadcast, DVD
players, cameras and video cassette recorders,
in either NTSC, PAL, SECAM or HD format, sep-
arating the stream into its component parts, lu-
minance and chrominance, and output it in some
digital video standard, with appropriate timing
signals.

MEDIA_ENT_F_TUNER Digital TV, analog TV, radio and/or software ra-
dio tuner, with consists on a PLL tuning stage
that converts radio frequency (RF) signal into
an Intermediate Frequency (IF). Modern tuners
have internally IF-PLL decoders for audio and
video, but older models have those stages im-
plemented on separate entities.

MEDIA_ENT_F_IF_VID_DECODER IF-PLL video decoder. It receives the IF from
a PLL and decodes the analog TV video signal.
This is commonly found on some very old ana-
log tuners, like Philips MK3 designs. They all
contain a tda9887 (or some software compati-
ble similar chip, like tda9885). Those devices
use a different I2C address than the tuner PLL.

MEDIA_ENT_F_IF_AUD_DECODER IF-PLL sound decoder. It receives the IF from
a PLL and decodes the analog TV audio signal.
This is commonly found on some very old ana-
log hardware, like Micronas msp3400, Philips
tda9840, tda985x, etc. Those devices use a
different I2C address than the tuner PLL and
should be controlled together with the IF-PLL
video decoder.

MEDIA_ENT_F_AUDIO_CAPTURE Audio Capture Function Entity.
MEDIA_ENT_F_AUDIO_PLAYBACK Audio Playback Function Entity.
MEDIA_ENT_F_AUDIO_MIXER Audio Mixer Function Entity.
MEDIA_ENT_F_PROC_VIDEO_COMPOSER Video composer (blender). An entity capable

of video composing must have at least two sink
pads and one source pad, and composes input
video frames onto output video frames. Compo-
sition can be performed using alpha blending,
color keying, raster operations (ROP), stitching
or any other means.

Continued on next page

3.5. Part IV - Media Controller API 1513

Linux Media Documentation

Table 261 – continued from previous page
MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTERVideo pixel formatter. An entity capable of

pixel formatting must have at least one sink
pad and one source pad. Read pixel format-
ters read pixels from memory and perform a
subset of unpacking, cropping, color keying, al-
pha multiplication and pixel encoding conver-
sion. Write pixel formatters perform a subset of
dithering, pixel encoding conversion and pack-
ing and write pixels to memory.

MEDIA_ENT_F_PROC_VIDEO_PIXEL_ENC_CONVVideo pixel encoding converter. An entity ca-
pable of pixel encoding conversion must have
at least one sink pad and one source pad, and
convert the encoding of pixels received on its
sink pad(s) to a different encoding output on
its source pad(s). Pixel encoding conversion in-
cludes but isn’t limited to RGB to/from HSV,
RGB to/from YUV and CFA (Bayer) to RGB con-
versions.

MEDIA_ENT_F_PROC_VIDEO_LUT Video look-up table. An entity capable of video
lookup table processing must have one sink pad
and one source pad. It uses the values of the
pixels received on its sink pad to look up entries
in internal tables and output them on its source
pad. The lookup processing can be performed
on all components separately or combine them
for multi-dimensional table lookups.

MEDIA_ENT_F_PROC_VIDEO_SCALER Video scaler. An entity capable of video scaling
must have at least one sink pad and one source
pad, and scale the video frame(s) received on its
sink pad(s) to a different resolution output on its
source pad(s). The range of supported scaling
ratios is entity-specific and can differ between
the horizontal and vertical directions (in partic-
ular scaling can be supported in one direction
only). Binning and sub-sampling (occasionally
also referred to as skipping) are considered as
scaling.

MEDIA_ENT_F_PROC_VIDEO_STATISTICS Video statistics computation (histogram, 3A,
etc.). An entity capable of statistics computation
must have one sink pad and one source pad. It
computes statistics over the frames received on
its sink pad and outputs the statistics data on its
source pad.

MEDIA_ENT_F_PROC_VIDEO_ENCODER Video (MPEG, HEVC, VPx, etc.) encoder. An en-
tity capable of compressing video frames. Must
have one sink pad and at least one source pad.

Continued on next page

1514 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 261 – continued from previous page
MEDIA_ENT_F_PROC_VIDEO_DECODER Video (MPEG, HEVC, VPx, etc.) decoder. An

entity capable of decompressing a compressed
video stream into uncompressed video frames.
Must have one sink pad and at least one source
pad.

MEDIA_ENT_F_PROC_VIDEO_ISP An Image Signal Processor (ISP) device. ISPs
generally are one of a kind devices that have
their specific control interfaces using a combi-
nation of custom V4L2 controls and IOCTLs, and
parameters supplied in a metadata buffer.

MEDIA_ENT_F_VID_MUX Video multiplexer. An entity capable of multi-
plexingmust have at least two sink pads and one
source pad, and must pass the video frame(s)
received from the active sink pad to the source
pad.

MEDIA_ENT_F_VID_IF_BRIDGE Video interface bridge. A video interface bridge
entity must have at least one sink pad and at
least one source pad. It receives video frames
on its sink pad from an input video bus of one
type (HDMI, eDP, MIPI CSI-2, etc.), and outputs
them on its source pad to an output video bus of
another type (eDP, MIPI CSI-2, parallel, etc.).

MEDIA_ENT_F_DV_DECODER Digital video decoder. The basic function of the
video decoder is to accept digital video from a
wide variety of sources and output it in some
digital video standard, with appropriate timing
signals.

MEDIA_ENT_F_DV_ENCODER Digital video encoder. The basic function of the
video encoder is to accept digital video from
some digital video standard with appropriate
timing signals (usually a parallel video bus with
sync signals) and output this to a digital video
output connector such as HDMI or DisplayPort.

Table 262: Media entity flags
MEDIA_ENT_FL_DEFAULT Default entity for its type. Used to discover the default audio,

VBI and video devices, the default camera sensor, etc.
MEDIA_ENT_FL_CONNECTOR The entity represents a connector.

3.5. Part IV - Media Controller API 1515

Linux Media Documentation

Table 263: Media interface types
MEDIA_INTF_T_DVB_FE Device node interface for the

Digital TV frontend
typically,
/dev/dvb/adapter?/frontend?

MEDIA_INTF_T_DVB_DEMUX Device node interface for the
Digital TV demux

typically,
/dev/dvb/adapter?/demux?

MEDIA_INTF_T_DVB_DVR Device node interface for the
Digital TV DVR

typically,
/dev/dvb/adapter?/dvr?

MEDIA_INTF_T_DVB_CA Device node interface for the
Digital TV Conditional Access

typically,
/dev/dvb/adapter?/ca?

MEDIA_INTF_T_DVB_NET Device node interface for the
Digital TV network control

typically,
/dev/dvb/adapter?/net?

MEDIA_INTF_T_V4L_VIDEO Device node interface for video
(V4L)

typically, /dev/video?

MEDIA_INTF_T_V4L_VBI Device node interface for VBI
(V4L)

typically, /dev/vbi?

MEDIA_INTF_T_V4L_RADIO Device node interface for radio
(V4L)

typically, /dev/radio?

MEDIA_INTF_T_V4L_SUBDEV Device node interface for a V4L
subdevice

typically, /dev/v4l-
subdev?

MEDIA_INTF_T_V4L_SWRADIO Device node interface for Soft-
ware Defined Radio (V4L)

typically, /dev/swradio?

MEDIA_INTF_T_V4L_TOUCH Device node interface for
Touch device (V4L)

typically, /dev/v4l-touch?

MEDIA_INTF_T_ALSA_PCM_CAPTUREDevice node interface for ALSA
PCM Capture

typically,
/dev/snd/pcmC?D?c

MEDIA_INTF_T_ALSA_PCM_PLAYBACKDevice node interface for ALSA
PCM Playback

typically,
/dev/snd/pcmC?D?p

MEDIA_INTF_T_ALSA_CONTROL Device node interface for ALSA
Control

typically,
/dev/snd/controlC?

MEDIA_INTF_T_ALSA_COMPRESS Device node interface for ALSA
Compress

typically,
/dev/snd/compr?

MEDIA_INTF_T_ALSA_RAWMIDI Device node interface for ALSA
Raw MIDI

typically, /dev/snd/midi?

MEDIA_INTF_T_ALSA_HWDEP Device node interface for ALSA
Hardware Dependent

typically,
/dev/snd/hwC?D?

MEDIA_INTF_T_ALSA_SEQUENCER Device node interface for ALSA
Sequencer

typically, /dev/snd/seq

MEDIA_INTF_T_ALSA_TIMER Device node interface for ALSA
Timer

typically, /dev/snd/timer

1516 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 264: Media pad flags
MEDIA_PAD_FL_SINK Input pad, relative to the entity. Input pads sink data and are

targets of links.
MEDIA_PAD_FL_SOURCE Output pad, relative to the entity. Output pads source data

and are origins of links.
MEDIA_PAD_FL_MUST_CONNECTIf this flag is set and the pad is linked to any other pad, then

at least one of those links must be enabled for the entity to be
able to stream. There could be temporary reasons (e.g. device
configuration dependent) for the pad to need enabled links
even when this flag isn’t set; the absence of the flag doesn’t
imply there is none.

One and only one of MEDIA_PAD_FL_SINK and MEDIA_PAD_FL_SOURCE must be set for every pad.

Table 265: Media link flags
MEDIA_LNK_FL_ENABLED The link is enabled and can be used to transfer media data.

When two or more links target a sink pad, only one of them
can be enabled at a time.

MEDIA_LNK_FL_IMMUTABLE The link enabled state can’t be modified at runtime. An im-
mutable link is always enabled.

MEDIA_LNK_FL_DYNAMIC The link enabled state can be modified during streaming. This
flag is set by drivers and is read-only for applications.

MEDIA_LNK_FL_LINK_TYPE This is a bitmask that defines the type of the link. Currently,
two types of links are supported:
MEDIA_LNK_FL_DATA_LINK if the link is between two pads
MEDIA_LNK_FL_INTERFACE_LINK if the link is between an in-
terface and an entity

3.5.4 Request API

The Request API has been designed to allow V4L2 to deal with requirements of modern de-
vices (stateless codecs, complex camera pipelines, …) and APIs (Android Codec v2). One such
requirement is the ability for devices belonging to the same pipeline to reconfigure and collabo-
rate closely on a per-frame basis. Another is support of stateless codecs, which require controls
to be applied to specific frames (aka ‘per-frame controls’) in order to be used efficiently.

While the initial use-case was V4L2, it can be extended to other subsystems as well, as long as
they use the media controller.

Supporting these features without the Request API is not always possible and if it is, it is terribly
inefficient: user-space would have to flush all activity on the media pipeline, reconfigure it for
the next frame, queue the buffers to be processed with that configuration, and wait until they
are all available for dequeuing before considering the next frame. This defeats the purpose of
having buffer queues since in practice only one buffer would be queued at a time.

The Request API allows a specific configuration of the pipeline (media controller topology +
configuration for each media entity) to be associated with specific buffers. This allows user-
space to schedule several tasks (“requests”) with different configurations in advance, knowing
that the configuration will be applied when needed to get the expected result. Configuration
values at the time of request completion are also available for reading.

3.5. Part IV - Media Controller API 1517

Linux Media Documentation

3.5.4.1 General Usage

The Request API extends the Media Controller API and cooperates with subsystem-specific
APIs to support request usage. At the Media Controller level, requests are allocated from the
supporting Media Controller device node. Their life cycle is then managed through the request
file descriptors in an opaque way. Configuration data, buffer handles and processing results
stored in requests are accessed through subsystem-specific APIs extended for request support,
such as V4L2 APIs that take an explicit request_fd parameter.

3.5.4.2 Request Allocation

User-space allocates requests using ioctl MEDIA_IOC_REQUEST_ALLOC for the media device
node. This returns a file descriptor representing the request. Typically, several such requests
will be allocated.

3.5.4.3 Request Preparation

Standard V4L2 ioctls can then receive a request file descriptor to express the fact that
the ioctl is part of said request, and is not to be applied immediately. See ioctl ME-
DIA_IOC_REQUEST_ALLOC for a list of ioctls that support this. Configurations set with a
request_fd parameter are stored instead of being immediately applied, and buffers queued
to a request do not enter the regular buffer queue until the request itself is queued.

3.5.4.4 Request Submission

Once the configuration and buffers of the request are specified, it can be queued by calling ioctl
MEDIA_REQUEST_IOC_QUEUE on the request file descriptor. A request must contain at least
one buffer, otherwise ENOENT is returned. A queued request cannot be modified anymore.

Caution: For memory-to-memory devices you can use requests only for output buffers, not
for capture buffers. Attempting to add a capture buffer to a request will result in an EBADR
error.

If the request contains configurations for multiple entities, individual drivers may synchronize
so the requested pipeline’s topology is applied before the buffers are processed. Media con-
troller drivers do a best effort implementation since perfect atomicity may not be possible due
to hardware limitations.

Caution: It is not allowed to mix queuing requests with directly queuing buffers: whichever
method is used first locks this in place until VIDIOC_STREAMOFF is called or the device is
closed. Attempts to directly queue a buffer when earlier a buffer was queued via a request
or vice versa will result in an EBUSY error.

Controls can still be set without a request and are applied immediately, regardless of whether
a request is in use or not.

1518 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Caution: Setting the same control through a request and also directly can lead to undefined
behavior!

User-space can poll() a request file descriptor in order to wait until the request completes. A
request is considered complete once all its associated buffers are available for dequeuing and
all the associated controls have been updated with the values at the time of completion. Note
that user-space does not need to wait for the request to complete to dequeue its buffers: buffers
that are available halfway through a request can be dequeued independently of the request’s
state.

A completed request contains the state of the device after the request was executed. User-space
can query that state by calling ioctl VIDIOC_G_EXT_CTRLS with the request file descriptor.
Calling ioctl VIDIOC_G_EXT_CTRLS for a request that has been queued but not yet completed
will return EBUSY since the control values might be changed at any time by the driver while the
request is in flight.

3.5.4.5 Recycling and Destruction

Finally, a completed request can either be discarded or be reused. Calling close() on a request
file descriptor will make that file descriptor unusable and the request will be freed once it is
no longer in use by the kernel. That is, if the request is queued and then the file descriptor is
closed, then it won’t be freed until the driver completed the request.

The ioctl MEDIA_REQUEST_IOC_REINIT will clear a request’s state and make it available
again. No state is retained by this operation: the request is as if it had just been allocated.

3.5.4.6 Example for a Codec Device

For use-cases such as codecs, the request API can be used to associate specific controls to be
applied by the driver for the OUTPUT buffer, allowing user-space to queue many such buffers
in advance. It can also take advantage of requests’ ability to capture the state of controls when
the request completes to read back information that may be subject to change.

Put into code, after obtaining a request, user-space can assign controls and one OUTPUT buffer
to it:

struct v4l2_buffer buf;
struct v4l2_ext_controls ctrls;
int req_fd;
...
if (ioctl(media_fd, MEDIA_IOC_REQUEST_ALLOC, &req_fd))

return errno;
...
ctrls.which = V4L2_CTRL_WHICH_REQUEST_VAL;
ctrls.request_fd = req_fd;
if (ioctl(codec_fd, VIDIOC_S_EXT_CTRLS, &ctrls))

return errno;
...
buf.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
buf.flags |= V4L2_BUF_FLAG_REQUEST_FD;
buf.request_fd = req_fd;

3.5. Part IV - Media Controller API 1519

Linux Media Documentation

if (ioctl(codec_fd, VIDIOC_QBUF, &buf))
return errno;

Note that it is not allowed to use the Request API for CAPTURE buffers since there are no
per-frame settings to report there.

Once the request is fully prepared, it can be queued to the driver:

if (ioctl(req_fd, MEDIA_REQUEST_IOC_QUEUE))
return errno;

User-space can then either wait for the request to complete by calling poll() on its file descriptor,
or start dequeuing CAPTURE buffers. Most likely, it will want to get CAPTURE buffers as soon
as possible and this can be done using a regular VIDIOC_DQBUF:

struct v4l2_buffer buf;

memset(&buf, 0, sizeof(buf));
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (ioctl(codec_fd, VIDIOC_DQBUF, &buf))

return errno;

Note that this example assumes for simplicity that for every OUTPUT buffer there will be one
CAPTURE buffer, but this does not have to be the case.

We can then, after ensuring that the request is completed via polling the request file descriptor,
query control values at the time of its completion via a call to VIDIOC_G_EXT_CTRLS. This is
particularly useful for volatile controls for which we want to query values as soon as the capture
buffer is produced.

struct pollfd pfd = { .events = POLLPRI, .fd = req_fd };
poll(&pfd, 1, -1);
...
ctrls.which = V4L2_CTRL_WHICH_REQUEST_VAL;
ctrls.request_fd = req_fd;
if (ioctl(codec_fd, VIDIOC_G_EXT_CTRLS, &ctrls))

return errno;

Once we don’t need the request anymore, we can either recycle it for reuse with ioctl ME-
DIA_REQUEST_IOC_REINIT…

if (ioctl(req_fd, MEDIA_REQUEST_IOC_REINIT))
return errno;

… or close its file descriptor to completely dispose of it.

close(req_fd);

1520 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

3.5.4.7 Example for a Simple Capture Device

With a simple capture device, requests can be used to specify controls to apply for a given
CAPTURE buffer.

struct v4l2_buffer buf;
struct v4l2_ext_controls ctrls;
int req_fd;
...
if (ioctl(media_fd, MEDIA_IOC_REQUEST_ALLOC, &req_fd))

return errno;
...
ctrls.which = V4L2_CTRL_WHICH_REQUEST_VAL;
ctrls.request_fd = req_fd;
if (ioctl(camera_fd, VIDIOC_S_EXT_CTRLS, &ctrls))

return errno;
...
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.flags |= V4L2_BUF_FLAG_REQUEST_FD;
buf.request_fd = req_fd;
if (ioctl(camera_fd, VIDIOC_QBUF, &buf))

return errno;

Once the request is fully prepared, it can be queued to the driver:

if (ioctl(req_fd, MEDIA_REQUEST_IOC_QUEUE))
return errno;

User-space can then dequeue buffers, wait for the request completion, query controls and re-
cycle the request as in the M2M example above.

3.5.5 Function Reference

3.5.5.1 media open()

Name

media-open - Open a media device

Synopsis

#include <fcntl.h>

int open(const char *device_name, int flags)

3.5. Part IV - Media Controller API 1521

Linux Media Documentation

Arguments

device_name Device to be opened.

flags Open flags. Access mode must be either O_RDONLY or O_RDWR. Other flags have no effect.

Description

To open a media device applications call open() with the desired device name. The function
has no side effects; the device configuration remain unchanged.

When the device is opened in read-only mode, attempts to modify its configuration will result
in an error, and errno will be set to EBADF.

Return Value

open() returns the new file descriptor on success. On error, -1 is returned, and errno is set
appropriately. Possible error codes are:

EACCES The requested access to the file is not allowed.
EMFILE The process already has the maximum number of files open.

ENFILE The system limit on the total number of open files has been reached.

ENOMEM Insufficient kernel memory was available.

ENXIO No device corresponding to this device special file exists.

3.5.5.2 media close()

Name

media-close - Close a media device

Synopsis

#include <unistd.h>

int close(int fd)

1522 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Arguments

fd File descriptor returned by open().

Description

Closes the media device. Resources associated with the file descriptor are freed. The device
configuration remain unchanged.

Return Value

close() returns 0 on success. On error, -1 is returned, and errno is set appropriately. Possible
error codes are:

EBADF fd is not a valid open file descriptor.

3.5.5.3 media ioctl()

Name

media-ioctl - Control a media device

Synopsis

#include <sys/ioctl.h>

int ioctl(int fd, int request, void *argp)

Arguments

fd File descriptor returned by open().

request Media ioctl request code as defined in the media.h header file, for example ME-
DIA_IOC_SETUP_LINK.

argp Pointer to a request-specific structure.

Description

The ioctl() function manipulates media device parameters. The argument fd must be an open
file descriptor.

The ioctl request code specifies the media function to be called. It has encoded in it whether
the argument is an input, output or read/write parameter, and the size of the argument argp in
bytes.

3.5. Part IV - Media Controller API 1523

Linux Media Documentation

Macros and structures definitions specifying media ioctl requests and their parameters are
located in the media.h header file. All media ioctl requests, their respective function and pa-
rameters are specified in Function Reference.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

Request-specific error codes are listed in the individual requests descriptions.

When an ioctl that takes an output or read/write parameter fails, the parameter remains un-
modified.

3.5.5.4 ioctl MEDIA_IOC_DEVICE_INFO

Name

MEDIA_IOC_DEVICE_INFO - Query device information

Synopsis

MEDIA_IOC_DEVICE_INFO

int ioctl(int fd, MEDIA_IOC_DEVICE_INFO, struct media_device_info *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct media_device_info.

Description

All media devices must support the MEDIA_IOC_DEVICE_INFO ioctl. To query device information,
applications call the ioctl with a pointer to a struct media_device_info. The driver fills the
structure and returns the information to the application. The ioctl never fails.

media_device_info

1524 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 266: struct media_device_info
char driver[16] Name of the driver implementing the

media API as a NUL-terminated ASCII
string. The driver version is stored in the
driver_version field.
Driver specific applications can use this in-
formation to verify the driver identity. It is
also useful to work around known bugs, or
to identify drivers in error reports.

char model[32] Device model name as a NUL-terminated
UTF-8 string. The device version is stored
in the device_version field and is not be
appended to the model name.

char serial[40] Serial number as a NUL-terminated ASCII
string.

char bus_info[32] Location of the device in the system as a
NUL-terminated ASCII string. This includes
the bus type name (PCI, USB, …) and a bus-
specific identifier.

__u32 media_version Media API version, formatted with the
KERNEL_VERSION() macro.

__u32 hw_revision Hardware device revision in a driver-
specific format.

__u32 driver_version Media device driver version, formatted with
the KERNEL_VERSION() macro. Together
with the driver field this identifies a par-
ticular driver.

__u32 reserved[31] Reserved for future extensions. Drivers and
applications must set this array to zero.

The serial and bus_info fields can be used to distinguish between multiple instances of oth-
erwise identical hardware. The serial number takes precedence when provided and can be
assumed to be unique. If the serial number is an empty string, the bus_info field can be used
instead. The bus_info field is guaranteed to be unique, but can vary across reboots or device
unplug/replug.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

3.5. Part IV - Media Controller API 1525

Linux Media Documentation

3.5.5.5 ioctl MEDIA_IOC_G_TOPOLOGY

Name

MEDIA_IOC_G_TOPOLOGY - Enumerate the graph topology and graph element properties

Synopsis

MEDIA_IOC_G_TOPOLOGY

int ioctl(int fd, MEDIA_IOC_G_TOPOLOGY, struct media_v2_topology *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct media_v2_topology.

Description

The typical usage of this ioctl is to call it twice. On the first call, the structure defined at struct
media_v2_topology should be zeroed. At return, if no errors happen, this ioctl will return the
topology_version and the total number of entities, interfaces, pads and links.

Before the second call, the userspace should allocate arrays to store the graph elements that
are desired, putting the pointers to them at the ptr_entities, ptr_interfaces, ptr_links and/or
ptr_pads, keeping the other values untouched.

If the topology_version remains the same, the ioctl should fill the desired arrays with the
media graph elements.

media_v2_topology

1526 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 267: struct media_v2_topology
__u64 topology_versionVersion of themedia graph topology. When the graph is created,

this field starts with zero. Every time a graph element is added
or removed, this field is incremented.

__u32 num_entities Number of entities in the graph
__u32 reserved1 Applications and drivers shall set this to 0.
__u64 ptr_entities A pointer to a memory area where the entities array will be

stored, converted to a 64-bits integer. It can be zero. if zero, the
ioctl won’t store the entities. It will just update num_entities

__u32 num_interfaces Number of interfaces in the graph
__u32 reserved2 Applications and drivers shall set this to 0.
__u64 ptr_interfaces A pointer to a memory area where the interfaces array will

be stored, converted to a 64-bits integer. It can be zero. if
zero, the ioctl won’t store the interfaces. It will just update
num_interfaces

__u32 num_pads Total number of pads in the graph
__u32 reserved3 Applications and drivers shall set this to 0.
__u64 ptr_pads A pointer to a memory area where the pads array will be stored,

converted to a 64-bits integer. It can be zero. if zero, the ioctl
won’t store the pads. It will just update num_pads

__u32 num_links Total number of data and interface links in the graph
__u32 reserved4 Applications and drivers shall set this to 0.
__u64 ptr_links A pointer to a memory area where the links array will be stored,

converted to a 64-bits integer. It can be zero. if zero, the ioctl
won’t store the links. It will just update num_links

media_v2_entity

Table 268: struct media_v2_entity
__u32 id Unique ID for the entity. Do not expect that the ID will always

be the same for each instance of the device. In other words, do
not hardcode entity IDs in an application.

char name[64] Entity name as an UTF-8 NULL-terminated string. This name
must be unique within the media topology.

__u32 function Entity main function, see Media entity functions for details.
__u32 flags Entity flags, see Media entity flags for details. Only valid

if MEDIA_V2_ENTITY_HAS_FLAGS(media_version) returns true.
The media_version is defined in struct media_device_info and
can be retrieved using ioctl MEDIA_IOC_DEVICE_INFO.

__u32 reserved[5] Reserved for future extensions. Drivers and applications must
set this array to zero.

media_v2_interface

3.5. Part IV - Media Controller API 1527

Linux Media Documentation

Table 269: struct media_v2_interface
__u32 id Unique ID for the interface. Do not expect that the ID will always

be the same for each instance of the device. In other words, do
not hardcode interface IDs in an application.

__u32 intf_type Interface type, see Media interface types for details.
__u32 flags Interface flags. Currently unused.
__u32 reserved[9] Reserved for future extensions. Drivers and applications must

set this array to zero.
struct
me-
dia_v2_intf_devnode

devnode Used only for device node interfaces. See
media_v2_intf_devnode for details.

media_v2_intf_devnode

Table 270: struct media_v2_intf_devnode
__u32 major Device node major number.
__u32 minor Device node minor number.

media_v2_pad

Table 271: struct media_v2_pad
__u32 id Unique ID for the pad. Do not expect that the ID will always be

the same for each instance of the device. In other words, do not
hardcode pad IDs in an application.

__u32 entity_id Unique ID for the entity where this pad belongs.
__u32 flags Pad flags, see Media pad flags for more details.
__u32 index Pad index, starts at 0. Only valid if

MEDIA_V2_PAD_HAS_INDEX(media_version) returns true. The
media_version is defined in struct media_device_info and can
be retrieved using ioctl MEDIA_IOC_DEVICE_INFO.

__u32 reserved[4] Reserved for future extensions. Drivers and applications must
set this array to zero.

media_v2_link

Table 272: struct media_v2_link
__u32 id Unique ID for the link. Do not expect that the ID will always be

the same for each instance of the device. In other words, do not
hardcode link IDs in an application.

__u32 source_id On pad to pad links: unique ID for the source pad.
On interface to entity links: unique ID for the interface.

__u32 sink_id On pad to pad links: unique ID for the sink pad.
On interface to entity links: unique ID for the entity.

__u32 flags Link flags, see Media link flags for more details.
__u32 reserved[6] Reserved for future extensions. Drivers and applications must

set this array to zero.

1528 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

ENOSPC This is returned when either one or more of the num_entities, num_interfaces,
num_links or num_pads are non-zero and are smaller than the actual number of elements
inside the graph. This may happen if the topology_version changed when compared to
the last time this ioctl was called. Userspace should usually free the area for the pointers,
zero the struct elements and call this ioctl again.

3.5.5.6 ioctl MEDIA_IOC_ENUM_ENTITIES

Name

MEDIA_IOC_ENUM_ENTITIES - Enumerate entities and their properties

Synopsis

MEDIA_IOC_ENUM_ENTITIES

int ioctl(int fd, MEDIA_IOC_ENUM_ENTITIES, struct media_entity_desc *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct media_entity_desc.

Description

To query the attributes of an entity, applications set the id field of a struct media_entity_desc
structure and call the MEDIA_IOC_ENUM_ENTITIES ioctl with a pointer to this structure. The
driver fills the rest of the structure or returns an EINVAL error code when the id is invalid.

Entities can be enumerated by or’ing the id with the MEDIA_ENT_ID_FLAG_NEXT flag. The driver
will return information about the entity with the smallest id strictly larger than the requested
one (‘next entity’), or the EINVAL error code if there is none.

Entity IDs can be non-contiguous. Applications must not try to enumerate entities by calling
MEDIA_IOC_ENUM_ENTITIES with increasing id’s until they get an error.

media_entity_desc

3.5. Part IV - Media Controller API 1529

Linux Media Documentation

Table 273: struct media_entity_desc
__u32 id Entity

ID, set
by the
appli-
cation.
When
the ID
is or’ed
with
MEDIA_ENT_ID_FLAG_NEXT,
the
driver
clears
the flag
and
returns
the
first
entity
with a
larger
ID. Do
not
expect
that
the ID
will
always
be the
same
for
each
in-
stance
of the
de-
vice. In
other
words,
do not
hard-
code
entity
IDs
in an
appli-
cation.

char name[32] Entity
name
as an
UTF-8
NULL-
terminated
string.
This
name
must
be
unique
within
the
media
topol-
ogy.

__u32 type Entity
type,
see
Media
entity
func-
tions
for
details.

__u32 revision Entity
revi-
sion.
Always
zero
(obso-
lete)

__u32 flags Entity
flags,
see
Media
entity
flags
for
details.

__u32 group_id Entity
group
ID. Al-
ways
zero
(obso-
lete)

__u16 pads Number
of pads

__u16 links Total
num-
ber of
out-
bound
links.
In-
bound
links
are not
counted
in this
field.

__u32 reserved[4] Reserved
for fu-
ture
exten-
sions.
Drivers
and
appli-
cations
must
set the
array
to zero.

union { (anonymous)
struct dev Valid

for
(sub-
)devices
that
create
a single
device
node.

__u32 major Device
node
major
num-
ber.

__u32 minor Device
node
minor
num-
ber.

__u8 raw[184]
}

1530 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The struct media_entity_desc id references a non-existing entity.

3.5.5.7 ioctl MEDIA_IOC_ENUM_LINKS

Name

MEDIA_IOC_ENUM_LINKS - Enumerate all pads and links for a given entity

Synopsis

MEDIA_IOC_ENUM_LINKS

int ioctl(int fd, MEDIA_IOC_ENUM_LINKS, struct media_links_enum *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct media_links_enum.

Description

To enumerate pads and/or links for a given entity, applications set the entity field of
a struct media_links_enum structure and initialize the struct media_pad_desc and struct
media_link_desc structure arrays pointed by the pads and links fields. They then call the
MEDIA_IOC_ENUM_LINKS ioctl with a pointer to this structure.

If the pads field is not NULL, the driver fills the pads array with information about the entity’s
pads. The array must have enough room to store all the entity’s pads. The number of pads can
be retrieved with ioctl MEDIA_IOC_ENUM_ENTITIES.

If the links field is not NULL, the driver fills the links array with information about the entity’s
outbound links. The array must have enough room to store all the entity’s outbound links. The
number of outbound links can be retrieved with ioctl MEDIA_IOC_ENUM_ENTITIES.

Only forward links that originate at one of the entity’s source pads are returned during the
enumeration process.

media_links_enum

3.5. Part IV - Media Controller API 1531

Linux Media Documentation

Table 274: struct media_links_enum
__u32 entity Entity id, set by the application.
struct
media_pad_desc

*pads Pointer to a pads array allocated by the ap-
plication. Ignored if NULL.

struct
media_link_desc

*links Pointer to a links array allocated by the ap-
plication. Ignored if NULL.

__u32 reserved[4] Reserved for future extensions. Drivers and
applications must set the array to zero.

media_pad_desc

Table 275: struct media_pad_desc
__u32 entity ID of the entity this pad belongs to.
__u16 index Pad index, starts at 0.
__u32 flags Pad flags, see Media pad flags for more de-

tails.
__u32 reserved[2] Reserved for future extensions. Drivers and

applications must set the array to zero.

media_link_desc

Table 276: struct media_link_desc
struct
media_pad_desc

source Pad at the origin of this link.

struct
media_pad_desc

sink Pad at the target of this link.

__u32 flags Link flags, seeMedia link flags for more de-
tails.

__u32 reserved[2] Reserved for future extensions. Drivers and
applications must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The struct media_links_enum id references a non-existing entity.

3.5.5.8 ioctl MEDIA_IOC_SETUP_LINK

Name

MEDIA_IOC_SETUP_LINK - Modify the properties of a link

1532 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Synopsis

MEDIA_IOC_SETUP_LINK

int ioctl(int fd, MEDIA_IOC_SETUP_LINK, struct media_link_desc *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct media_link_desc.

Description

To change link properties applications fill a struct media_link_desc with link identification
information (source and sink pad) and the new requested link flags. They then call the ME-
DIA_IOC_SETUP_LINK ioctl with a pointer to that structure.

The only configurable property is the ENABLED link flag to enable/disable a link. Links marked
with the IMMUTABLE link flag can not be enabled or disabled.

Link configuration has no side effect on other links. If an enabled link at the sink pad prevents
the link from being enabled, the driver returns with an EBUSY error code.

Only links marked with the DYNAMIC link flag can be enabled/disabled while streaming media
data. Attempting to enable or disable a streaming non-dynamic link will return an EBUSY error
code.

If the specified link can’t be found the driver returns with an EINVAL error code.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The struct media_link_desc references a non-existing link, or the link is immutable
and an attempt to modify its configuration was made.

3.5.5.9 ioctl MEDIA_IOC_REQUEST_ALLOC

Name

MEDIA_IOC_REQUEST_ALLOC - Allocate a request

3.5. Part IV - Media Controller API 1533

Linux Media Documentation

Synopsis

MEDIA_IOC_REQUEST_ALLOC

int ioctl(int fd, MEDIA_IOC_REQUEST_ALLOC, int *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to an integer.

Description

If the media device supports requests, then this ioctl can be used to allocate a request. If it is
not supported, then errno is set to ENOTTY. A request is accessed through a file descriptor that
is returned in *argp.

If the request was successfully allocated, then the request file descriptor can be passed to the
VIDIOC_QBUF, VIDIOC_G_EXT_CTRLS, VIDIOC_S_EXT_CTRLS and VIDIOC_TRY_EXT_CTRLS
ioctls.

In addition, the request can be queued by calling ioctl MEDIA_REQUEST_IOC_QUEUE and
re-initialized by calling ioctl MEDIA_REQUEST_IOC_REINIT.

Finally, the file descriptor can be polled to wait for the request to complete.

The request will remain allocated until all the file descriptors associated with it are closed by
close() and the driver no longer uses the request internally. See also here for more informa-
tion.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

ENOTTY The driver has no support for requests.

3.5.5.10 request close()

Name

request-close - Close a request file descriptor

1534 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Synopsis

#include <unistd.h>

int close(int fd)

Arguments

fd File descriptor returned by ioctl MEDIA_IOC_REQUEST_ALLOC.

Description

Closes the request file descriptor. Resources associated with the request are freed once all file
descriptors associated with the request are closed and the driver has completed the request.
See here for more information.

Return Value

close() returns 0 on success. On error, -1 is returned, and errno is set appropriately. Possible
error codes are:

EBADF fd is not a valid open file descriptor.

3.5.5.11 request ioctl()

Name

request-ioctl - Control a request file descriptor

Synopsis

#include <sys/ioctl.h>

int ioctl(int fd, int cmd, void *argp)

Arguments

fd File descriptor returned by ioctl MEDIA_IOC_REQUEST_ALLOC.

cmd The request ioctl command code as defined in the media.h header file, for example ioctl
MEDIA_REQUEST_IOC_QUEUE.

argp Pointer to a request-specific structure.

3.5. Part IV - Media Controller API 1535

Linux Media Documentation

Description

The ioctl() function manipulates request parameters. The argument fd must be an open file
descriptor.

The ioctl cmd code specifies the request function to be called. It has encoded in it whether the
argument is an input, output or read/write parameter, and the size of the argument argp in
bytes.

Macros and structures definitions specifying request ioctl commands and their parameters are
located in the media.h header file. All request ioctl commands, their respective function and
parameters are specified in Function Reference.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

Command-specific error codes are listed in the individual command descriptions.

When an ioctl that takes an output or read/write parameter fails, the parameter remains un-
modified.

3.5.5.12 request poll()

Name

request-poll - Wait for some event on a file descriptor

Synopsis

#include <sys/poll.h>

int poll(struct pollfd *ufds, unsigned int nfds, int timeout)

Arguments

ufds List of file descriptor events to be watched

nfds Number of file descriptor events at the *ufds array

timeout Timeout to wait for events

1536 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Description

With the poll() function applications can wait for a request to complete.

On success poll() returns the number of file descriptors that have been selected (that is, file
descriptors for which the revents field of the respective struct pollfd is non-zero). Request
file descriptor set the POLLPRI flag in revents when the request was completed. When the
function times out it returns a value of zero, on failure it returns -1 and the errno variable is
set appropriately.

Attempting to poll for a request that is not yet queued will set the POLLERR flag in revents.

Return Value

On success, poll() returns the number of structures which have non-zero revents fields, or
zero if the call timed out. On error -1 is returned, and the errno variable is set appropriately:

EBADF One or more of the ufds members specify an invalid file descriptor.

EFAULT ufds references an inaccessible memory area.

EINTR The call was interrupted by a signal.

EINVAL The nfds value exceeds the RLIMIT_NOFILE value. Use getrlimit() to obtain this
value.

3.5.5.13 ioctl MEDIA_REQUEST_IOC_QUEUE

Name

MEDIA_REQUEST_IOC_QUEUE - Queue a request

Synopsis

MEDIA_REQUEST_IOC_QUEUE

int ioctl(int request_fd, MEDIA_REQUEST_IOC_QUEUE)

Arguments

request_fd File descriptor returned by ioctl MEDIA_IOC_REQUEST_ALLOC.

3.5. Part IV - Media Controller API 1537

Linux Media Documentation

Description

If the media device supports requests, then this request ioctl can be used to queue a previously
allocated request.

If the request was successfully queued, then the file descriptor can be polled to wait for the
request to complete.

If the request was already queued before, then EBUSY is returned. Other errors can be returned
if the contents of the request contained invalid or inconsistent data, see the next section for a
list of common error codes. On error both the request and driver state are unchanged.

Once a request is queued, then the driver is required to gracefully handle errors that occur
when the request is applied to the hardware. The exception is the EIO error which signals a
fatal error that requires the application to stop streaming to reset the hardware state.

It is not allowed to mix queuing requests with queuing buffers directly (without a request).
EBUSYwill be returned if the first buffer was queued directly and you next try to queue a request,
or vice versa.

A request must contain at least one buffer, otherwise this ioctl will return an ENOENT error.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EBUSY The request was already queued or the application queued the first buffer directly, but
later attempted to use a request. It is not permitted to mix the two APIs.

ENOENT The request did not contain any buffers. All requests are required to have at least one
buffer. This can also be returned if some required configuration is missing in the request.

ENOMEM Out of memory when allocating internal data structures for this request.

EINVAL The request has invalid data.
EIO The hardware is in a bad state. To recover, the application needs to stop streaming to

reset the hardware state and then try to restart streaming.

3.5.5.14 ioctl MEDIA_REQUEST_IOC_REINIT

Name

MEDIA_REQUEST_IOC_REINIT - Re-initialize a request

1538 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Synopsis

MEDIA_REQUEST_IOC_REINIT

int ioctl(int request_fd, MEDIA_REQUEST_IOC_REINIT)

Arguments

request_fd File descriptor returned by ioctl MEDIA_IOC_REQUEST_ALLOC.

Description

If the media device supports requests, then this request ioctl can be used to re-initialize a
previously allocated request.

Re-initializing a request will clear any existing data from the request. This avoids having to
close() a completed request and allocate a new request. Instead the completed request can
just be re-initialized and it is ready to be used again.

A request can only be re-initialized if it either has not been queued yet, or if it was queued and
completed. Otherwise it will set errno to EBUSY. No other error codes can be returned.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.

EBUSY The request is queued but not yet completed.

3.5.6 Media Controller Header File

3.5.6.1 media.h

/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
/*
* Multimedia device API
*
* Copyright (C) 2010 Nokia Corporation
*
* Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
* Sakari Ailus <sakari.ailus@iki.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.

3.5. Part IV - Media Controller API 1539

mailto:laurent.pinchart@ideasonboard.com
mailto:sakari.ailus@iki.fi

Linux Media Documentation

*/

#ifndef __LINUX_MEDIA_H
#define __LINUX_MEDIA_H

#ifndef __KERNEL__
#include <stdint.h>
#endif
#include <linux/ioctl.h>
#include <linux/types.h>

struct media_device_info {
char driver[16];
char model[32];
char serial[40];
char bus_info[32];
__u32 media_version;
__u32 hw_revision;
__u32 driver_version;
__u32 reserved[31];

};

/*
* Base number ranges for entity functions
*
* NOTE: Userspace should not rely on these ranges to identify a group
* of function types, as newer functions can be added with any name within
* the full u32 range.
*
* Some older functions use the MEDIA_ENT_F_OLD_*_BASE range. Do not
* change this, this is for backwards compatibility. When adding new
* functions always use MEDIA_ENT_F_BASE.
*/

#define MEDIA_ENT_F_BASE 0x00000000
#define MEDIA_ENT_F_OLD_BASE 0x00010000
#define MEDIA_ENT_F_OLD_SUBDEV_BASE 0x00020000

/*
* Initial value to be used when a new entity is created
* Drivers should change it to something useful.
*/

#define MEDIA_ENT_F_UNKNOWN MEDIA_ENT_F_BASE

/*
* Subdevs are initialized with MEDIA_ENT_F_V4L2_SUBDEV_UNKNOWN in order
* to preserve backward compatibility. Drivers must change to the proper
* subdev type before registering the entity.
*/

#define MEDIA_ENT_F_V4L2_SUBDEV_UNKNOWN MEDIA_ENT_F_OLD_SUBDEV_BASE

/*

1540 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

* DVB entity functions
*/

#define MEDIA_ENT_F_DTV_DEMOD (MEDIA_ENT_F_BASE + 0x00001)
#define MEDIA_ENT_F_TS_DEMUX (MEDIA_ENT_F_BASE + 0x00002)
#define MEDIA_ENT_F_DTV_CA (MEDIA_ENT_F_BASE + 0x00003)
#define MEDIA_ENT_F_DTV_NET_DECAP (MEDIA_ENT_F_BASE + 0x00004)

/*
* I/O entity functions
*/

#define MEDIA_ENT_F_IO_V4L (MEDIA_ENT_F_OLD_BASE + 1)
#define MEDIA_ENT_F_IO_DTV (MEDIA_ENT_F_BASE + 0x01001)
#define MEDIA_ENT_F_IO_VBI (MEDIA_ENT_F_BASE + 0x01002)
#define MEDIA_ENT_F_IO_SWRADIO (MEDIA_ENT_F_BASE + 0x01003)

/*
* Sensor functions
*/

#define MEDIA_ENT_F_CAM_SENSOR (MEDIA_ENT_F_OLD_SUBDEV_BASE +␣
↪→1)
#define MEDIA_ENT_F_FLASH (MEDIA_ENT_F_OLD_SUBDEV_BASE +␣
↪→2)
#define MEDIA_ENT_F_LENS (MEDIA_ENT_F_OLD_SUBDEV_BASE +␣
↪→3)

/*
* Digital TV, analog TV, radio and/or software defined radio tuner functions.
*
* It is a responsibility of the master/bridge drivers to add connectors
* and links for MEDIA_ENT_F_TUNER. Please notice that some old tuners
* may require the usage of separate I2C chips to decode analog TV signals,
* when the master/bridge chipset doesn't have its own TV standard decoder.
* On such cases, the IF-PLL staging is mapped via one or two entities:
* MEDIA_ENT_F_IF_VID_DECODER and/or MEDIA_ENT_F_IF_AUD_DECODER.
*/

#define MEDIA_ENT_F_TUNER (MEDIA_ENT_F_OLD_SUBDEV_BASE +␣
↪→5)

/*
* Analog TV IF-PLL decoder functions
*
* It is a responsibility of the master/bridge drivers to create links
* for MEDIA_ENT_F_IF_VID_DECODER and MEDIA_ENT_F_IF_AUD_DECODER.
*/

#define MEDIA_ENT_F_IF_VID_DECODER (MEDIA_ENT_F_BASE + 0x02001)
#define MEDIA_ENT_F_IF_AUD_DECODER (MEDIA_ENT_F_BASE + 0x02002)

/*
* Audio entity functions
*/

#define MEDIA_ENT_F_AUDIO_CAPTURE (MEDIA_ENT_F_BASE + 0x03001)

3.5. Part IV - Media Controller API 1541

Linux Media Documentation

#define MEDIA_ENT_F_AUDIO_PLAYBACK (MEDIA_ENT_F_BASE + 0x03002)
#define MEDIA_ENT_F_AUDIO_MIXER (MEDIA_ENT_F_BASE + 0x03003)

/*
* Processing entity functions
*/

#define MEDIA_ENT_F_PROC_VIDEO_COMPOSER (MEDIA_ENT_F_BASE + 0x4001)
#define MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER (MEDIA_ENT_F_BASE + 0x4002)
#define MEDIA_ENT_F_PROC_VIDEO_PIXEL_ENC_CONV (MEDIA_ENT_F_BASE + 0x4003)
#define MEDIA_ENT_F_PROC_VIDEO_LUT (MEDIA_ENT_F_BASE + 0x4004)
#define MEDIA_ENT_F_PROC_VIDEO_SCALER (MEDIA_ENT_F_BASE + 0x4005)
#define MEDIA_ENT_F_PROC_VIDEO_STATISTICS (MEDIA_ENT_F_BASE + 0x4006)
#define MEDIA_ENT_F_PROC_VIDEO_ENCODER (MEDIA_ENT_F_BASE + 0x4007)
#define MEDIA_ENT_F_PROC_VIDEO_DECODER (MEDIA_ENT_F_BASE + 0x4008)
#define MEDIA_ENT_F_PROC_VIDEO_ISP (MEDIA_ENT_F_BASE + 0x4009)

/*
* Switch and bridge entity functions
*/

#define MEDIA_ENT_F_VID_MUX (MEDIA_ENT_F_BASE + 0x5001)
#define MEDIA_ENT_F_VID_IF_BRIDGE (MEDIA_ENT_F_BASE + 0x5002)

/*
* Video decoder/encoder functions
*/

#define MEDIA_ENT_F_ATV_DECODER (MEDIA_ENT_F_OLD_SUBDEV_BASE +␣
↪→4)
#define MEDIA_ENT_F_DV_DECODER (MEDIA_ENT_F_BASE + 0x6001)
#define MEDIA_ENT_F_DV_ENCODER (MEDIA_ENT_F_BASE + 0x6002)

/* Entity flags */
#define MEDIA_ENT_FL_DEFAULT (1 << 0)
#define MEDIA_ENT_FL_CONNECTOR (1 << 1)

/* OR with the entity id value to find the next entity */
#define MEDIA_ENT_ID_FLAG_NEXT (1U << 31)

struct media_entity_desc {
__u32 id;
char name[32];
__u32 type;
__u32 revision;
__u32 flags;
__u32 group_id;
__u16 pads;
__u16 links;

__u32 reserved[4];

union {
/* Node specifications */

1542 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

struct {
__u32 major;
__u32 minor;

} dev;

#if !defined(__KERNEL__)
/*
* TODO: this shouldn't have been added without
* actual drivers that use this. When the first real driver
* appears that sets this information, special attention
* should be given whether this information is 1) enough, and
* 2) can deal with udev rules that rename devices. The struct
* dev would not be sufficient for this since that does not
* contain the subdevice information. In addition, struct dev
* can only refer to a single device, and not to multiple (e.g.
* pcm and mixer devices).
*/

struct {
__u32 card;
__u32 device;
__u32 subdevice;

} alsa;

/*
* DEPRECATED: previous node specifications. Kept just to
* avoid breaking compilation. Use media_entity_desc.dev
* instead.
*/

struct {
__u32 major;
__u32 minor;

} v4l;
struct {

__u32 major;
__u32 minor;

} fb;
int dvb;

#endif

/* Sub-device specifications */
/* Nothing needed yet */
__u8 raw[184];

};
};

#define MEDIA_PAD_FL_SINK (1 << 0)
#define MEDIA_PAD_FL_SOURCE (1 << 1)
#define MEDIA_PAD_FL_MUST_CONNECT (1 << 2)

struct media_pad_desc {
__u32 entity; /* entity ID */

3.5. Part IV - Media Controller API 1543

Linux Media Documentation

__u16 index; /* pad index */
__u32 flags; /* pad flags */
__u32 reserved[2];

};

#define MEDIA_LNK_FL_ENABLED (1 << 0)
#define MEDIA_LNK_FL_IMMUTABLE (1 << 1)
#define MEDIA_LNK_FL_DYNAMIC (1 << 2)

#define MEDIA_LNK_FL_LINK_TYPE (0xf << 28)
define MEDIA_LNK_FL_DATA_LINK (0 << 28)
define MEDIA_LNK_FL_INTERFACE_LINK (1 << 28)

struct media_link_desc {
struct media_pad_desc source;
struct media_pad_desc sink;
__u32 flags;
__u32 reserved[2];

};

struct media_links_enum {
__u32 entity;
/* Should have enough room for pads elements */
struct media_pad_desc __user *pads;
/* Should have enough room for links elements */
struct media_link_desc __user *links;
__u32 reserved[4];

};

/* Interface type ranges */

#define MEDIA_INTF_T_DVB_BASE 0x00000100
#define MEDIA_INTF_T_V4L_BASE 0x00000200

/* Interface types */

#define MEDIA_INTF_T_DVB_FE (MEDIA_INTF_T_DVB_BASE)
#define MEDIA_INTF_T_DVB_DEMUX (MEDIA_INTF_T_DVB_BASE + 1)
#define MEDIA_INTF_T_DVB_DVR (MEDIA_INTF_T_DVB_BASE + 2)
#define MEDIA_INTF_T_DVB_CA (MEDIA_INTF_T_DVB_BASE + 3)
#define MEDIA_INTF_T_DVB_NET (MEDIA_INTF_T_DVB_BASE + 4)

#define MEDIA_INTF_T_V4L_VIDEO (MEDIA_INTF_T_V4L_BASE)
#define MEDIA_INTF_T_V4L_VBI (MEDIA_INTF_T_V4L_BASE + 1)
#define MEDIA_INTF_T_V4L_RADIO (MEDIA_INTF_T_V4L_BASE + 2)
#define MEDIA_INTF_T_V4L_SUBDEV (MEDIA_INTF_T_V4L_BASE + 3)
#define MEDIA_INTF_T_V4L_SWRADIO (MEDIA_INTF_T_V4L_BASE + 4)
#define MEDIA_INTF_T_V4L_TOUCH (MEDIA_INTF_T_V4L_BASE + 5)

#define MEDIA_INTF_T_ALSA_BASE 0x00000300
#define MEDIA_INTF_T_ALSA_PCM_CAPTURE (MEDIA_INTF_T_ALSA_BASE)

1544 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

#define MEDIA_INTF_T_ALSA_PCM_PLAYBACK (MEDIA_INTF_T_ALSA_BASE + 1)
#define MEDIA_INTF_T_ALSA_CONTROL (MEDIA_INTF_T_ALSA_BASE + 2)

#if defined(__KERNEL__)

/*
* Connector functions
*
* For now these should not be used in userspace, as some definitions may
* change.
*
* It is the responsibility of the entity drivers to add connectors and links.
*/

#define MEDIA_ENT_F_CONN_RF (MEDIA_ENT_F_BASE + 0x30001)
#define MEDIA_ENT_F_CONN_SVIDEO (MEDIA_ENT_F_BASE + 0x30002)
#define MEDIA_ENT_F_CONN_COMPOSITE (MEDIA_ENT_F_BASE + 0x30003)

#endif

/*
* MC next gen API definitions
*/

/*
* Appeared in 4.19.0.
*
* The media_version argument comes from the media_version field in
* struct media_device_info.
*/

#define MEDIA_V2_ENTITY_HAS_FLAGS(media_version) \
((media_version) >= ((4 << 16) | (19 << 8) | 0))

struct media_v2_entity {
__u32 id;
char name[64];
__u32 function; /* Main function of the entity */
__u32 flags;
__u32 reserved[5];

} __attribute__ ((packed));

/* Should match the specific fields at media_intf_devnode */
struct media_v2_intf_devnode {

__u32 major;
__u32 minor;

} __attribute__ ((packed));

struct media_v2_interface {
__u32 id;
__u32 intf_type;
__u32 flags;
__u32 reserved[9];

3.5. Part IV - Media Controller API 1545

Linux Media Documentation

union {
struct media_v2_intf_devnode devnode;
__u32 raw[16];

};
} __attribute__ ((packed));

/*
* Appeared in 4.19.0.
*
* The media_version argument comes from the media_version field in
* struct media_device_info.
*/

#define MEDIA_V2_PAD_HAS_INDEX(media_version) \
((media_version) >= ((4 << 16) | (19 << 8) | 0))

struct media_v2_pad {
__u32 id;
__u32 entity_id;
__u32 flags;
__u32 index;
__u32 reserved[4];

} __attribute__ ((packed));

struct media_v2_link {
__u32 id;
__u32 source_id;
__u32 sink_id;
__u32 flags;
__u32 reserved[6];

} __attribute__ ((packed));

struct media_v2_topology {
__u64 topology_version;

__u32 num_entities;
__u32 reserved1;
__u64 ptr_entities;

__u32 num_interfaces;
__u32 reserved2;
__u64 ptr_interfaces;

__u32 num_pads;
__u32 reserved3;
__u64 ptr_pads;

__u32 num_links;
__u32 reserved4;
__u64 ptr_links;

} __attribute__ ((packed));

1546 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

/* ioctls */

#define MEDIA_IOC_DEVICE_INFO _IOWR('|', 0x00, struct media_device_info)
#define MEDIA_IOC_ENUM_ENTITIES _IOWR('|', 0x01, struct media_entity_desc)
#define MEDIA_IOC_ENUM_LINKS _IOWR('|', 0x02, struct media_links_enum)
#define MEDIA_IOC_SETUP_LINK _IOWR('|', 0x03, struct media_link_desc)
#define MEDIA_IOC_G_TOPOLOGY _IOWR('|', 0x04, struct media_v2_topology)
#define MEDIA_IOC_REQUEST_ALLOC _IOR ('|', 0x05, int)

/*
* These ioctls are called on the request file descriptor as returned
* by MEDIA_IOC_REQUEST_ALLOC.
*/

#define MEDIA_REQUEST_IOC_QUEUE _IO('|', 0x80)
#define MEDIA_REQUEST_IOC_REINIT _IO('|', 0x81)

#ifndef __KERNEL__

/*
* Legacy symbols used to avoid userspace compilation breakages.
* Do not use any of this in new applications!
*
* Those symbols map the entity function into types and should be
* used only on legacy programs for legacy hardware. Don't rely
* on those for MEDIA_IOC_G_TOPOLOGY.
*/

#define MEDIA_ENT_TYPE_SHIFT 16
#define MEDIA_ENT_TYPE_MASK 0x00ff0000
#define MEDIA_ENT_SUBTYPE_MASK 0x0000ffff

#define MEDIA_ENT_T_DEVNODE_UNKNOWN (MEDIA_ENT_F_OLD_BASE | \
MEDIA_ENT_SUBTYPE_MASK)

#define MEDIA_ENT_T_DEVNODE MEDIA_ENT_F_OLD_BASE
#define MEDIA_ENT_T_DEVNODE_V4L MEDIA_ENT_F_IO_V4L
#define MEDIA_ENT_T_DEVNODE_FB (MEDIA_ENT_F_OLD_BASE + 2)
#define MEDIA_ENT_T_DEVNODE_ALSA (MEDIA_ENT_F_OLD_BASE + 3)
#define MEDIA_ENT_T_DEVNODE_DVB (MEDIA_ENT_F_OLD_BASE + 4)

#define MEDIA_ENT_T_UNKNOWN MEDIA_ENT_F_UNKNOWN
#define MEDIA_ENT_T_V4L2_VIDEO MEDIA_ENT_F_IO_V4L
#define MEDIA_ENT_T_V4L2_SUBDEV MEDIA_ENT_F_V4L2_SUBDEV_UNKNOWN
#define MEDIA_ENT_T_V4L2_SUBDEV_SENSOR MEDIA_ENT_F_CAM_SENSOR
#define MEDIA_ENT_T_V4L2_SUBDEV_FLASH MEDIA_ENT_F_FLASH
#define MEDIA_ENT_T_V4L2_SUBDEV_LENS MEDIA_ENT_F_LENS
#define MEDIA_ENT_T_V4L2_SUBDEV_DECODER MEDIA_ENT_F_ATV_DECODER
#define MEDIA_ENT_T_V4L2_SUBDEV_TUNER MEDIA_ENT_F_TUNER

#define MEDIA_ENT_F_DTV_DECODER MEDIA_ENT_F_DV_DECODER

3.5. Part IV - Media Controller API 1547

Linux Media Documentation

/*
* There is still no full ALSA support in the media controller. These
* defines should not have been added and we leave them here only
* in case some application tries to use these defines.
*
* The ALSA defines that are in use have been moved into __KERNEL__
* scope. As support gets added to these interface types, they should
* be moved into __KERNEL__ scope with the code that uses them.
*/

#define MEDIA_INTF_T_ALSA_COMPRESS (MEDIA_INTF_T_ALSA_BASE + 3)
#define MEDIA_INTF_T_ALSA_RAWMIDI (MEDIA_INTF_T_ALSA_BASE + 4)
#define MEDIA_INTF_T_ALSA_HWDEP (MEDIA_INTF_T_ALSA_BASE + 5)
#define MEDIA_INTF_T_ALSA_SEQUENCER (MEDIA_INTF_T_ALSA_BASE + 6)
#define MEDIA_INTF_T_ALSA_TIMER (MEDIA_INTF_T_ALSA_BASE + 7)

/* Obsolete symbol for media_version, no longer used in the kernel */
#define MEDIA_API_VERSION ((0 << 16) | (1 << 8) | 0)

#endif

#endif /* __LINUX_MEDIA_H */

3.5.7 Revision and Copyright

Authors:

• Pinchart, Laurent <laurent.pinchart@ideasonboard.com>

• Initial version.

• Carvalho Chehab, Mauro <mchehab@kernel.org>

• MEDIA_IOC_G_TOPOLOGY documentation and documentation improvements.

Copyright © 2010 : Laurent Pinchart

Copyright © 2015-2016 : Mauro Carvalho Chehab

3.5.8 Revision History

revision 1.1.0 / 2015-12-12 (mcc)

revision 1.0.0 / 2010-11-10 (lp)
Initial revision

1548 Chapter 3. Linux Media Infrastructure userspace API

mailto:laurent.pinchart@ideasonboard.com
mailto:mchehab@kernel.org

Linux Media Documentation

3.6 Part V - Consumer Electronics Control API

This part describes the CEC: Consumer Electronics Control

3.6.1 Introduction

HDMI connectors provide a single pin for use by the Consumer Electronics Control protocol.
This protocol allows different devices connected by an HDMI cable to communicate. The pro-
tocol for CEC version 1.4 is defined in supplements 1 (CEC) and 2 (HEAC or HDMI Ethernet
and Audio Return Channel) of the HDMI 1.4a (HDMI) specification and the extensions added
to CEC version 2.0 are defined in chapter 11 of the HDMI 2.0 (HDMI2) specification.

The bitrate is very slow (effectively no more than 36 bytes per second) and is based on the
ancient AV.link protocol used in old SCART connectors. The protocol closely resembles a crazy
Rube Goldberg contraption and is an unholy mix of low and high level messages. Some mes-
sages, especially those part of the HEAC protocol layered on top of CEC, need to be handled by
the kernel, others can be handled either by the kernel or by userspace.

In addition, CEC can be implemented in HDMI receivers, transmitters and in USB devices that
have an HDMI input and an HDMI output and that control just the CEC pin.

Drivers that support CEC will create a CEC device node (/dev/cecX) to give userspace access
to the CEC adapter. The ioctl CEC_ADAP_G_CAPS ioctl will tell userspace what it is allowed to
do.

In order to check the support and test it, it is suggested to download the v4l-utils package. It
provides three tools to handle CEC:

• cec-ctl: the Swiss army knife of CEC. Allows you to configure, transmit and monitor CEC
messages.

• cec-compliance: does a CEC compliance test of a remote CEC device to determine how
compliant the CEC implementation is.

• cec-follower: emulates a CEC follower.

3.6.2 Function Reference

3.6.2.1 cec open()

Name

cec-open - Open a cec device

3.6. Part V - Consumer Electronics Control API 1549

https://git.linuxtv.org/v4l-utils.git/

Linux Media Documentation

Synopsis

#include <fcntl.h>

int open(const char *device_name, int flags)

Arguments

device_name Device to be opened.

flags Open flags. Access mode must be O_RDWR.

When the O_NONBLOCK flag is given, the CEC_RECEIVE and CEC_DQEVENT ioctls
will return the EAGAIN error code when no message or event is available, and ioctls
CEC_TRANSMIT, CEC_ADAP_S_PHYS_ADDR and CEC_ADAP_S_LOG_ADDRS all return 0.

Other flags have no effect.

Description

To open a cec device applications call open() with the desired device name. The function has
no side effects; the device configuration remain unchanged.

When the device is opened in read-only mode, attempts to modify its configuration will result
in an error, and errno will be set to EBADF.

Return Value

open() returns the new file descriptor on success. On error, -1 is returned, and errno is set
appropriately. Possible error codes include:

EACCES The requested access to the file is not allowed.

EMFILE The process already has the maximum number of files open.

ENFILE The system limit on the total number of open files has been reached.

ENOMEM Insufficient kernel memory was available.

ENXIO No device corresponding to this device special file exists.

3.6.2.2 cec close()

Name

cec-close - Close a cec device

1550 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Synopsis

#include <unistd.h>

int close(int fd)

Arguments

fd File descriptor returned by open().

Description

Closes the cec device. Resources associated with the file descriptor are freed. The device
configuration remain unchanged.

Return Value

close() returns 0 on success. On error, -1 is returned, and errno is set appropriately. Possible
error codes are:

EBADF fd is not a valid open file descriptor.

3.6.2.3 cec ioctl()

Name

cec-ioctl - Control a cec device

Synopsis

#include <sys/ioctl.h>

int ioctl(int fd, int request, void *argp)

Arguments

fd File descriptor returned by open().

request CEC ioctl request code as defined in the cec.h header file, for example
CEC_ADAP_G_CAPS.

argp Pointer to a request-specific structure.

3.6. Part V - Consumer Electronics Control API 1551

Linux Media Documentation

Description

The ioctl() function manipulates cec device parameters. The argument fd must be an open
file descriptor.

The ioctl request code specifies the cec function to be called. It has encoded in it whether the
argument is an input, output or read/write parameter, and the size of the argument argp in
bytes.

Macros and structures definitions specifying cec ioctl requests and their parameters are located
in the cec.h header file. All cec ioctl requests, their respective function and parameters are
specified in Function Reference.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

Request-specific error codes are listed in the individual requests descriptions.

When an ioctl that takes an output or read/write parameter fails, the parameter remains un-
modified.

3.6.2.4 cec poll()

Name

cec-poll - Wait for some event on a file descriptor

Synopsis

#include <sys/poll.h>

int poll(struct pollfd *ufds, unsigned int nfds, int timeout)

Arguments

ufds List of FD events to be watched

nfds Number of FD events at the *ufds array

timeout Timeout to wait for events

1552 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Description

With the poll() function applications can wait for CEC events.

On success poll() returns the number of file descriptors that have been selected (that is,
file descriptors for which the revents field of the respective struct pollfd is non-zero). CEC
devices set the POLLIN and POLLRDNORM flags in the revents field if there are messages in the
receive queue. If the transmit queue has room for new messages, the POLLOUT and POLLWRNORM
flags are set. If there are events in the event queue, then the POLLPRI flag is set. When the
function times out it returns a value of zero, on failure it returns -1 and the errno variable is
set appropriately.

For more details see the poll() manual page.

Return Value

On success, poll() returns the number structures which have non-zero revents fields, or zero
if the call timed out. On error -1 is returned, and the errno variable is set appropriately:

EBADF One or more of the ufds members specify an invalid file descriptor.

EFAULT ufds references an inaccessible memory area.

EINTR The call was interrupted by a signal.

EINVAL The nfds value exceeds the RLIMIT_NOFILE value. Use getrlimit() to obtain this
value.

3.6.2.5 ioctl CEC_ADAP_G_CAPS

Name

CEC_ADAP_G_CAPS - Query device capabilities

Synopsis

CEC_ADAP_G_CAPS

int ioctl(int fd, CEC_ADAP_G_CAPS, struct cec_caps *argp)

Arguments

fd File descriptor returned by open().

argp

3.6. Part V - Consumer Electronics Control API 1553

Linux Media Documentation

Description

All cec devices must support ioctl CEC_ADAP_G_CAPS. To query device information, applica-
tions call the ioctl with a pointer to a struct cec_caps. The driver fills the structure and returns
the information to the application. The ioctl never fails.

cec_caps

Table 277: struct cec_caps
char driver[32] The name of the cec adapter driver.
char name[32] The name of this CEC adapter. The combination driver and namemust

be unique.
__u32 available_log_addrsThe maximum number of logical addresses that can be configured.
__u32 capabilitiesThe capabilities of the CEC adapter, see CEC Capabilities Flags.
__u32 version CEC Framework API version, formatted with the KERNEL_VERSION()

macro.

1554 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 278: CEC Capabilities Flags

CEC_CAP_PHYS_ADDR 0x00000001 Userspace has to configure the physical address by
calling ioctl CEC_ADAP_S_PHYS_ADDR. If this capa-
bility isn’t set, then setting the physical address is
handled by the kernel whenever the EDID is set (for
an HDMI receiver) or read (for an HDMI transmitter).

CEC_CAP_LOG_ADDRS 0x00000002 Userspace has to configure the logical addresses by
calling ioctl CEC_ADAP_S_LOG_ADDRS. If this capa-
bility isn’t set, then the kernel will have configured
this.

CEC_CAP_TRANSMIT 0x00000004 Userspace can transmit CECmessages by calling ioctl
CEC_TRANSMIT. This implies that userspace can be
a follower as well, since being able to transmit mes-
sages is a prerequisite of becoming a follower. If this
capability isn’t set, then the kernel will handle all CEC
transmits and process all CEC messages it receives.

CEC_CAP_PASSTHROUGH 0x00000008 Userspace can use the passthrough mode by calling
ioctl CEC_S_MODE.

CEC_CAP_RC 0x00000010 This adapter supports the remote control protocol.

CEC_CAP_MONITOR_ALL 0x00000020 The CEC hardware can monitor all messages, not just
directed and broadcast messages.

CEC_CAP_NEEDS_HPD 0x00000040 The CEC hardware is only active if the HDMI Hotplug
Detect pin is high. This makes it impossible to use
CEC to wake up displays that set the HPD pin low
when in standby mode, but keep the CEC bus alive.

CEC_CAP_MONITOR_PIN 0x00000080 The CEC hardware can monitor CEC pin
changes from low to high voltage and vice
versa. When in pin monitoring mode the appli-
cation will receive CEC_EVENT_PIN_CEC_LOW and
CEC_EVENT_PIN_CEC_HIGH events.

CEC_CAP_CONNECTOR_INFO0x00000100 If this capability is set, then ioctl
CEC_ADAP_G_CONNECTOR_INFO can be used.

3.6. Part V - Consumer Electronics Control API 1555

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

3.6.2.6 ioctls CEC_ADAP_G_LOG_ADDRS and CEC_ADAP_S_LOG_ADDRS

Name

CEC_ADAP_G_LOG_ADDRS, CEC_ADAP_S_LOG_ADDRS - Get or set the logical addresses

Synopsis

CEC_ADAP_G_LOG_ADDRS

int ioctl(int fd, CEC_ADAP_G_LOG_ADDRS, struct cec_log_addrs *argp)

CEC_ADAP_S_LOG_ADDRS

int ioctl(int fd, CEC_ADAP_S_LOG_ADDRS, struct cec_log_addrs *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct cec_log_addrs.

Description

To query the current CEC logical addresses, applications call ioctl CEC_ADAP_G_LOG_ADDRS
with a pointer to a struct cec_log_addrs where the driver stores the logical addresses.

To set new logical addresses, applications fill in struct cec_log_addrs and call ioctl
CEC_ADAP_S_LOG_ADDRS with a pointer to this struct. The ioctl CEC_ADAP_S_LOG_ADDRS
is only available if CEC_CAP_LOG_ADDRS is set (the ENOTTY error code is returned otherwise).
The ioctl CEC_ADAP_S_LOG_ADDRS can only be called by a file descriptor in initiator mode
(see ioctls CEC_G_MODE and CEC_S_MODE), if not the EBUSY error code will be returned.

To clear existing logical addresses set num_log_addrs to 0. All other fields will be ignored in
that case. The adapter will go to the unconfigured state and the cec_version, vendor_id and
osd_name fields are all reset to their default values (CEC version 2.0, no vendor ID and an empty
OSD name).

If the physical address is valid (see ioctl CEC_ADAP_S_PHYS_ADDR), then this ioctl will block
until all requested logical addresses have been claimed. If the file descriptor is in non-blocking
mode then it will not wait for the logical addresses to be claimed, instead it just returns 0.

A CEC_EVENT_STATE_CHANGE event is sent when the logical addresses are claimed or
cleared.

Attempting to call ioctl CEC_ADAP_S_LOG_ADDRS when logical address types are already de-
fined will return with error EBUSY.

1556 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

cec_log_addrs

Table 279: struct cec_log_addrs
__u8 log_addr[CEC_MAX_LOG_ADDRS] The actual logical addresses that were

claimed. This is set by the driver. If
no logical address could be claimed,
then it is set to CEC_LOG_ADDR_INVALID.
If this adapter is Unregistered, then
log_addr[0] is set to 0xf and all others
to CEC_LOG_ADDR_INVALID.

__u16log_addr_mask The bitmask of all logical addresses this
adapter has claimed. If this adapter is
Unregistered then log_addr_mask sets
bit 15 and clears all other bits. If this
adapter is not configured at all, then
log_addr_mask is set to 0. Set by the
driver.

__u8 cec_version The CEC version that this adapter shall
use. See CEC Versions. Used to im-
plement the CEC_MSG_CEC_VERSION and
CEC_MSG_REPORT_FEATURES messages.
Note that CEC_OP_CEC_VERSION_1_3A
is not allowed by the CEC framework.

__u8 num_log_addrs Number of logical addresses to set up.
Must be ≤ available_log_addrs as re-
turned by ioctl CEC_ADAP_G_CAPS. All
arrays in this structure are only filled up
to index available_log_addrs-1. The
remaining array elements will be ig-
nored. Note that the CEC 2.0 stan-
dard allows for a maximum of 2 logical
addresses, although some hardware has
support for more. CEC_MAX_LOG_ADDRS is
4. The driver will return the actual num-
ber of logical addresses it could claim,
which may be less than what was re-
quested. If this field is set to 0, then the
CEC adapter shall clear all claimed logi-
cal addresses and all other fields will be
ignored.

__u32vendor_id The vendor ID is a 24-bit number that
identifies the specific vendor or entity.
Based on this ID vendor specific com-
mands may be defined. If you do
not want a vendor ID then set it to
CEC_VENDOR_ID_NONE.

__u32flags Flags. See Flags for struct cec_log_addrs
for a list of available flags.

Continued on next page

3.6. Part V - Consumer Electronics Control API 1557

Linux Media Documentation

Table 279 – continued from previous page
char osd_name[15] The On-Screen Display name as is re-

turned by the CEC_MSG_SET_OSD_NAME
message.

__u8 primary_device_type[CEC_MAX_LOG_ADDRS]Primary device type for each logical ad-
dress. See CEC Primary Device Types for
possible types.

__u8 log_addr_type[CEC_MAX_LOG_ADDRS] Logical address types. See CEC Log-
ical Address Types for possible types.
The driver will update this with the
actual logical address type that it
claimed (e.g. it may have to fallback to
CEC_LOG_ADDR_TYPE_UNREGISTERED).

__u8 all_device_types[CEC_MAX_LOG_ADDRS]CEC 2.0 specific: the bit mask of all
device types. See CEC All Device
Types Flags. It is used in the CEC
2.0 CEC_MSG_REPORT_FEATURES message.
For CEC 1.4 you can either leave this field
to 0, or fill it in according to the CEC
2.0 guidelines to give the CEC framework
more information about the device type,
even though the framework won’t use it
directly in the CEC message.

__u8 features[CEC_MAX_LOG_ADDRS][12] Features for each logical ad-
dress. It is used in the CEC 2.0
CEC_MSG_REPORT_FEATURES message.
The 12 bytes include both the RC Profile
and the Device Features. For CEC 1.4
you can either leave this field to all 0,
or fill it in according to the CEC 2.0
guidelines to give the CEC framework
more information about the device type,
even though the framework won’t use it
directly in the CEC message.

1558 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 280: Flags for struct cec_log_addrs

CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK1 By default if no logical address of the re-
quested type can be claimed, then it will go
back to the unconfigured state. If this flag
is set, then it will fallback to the Unregis-
tered logical address. Note that if the Un-
registered logical address was explicitly re-
quested, then this flag has no effect.

CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU 2 By default the CEC_MSG_USER_CONTROL_PRESSED
and CEC_MSG_USER_CONTROL_RELEASED
messages are only passed on to the fol-
lower(s), if any. If this flag is set, then these
messages are also passed on to the remote
control input subsystem and will appear
as keystrokes. This features needs to be
enabled explicitly. If CEC is used to enter
e.g. passwords, then you may not want to
enable this to avoid trivial snooping of the
keystrokes.

CEC_LOG_ADDRS_FL_CDC_ONLY 4 If this flag is set, then the device is CDC-
Only. CDC-Only CEC devices are CEC de-
vices that can only handle CDC messages.
All other messages are ignored.

Table 281: CEC Versions

CEC_OP_CEC_VERSION_1_3A 4 CEC version according to the HDMI 1.3a
standard.

CEC_OP_CEC_VERSION_1_4B 5 CEC version according to the HDMI 1.4b
standard.

CEC_OP_CEC_VERSION_2_0 6 CEC version according to the HDMI 2.0
standard.

3.6. Part V - Consumer Electronics Control API 1559

Linux Media Documentation

Table 282: CEC Primary Device Types

CEC_OP_PRIM_DEVTYPE_TV 0 Use for a TV.

CEC_OP_PRIM_DEVTYPE_RECORD 1 Use for a recording device.

CEC_OP_PRIM_DEVTYPE_TUNER 3 Use for a device with a tuner.

CEC_OP_PRIM_DEVTYPE_PLAYBACK 4 Use for a playback device.

CEC_OP_PRIM_DEVTYPE_AUDIOSYSTEM5 Use for an audio system (e.g. an audio/video
receiver).

CEC_OP_PRIM_DEVTYPE_SWITCH 6 Use for a CEC switch.

CEC_OP_PRIM_DEVTYPE_VIDEOPROC7 Use for a video processor device.

Table 283: CEC Logical Address Types

CEC_LOG_ADDR_TYPE_TV 0 Use for a TV.

CEC_LOG_ADDR_TYPE_RECORD 1 Use for a recording device.

CEC_LOG_ADDR_TYPE_TUNER 2 Use for a tuner device.

CEC_LOG_ADDR_TYPE_PLAYBACK 3 Use for a playback device.

CEC_LOG_ADDR_TYPE_AUDIOSYSTEM4 Use for an audio system device.

CEC_LOG_ADDR_TYPE_SPECIFIC 5 Use for a second TV or for a video processor
device.

CEC_LOG_ADDR_TYPE_UNREGISTERED6 Use this if you just want to remain unregis-
tered. Used for pure CEC switches or CDC-
only devices (CDC: Capability Discovery and
Control).

Table 284: CEC All Device Types Flags

CEC_OP_ALL_DEVTYPE_TV 0x80 This supports the TV type.

CEC_OP_ALL_DEVTYPE_RECORD 0x40 This supports the Recording type.

CEC_OP_ALL_DEVTYPE_TUNER 0x20 This supports the Tuner type.

CEC_OP_ALL_DEVTYPE_PLAYBACK 0x10 This supports the Playback type.

CEC_OP_ALL_DEVTYPE_AUDIOSYSTEM0x08 This supports the Audio System type.

CEC_OP_ALL_DEVTYPE_SWITCH 0x04 This supports the CEC Switch or Video Pro-
cessing type.

1560 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

The ioctl CEC_ADAP_S_LOG_ADDRS can return the following error codes:

ENOTTY The CEC_CAP_LOG_ADDRS capability wasn’t set, so this ioctl is not supported.
EBUSY The CEC adapter is currently configuring itself, or it is already configured and

num_log_addrs is non-zero, or another filehandle is in exclusive follower or initiator mode,
or the filehandle is in mode CEC_MODE_NO_INITIATOR.

EINVAL The contents of struct cec_log_addrs is invalid.

3.6.2.7 ioctls CEC_ADAP_G_PHYS_ADDR and CEC_ADAP_S_PHYS_ADDR

Name

CEC_ADAP_G_PHYS_ADDR, CEC_ADAP_S_PHYS_ADDR - Get or set the physical address

Synopsis

CEC_ADAP_G_PHYS_ADDR

int ioctl(int fd, CEC_ADAP_G_PHYS_ADDR, __u16 *argp)

CEC_ADAP_S_PHYS_ADDR

int ioctl(int fd, CEC_ADAP_S_PHYS_ADDR, __u16 *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to the CEC address.

Description

To query the current physical address applications call ioctl CEC_ADAP_G_PHYS_ADDR with a
pointer to a __u16 where the driver stores the physical address.

To set a new physical address applications store the physical address in a __u16 and call ioctl
CEC_ADAP_S_PHYS_ADDR with a pointer to this integer. The ioctl CEC_ADAP_S_PHYS_ADDR
is only available if CEC_CAP_PHYS_ADDR is set (the ENOTTY error code will be returned otherwise).
The ioctl CEC_ADAP_S_PHYS_ADDR can only be called by a file descriptor in initiator mode (see
ioctls CEC_G_MODE and CEC_S_MODE), if not the EBUSY error code will be returned.

To clear an existing physical address use CEC_PHYS_ADDR_INVALID. The adapter will go to the
unconfigured state.

If logical address types have been defined (see ioctl CEC_ADAP_S_LOG_ADDRS), then this ioctl
will block until all requested logical addresses have been claimed. If the file descriptor is in

3.6. Part V - Consumer Electronics Control API 1561

Linux Media Documentation

non-blocking mode then it will not wait for the logical addresses to be claimed, instead it just
returns 0.

A CEC_EVENT_STATE_CHANGE event is sent when the physical address changes.

The physical address is a 16-bit number where each group of 4 bits represent a digit of the
physical address a.b.c.d where the most significant 4 bits represent ‘a’. The CEC root device
(usually the TV) has address 0.0.0.0. Every device that is hooked up to an input of the TV has
address a.0.0.0 (where ‘a’ is ≥ 1), devices hooked up to those in turn have addresses a.b.0.0,
etc. So a topology of up to 5 devices deep is supported. The physical address a device shall use
is stored in the EDID of the sink.

For example, the EDID for each HDMI input of the TV will have a different physical address of
the form a.0.0.0 that the sources will read out and use as their physical address.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

The ioctl CEC_ADAP_S_PHYS_ADDR can return the following error codes:

ENOTTY The CEC_CAP_PHYS_ADDR capability wasn’t set, so this ioctl is not supported.
EBUSY Another filehandle is in exclusive follower or initiator mode, or the filehandle is in mode

CEC_MODE_NO_INITIATOR.

EINVAL The physical address is malformed.

3.6.2.8 ioctl CEC_ADAP_G_CONNECTOR_INFO

Name

CEC_ADAP_G_CONNECTOR_INFO - Query HDMI connector information

Synopsis

CEC_ADAP_G_CONNECTOR_INFO

int ioctl(int fd, CEC_ADAP_G_CONNECTOR_INFO, struct cec_connector_info *argp)

Arguments

fd File descriptor returned by open().

argp

1562 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Description

Using this ioctl an application can learn which HDMI connector this CEC device corresponds to.
While calling this ioctl the application should provide a pointer to a cec_connector_info struct
which will be populated by the kernel with the info provided by the adapter’s driver. This ioctl
is only available if the CEC_CAP_CONNECTOR_INFO capability is set.

cec_connector_info

Table 285: struct cec_connector_info
__u32type The type of

connector
this adapter
is associated
with.

union
{

(anonymous)

struct
cec_drm_connector_info

drm struct
cec_drm_connector_info

}

Table 286: Connector types

CEC_CONNECTOR_TYPE_NO_CONNECTOR0 No connector is associated with the adapter/the infor-
mation is not provided by the driver.

CEC_CONNECTOR_TYPE_DRM1 Indicates that a DRM connector is associated with
this adapter. Information about the connector can be
found in struct cec_drm_connector_info.

cec_drm_connector_info

Table 287: struct cec_drm_connector_info

__u32 card_no DRM card number: the number from a card’s path,
e.g. 0 in case of /dev/card0.

__u32 connector_idDRM connector ID.

3.6.2.9 ioctl CEC_DQEVENT

Name

CEC_DQEVENT - Dequeue a CEC event

3.6. Part V - Consumer Electronics Control API 1563

Linux Media Documentation

Synopsis

CEC_DQEVENT

int ioctl(int fd, CEC_DQEVENT, struct cec_event *argp)

Arguments

fd File descriptor returned by open().

argp

Description

CEC devices can send asynchronous events. These can be retrieved by calling CEC_DQEVENT().
If the file descriptor is in non-blocking mode and no event is pending, then it will return -1 and
set errno to the EAGAIN error code.

The internal event queues are per-filehandle and per-event type. If there is no more room
in a queue then the last event is overwritten with the new one. This means that interme-
diate results can be thrown away but that the latest event is always available. This also
means that is it possible to read two successive events that have the same value (e.g. two
CEC_EVENT_STATE_CHANGE events with the same state). In that case the intermediate state
changes were lost but it is guaranteed that the state did change in between the two events.

cec_event_state_change

Table 288: struct cec_event_state_change
__u16 phys_addr The current physical address. This is CEC_PHYS_ADDR_INVALID if no

valid physical address is set.
__u16 log_addr_maskThe current set of claimed logical addresses. This is 0 if no logical

addresses are claimed or if phys_addr is CEC_PHYS_ADDR_INVALID.
If bit 15 is set (1 << CEC_LOG_ADDR_UNREGISTERED) then this device
has the unregistered logical address. In that case all other bits are
0.

__u16 have_conn_infoIf non-zero, then HDMI connector information is available. This field
is only valid if CEC_CAP_CONNECTOR_INFO is set. If that capability is
set and have_conn_info is zero, then that indicates that the HDMI
connector device is not instantiated, either because the HDMI driver
is still configuring the device or because the HDMI device was un-
bound.

cec_event_lost_msgs

1564 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 289: struct cec_event_lost_msgs
__u32lost_msgsSet to the number of lost messages since the filehandle was opened or

since the last time this event was dequeued for this filehandle. The mes-
sages lost are the oldest messages. So when a new message arrives and
there is no more room, then the oldest message is discarded to make room
for the new one. The internal size of the message queue guarantees that
all messages received in the last two seconds will be stored. Since mes-
sages should be replied to within a second according to the CEC specifi-
cation, this is more than enough.

cec_event

3.6. Part V - Consumer Electronics Control API 1565

Linux Media Documentation

Table 290: struct cec_event
__u64ts Timestamp

of the event
in ns.
The times-
tamp has
been taken
from the
CLOCK_MONOTONIC
clock.
To access
the same
clock from
userspace
use
clock_gettime().

__u32event The CEC
event type,
see CEC
Events
Types.

__u32flags Event flags,
see CEC
Event Flags.

union
{

(anonymous)

struct
cec_event_state_change

state_change The new
adapter
state as
sent by the
CEC_EVENT_STATE_CHANGE
event.

struct
cec_event_lost_msgs

lost_msgs The num-
ber of lost
messages as
sent by the
CEC_EVENT_LOST_MSGS
event.

}

1566 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 291: CEC Events Types

CEC_EVENT_STATE_CHANGE 1 Generated when the CEC Adapter’s state changes.
When open() is called an initial event will be generated
for that filehandle with the CEC Adapter’s state at that
time.

CEC_EVENT_LOST_MSGS 2 Generated if one or more CEC messages were lost be-
cause the application didn’t dequeue CECmessages fast
enough.

CEC_EVENT_PIN_CEC_LOW 3 Generated if the CEC pin goes from a high voltage to
a low voltage. Only applies to adapters that have the
CEC_CAP_MONITOR_PIN capability set.

CEC_EVENT_PIN_CEC_HIGH 4 Generated if the CEC pin goes from a low voltage to
a high voltage. Only applies to adapters that have the
CEC_CAP_MONITOR_PIN capability set.

CEC_EVENT_PIN_HPD_LOW 5 Generated if the HPD pin goes from a high voltage to
a low voltage. Only applies to adapters that have the
CEC_CAP_MONITOR_PIN capability set. When open() is
called, the HPD pin can be read and if the HPD is low,
then an initial event will be generated for that filehan-
dle.

CEC_EVENT_PIN_HPD_HIGH 6 Generated if the HPD pin goes from a low voltage to
a high voltage. Only applies to adapters that have the
CEC_CAP_MONITOR_PIN capability set. When open() is
called, the HPD pin can be read and if the HPD is high,
then an initial event will be generated for that filehan-
dle.

CEC_EVENT_PIN_5V_LOW 6 Generated if the 5V pin goes from a high voltage to
a low voltage. Only applies to adapters that have the
CEC_CAP_MONITOR_PIN capability set. When open() is
called, the 5V pin can be read and if the 5V is low, then
an initial event will be generated for that filehandle.

CEC_EVENT_PIN_5V_HIGH 7 Generated if the 5V pin goes from a low voltage to a
high voltage. Only applies to adapters that have the
CEC_CAP_MONITOR_PIN capability set. When open() is
called, the 5V pin can be read and if the 5V is high, then
an initial event will be generated for that filehandle.

3.6. Part V - Consumer Electronics Control API 1567

Linux Media Documentation

Table 292: CEC Event Flags

CEC_EVENT_FL_INITIAL_STATE 1 Set for the initial events that are generated when the
device is opened. See the table above for which events
do this. This allows applications to learn the initial state
of the CEC adapter at open() time.

CEC_EVENT_FL_DROPPED_EVENTS2 Set if one or more events of the given event type have
been dropped. This is an indication that the application
cannot keep up.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

The ioctl CEC_DQEVENT can return the following error codes:

EAGAIN This is returned when the filehandle is in non-blocking mode and there are no pending
events.

ERESTARTSYS An interrupt (e.g. Ctrl-C) arrived while in blocking mode waiting for events to
arrive.

3.6.2.10 ioctls CEC_G_MODE and CEC_S_MODE

CEC_G_MODE, CEC_S_MODE - Get or set exclusive use of the CEC adapter

Synopsis

CEC_G_MODE

int ioctl(int fd, CEC_G_MODE, __u32 *argp)

CEC_S_MODE

int ioctl(int fd, CEC_S_MODE, __u32 *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to CEC mode.

1568 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Description

By default any filehandle can use ioctls CEC_RECEIVE and CEC_TRANSMIT, but in order to
prevent applications from stepping on each others toes it must be possible to obtain exclusive
access to the CEC adapter. This ioctl sets the filehandle to initiator and/or follower mode which
can be exclusive depending on the chosen mode. The initiator is the filehandle that is used
to initiate messages, i.e. it commands other CEC devices. The follower is the filehandle that
receives messages sent to the CEC adapter and processes them. The same filehandle can be
both initiator and follower, or this role can be taken by two different filehandles.

When a CEC message is received, then the CEC framework will decide how it will be processed.
If the message is a reply to an earlier transmitted message, then the reply is sent back to the
filehandle that is waiting for it. In addition the CEC framework will process it.

If the message is not a reply, then the CEC framework will process it first. If there is no fol-
lower, then the message is just discarded and a feature abort is sent back to the initiator if the
framework couldn’t process it. If there is a follower, then the message is passed on to the fol-
lower who will use ioctl CEC_RECEIVE to dequeue the new message. The framework expects
the follower to make the right decisions.

The CEC framework will process core messages unless requested otherwise by the follower.
The follower can enable the passthrough mode. In that case, the CEC framework will pass on
most core messages without processing them and the follower will have to implement those
messages. There are some messages that the core will always process, regardless of the
passthrough mode. See Core Message Processing for details.

If there is no initiator, then any CEC filehandle can use ioctl CEC_TRANSMIT. If there is an
exclusive initiator then only that initiator can call ioctls CEC_RECEIVE and CEC_TRANSMIT.
The follower can of course always call ioctl CEC_TRANSMIT.

Available initiator modes are:

Table 293: Initiator Modes

CEC_MODE_NO_INITIATOR 0x0 This is not an initiator, i.e. it cannot transmit CEC mes-
sages or make any other changes to the CEC adapter.

CEC_MODE_INITIATOR 0x1 This is an initiator (the default when the device is
opened) and it can transmit CEC messages and make
changes to the CEC adapter, unless there is an exclu-
sive initiator.

CEC_MODE_EXCL_INITIATOR 0x2 This is an exclusive initiator and this file descriptor is
the only one that can transmit CEC messages and make
changes to the CEC adapter. If someone else is already
the exclusive initiator then an attempt to become one
will return the EBUSY error code error.

Available follower modes are:

3.6. Part V - Consumer Electronics Control API 1569

Linux Media Documentation

Table 294: Follower Modes
CEC_MODE_NO_FOLLOWER

0x00
This is not a follower (the default when the device
is opened).

CEC_MODE_FOLLOWER
0x10

This is a follower and it will receive CEC mes-
sages unless there is an exclusive follower. You
cannot become a follower if CEC_CAP_TRANSMIT
is not set or if CEC_MODE_NO_INITIATOR was
specified, the EINVAL error code is returned in that
case.

CEC_MODE_EXCL_FOLLOWER
0x20

This is an exclusive follower and only this file de-
scriptor will receive CEC messages for process-
ing. If someone else is already the exclusive fol-
lower then an attempt to become one will re-
turn the EBUSY error code. You cannot become
a follower if CEC_CAP_TRANSMIT is not set or
if CEC_MODE_NO_INITIATOR was specified, the
EINVAL error code is returned in that case.

CEC_MODE_EXCL_FOLLOWER_PASSTHRU
0x30

This is an exclusive follower and only this file de-
scriptor will receive CEC messages for process-
ing. In addition it will put the CEC device into
passthrough mode, allowing the exclusive follower
to handle most core messages instead of relying
on the CEC framework for that. If someone else is
already the exclusive follower then an attempt to
become one will return the EBUSY error code. You
cannot become a follower if CEC_CAP_TRANSMIT
is not set or if CEC_MODE_NO_INITIATOR was
specified, the EINVAL error code is returned in that
case.

CEC_MODE_MONITOR_PIN
0xd0

Put the file descriptor into pin monitoring
mode. Can only be used in combination
with CEC_MODE_NO_INITIATOR, otherwise the
EINVAL error code will be returned. This mode re-
quires that the CEC_CAP_MONITOR_PIN capabil-
ity is set, otherwise the EINVAL error code is re-
turned. While in pin monitoring mode this file de-
scriptor can receive the CEC_EVENT_PIN_CEC_LOW
and CEC_EVENT_PIN_CEC_HIGH events to see the
low-level CEC pin transitions. This is very useful
for debugging. This mode is only allowed if the
process has the CAP_NET_ADMIN capability. If that
is not set, then the EPERM error code is returned.

Continued on next page

1570 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 294 – continued from previous page
CEC_MODE_MONITOR

0xe0
Put the file descriptor into monitor mode.

Can only be used in combination with
CEC_MODE_NO_INITIATOR, otherwise the
EINVAL error code will be returned. In moni-
tor mode all messages this CEC device transmits
and all messages it receives (both broadcast mes-
sages and directed messages for one its logical
addresses) will be reported. This is very useful for
debugging. This is only allowed if the process has
the CAP_NET_ADMIN capability. If that is not set,
then the EPERM error code is returned.

CEC_MODE_MONITOR_ALL
0xf0

Put the file descriptor into ‘monitor all’
mode. Can only be used in combination with
CEC_MODE_NO_INITIATOR, otherwise the
EINVAL error code will be returned. In ‘monitor
all’ mode all messages this CEC device transmits
and all messages it receives, including directed
messages for other CEC devices, will be reported.
This is very useful for debugging, but not all
devices support this. This mode requires that the
CEC_CAP_MONITOR_ALL capability is set, oth-
erwise the EINVAL error code is returned. This is
only allowed if the process has the CAP_NET_ADMIN
capability. If that is not set, then the EPERM error
code is returned.

Core message processing details:

3.6. Part V - Consumer Electronics Control API 1571

Linux Media Documentation

Table 295: Core Message Processing

CEC_MSG_GET_CEC_VERSION The core will return the CEC version that was set
with ioctl CEC_ADAP_S_LOG_ADDRS, except when in
passthrough mode. In passthrough mode the core does
nothing and this message has to be handled by a follower
instead.

CEC_MSG_GIVE_DEVICE_VENDOR_IDThe core will return the vendor ID that was set
with ioctl CEC_ADAP_S_LOG_ADDRS, except when in
passthrough mode. In passthrough mode the core does
nothing and this message has to be handled by a follower
instead.

CEC_MSG_ABORT The core will return a Feature Abort message with rea-
son ‘Feature Refused’ as per the specification, except
when in passthrough mode. In passthrough mode the
core does nothing and this message has to be handled
by a follower instead.

CEC_MSG_GIVE_PHYSICAL_ADDR The core will report the current physical address, except
when in passthrough mode. In passthrough mode the
core does nothing and this message has to be handled
by a follower instead.

CEC_MSG_GIVE_OSD_NAME The core will report the current OSD name that was
set with ioctl CEC_ADAP_S_LOG_ADDRS, except when
in passthrough mode. In passthrough mode the core
does nothing and this message has to be handled by a
follower instead.

CEC_MSG_GIVE_FEATURES The core will do nothing if the CEC version is older than
2.0, otherwise it will report the current features that
were set with ioctl CEC_ADAP_S_LOG_ADDRS, except
when in passthrough mode. In passthrough mode the
core does nothing (for any CEC version) and this mes-
sage has to be handled by a follower instead.

CEC_MSG_USER_CONTROL_PRESSED If CEC_CAP_RC is set and if
CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU is set,
then generate a remote control key press. This message
is always passed on to the follower(s).

CEC_MSG_USER_CONTROL_RELEASEDIf CEC_CAP_RC is set and if
CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU is set,
then generate a remote control key release. This
message is always passed on to the follower(s).

CEC_MSG_REPORT_PHYSICAL_ADDR The CEC framework will make note of the reported phys-
ical address and then just pass the message on to the
follower(s).

1572 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

The ioctl CEC_S_MODE can return the following error codes:

EINVAL The requested mode is invalid.
EPERM Monitor mode is requested, but the process does have the CAP_NET_ADMIN capability.

EBUSY Someone else is already an exclusive follower or initiator.

3.6.2.11 ioctls CEC_RECEIVE and CEC_TRANSMIT

Name

CEC_RECEIVE, CEC_TRANSMIT - Receive or transmit a CEC message

Synopsis

CEC_RECEIVE

int ioctl(int fd, CEC_RECEIVE, struct cec_msg *argp)

CEC_TRANSMIT

int ioctl(int fd, CEC_TRANSMIT, struct cec_msg *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct cec_msg.

Description

To receive a CEC message the application has to fill in the timeout field of struct cec_msg and
pass it to ioctl CEC_RECEIVE. If the file descriptor is in non-blocking mode and there are no
received messages pending, then it will return -1 and set errno to the EAGAIN error code. If
the file descriptor is in blocking mode and timeout is non-zero and no message arrived within
timeout milliseconds, then it will return -1 and set errno to the ETIMEDOUT error code.

A received message can be:

1. a message received from another CEC device (the sequence field will be 0, tx_status will
be 0 and rx_status will be non-zero).

2. the transmit result of an earlier non-blocking transmit (the sequence field will be non-zero,
tx_status will be non-zero and rx_status will be 0).

3. the reply to an earlier non-blocking transmit (the sequence field will be non-zero,
tx_status will be 0 and rx_status will be non-zero).

3.6. Part V - Consumer Electronics Control API 1573

Linux Media Documentation

To send a CEC message the application has to fill in the struct cec_msg and pass it to ioctl
CEC_TRANSMIT. The ioctl CEC_TRANSMIT is only available if CEC_CAP_TRANSMIT is set. If
there is no more room in the transmit queue, then it will return -1 and set errno to the EBUSY
error code. The transmit queue has enough room for 18 messages (about 1 second worth of
2-byte messages). Note that the CEC kernel framework will also reply to core messages (see
Core Message Processing), so it is not a good idea to fully fill up the transmit queue.

If the file descriptor is in non-blocking mode then the transmit will return 0 and the result of
the transmit will be available via ioctl CEC_RECEIVE once the transmit has finished. If a non-
blocking transmit also specified waiting for a reply, then the reply will arrive in a later message.
The sequence field can be used to associate both transmit results and replies with the original
transmit.

Normally calling ioctl CEC_TRANSMIT when the physical address is invalid (due to e.g. a
disconnect) will return ENONET.

However, the CEC specification allows sending messages from ‘Unregistered’ to ‘TV’ when the
physical address is invalid since some TVs pull the hotplug detect pin of the HDMI connector
low when they go into standby, or when switching to another input.

When the hotplug detect pin goes low the EDID disappears, and thus the physical address, but
the cable is still connected and CEC still works. In order to detect/wake up the device it is
allowed to send poll and ‘Image/Text View On’ messages from initiator 0xf (‘Unregistered’) to
destination 0 (‘TV’).

cec_msg

Table 296: struct cec_msg
__u64tx_ts Timestamp in ns of when the last byte of the message

was transmitted. The timestamp has been taken from the
CLOCK_MONOTONIC clock. To access the same clock from userspace
use clock_gettime().

__u64rx_ts Timestamp in ns of when the last byte of the message
was received. The timestamp has been taken from the
CLOCK_MONOTONIC clock. To access the same clock from userspace
use clock_gettime().

__u32len The length of the message. For ioctl CEC_TRANSMIT this is
filled in by the application. The driver will fill this in for ioctl
CEC_RECEIVE. For ioctl CEC_TRANSMIT it will be filled in by the
driver with the length of the reply message if reply was set.

__u32timeout The timeout in milliseconds. This is the time the device will wait
for a message to be received before timing out. If it is set to 0, then
it will wait indefinitely when it is called by ioctl CEC_RECEIVE.
If it is 0 and it is called by ioctl CEC_TRANSMIT, then it will be
replaced by 1000 if the reply is non-zero or ignored if reply is 0.

Continued on next page

1574 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 296 – continued from previous page
__u32sequence A non-zero sequence number is automatically assigned by the CEC

framework for all transmitted messages. It is used by the CEC
framework when it queues the transmit result for a non-blocking
transmit. This allows the application to associate the received
message with the original transmit.
In addition, if a non-blocking transmit will wait for a reply (ii.e.
timeout was not 0), then the sequence field of the reply will be
set to the sequence value of the original transmit. This allows the
application to associate the received message with the original
transmit.

__u32flags Flags. See Flags for struct cec_msg for a list of available flags.
__u8 msg[16] The message payload. For ioctl CEC_TRANSMIT this is filled in by

the application. The driver will fill this in for ioctl CEC_RECEIVE.
For ioctl CEC_TRANSMIT it will be filled in by the driver with the
payload of the reply message if timeout was set.

__u8 reply Wait until this message is replied. If reply is 0 and the
timeout is 0, then don’t wait for a reply but return after
transmitting the message. Ignored by ioctl CEC_RECEIVE.
The case where reply is 0 (this is the opcode for the Fea-
ture Abort message) and timeout is non-zero is specifically al-
lowed to make it possible to send a message and wait up to
timeout milliseconds for a Feature Abort reply. In this case
rx_status will either be set to CEC_RX_STATUS_TIMEOUT or
CEC_RX_STATUS_FEATURE_ABORT.
If the transmitter message is CEC_MSG_INITIATE_ARC then
the reply values CEC_MSG_REPORT_ARC_INITIATED and
CEC_MSG_REPORT_ARC_TERMINATED are processed differently:
either value will match both possible replies. The reason is that
the CEC_MSG_INITIATE_ARC message is the only CEC message
that has two possible replies other than Feature Abort. The
reply field will be updated with the actual reply so that it is
synchronized with the contents of the received message.

__u8 rx_status The status bits of the received message. See CEC Receive Status
for the possible status values.

__u8 tx_status The status bits of the transmitted message. See CEC Trans-
mit Status for the possible status values. When calling ioctl
CEC_TRANSMIT in non-blocking mode, this field will be 0 if
the transmit started, or non-0 if the transmit result is known
immediately. The latter would be the case when attempt-
ing to transmit a Poll message to yourself. That results in a
CEC_TX_STATUS_NACK without ever actually transmitting the
Poll message.

__u8 tx_arb_lost_cnt A counter of the number of transmit attempts that resulted in the
Arbitration Lost error. This is only set if the hardware supports
this, otherwise it is always 0. This counter is only valid if the
CEC_TX_STATUS_ARB_LOST status bit is set.

Continued on next page

3.6. Part V - Consumer Electronics Control API 1575

Linux Media Documentation

Table 296 – continued from previous page
__u8 tx_nack_cnt A counter of the number of transmit attempts that resulted in the

Not Acknowledged error. This is only set if the hardware sup-
ports this, otherwise it is always 0. This counter is only valid if the
CEC_TX_STATUS_NACK status bit is set.

__u8 tx_low_drive_cntA counter of the number of transmit attempts that resulted in the
Arbitration Lost error. This is only set if the hardware supports
this, otherwise it is always 0. This counter is only valid if the
CEC_TX_STATUS_LOW_DRIVE status bit is set.

__u8 tx_error_cnt A counter of the number of transmit errors other than Arbitration
Lost or Not Acknowledged. This is only set if the hardware sup-
ports this, otherwise it is always 0. This counter is only valid if the
CEC_TX_STATUS_ERROR status bit is set.

Table 297: Flags for struct cec_msg

CEC_MSG_FL_REPLY_TO_FOLLOWERS1 If a CEC transmit expects a reply, then by de-
fault that reply is only sent to the filehandle that
called ioctl CEC_TRANSMIT. If this flag is set, then
the reply is also sent to all followers, if any. If
the filehandle that called ioctl CEC_TRANSMIT is
also a follower, then that filehandle will receive
the reply twice: once as the result of the ioctl
CEC_TRANSMIT, and once via ioctl CEC_RECEIVE.

CEC_MSG_FL_RAW 2 Normally CEC messages are validated before trans-
mitting them. If this flag is set when ioctl
CEC_TRANSMIT is called, then no validation takes
place and the message is transmitted as-is. This is
useful when debugging CEC issues. This flag is only
allowed if the process has the CAP_SYS_RAWIO capa-
bility. If that is not set, then the EPERM error code is
returned.

1576 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Table 298: CEC Transmit Status

CEC_TX_STATUS_OK 0x01 The message was transmitted successfully. This is mu-
tually exclusive with CEC_TX_STATUS_MAX_RETRIES.
Other bits can still be set if earlier attempts met with
failure before the transmit was eventually successful.

CEC_TX_STATUS_ARB_LOST 0x02 CEC line arbitration was lost, i.e. another transmit
started at the same time with a higher priority. Optional
status, not all hardware can detect this error condition.

CEC_TX_STATUS_NACK 0x04 Message was not acknowledged. Note that some hard-
ware cannot tell apart a ‘Not Acknowledged’ status from
other error conditions, i.e. the result of a transmit is
just OK or FAIL. In that case this status will be returned
when the transmit failed.

CEC_TX_STATUS_LOW_DRIVE 0x08 Low drive was detected on the CEC bus. This indicates
that a follower detected an error on the bus and re-
quests a retransmission. Optional status, not all hard-
ware can detect this error condition.

CEC_TX_STATUS_ERROR 0x10 Some error occurred. This is used for any er-
rors that do not fit CEC_TX_STATUS_ARB_LOST or
CEC_TX_STATUS_LOW_DRIVE, either because the hard-
ware could not tell which error occurred, or because
the hardware tested for other conditions besides those
two. Optional status.

CEC_TX_STATUS_MAX_RETRIES0x20 The transmit failed after one or more retries. This sta-
tus bit is mutually exclusive with CEC_TX_STATUS_OK.
Other bits can still be set to explain which failures were
seen.

CEC_TX_STATUS_ABORTED 0x40 The transmit was aborted due to an HDMI disconnect,
or the adapter was unconfigured, or a transmit was
interrupted, or the driver returned an error when at-
tempting to start a transmit.

CEC_TX_STATUS_TIMEOUT 0x80 The transmit timed out. This should not normally hap-
pen and this indicates a driver problem.

3.6. Part V - Consumer Electronics Control API 1577

Linux Media Documentation

Table 299: CEC Receive Status

CEC_RX_STATUS_OK 0x01 The message was received successfully.

CEC_RX_STATUS_TIMEOUT 0x02 The reply to an earlier transmitted message timed out.

CEC_RX_STATUS_FEATURE_ABORT0x04 The message was received successfully but the reply
was CEC_MSG_FEATURE_ABORT. This status is only set if
this message was the reply to an earlier transmitted
message.

CEC_RX_STATUS_ABORTED 0x08 The wait for a reply to an earlier transmitted message
was aborted because the HDMI cable was disconnected,
the adapter was unconfigured or the CEC_TRANSMIT
that waited for a reply was interrupted.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

The ioctl CEC_RECEIVE can return the following error codes:

EAGAIN No messages are in the receive queue, and the filehandle is in non-blocking mode.

ETIMEDOUT The timeout was reached while waiting for a message.
ERESTARTSYS The wait for a message was interrupted (e.g. by Ctrl-C).
The ioctl CEC_TRANSMIT can return the following error codes:

ENOTTY The CEC_CAP_TRANSMIT capability wasn’t set, so this ioctl is not supported.
EPERM The CEC adapter is not configured, i.e. ioctl CEC_ADAP_S_LOG_ADDRS has

never been called, or CEC_MSG_FL_RAW was used from a process that did not have the
CAP_SYS_RAWIO capability.

ENONET The CEC adapter is not configured, i.e. ioctl CEC_ADAP_S_LOG_ADDRS was called,
but the physical address is invalid so no logical address was claimed. An exception is made
in this case for transmits from initiator 0xf (‘Unregistered’) to destination 0 (‘TV’). In that
case the transmit will proceed as usual.

EBUSY Another filehandle is in exclusive follower or initiator mode, or the filehandle is in mode
CEC_MODE_NO_INITIATOR. This is also returned if the transmit queue is full.

EINVAL The contents of struct cec_msg is invalid.
ERESTARTSYS The wait for a successful transmit was interrupted (e.g. by Ctrl-C).

1578 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

3.6.3 CEC Pin Framework Error Injection

The CEC Pin Framework is a core CEC framework for CEC hardware that only has low-level
support for the CEC bus. Most hardware today will have high-level CEC support where the
hardware deals with driving the CEC bus, but some older devices aren’t that fancy. However,
this framework also allows you to connect the CEC pin to a GPIO on e.g. a Raspberry Pi and
you have now made a CEC adapter.

What makes doing this so interesting is that since we have full control over the bus it is easy to
support error injection. This is ideal to test how well CEC adapters can handle error conditions.

Currently only the cec-gpio driver (when the CEC line is directly connected to a pull-up GPIO
line) and the AllWinner A10/A20 drm driver support this framework.

If CONFIG_CEC_PIN_ERROR_INJ is enabled, then error injection is available through debugfs.
Specifically, in /sys/kernel/debug/cec/cecX/ there is now an error-inj file.

Note: The error injection commands are not a stable ABI and may change in the future.

With cat error-inj you can see both the possible commands and the current error injection
status:

$ cat /sys/kernel/debug/cec/cec0/error-inj
Clear error injections:
clear clear all rx and tx error injections
rx-clear clear all rx error injections
tx-clear clear all tx error injections
<op> clear clear all rx and tx error injections for <op>
<op> rx-clear clear all rx error injections for <op>
<op> tx-clear clear all tx error injections for <op>
#
RX error injection:
<op>[,<mode>] rx-nack NACK the message instead of sending an ACK
<op>[,<mode>] rx-low-drive <bit> force a low-drive condition at this bit position
<op>[,<mode>] rx-add-byte add a spurious byte to the received CEC message
<op>[,<mode>] rx-remove-byte remove the last byte from the received CEC␣
↪→message
any[,<mode>] rx-arb-lost [<poll>] generate a POLL message to trigger an␣
↪→arbitration lost
#
TX error injection settings:
tx-ignore-nack-until-eom ignore early NACKs until EOM
tx-custom-low-usecs <usecs> define the 'low' time for the custom pulse
tx-custom-high-usecs <usecs> define the 'high' time for the custom pulse
tx-custom-pulse transmit the custom pulse once the bus is idle
#
TX error injection:
<op>[,<mode>] tx-no-eom don't set the EOM bit
<op>[,<mode>] tx-early-eom set the EOM bit one byte too soon
<op>[,<mode>] tx-add-bytes <num> append <num> (1-255) spurious bytes to the␣
↪→message
<op>[,<mode>] tx-remove-byte drop the last byte from the message
<op>[,<mode>] tx-short-bit <bit> make this bit shorter than allowed
<op>[,<mode>] tx-long-bit <bit> make this bit longer than allowed
<op>[,<mode>] tx-custom-bit <bit> send the custom pulse instead of this bit
<op>[,<mode>] tx-short-start send a start pulse that's too short

3.6. Part V - Consumer Electronics Control API 1579

Linux Media Documentation

<op>[,<mode>] tx-long-start send a start pulse that's too long
<op>[,<mode>] tx-custom-start send the custom pulse instead of the start pulse
<op>[,<mode>] tx-last-bit <bit> stop sending after this bit
<op>[,<mode>] tx-low-drive <bit> force a low-drive condition at this bit position
#
<op> CEC message opcode (0-255) or 'any'
<mode> 'once' (default), 'always', 'toggle' or 'off'
<bit> CEC message bit (0-159)
10 bits per 'byte': bits 0-7: data, bit 8: EOM, bit 9: ACK
<poll> CEC poll message used to test arbitration lost (0x00-0xff, default 0x0f)
<usecs> microseconds (0-10000000, default 1000)

clear

You can write error injection commands to error-inj using echo 'cmd' >error-inj or cat
cmd.txt >error-inj. The cat error-inj output contains the current error commands. You
can save the output to a file and use it as an input to error-inj later.

3.6.3.1 Basic Syntax

Leading spaces/tabs are ignored. If the next character is a # or the end of the line was reached,
then the whole line is ignored. Otherwise a command is expected.

The error injection commands fall in twomain groups: those relating to receiving CECmessages
and those relating to transmitting CEC messages. In addition, there are commands to clear
existing error injection commands and to create custom pulses on the CEC bus.

Most error injection commands can be executed for specific CEC opcodes or for all opcodes
(any). Each command also has a ‘mode’ which can be off (can be used to turn off an existing
error injection command), once (the default) which will trigger the error injection only once
for the next received or transmitted message, always to always trigger the error injection and
toggle to toggle the error injection on or off for every transmit or receive.

So ‘any rx-nack’ will NACK the next received CEC message, ‘any,always rx-nack’ will NACK
all received CEC messages and ‘0x82,toggle rx-nack’ will only NACK if an Active Source
message was received and do that only for every other received message.

After an error was injected with mode once the error injection command is cleared automati-
cally, so once is a one-time deal.

All combinations of <op> and error injection commands can co-exist. So this is fine:

0x9e tx-add-bytes 1
0x9e tx-early-eom
0x9f tx-add-bytes 2
any rx-nack

All four error injection commands will be active simultaneously.

However, if the same <op> and command combination is specified, but with different arguments:

0x9e tx-add-bytes 1
0x9e tx-add-bytes 2

Then the second will overwrite the first.

1580 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

3.6.3.2 Clear Error Injections

clear Clear all error injections.

rx-clear Clear all receive error injections

tx-clear Clear all transmit error injections

<op> clear Clear all error injections for the given opcode.

<op> rx-clear Clear all receive error injections for the given opcode.

<op> tx-clear Clear all transmit error injections for the given opcode.

3.6.3.3 Receive Messages

<op>[,<mode>] rx-nack NACK broadcast messages and messages directed to this CEC
adapter. Every byte of the message will be NACKed in case the transmitter keeps trans-
mitting after the first byte was NACKed.

<op>[,<mode>] rx-low-drive <bit> Force a Low Drive condition at this bit position. If <op>
specifies a specific CEC opcode then the bit position must be at least 18, otherwise the
opcode hasn’t been received yet. This tests if the transmitter can handle the Low Drive
condition correctly and reports the error correctly. Note that a Low Drive in the first 4
bits can also be interpreted as an Arbitration Lost condition by the transmitter. This is
implementation dependent.

<op>[,<mode>] rx-add-byte Add a spurious 0x55 byte to the received CECmessage, provided
the message was 15 bytes long or less. This is useful to test the high-level protocol since
spurious bytes should be ignored.

<op>[,<mode>] rx-remove-byte Remove the last byte from the received CEC message, pro-
vided it was at least 2 bytes long. This is useful to test the high-level protocol since mes-
sages that are too short should be ignored.

<op>[,<mode>] rx-arb-lost <poll> Generate a POLL message to trigger an Arbitration Lost
condition. This command is only allowed for <op> values of next or all. As soon as a start
bit has been received the CEC adapter will switch to transmit mode and it will transmit a
POLL message. By default this is 0x0f, but it can also be specified explicitly via the <poll>
argument.

This command can be used to test the Arbitration Lost condition in the remote CEC trans-
mitter. Arbitration happens when two CEC adapters start sending a message at the same
time. In that case the initiator with the most leading zeroes wins and the other transmitter
has to stop transmitting (‘Arbitration Lost’). This is very hard to test, except by using this
error injection command.

This does not work if the remote CEC transmitter has logical address 0 (‘TV’) since that
will always win.

3.6. Part V - Consumer Electronics Control API 1581

Linux Media Documentation

3.6.3.4 Transmit Messages

tx-ignore-nack-until-eom This setting changes the behavior of transmitting CEC messages.
Normally as soon as the receiver NACKs a byte the transmit will stop, but the specification
also allows that the full message is transmitted and only at the end will the transmitter look
at the ACK bit. This is not recommended behavior since there is no point in keeping the
CEC bus busy for longer than is strictly needed. Especially given how slow the bus is.

This setting can be used to test how well a receiver deals with transmitters that ignore
NACKs until the very end of the message.

<op>[,<mode>] tx-no-eom Don’t set the EOM bit. Normally the last byte of the message has
the EOM (End-Of-Message) bit set. With this command the transmit will just stop without
ever sending an EOM. This can be used to test how a receiver handles this case. Normally
receivers have a time-out after which they will go back to the Idle state.

<op>[,<mode>] tx-early-eom Set the EOM bit one byte too soon. This obviously only works
for messages of two bytes or more. The EOM bit will be set for the second-to-last byte
and not for the final byte. The receiver should ignore the last byte in this case. Since
the resulting message is likely to be too short for this same reason the whole message is
typically ignored. The receiver should be in Idle state after the last byte was transmitted.

<op>[,<mode>] tx-add-bytes <num> Append <num> (1-255) spurious bytes to the message.
The extra bytes have the value of the byte position in the message. So if you transmit a
two byte message (e.g. a Get CEC Version message) and add 2 bytes, then the full message
received by the remote CEC adapter is 0x40 0x9f 0x02 0x03.

This command can be used to test buffer overflows in the receiver. E.g. what does it do
when it receives more than the maximum message size of 16 bytes.

<op>[,<mode>] tx-remove-byte Drop the last byte from the message, provided the message
is at least two bytes long. The receiver should ignore messages that are too short.

<op>[,<mode>] tx-short-bit <bit> Make this bit period shorter than allowed. The bit posi-
tion cannot be an Ack bit. If <op> specifies a specific CEC opcode then the bit position
must be at least 18, otherwise the opcode hasn’t been received yet. Normally the period of
a data bit is between 2.05 and 2.75 milliseconds. With this command the period of this bit
is 1.8 milliseconds, this is done by reducing the time the CEC bus is high. This bit period
is less than is allowed and the receiver should respond with a Low Drive condition.

This command is ignored for 0 bits in bit positions 0 to 3. This is because the receiver also
looks for an Arbitration Lost condition in those first four bits and it is undefined what will
happen if it sees a too-short 0 bit.

<op>[,<mode>] tx-long-bit <bit> Make this bit period longer than is valid. The bit position
cannot be an Ack bit. If <op> specifies a specific CEC opcode then the bit position must
be at least 18, otherwise the opcode hasn’t been received yet. Normally the period of a
data bit is between 2.05 and 2.75 milliseconds. With this command the period of this bit
is 2.9 milliseconds, this is done by increasing the time the CEC bus is high.

Even though this bit period is longer than is valid it is undefined what a receiver will do.
It might just accept it, or it might time out and return to Idle state. Unfortunately the CEC
specification is silent about this.

This command is ignored for 0 bits in bit positions 0 to 3. This is because the receiver also
looks for an Arbitration Lost condition in those first four bits and it is undefined what will
happen if it sees a too-long 0 bit.

1582 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

<op>[,<mode>] tx-short-start Make this start bit period shorter than allowed. Normally the
period of a start bit is between 4.3 and 4.7 milliseconds. With this command the period of
the start bit is 4.1 milliseconds, this is done by reducing the time the CEC bus is high. This
start bit period is less than is allowed and the receiver should return to Idle state when
this is detected.

<op>[,<mode>] tx-long-start Make this start bit period longer than is valid. Normally the
period of a start bit is between 4.3 and 4.7 milliseconds. With this command the period of
the start bit is 5 milliseconds, this is done by increasing the time the CEC bus is high. This
start bit period is more than is valid and the receiver should return to Idle state when this
is detected.

Even though this start bit period is longer than is valid it is undefined what a receiver will
do. It might just accept it, or it might time out and return to Idle state. Unfortunately the
CEC specification is silent about this.

<op>[,<mode>] tx-last-bit <bit> Just stop transmitting after this bit. If <op> specifies a
specific CEC opcode then the bit position must be at least 18, otherwise the opcode hasn’t
been received yet. This command can be used to test how the receiver reacts when a
message just suddenly stops. It should time out and go back to Idle state.

<op>[,<mode>] tx-low-drive <bit> Force a Low Drive condition at this bit position. If <op>
specifies a specific CEC opcode then the bit position must be at least 18, otherwise the
opcode hasn’t been received yet. This can be used to test how the receiver handles Low
Drive conditions. Note that if this happens at bit positions 0-3 the receiver can interpret
this as an Arbitration Lost condition. This is implementation dependent.

3.6.3.5 Custom Pulses

tx-custom-low-usecs <usecs> This defines the duration in microseconds that the custom
pulse pulls the CEC line low. The default is 1000 microseconds.

tx-custom-high-usecs <usecs> This defines the duration in microseconds that the cus-
tom pulse keeps the CEC line high (unless another CEC adapter pulls it low in that
time). The default is 1000 microseconds. The total period of the custom pulse is
tx-custom-low-usecs + tx-custom-high-usecs.

<op>[,<mode>] tx-custom-bit <bit> Send the custom bit instead of a regular data bit. The
bit position cannot be an Ack bit. If <op> specifies a specific CEC opcode then the bit
position must be at least 18, otherwise the opcode hasn’t been received yet.

<op>[,<mode>] tx-custom-start Send the custom bit instead of a regular start bit.

tx-custom-pulse Transmit a single custom pulse as soon as the CEC bus is idle.

3.6. Part V - Consumer Electronics Control API 1583

Linux Media Documentation

3.6.4 CEC Header File

3.6.4.1 cec.h

/* SPDX-License-Identifier: ((GPL-2.0 WITH Linux-syscall-note) OR␣
↪→BSD-3-Clause) */
/*
* cec - HDMI Consumer Electronics Control public header
*
* Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights␣
↪→reserved.
*/

#ifndef _CEC_UAPI_H
#define _CEC_UAPI_H

#include <linux/types.h>
#include <linux/string.h>

#define CEC_MAX_MSG_SIZE 16

/**
* struct cec_msg - CEC message structure.
* @tx_ts: Timestamp in nanoseconds using CLOCK_MONOTONIC. Set by the
* driver when the message transmission has finished.
* @rx_ts: Timestamp in nanoseconds using CLOCK_MONOTONIC. Set by the
* driver when the message was received.
* @len: Length in bytes of the message.
* @timeout: The timeout (in ms) that is used to timeout CEC_RECEIVE.
* Set to 0 if you want to wait forever. This timeout can also be
* used with CEC_TRANSMIT as the timeout for waiting for a reply.
* If 0, then it will use a 1 second timeout instead of waiting
* forever as is done with CEC_RECEIVE.
* @sequence: The framework assigns a sequence number to messages that are
* sent. This can be used to track replies to previously sent
* messages.
* @flags: Set to 0.
* @msg: The message payload.
* @reply: This field is ignored with CEC_RECEIVE and is only used by
* CEC_TRANSMIT. If non-zero, then wait for a reply with this
* opcode. Set to CEC_MSG_FEATURE_ABORT if you want to wait for
* a possible ABORT reply. If there was an error when sending the
* msg or FeatureAbort was returned, then reply is set to 0.
* If reply is non-zero upon return, then len/msg are set to
* the received message.
* If reply is zero upon return and status has the
* CEC_TX_STATUS_FEATURE_ABORT bit set, then len/msg are set to
* the received feature abort message.
* If reply is zero upon return and status has the
* CEC_TX_STATUS_MAX_RETRIES bit set, then no reply was seen at
* all. If reply is non-zero for CEC_TRANSMIT and the message is a

1584 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

* broadcast, then -EINVAL is returned.
* if reply is non-zero, then timeout is set to 1000 (the required
* maximum response time).
* @rx_status: The message receive status bits. Set by the driver.
* @tx_status: The message transmit status bits. Set by the driver.
* @tx_arb_lost_cnt: The number of 'Arbitration Lost' events. Set by the␣
↪→driver.
* @tx_nack_cnt: The number of 'Not Acknowledged' events. Set by the driver.
* @tx_low_drive_cnt: The number of 'Low Drive Detected' events. Set by the
* driver.
* @tx_error_cnt: The number of 'Error' events. Set by the driver.
*/

struct cec_msg {
__u64 tx_ts;
__u64 rx_ts;
__u32 len;
__u32 timeout;
__u32 sequence;
__u32 flags;
__u8 msg[CEC_MAX_MSG_SIZE];
__u8 reply;
__u8 rx_status;
__u8 tx_status;
__u8 tx_arb_lost_cnt;
__u8 tx_nack_cnt;
__u8 tx_low_drive_cnt;
__u8 tx_error_cnt;

};

/**
* cec_msg_initiator - return the initiator's logical address.
* @msg: the message structure
*/

static inline __u8 cec_msg_initiator(const struct cec_msg *msg)
{

return msg->msg[0] >> 4;
}

/**
* cec_msg_destination - return the destination's logical address.
* @msg: the message structure
*/

static inline __u8 cec_msg_destination(const struct cec_msg *msg)
{

return msg->msg[0] & 0xf;
}

/**
* cec_msg_opcode - return the opcode of the message, -1 for poll
* @msg: the message structure
*/

3.6. Part V - Consumer Electronics Control API 1585

Linux Media Documentation

static inline int cec_msg_opcode(const struct cec_msg *msg)
{

return msg->len > 1 ? msg->msg[1] : -1;
}

/**
* cec_msg_is_broadcast - return true if this is a broadcast message.
* @msg: the message structure
*/

static inline int cec_msg_is_broadcast(const struct cec_msg *msg)
{

return (msg->msg[0] & 0xf) == 0xf;
}

/**
* cec_msg_init - initialize the message structure.
* @msg: the message structure
* @initiator: the logical address of the initiator
* @destination:the logical address of the destination (0xf for broadcast)
*
* The whole structure is zeroed, the len field is set to 1 (i.e. a poll
* message) and the initiator and destination are filled in.
*/

static inline void cec_msg_init(struct cec_msg *msg,
__u8 initiator, __u8 destination)

{
memset(msg, 0, sizeof(*msg));
msg->msg[0] = (initiator << 4) | destination;
msg->len = 1;

}

/**
* cec_msg_set_reply_to - fill in destination/initiator in a reply message.
* @msg: the message structure for the reply
* @orig: the original message structure
*
* Set the msg destination to the orig initiator and the msg initiator to the
* orig destination. Note that msg and orig may be the same pointer, in which
* case the change is done in place.
*/

static inline void cec_msg_set_reply_to(struct cec_msg *msg,
struct cec_msg *orig)

{
/* The destination becomes the initiator and vice versa */
msg->msg[0] = (cec_msg_destination(orig) << 4) |

cec_msg_initiator(orig);
msg->reply = msg->timeout = 0;

}

/* cec_msg flags field */
#define CEC_MSG_FL_REPLY_TO_FOLLOWERS (1 << 0)

1586 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

#define CEC_MSG_FL_RAW (1 << 1)

/* cec_msg tx/rx_status field */
#define CEC_TX_STATUS_OK (1 << 0)
#define CEC_TX_STATUS_ARB_LOST (1 << 1)
#define CEC_TX_STATUS_NACK (1 << 2)
#define CEC_TX_STATUS_LOW_DRIVE (1 << 3)
#define CEC_TX_STATUS_ERROR (1 << 4)
#define CEC_TX_STATUS_MAX_RETRIES (1 << 5)
#define CEC_TX_STATUS_ABORTED (1 << 6)
#define CEC_TX_STATUS_TIMEOUT (1 << 7)

#define CEC_RX_STATUS_OK (1 << 0)
#define CEC_RX_STATUS_TIMEOUT (1 << 1)
#define CEC_RX_STATUS_FEATURE_ABORT (1 << 2)
#define CEC_RX_STATUS_ABORTED (1 << 3)

static inline int cec_msg_status_is_ok(const struct cec_msg *msg)
{

if (msg->tx_status && !(msg->tx_status & CEC_TX_STATUS_OK))
return 0;

if (msg->rx_status && !(msg->rx_status & CEC_RX_STATUS_OK))
return 0;

if (!msg->tx_status && !msg->rx_status)
return 0;

return !(msg->rx_status & CEC_RX_STATUS_FEATURE_ABORT);
}

#define CEC_LOG_ADDR_INVALID 0xff
#define CEC_PHYS_ADDR_INVALID 0xffff

/*
* The maximum number of logical addresses one device can be assigned to.
* The CEC 2.0 spec allows for only 2 logical addresses at the moment. The
* Analog Devices CEC hardware supports 3. So let's go wild and go for 4.
*/

#define CEC_MAX_LOG_ADDRS 4

/* The logical addresses defined by CEC 2.0 */
#define CEC_LOG_ADDR_TV 0
#define CEC_LOG_ADDR_RECORD_1 1
#define CEC_LOG_ADDR_RECORD_2 2
#define CEC_LOG_ADDR_TUNER_1 3
#define CEC_LOG_ADDR_PLAYBACK_1 4
#define CEC_LOG_ADDR_AUDIOSYSTEM 5
#define CEC_LOG_ADDR_TUNER_2 6
#define CEC_LOG_ADDR_TUNER_3 7
#define CEC_LOG_ADDR_PLAYBACK_2 8
#define CEC_LOG_ADDR_RECORD_3 9
#define CEC_LOG_ADDR_TUNER_4 10
#define CEC_LOG_ADDR_PLAYBACK_3 11

3.6. Part V - Consumer Electronics Control API 1587

Linux Media Documentation

#define CEC_LOG_ADDR_BACKUP_1 12
#define CEC_LOG_ADDR_BACKUP_2 13
#define CEC_LOG_ADDR_SPECIFIC 14
#define CEC_LOG_ADDR_UNREGISTERED 15 /* as initiator address */
#define CEC_LOG_ADDR_BROADCAST 15 /* as destination address */

/* The logical address types that the CEC device wants to claim */
#define CEC_LOG_ADDR_TYPE_TV 0
#define CEC_LOG_ADDR_TYPE_RECORD 1
#define CEC_LOG_ADDR_TYPE_TUNER 2
#define CEC_LOG_ADDR_TYPE_PLAYBACK 3
#define CEC_LOG_ADDR_TYPE_AUDIOSYSTEM 4
#define CEC_LOG_ADDR_TYPE_SPECIFIC 5
#define CEC_LOG_ADDR_TYPE_UNREGISTERED 6
/*
* Switches should use UNREGISTERED.
* Processors should use SPECIFIC.
*/

#define CEC_LOG_ADDR_MASK_TV (1 << CEC_LOG_ADDR_TV)
#define CEC_LOG_ADDR_MASK_RECORD ((1 << CEC_LOG_ADDR_RECORD_1) | \

(1 << CEC_LOG_ADDR_RECORD_2) | \
(1 << CEC_LOG_ADDR_RECORD_3))

#define CEC_LOG_ADDR_MASK_TUNER ((1 << CEC_LOG_ADDR_TUNER_1) | \
(1 << CEC_LOG_ADDR_TUNER_2) | \
(1 << CEC_LOG_ADDR_TUNER_3) | \
(1 << CEC_LOG_ADDR_TUNER_4))

#define CEC_LOG_ADDR_MASK_PLAYBACK ((1 << CEC_LOG_ADDR_PLAYBACK_1) | \
(1 << CEC_LOG_ADDR_PLAYBACK_2) | \
(1 << CEC_LOG_ADDR_PLAYBACK_3))

#define CEC_LOG_ADDR_MASK_AUDIOSYSTEM (1 << CEC_LOG_ADDR_AUDIOSYSTEM)
#define CEC_LOG_ADDR_MASK_BACKUP ((1 << CEC_LOG_ADDR_BACKUP_1) | \

(1 << CEC_LOG_ADDR_BACKUP_2))
#define CEC_LOG_ADDR_MASK_SPECIFIC (1 << CEC_LOG_ADDR_SPECIFIC)
#define CEC_LOG_ADDR_MASK_UNREGISTERED (1 << CEC_LOG_ADDR_UNREGISTERED)

static inline int cec_has_tv(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_TV;
}

static inline int cec_has_record(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_RECORD;
}

static inline int cec_has_tuner(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_TUNER;
}

1588 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

static inline int cec_has_playback(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_PLAYBACK;
}

static inline int cec_has_audiosystem(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_AUDIOSYSTEM;
}

static inline int cec_has_backup(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_BACKUP;
}

static inline int cec_has_specific(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_SPECIFIC;
}

static inline int cec_is_unregistered(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_UNREGISTERED;
}

static inline int cec_is_unconfigured(__u16 log_addr_mask)
{

return log_addr_mask == 0;
}

/*
* Use this if there is no vendor ID (CEC_G_VENDOR_ID) or if the vendor ID
* should be disabled (CEC_S_VENDOR_ID)
*/

#define CEC_VENDOR_ID_NONE 0xffffffff

/* The message handling modes */
/* Modes for initiator */
#define CEC_MODE_NO_INITIATOR (0x0 << 0)
#define CEC_MODE_INITIATOR (0x1 << 0)
#define CEC_MODE_EXCL_INITIATOR (0x2 << 0)
#define CEC_MODE_INITIATOR_MSK 0x0f

/* Modes for follower */
#define CEC_MODE_NO_FOLLOWER (0x0 << 4)
#define CEC_MODE_FOLLOWER (0x1 << 4)
#define CEC_MODE_EXCL_FOLLOWER (0x2 << 4)
#define CEC_MODE_EXCL_FOLLOWER_PASSTHRU (0x3 << 4)
#define CEC_MODE_MONITOR_PIN (0xd << 4)
#define CEC_MODE_MONITOR (0xe << 4)
#define CEC_MODE_MONITOR_ALL (0xf << 4)

3.6. Part V - Consumer Electronics Control API 1589

Linux Media Documentation

#define CEC_MODE_FOLLOWER_MSK 0xf0

/* Userspace has to configure the physical address */
#define CEC_CAP_PHYS_ADDR (1 << 0)
/* Userspace has to configure the logical addresses */
#define CEC_CAP_LOG_ADDRS (1 << 1)
/* Userspace can transmit messages (and thus become follower as well) */
#define CEC_CAP_TRANSMIT (1 << 2)
/*
* Passthrough all messages instead of processing them.
*/

#define CEC_CAP_PASSTHROUGH (1 << 3)
/* Supports remote control */
#define CEC_CAP_RC (1 << 4)
/* Hardware can monitor all messages, not just directed and broadcast. */
#define CEC_CAP_MONITOR_ALL (1 << 5)
/* Hardware can use CEC only if the HDMI HPD pin is high. */
#define CEC_CAP_NEEDS_HPD (1 << 6)
/* Hardware can monitor CEC pin transitions */
#define CEC_CAP_MONITOR_PIN (1 << 7)
/* CEC_ADAP_G_CONNECTOR_INFO is available */
#define CEC_CAP_CONNECTOR_INFO (1 << 8)

/**
* struct cec_caps - CEC capabilities structure.
* @driver: name of the CEC device driver.
* @name: name of the CEC device. @driver + @name must be unique.
* @available_log_addrs: number of available logical addresses.
* @capabilities: capabilities of the CEC adapter.
* @version: version of the CEC adapter framework.
*/

struct cec_caps {
char driver[32];
char name[32];
__u32 available_log_addrs;
__u32 capabilities;
__u32 version;

};

/**
* struct cec_log_addrs - CEC logical addresses structure.
* @log_addr: the claimed logical addresses. Set by the driver.
* @log_addr_mask: current logical address mask. Set by the driver.
* @cec_version: the CEC version that the adapter should implement. Set by the
* caller.
* @num_log_addrs: how many logical addresses should be claimed. Set by the
* caller.
* @vendor_id: the vendor ID of the device. Set by the caller.
* @flags: flags.
* @osd_name: the OSD name of the device. Set by the caller.
* @primary_device_type: the primary device type for each logical address.

1590 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

* Set by the caller.
* @log_addr_type: the logical address types. Set by the caller.
* @all_device_types: CEC 2.0: all device types represented by the logical
* address. Set by the caller.
* @features: CEC 2.0: The logical address features. Set by the caller.
*/

struct cec_log_addrs {
__u8 log_addr[CEC_MAX_LOG_ADDRS];
__u16 log_addr_mask;
__u8 cec_version;
__u8 num_log_addrs;
__u32 vendor_id;
__u32 flags;
char osd_name[15];
__u8 primary_device_type[CEC_MAX_LOG_ADDRS];
__u8 log_addr_type[CEC_MAX_LOG_ADDRS];

/* CEC 2.0 */
__u8 all_device_types[CEC_MAX_LOG_ADDRS];
__u8 features[CEC_MAX_LOG_ADDRS][12];

};

/* Allow a fallback to unregistered */
#define CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK (1 << 0)
/* Passthrough RC messages to the input subsystem */
#define CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU (1 << 1)
/* CDC-Only device: supports only CDC messages */
#define CEC_LOG_ADDRS_FL_CDC_ONLY (1 << 2)

/**
* struct cec_drm_connector_info - tells which drm connector is
* associated with the CEC adapter.
* @card_no: drm card number
* @connector_id: drm connector ID
*/

struct cec_drm_connector_info {
__u32 card_no;
__u32 connector_id;

};

#define CEC_CONNECTOR_TYPE_NO_CONNECTOR 0
#define CEC_CONNECTOR_TYPE_DRM 1

/**
* struct cec_connector_info - tells if and which connector is
* associated with the CEC adapter.
* @type: connector type (if any)
* @drm: drm connector info
* @raw: array to pad the union
*/

struct cec_connector_info {

3.6. Part V - Consumer Electronics Control API 1591

Linux Media Documentation

__u32 type;
union {

struct cec_drm_connector_info drm;
__u32 raw[16];

};
};

/* Events */

/* Event that occurs when the adapter state changes */
#define CEC_EVENT_STATE_CHANGE 1
/*
* This event is sent when messages are lost because the application
* didn't empty the message queue in time
*/

#define CEC_EVENT_LOST_MSGS 2
#define CEC_EVENT_PIN_CEC_LOW 3
#define CEC_EVENT_PIN_CEC_HIGH 4
#define CEC_EVENT_PIN_HPD_LOW 5
#define CEC_EVENT_PIN_HPD_HIGH 6
#define CEC_EVENT_PIN_5V_LOW 7
#define CEC_EVENT_PIN_5V_HIGH 8

#define CEC_EVENT_FL_INITIAL_STATE (1 << 0)
#define CEC_EVENT_FL_DROPPED_EVENTS (1 << 1)

/**
* struct cec_event_state_change - used when the CEC adapter changes state.
* @phys_addr: the current physical address
* @log_addr_mask: the current logical address mask
* @have_conn_info: if non-zero, then HDMI connector information is available.
* This field is only valid if CEC_CAP_CONNECTOR_INFO is set. If that
* capability is set and @have_conn_info is zero, then that indicates
* that the HDMI connector device is not instantiated, either because
* the HDMI driver is still configuring the device or because the HDMI
* device was unbound.
*/

struct cec_event_state_change {
__u16 phys_addr;
__u16 log_addr_mask;
__u16 have_conn_info;

};

/**
* struct cec_event_lost_msgs - tells you how many messages were lost.
* @lost_msgs: how many messages were lost.
*/

struct cec_event_lost_msgs {
__u32 lost_msgs;

};

1592 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

/**
* struct cec_event - CEC event structure
* @ts: the timestamp of when the event was sent.
* @event: the event.
* @flags: event flags.
* @state_change: the event payload for CEC_EVENT_STATE_CHANGE.
* @lost_msgs: the event payload for CEC_EVENT_LOST_MSGS.
* @raw: array to pad the union.
*/

struct cec_event {
__u64 ts;
__u32 event;
__u32 flags;
union {

struct cec_event_state_change state_change;
struct cec_event_lost_msgs lost_msgs;
__u32 raw[16];

};
};

/* ioctls */

/* Adapter capabilities */
#define CEC_ADAP_G_CAPS _IOWR('a', 0, struct cec_caps)

/*
* phys_addr is either 0 (if this is the CEC root device)
* or a valid physical address obtained from the sink's EDID
* as read by this CEC device (if this is a source device)
* or a physical address obtained and modified from a sink
* EDID and used for a sink CEC device.
* If nothing is connected, then phys_addr is 0xffff.
* See HDMI 1.4b, section 8.7 (Physical Address).
*
* The CEC_ADAP_S_PHYS_ADDR ioctl may not be available if that is handled
* internally.
*/

#define CEC_ADAP_G_PHYS_ADDR _IOR('a', 1, __u16)
#define CEC_ADAP_S_PHYS_ADDR _IOW('a', 2, __u16)

/*
* Configure the CEC adapter. It sets the device type and which
* logical types it will try to claim. It will return which
* logical addresses it could actually claim.
* An error is returned if the adapter is disabled or if there
* is no physical address assigned.
*/

#define CEC_ADAP_G_LOG_ADDRS _IOR('a', 3, struct cec_log_addrs)
#define CEC_ADAP_S_LOG_ADDRS _IOWR('a', 4, struct cec_log_addrs)

3.6. Part V - Consumer Electronics Control API 1593

Linux Media Documentation

/* Transmit/receive a CEC command */
#define CEC_TRANSMIT _IOWR('a', 5, struct cec_msg)
#define CEC_RECEIVE _IOWR('a', 6, struct cec_msg)

/* Dequeue CEC events */
#define CEC_DQEVENT _IOWR('a', 7, struct cec_event)

/*
* Get and set the message handling mode for this filehandle.
*/

#define CEC_G_MODE _IOR('a', 8, __u32)
#define CEC_S_MODE _IOW('a', 9, __u32)

/* Get the connector info */
#define CEC_ADAP_G_CONNECTOR_INFO _IOR('a', 10, struct cec_connector_info)

/*
* The remainder of this header defines all CEC messages and operands.
* The format matters since it the cec-ctl utility parses it to generate
* code for implementing all these messages.
*
* Comments ending with 'Feature' group messages for each feature.
* If messages are part of multiple features, then the "Has also"
* comment is used to list the previously defined messages that are
* supported by the feature.
*
* Before operands are defined a comment is added that gives the
* name of the operand and in brackets the variable name of the
* corresponding argument in the cec-funcs.h function.
*/

/* Messages */

/* One Touch Play Feature */
#define CEC_MSG_ACTIVE_SOURCE 0x82
#define CEC_MSG_IMAGE_VIEW_ON 0x04
#define CEC_MSG_TEXT_VIEW_ON 0x0d

/* Routing Control Feature */

/*
* Has also:
* CEC_MSG_ACTIVE_SOURCE
*/

#define CEC_MSG_INACTIVE_SOURCE 0x9d
#define CEC_MSG_REQUEST_ACTIVE_SOURCE 0x85
#define CEC_MSG_ROUTING_CHANGE 0x80
#define CEC_MSG_ROUTING_INFORMATION 0x81
#define CEC_MSG_SET_STREAM_PATH 0x86

1594 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

/* Standby Feature */
#define CEC_MSG_STANDBY 0x36

/* One Touch Record Feature */
#define CEC_MSG_RECORD_OFF 0x0b
#define CEC_MSG_RECORD_ON 0x09
/* Record Source Type Operand (rec_src_type) */
#define CEC_OP_RECORD_SRC_OWN 1
#define CEC_OP_RECORD_SRC_DIGITAL 2
#define CEC_OP_RECORD_SRC_ANALOG 3
#define CEC_OP_RECORD_SRC_EXT_PLUG 4
#define CEC_OP_RECORD_SRC_EXT_PHYS_ADDR 5
/* Service Identification Method Operand (service_id_method) */
#define CEC_OP_SERVICE_ID_METHOD_BY_DIG_ID 0
#define CEC_OP_SERVICE_ID_METHOD_BY_CHANNEL 1
/* Digital Service Broadcast System Operand (dig_bcast_system) */
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ARIB_GEN 0x00
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ATSC_GEN 0x01
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_DVB_GEN 0x02
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ARIB_BS 0x08
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ARIB_CS 0x09
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ARIB_T 0x0a
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ATSC_CABLE 0x10
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ATSC_SAT 0x11
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ATSC_T 0x12
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_DVB_C 0x18
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_DVB_S 0x19
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_DVB_S2 0x1a
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_DVB_T 0x1b
/* Analogue Broadcast Type Operand (ana_bcast_type) */
#define CEC_OP_ANA_BCAST_TYPE_CABLE 0
#define CEC_OP_ANA_BCAST_TYPE_SATELLITE 1
#define CEC_OP_ANA_BCAST_TYPE_TERRESTRIAL 2
/* Broadcast System Operand (bcast_system) */
#define CEC_OP_BCAST_SYSTEM_PAL_BG 0x00
#define CEC_OP_BCAST_SYSTEM_SECAM_LQ 0x01 /* SECAM L' */
#define CEC_OP_BCAST_SYSTEM_PAL_M 0x02
#define CEC_OP_BCAST_SYSTEM_NTSC_M 0x03
#define CEC_OP_BCAST_SYSTEM_PAL_I 0x04
#define CEC_OP_BCAST_SYSTEM_SECAM_DK 0x05
#define CEC_OP_BCAST_SYSTEM_SECAM_BG 0x06
#define CEC_OP_BCAST_SYSTEM_SECAM_L 0x07
#define CEC_OP_BCAST_SYSTEM_PAL_DK 0x08
#define CEC_OP_BCAST_SYSTEM_OTHER 0x1f
/* Channel Number Format Operand (channel_number_fmt) */
#define CEC_OP_CHANNEL_NUMBER_FMT_1_PART 0x01
#define CEC_OP_CHANNEL_NUMBER_FMT_2_PART 0x02

#define CEC_MSG_RECORD_STATUS 0x0a
/* Record Status Operand (rec_status) */
#define CEC_OP_RECORD_STATUS_CUR_SRC 0x01

3.6. Part V - Consumer Electronics Control API 1595

Linux Media Documentation

#define CEC_OP_RECORD_STATUS_DIG_SERVICE 0x02
#define CEC_OP_RECORD_STATUS_ANA_SERVICE 0x03
#define CEC_OP_RECORD_STATUS_EXT_INPUT 0x04
#define CEC_OP_RECORD_STATUS_NO_DIG_SERVICE 0x05
#define CEC_OP_RECORD_STATUS_NO_ANA_SERVICE 0x06
#define CEC_OP_RECORD_STATUS_NO_SERVICE 0x07
#define CEC_OP_RECORD_STATUS_INVALID_EXT_PLUG 0x09
#define CEC_OP_RECORD_STATUS_INVALID_EXT_PHYS_ADDR 0x0a
#define CEC_OP_RECORD_STATUS_UNSUP_CA 0x0b
#define CEC_OP_RECORD_STATUS_NO_CA_ENTITLEMENTS 0x0c
#define CEC_OP_RECORD_STATUS_CANT_COPY_SRC 0x0d
#define CEC_OP_RECORD_STATUS_NO_MORE_COPIES 0x0e
#define CEC_OP_RECORD_STATUS_NO_MEDIA 0x10
#define CEC_OP_RECORD_STATUS_PLAYING 0x11
#define CEC_OP_RECORD_STATUS_ALREADY_RECORDING 0x12
#define CEC_OP_RECORD_STATUS_MEDIA_PROT 0x13
#define CEC_OP_RECORD_STATUS_NO_SIGNAL 0x14
#define CEC_OP_RECORD_STATUS_MEDIA_PROBLEM 0x15
#define CEC_OP_RECORD_STATUS_NO_SPACE 0x16
#define CEC_OP_RECORD_STATUS_PARENTAL_LOCK 0x17
#define CEC_OP_RECORD_STATUS_TERMINATED_OK 0x1a
#define CEC_OP_RECORD_STATUS_ALREADY_TERM 0x1b
#define CEC_OP_RECORD_STATUS_OTHER 0x1f

#define CEC_MSG_RECORD_TV_SCREEN 0x0f

/* Timer Programming Feature */
#define CEC_MSG_CLEAR_ANALOGUE_TIMER 0x33
/* Recording Sequence Operand (recording_seq) */
#define CEC_OP_REC_SEQ_SUNDAY 0x01
#define CEC_OP_REC_SEQ_MONDAY 0x02
#define CEC_OP_REC_SEQ_TUESDAY 0x04
#define CEC_OP_REC_SEQ_WEDNESDAY 0x08
#define CEC_OP_REC_SEQ_THURSDAY 0x10
#define CEC_OP_REC_SEQ_FRIDAY 0x20
#define CEC_OP_REC_SEQ_SATURDAY 0x40
#define CEC_OP_REC_SEQ_ONCE_ONLY 0x00

#define CEC_MSG_CLEAR_DIGITAL_TIMER 0x99

#define CEC_MSG_CLEAR_EXT_TIMER 0xa1
/* External Source Specifier Operand (ext_src_spec) */
#define CEC_OP_EXT_SRC_PLUG 0x04
#define CEC_OP_EXT_SRC_PHYS_ADDR 0x05

#define CEC_MSG_SET_ANALOGUE_TIMER 0x34
#define CEC_MSG_SET_DIGITAL_TIMER 0x97
#define CEC_MSG_SET_EXT_TIMER 0xa2

#define CEC_MSG_SET_TIMER_PROGRAM_TITLE 0x67
#define CEC_MSG_TIMER_CLEARED_STATUS 0x43

1596 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

/* Timer Cleared Status Data Operand (timer_cleared_status) */
#define CEC_OP_TIMER_CLR_STAT_RECORDING 0x00
#define CEC_OP_TIMER_CLR_STAT_NO_MATCHING 0x01
#define CEC_OP_TIMER_CLR_STAT_NO_INFO 0x02
#define CEC_OP_TIMER_CLR_STAT_CLEARED 0x80

#define CEC_MSG_TIMER_STATUS 0x35
/* Timer Overlap Warning Operand (timer_overlap_warning) */
#define CEC_OP_TIMER_OVERLAP_WARNING_NO_OVERLAP 0
#define CEC_OP_TIMER_OVERLAP_WARNING_OVERLAP 1
/* Media Info Operand (media_info) */
#define CEC_OP_MEDIA_INFO_UNPROT_MEDIA 0
#define CEC_OP_MEDIA_INFO_PROT_MEDIA 1
#define CEC_OP_MEDIA_INFO_NO_MEDIA 2
/* Programmed Indicator Operand (prog_indicator) */
#define CEC_OP_PROG_IND_NOT_PROGRAMMED 0
#define CEC_OP_PROG_IND_PROGRAMMED 1
/* Programmed Info Operand (prog_info) */
#define CEC_OP_PROG_INFO_ENOUGH_SPACE 0x08
#define CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE 0x09
#define CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE 0x0b
#define CEC_OP_PROG_INFO_NONE_AVAILABLE 0x0a
/* Not Programmed Error Info Operand (prog_error) */
#define CEC_OP_PROG_ERROR_NO_FREE_TIMER 0x01
#define CEC_OP_PROG_ERROR_DATE_OUT_OF_RANGE 0x02
#define CEC_OP_PROG_ERROR_REC_SEQ_ERROR 0x03
#define CEC_OP_PROG_ERROR_INV_EXT_PLUG 0x04
#define CEC_OP_PROG_ERROR_INV_EXT_PHYS_ADDR 0x05
#define CEC_OP_PROG_ERROR_CA_UNSUPP 0x06
#define CEC_OP_PROG_ERROR_INSUF_CA_ENTITLEMENTS 0x07
#define CEC_OP_PROG_ERROR_RESOLUTION_UNSUPP 0x08
#define CEC_OP_PROG_ERROR_PARENTAL_LOCK 0x09
#define CEC_OP_PROG_ERROR_CLOCK_FAILURE 0x0a
#define CEC_OP_PROG_ERROR_DUPLICATE 0x0e

/* System Information Feature */
#define CEC_MSG_CEC_VERSION 0x9e
/* CEC Version Operand (cec_version) */
#define CEC_OP_CEC_VERSION_1_3A 4
#define CEC_OP_CEC_VERSION_1_4 5
#define CEC_OP_CEC_VERSION_2_0 6

#define CEC_MSG_GET_CEC_VERSION 0x9f
#define CEC_MSG_GIVE_PHYSICAL_ADDR 0x83
#define CEC_MSG_GET_MENU_LANGUAGE 0x91
#define CEC_MSG_REPORT_PHYSICAL_ADDR 0x84
/* Primary Device Type Operand (prim_devtype) */
#define CEC_OP_PRIM_DEVTYPE_TV 0
#define CEC_OP_PRIM_DEVTYPE_RECORD 1
#define CEC_OP_PRIM_DEVTYPE_TUNER 3
#define CEC_OP_PRIM_DEVTYPE_PLAYBACK 4

3.6. Part V - Consumer Electronics Control API 1597

Linux Media Documentation

#define CEC_OP_PRIM_DEVTYPE_AUDIOSYSTEM 5
#define CEC_OP_PRIM_DEVTYPE_SWITCH 6
#define CEC_OP_PRIM_DEVTYPE_PROCESSOR 7

#define CEC_MSG_SET_MENU_LANGUAGE 0x32
#define CEC_MSG_REPORT_FEATURES 0xa6 /* HDMI 2.0 */
/* All Device Types Operand (all_device_types) */
#define CEC_OP_ALL_DEVTYPE_TV 0x80
#define CEC_OP_ALL_DEVTYPE_RECORD 0x40
#define CEC_OP_ALL_DEVTYPE_TUNER 0x20
#define CEC_OP_ALL_DEVTYPE_PLAYBACK 0x10
#define CEC_OP_ALL_DEVTYPE_AUDIOSYSTEM 0x08
#define CEC_OP_ALL_DEVTYPE_SWITCH 0x04
/*
* And if you wondering what happened to PROCESSOR devices: those should
* be mapped to a SWITCH.
*/

/* Valid for RC Profile and Device Feature operands */
#define CEC_OP_FEAT_EXT 0x80 /* Extension␣
↪→bit */
/* RC Profile Operand (rc_profile) */
#define CEC_OP_FEAT_RC_TV_PROFILE_NONE 0x00
#define CEC_OP_FEAT_RC_TV_PROFILE_1 0x02
#define CEC_OP_FEAT_RC_TV_PROFILE_2 0x06
#define CEC_OP_FEAT_RC_TV_PROFILE_3 0x0a
#define CEC_OP_FEAT_RC_TV_PROFILE_4 0x0e
#define CEC_OP_FEAT_RC_SRC_HAS_DEV_ROOT_MENU 0x50
#define CEC_OP_FEAT_RC_SRC_HAS_DEV_SETUP_MENU 0x48
#define CEC_OP_FEAT_RC_SRC_HAS_CONTENTS_MENU 0x44
#define CEC_OP_FEAT_RC_SRC_HAS_MEDIA_TOP_MENU 0x42
#define CEC_OP_FEAT_RC_SRC_HAS_MEDIA_CONTEXT_MENU 0x41
/* Device Feature Operand (dev_features) */
#define CEC_OP_FEAT_DEV_HAS_RECORD_TV_SCREEN 0x40
#define CEC_OP_FEAT_DEV_HAS_SET_OSD_STRING 0x20
#define CEC_OP_FEAT_DEV_HAS_DECK_CONTROL 0x10
#define CEC_OP_FEAT_DEV_HAS_SET_AUDIO_RATE 0x08
#define CEC_OP_FEAT_DEV_SINK_HAS_ARC_TX 0x04
#define CEC_OP_FEAT_DEV_SOURCE_HAS_ARC_RX 0x02

#define CEC_MSG_GIVE_FEATURES 0xa5 /* HDMI 2.0 */

/* Deck Control Feature */
#define CEC_MSG_DECK_CONTROL 0x42
/* Deck Control Mode Operand (deck_control_mode) */
#define CEC_OP_DECK_CTL_MODE_SKIP_FWD 1
#define CEC_OP_DECK_CTL_MODE_SKIP_REV 2
#define CEC_OP_DECK_CTL_MODE_STOP 3
#define CEC_OP_DECK_CTL_MODE_EJECT 4

#define CEC_MSG_DECK_STATUS 0x1b

1598 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

/* Deck Info Operand (deck_info) */
#define CEC_OP_DECK_INFO_PLAY 0x11
#define CEC_OP_DECK_INFO_RECORD 0x12
#define CEC_OP_DECK_INFO_PLAY_REV 0x13
#define CEC_OP_DECK_INFO_STILL 0x14
#define CEC_OP_DECK_INFO_SLOW 0x15
#define CEC_OP_DECK_INFO_SLOW_REV 0x16
#define CEC_OP_DECK_INFO_FAST_FWD 0x17
#define CEC_OP_DECK_INFO_FAST_REV 0x18
#define CEC_OP_DECK_INFO_NO_MEDIA 0x19
#define CEC_OP_DECK_INFO_STOP 0x1a
#define CEC_OP_DECK_INFO_SKIP_FWD 0x1b
#define CEC_OP_DECK_INFO_SKIP_REV 0x1c
#define CEC_OP_DECK_INFO_INDEX_SEARCH_FWD 0x1d
#define CEC_OP_DECK_INFO_INDEX_SEARCH_REV 0x1e
#define CEC_OP_DECK_INFO_OTHER 0x1f

#define CEC_MSG_GIVE_DECK_STATUS 0x1a
/* Status Request Operand (status_req) */
#define CEC_OP_STATUS_REQ_ON 1
#define CEC_OP_STATUS_REQ_OFF 2
#define CEC_OP_STATUS_REQ_ONCE 3

#define CEC_MSG_PLAY 0x41
/* Play Mode Operand (play_mode) */
#define CEC_OP_PLAY_MODE_PLAY_FWD 0x24
#define CEC_OP_PLAY_MODE_PLAY_REV 0x20
#define CEC_OP_PLAY_MODE_PLAY_STILL 0x25
#define CEC_OP_PLAY_MODE_PLAY_FAST_FWD_MIN 0x05
#define CEC_OP_PLAY_MODE_PLAY_FAST_FWD_MED 0x06
#define CEC_OP_PLAY_MODE_PLAY_FAST_FWD_MAX 0x07
#define CEC_OP_PLAY_MODE_PLAY_FAST_REV_MIN 0x09
#define CEC_OP_PLAY_MODE_PLAY_FAST_REV_MED 0x0a
#define CEC_OP_PLAY_MODE_PLAY_FAST_REV_MAX 0x0b
#define CEC_OP_PLAY_MODE_PLAY_SLOW_FWD_MIN 0x15
#define CEC_OP_PLAY_MODE_PLAY_SLOW_FWD_MED 0x16
#define CEC_OP_PLAY_MODE_PLAY_SLOW_FWD_MAX 0x17
#define CEC_OP_PLAY_MODE_PLAY_SLOW_REV_MIN 0x19
#define CEC_OP_PLAY_MODE_PLAY_SLOW_REV_MED 0x1a
#define CEC_OP_PLAY_MODE_PLAY_SLOW_REV_MAX 0x1b

/* Tuner Control Feature */
#define CEC_MSG_GIVE_TUNER_DEVICE_STATUS 0x08
#define CEC_MSG_SELECT_ANALOGUE_SERVICE 0x92
#define CEC_MSG_SELECT_DIGITAL_SERVICE 0x93
#define CEC_MSG_TUNER_DEVICE_STATUS 0x07
/* Recording Flag Operand (rec_flag) */
#define CEC_OP_REC_FLAG_NOT_USED 0
#define CEC_OP_REC_FLAG_USED 1
/* Tuner Display Info Operand (tuner_display_info) */
#define CEC_OP_TUNER_DISPLAY_INFO_DIGITAL 0

3.6. Part V - Consumer Electronics Control API 1599

Linux Media Documentation

#define CEC_OP_TUNER_DISPLAY_INFO_NONE 1
#define CEC_OP_TUNER_DISPLAY_INFO_ANALOGUE 2

#define CEC_MSG_TUNER_STEP_DECREMENT 0x06
#define CEC_MSG_TUNER_STEP_INCREMENT 0x05

/* Vendor Specific Commands Feature */

/*
* Has also:
* CEC_MSG_CEC_VERSION
* CEC_MSG_GET_CEC_VERSION
*/

#define CEC_MSG_DEVICE_VENDOR_ID 0x87
#define CEC_MSG_GIVE_DEVICE_VENDOR_ID 0x8c
#define CEC_MSG_VENDOR_COMMAND 0x89
#define CEC_MSG_VENDOR_COMMAND_WITH_ID 0xa0
#define CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN 0x8a
#define CEC_MSG_VENDOR_REMOTE_BUTTON_UP 0x8b

/* OSD Display Feature */
#define CEC_MSG_SET_OSD_STRING 0x64
/* Display Control Operand (disp_ctl) */
#define CEC_OP_DISP_CTL_DEFAULT 0x00
#define CEC_OP_DISP_CTL_UNTIL_CLEARED 0x40
#define CEC_OP_DISP_CTL_CLEAR 0x80

/* Device OSD Transfer Feature */
#define CEC_MSG_GIVE_OSD_NAME 0x46
#define CEC_MSG_SET_OSD_NAME 0x47

/* Device Menu Control Feature */
#define CEC_MSG_MENU_REQUEST 0x8d
/* Menu Request Type Operand (menu_req) */
#define CEC_OP_MENU_REQUEST_ACTIVATE 0x00
#define CEC_OP_MENU_REQUEST_DEACTIVATE 0x01
#define CEC_OP_MENU_REQUEST_QUERY 0x02

#define CEC_MSG_MENU_STATUS 0x8e
/* Menu State Operand (menu_state) */
#define CEC_OP_MENU_STATE_ACTIVATED 0x00
#define CEC_OP_MENU_STATE_DEACTIVATED 0x01

#define CEC_MSG_USER_CONTROL_PRESSED 0x44
/* UI Command Operand (ui_cmd) */
#define CEC_OP_UI_CMD_SELECT 0x00
#define CEC_OP_UI_CMD_UP 0x01
#define CEC_OP_UI_CMD_DOWN 0x02
#define CEC_OP_UI_CMD_LEFT 0x03
#define CEC_OP_UI_CMD_RIGHT 0x04
#define CEC_OP_UI_CMD_RIGHT_UP 0x05

1600 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

#define CEC_OP_UI_CMD_RIGHT_DOWN 0x06
#define CEC_OP_UI_CMD_LEFT_UP 0x07
#define CEC_OP_UI_CMD_LEFT_DOWN 0x08
#define CEC_OP_UI_CMD_DEVICE_ROOT_MENU 0x09
#define CEC_OP_UI_CMD_DEVICE_SETUP_MENU 0x0a
#define CEC_OP_UI_CMD_CONTENTS_MENU 0x0b
#define CEC_OP_UI_CMD_FAVORITE_MENU 0x0c
#define CEC_OP_UI_CMD_BACK 0x0d
#define CEC_OP_UI_CMD_MEDIA_TOP_MENU 0x10
#define CEC_OP_UI_CMD_MEDIA_CONTEXT_SENSITIVE_MENU 0x11
#define CEC_OP_UI_CMD_NUMBER_ENTRY_MODE 0x1d
#define CEC_OP_UI_CMD_NUMBER_11 0x1e
#define CEC_OP_UI_CMD_NUMBER_12 0x1f
#define CEC_OP_UI_CMD_NUMBER_0_OR_NUMBER_10 0x20
#define CEC_OP_UI_CMD_NUMBER_1 0x21
#define CEC_OP_UI_CMD_NUMBER_2 0x22
#define CEC_OP_UI_CMD_NUMBER_3 0x23
#define CEC_OP_UI_CMD_NUMBER_4 0x24
#define CEC_OP_UI_CMD_NUMBER_5 0x25
#define CEC_OP_UI_CMD_NUMBER_6 0x26
#define CEC_OP_UI_CMD_NUMBER_7 0x27
#define CEC_OP_UI_CMD_NUMBER_8 0x28
#define CEC_OP_UI_CMD_NUMBER_9 0x29
#define CEC_OP_UI_CMD_DOT 0x2a
#define CEC_OP_UI_CMD_ENTER 0x2b
#define CEC_OP_UI_CMD_CLEAR 0x2c
#define CEC_OP_UI_CMD_NEXT_FAVORITE 0x2f
#define CEC_OP_UI_CMD_CHANNEL_UP 0x30
#define CEC_OP_UI_CMD_CHANNEL_DOWN 0x31
#define CEC_OP_UI_CMD_PREVIOUS_CHANNEL 0x32
#define CEC_OP_UI_CMD_SOUND_SELECT 0x33
#define CEC_OP_UI_CMD_INPUT_SELECT 0x34
#define CEC_OP_UI_CMD_DISPLAY_INFORMATION 0x35
#define CEC_OP_UI_CMD_HELP 0x36
#define CEC_OP_UI_CMD_PAGE_UP 0x37
#define CEC_OP_UI_CMD_PAGE_DOWN 0x38
#define CEC_OP_UI_CMD_POWER 0x40
#define CEC_OP_UI_CMD_VOLUME_UP 0x41
#define CEC_OP_UI_CMD_VOLUME_DOWN 0x42
#define CEC_OP_UI_CMD_MUTE 0x43
#define CEC_OP_UI_CMD_PLAY 0x44
#define CEC_OP_UI_CMD_STOP 0x45
#define CEC_OP_UI_CMD_PAUSE 0x46
#define CEC_OP_UI_CMD_RECORD 0x47
#define CEC_OP_UI_CMD_REWIND 0x48
#define CEC_OP_UI_CMD_FAST_FORWARD 0x49
#define CEC_OP_UI_CMD_EJECT 0x4a
#define CEC_OP_UI_CMD_SKIP_FORWARD 0x4b
#define CEC_OP_UI_CMD_SKIP_BACKWARD 0x4c
#define CEC_OP_UI_CMD_STOP_RECORD 0x4d
#define CEC_OP_UI_CMD_PAUSE_RECORD 0x4e

3.6. Part V - Consumer Electronics Control API 1601

Linux Media Documentation

#define CEC_OP_UI_CMD_ANGLE 0x50
#define CEC_OP_UI_CMD_SUB_PICTURE 0x51
#define CEC_OP_UI_CMD_VIDEO_ON_DEMAND 0x52
#define CEC_OP_UI_CMD_ELECTRONIC_PROGRAM_GUIDE 0x53
#define CEC_OP_UI_CMD_TIMER_PROGRAMMING 0x54
#define CEC_OP_UI_CMD_INITIAL_CONFIGURATION 0x55
#define CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE 0x56
#define CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION 0x57
#define CEC_OP_UI_CMD_AUDIO_DESCRIPTION 0x58
#define CEC_OP_UI_CMD_INTERNET 0x59
#define CEC_OP_UI_CMD_3D_MODE 0x5a
#define CEC_OP_UI_CMD_PLAY_FUNCTION 0x60
#define CEC_OP_UI_CMD_PAUSE_PLAY_FUNCTION 0x61
#define CEC_OP_UI_CMD_RECORD_FUNCTION 0x62
#define CEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION 0x63
#define CEC_OP_UI_CMD_STOP_FUNCTION 0x64
#define CEC_OP_UI_CMD_MUTE_FUNCTION 0x65
#define CEC_OP_UI_CMD_RESTORE_VOLUME_FUNCTION 0x66
#define CEC_OP_UI_CMD_TUNE_FUNCTION 0x67
#define CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION 0x68
#define CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION 0x69
#define CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION 0x6a
#define CEC_OP_UI_CMD_POWER_TOGGLE_FUNCTION 0x6b
#define CEC_OP_UI_CMD_POWER_OFF_FUNCTION 0x6c
#define CEC_OP_UI_CMD_POWER_ON_FUNCTION 0x6d
#define CEC_OP_UI_CMD_F1_BLUE 0x71
#define CEC_OP_UI_CMD_F2_RED 0x72
#define CEC_OP_UI_CMD_F3_GREEN 0x73
#define CEC_OP_UI_CMD_F4_YELLOW 0x74
#define CEC_OP_UI_CMD_F5 0x75
#define CEC_OP_UI_CMD_DATA 0x76
/* UI Broadcast Type Operand (ui_bcast_type) */
#define CEC_OP_UI_BCAST_TYPE_TOGGLE_ALL 0x00
#define CEC_OP_UI_BCAST_TYPE_TOGGLE_DIG_ANA 0x01
#define CEC_OP_UI_BCAST_TYPE_ANALOGUE 0x10
#define CEC_OP_UI_BCAST_TYPE_ANALOGUE_T 0x20
#define CEC_OP_UI_BCAST_TYPE_ANALOGUE_CABLE 0x30
#define CEC_OP_UI_BCAST_TYPE_ANALOGUE_SAT 0x40
#define CEC_OP_UI_BCAST_TYPE_DIGITAL 0x50
#define CEC_OP_UI_BCAST_TYPE_DIGITAL_T 0x60
#define CEC_OP_UI_BCAST_TYPE_DIGITAL_CABLE 0x70
#define CEC_OP_UI_BCAST_TYPE_DIGITAL_SAT 0x80
#define CEC_OP_UI_BCAST_TYPE_DIGITAL_COM_SAT 0x90
#define CEC_OP_UI_BCAST_TYPE_DIGITAL_COM_SAT2 0x91
#define CEC_OP_UI_BCAST_TYPE_IP 0xa0
/* UI Sound Presentation Control Operand (ui_snd_pres_ctl) */
#define CEC_OP_UI_SND_PRES_CTL_DUAL_MONO 0x10
#define CEC_OP_UI_SND_PRES_CTL_KARAOKE 0x20
#define CEC_OP_UI_SND_PRES_CTL_DOWNMIX 0x80
#define CEC_OP_UI_SND_PRES_CTL_REVERB 0x90
#define CEC_OP_UI_SND_PRES_CTL_EQUALIZER 0xa0

1602 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

#define CEC_OP_UI_SND_PRES_CTL_BASS_UP 0xb1
#define CEC_OP_UI_SND_PRES_CTL_BASS_NEUTRAL 0xb2
#define CEC_OP_UI_SND_PRES_CTL_BASS_DOWN 0xb3
#define CEC_OP_UI_SND_PRES_CTL_TREBLE_UP 0xc1
#define CEC_OP_UI_SND_PRES_CTL_TREBLE_NEUTRAL 0xc2
#define CEC_OP_UI_SND_PRES_CTL_TREBLE_DOWN 0xc3

#define CEC_MSG_USER_CONTROL_RELEASED 0x45

/* Remote Control Passthrough Feature */

/*
* Has also:
* CEC_MSG_USER_CONTROL_PRESSED
* CEC_MSG_USER_CONTROL_RELEASED
*/

/* Power Status Feature */
#define CEC_MSG_GIVE_DEVICE_POWER_STATUS 0x8f
#define CEC_MSG_REPORT_POWER_STATUS 0x90
/* Power Status Operand (pwr_state) */
#define CEC_OP_POWER_STATUS_ON 0
#define CEC_OP_POWER_STATUS_STANDBY 1
#define CEC_OP_POWER_STATUS_TO_ON 2
#define CEC_OP_POWER_STATUS_TO_STANDBY 3

/* General Protocol Messages */
#define CEC_MSG_FEATURE_ABORT 0x00
/* Abort Reason Operand (reason) */
#define CEC_OP_ABORT_UNRECOGNIZED_OP 0
#define CEC_OP_ABORT_INCORRECT_MODE 1
#define CEC_OP_ABORT_NO_SOURCE 2
#define CEC_OP_ABORT_INVALID_OP 3
#define CEC_OP_ABORT_REFUSED 4
#define CEC_OP_ABORT_UNDETERMINED 5

#define CEC_MSG_ABORT 0xff

/* System Audio Control Feature */

/*
* Has also:
* CEC_MSG_USER_CONTROL_PRESSED
* CEC_MSG_USER_CONTROL_RELEASED
*/

#define CEC_MSG_GIVE_AUDIO_STATUS 0x71
#define CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS 0x7d
#define CEC_MSG_REPORT_AUDIO_STATUS 0x7a
/* Audio Mute Status Operand (aud_mute_status) */
#define CEC_OP_AUD_MUTE_STATUS_OFF 0
#define CEC_OP_AUD_MUTE_STATUS_ON 1

3.6. Part V - Consumer Electronics Control API 1603

Linux Media Documentation

#define CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR 0xa3
#define CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR 0xa4
#define CEC_MSG_SET_SYSTEM_AUDIO_MODE 0x72
/* System Audio Status Operand (sys_aud_status) */
#define CEC_OP_SYS_AUD_STATUS_OFF 0
#define CEC_OP_SYS_AUD_STATUS_ON 1

#define CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST 0x70
#define CEC_MSG_SYSTEM_AUDIO_MODE_STATUS 0x7e
/* Audio Format ID Operand (audio_format_id) */
#define CEC_OP_AUD_FMT_ID_CEA861 0
#define CEC_OP_AUD_FMT_ID_CEA861_CXT 1

/* Audio Rate Control Feature */
#define CEC_MSG_SET_AUDIO_RATE 0x9a
/* Audio Rate Operand (audio_rate) */
#define CEC_OP_AUD_RATE_OFF 0
#define CEC_OP_AUD_RATE_WIDE_STD 1
#define CEC_OP_AUD_RATE_WIDE_FAST 2
#define CEC_OP_AUD_RATE_WIDE_SLOW 3
#define CEC_OP_AUD_RATE_NARROW_STD 4
#define CEC_OP_AUD_RATE_NARROW_FAST 5
#define CEC_OP_AUD_RATE_NARROW_SLOW 6

/* Audio Return Channel Control Feature */
#define CEC_MSG_INITIATE_ARC 0xc0
#define CEC_MSG_REPORT_ARC_INITIATED 0xc1
#define CEC_MSG_REPORT_ARC_TERMINATED 0xc2
#define CEC_MSG_REQUEST_ARC_INITIATION 0xc3
#define CEC_MSG_REQUEST_ARC_TERMINATION 0xc4
#define CEC_MSG_TERMINATE_ARC 0xc5

/* Dynamic Audio Lipsync Feature */
/* Only for CEC 2.0 and up */
#define CEC_MSG_REQUEST_CURRENT_LATENCY 0xa7
#define CEC_MSG_REPORT_CURRENT_LATENCY 0xa8
/* Low Latency Mode Operand (low_latency_mode) */
#define CEC_OP_LOW_LATENCY_MODE_OFF 0
#define CEC_OP_LOW_LATENCY_MODE_ON 1
/* Audio Output Compensated Operand (audio_out_compensated) */
#define CEC_OP_AUD_OUT_COMPENSATED_NA 0
#define CEC_OP_AUD_OUT_COMPENSATED_DELAY 1
#define CEC_OP_AUD_OUT_COMPENSATED_NO_DELAY 2
#define CEC_OP_AUD_OUT_COMPENSATED_PARTIAL_DELAY 3

/* Capability Discovery and Control Feature */
#define CEC_MSG_CDC_MESSAGE 0xf8
/* Ethernet-over-HDMI: nobody ever does this... */
#define CEC_MSG_CDC_HEC_INQUIRE_STATE 0x00
#define CEC_MSG_CDC_HEC_REPORT_STATE 0x01

1604 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

/* HEC Functionality State Operand (hec_func_state) */
#define CEC_OP_HEC_FUNC_STATE_NOT_SUPPORTED 0
#define CEC_OP_HEC_FUNC_STATE_INACTIVE 1
#define CEC_OP_HEC_FUNC_STATE_ACTIVE 2
#define CEC_OP_HEC_FUNC_STATE_ACTIVATION_FIELD 3
/* Host Functionality State Operand (host_func_state) */
#define CEC_OP_HOST_FUNC_STATE_NOT_SUPPORTED 0
#define CEC_OP_HOST_FUNC_STATE_INACTIVE 1
#define CEC_OP_HOST_FUNC_STATE_ACTIVE 2
/* ENC Functionality State Operand (enc_func_state) */
#define CEC_OP_ENC_FUNC_STATE_EXT_CON_NOT_SUPPORTED 0
#define CEC_OP_ENC_FUNC_STATE_EXT_CON_INACTIVE 1
#define CEC_OP_ENC_FUNC_STATE_EXT_CON_ACTIVE 2
/* CDC Error Code Operand (cdc_errcode) */
#define CEC_OP_CDC_ERROR_CODE_NONE 0
#define CEC_OP_CDC_ERROR_CODE_CAP_UNSUPPORTED 1
#define CEC_OP_CDC_ERROR_CODE_WRONG_STATE 2
#define CEC_OP_CDC_ERROR_CODE_OTHER 3
/* HEC Support Operand (hec_support) */
#define CEC_OP_HEC_SUPPORT_NO 0
#define CEC_OP_HEC_SUPPORT_YES 1
/* HEC Activation Operand (hec_activation) */
#define CEC_OP_HEC_ACTIVATION_ON 0
#define CEC_OP_HEC_ACTIVATION_OFF 1

#define CEC_MSG_CDC_HEC_SET_STATE_ADJACENT 0x02
#define CEC_MSG_CDC_HEC_SET_STATE 0x03
/* HEC Set State Operand (hec_set_state) */
#define CEC_OP_HEC_SET_STATE_DEACTIVATE 0
#define CEC_OP_HEC_SET_STATE_ACTIVATE 1

#define CEC_MSG_CDC_HEC_REQUEST_DEACTIVATION 0x04
#define CEC_MSG_CDC_HEC_NOTIFY_ALIVE 0x05
#define CEC_MSG_CDC_HEC_DISCOVER 0x06
/* Hotplug Detect messages */
#define CEC_MSG_CDC_HPD_SET_STATE 0x10
/* HPD State Operand (hpd_state) */
#define CEC_OP_HPD_STATE_CP_EDID_DISABLE 0
#define CEC_OP_HPD_STATE_CP_EDID_ENABLE 1
#define CEC_OP_HPD_STATE_CP_EDID_DISABLE_ENABLE 2
#define CEC_OP_HPD_STATE_EDID_DISABLE 3
#define CEC_OP_HPD_STATE_EDID_ENABLE 4
#define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5
#define CEC_MSG_CDC_HPD_REPORT_STATE 0x11
/* HPD Error Code Operand (hpd_error) */
#define CEC_OP_HPD_ERROR_NONE 0
#define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1
#define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2
#define CEC_OP_HPD_ERROR_OTHER 3
#define CEC_OP_HPD_ERROR_NONE_NO_VIDEO 4

3.6. Part V - Consumer Electronics Control API 1605

Linux Media Documentation

/* End of Messages */

/* Helper functions to identify the 'special' CEC devices */

static inline int cec_is_2nd_tv(const struct cec_log_addrs *las)
{

/*
* It is a second TV if the logical address is 14 or 15 and the
* primary device type is a TV.
*/
return las->num_log_addrs &&

las->log_addr[0] >= CEC_LOG_ADDR_SPECIFIC &&
las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_TV;

}

static inline int cec_is_processor(const struct cec_log_addrs *las)
{

/*
* It is a processor if the logical address is 12-15 and the
* primary device type is a Processor.
*/
return las->num_log_addrs &&

las->log_addr[0] >= CEC_LOG_ADDR_BACKUP_1 &&
las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_PROCESSOR;

}

static inline int cec_is_switch(const struct cec_log_addrs *las)
{

/*
* It is a switch if the logical address is 15 and the
* primary device type is a Switch and the CDC-Only flag is not set.
*/
return las->num_log_addrs == 1 &&

las->log_addr[0] == CEC_LOG_ADDR_UNREGISTERED &&
las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_SWITCH &&
!(las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY);

}

static inline int cec_is_cdc_only(const struct cec_log_addrs *las)
{

/*
* It is a CDC-only device if the logical address is 15 and the
* primary device type is a Switch and the CDC-Only flag is set.
*/
return las->num_log_addrs == 1 &&

las->log_addr[0] == CEC_LOG_ADDR_UNREGISTERED &&
las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_SWITCH &&
(las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY);

}

#endif

1606 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

3.6.5 Revision and Copyright

Authors:

• Verkuil, Hans <hverkuil-cisco@xs4all.nl>

• Initial version.

Copyright © 2016 : Hans Verkuil

3.6.6 Revision History

revision 1.0.0 / 2016-03-17 (hv)
Initial revision

3.7 Generic Error Codes

Table 300: Generic error codes
EAGAIN (aka
EWOULDBLOCK)

The ioctl can’t be handled because the device is in state where it can’t perform
it. This could happen for example in case where device is sleeping and ioctl
is performed to query statistics. It is also returned when the ioctl would need
to wait for an event, but the device was opened in non-blocking mode.

EBADF The file descriptor is not a valid.
EBUSY The ioctl can’t be handled because the device is busy. This is typically return

while device is streaming, and an ioctl tried to change something that would
affect the stream, or would require the usage of a hardware resource that was
already allocated. The ioctl must not be retried without performing another
action to fix the problem first (typically: stop the stream before retrying).

EFAULT There was a failure while copying data from/to userspace, probably caused
by an invalid pointer reference.

EINVAL One or more of the ioctl parameters are invalid or out of the allowed range.
This is a widely used error code. See the individual ioctl requests for specific
causes.

ENODEV Device not found or was removed.
ENOMEM There’s not enough memory to handle the desired operation.
ENOTTY The ioctl is not supported by the driver, actually meaning that the required

functionality is not available, or the file descriptor is not for a media device.
ENOSPC On USB devices, the stream ioctl’s can return this error, meaning that this

request would overcommit the usb bandwidth reserved for periodic transfers
(up to 80% of the USB bandwidth).

EPERM Permission denied. Can be returned if the device needs write permission, or
some special capabilities is needed (e. g. root)

EIO I/O error. Typically used when there are problems communicating with a
hardware device. This could indicate broken or flaky hardware. It’s a ‘Some-
thing is wrong, I give up!’ type of error.

ENXIO No device corresponding to this device special file exists.

Note:

3.7. Generic Error Codes 1607

mailto:hverkuil-cisco@xs4all.nl

Linux Media Documentation

1. This list is not exhaustive; ioctls may return other error codes. Since errors may have side
effects such as a driver reset, applications should abort on unexpected errors, or otherwise
assume that the device is in a bad state.

2. Request-specific error codes are listed in the individual requests descriptions.

3.8 Glossary

Note: The goal of this section is to standardize the terms used within the media userspace
API documentation. This is Work In Progress.

Bridge Driver A Device Driver that implements the main logic to talk with media hardware.

CEC API Consumer Electronics Control API
An API designed to receive and transmit data via an HDMI CEC interface.

See Part V - Consumer Electronics Control API.

Device Driver Part of the Linux Kernel that implements support for a hardware component.
Device Node A character device node in the file system used to control and transfer data in

and out of a Kernel driver.

Digital TV API Previously known as DVB API
An API designed to control a subset of theMedia Hardware that implements digital TV (e.
g. DVB, ATSC, ISDB, etc).

See Part II - Digital TV API.

DSP Digital Signal Processor
A specializedMicroprocessor, with its architecture optimized for the operational needs of
digital signal processing.

FPGA Field-programmable Gate Array
An IC circuit designed to be configured by a customer or a designer after manufacturing.

See https://en.wikipedia.org/wiki/Field-programmable_gate_array.

Hardware Component A subset of the Media Hardware. For example an I2C or SPI device,
or an IP Block inside an SoC or FPGA.

Hardware Peripheral A group of hardware components that together make a larger user-
facing functional peripheral. For instance, the SoC ISP IP Block and the external camera
sensors together make a camera hardware peripheral.

Also known as Peripheral.

I2C Inter-Integrated Circuit
A multi-master, multi-slave, packet switched, single-ended, serial computer bus used to
control some hardware components like sub-device hardware components.

See http://www.nxp.com/docs/en/user-guide/UM10204.pdf.

1608 Chapter 3. Linux Media Infrastructure userspace API

https://en.wikipedia.org/wiki/Field-programmable_gate_array
http://www.nxp.com/docs/en/user-guide/UM10204.pdf

Linux Media Documentation

IC Integrated circuit
A set of electronic circuits on one small flat piece of semiconductor material, normally
silicon.

Also known as chip.

IP Block Intellectual property core
In electronic design a semiconductor intellectual property core, is a reusable unit of logic,
cell, or integrated circuit layout design that is the intellectual property of one party. IP
Blocks may be licensed to another party or can be owned and used by a single party alone.

See https://en.wikipedia.org/wiki/Semiconductor_intellectual_property_core).

ISP Image Signal Processor
A specialized processor that implements a set of algorithms for processing image data.
ISPs may implement algorithms for lens shading correction, demosaicing, scaling and pixel
format conversion as well as produce statistics for the use of the control algorithms (e.g.
automatic exposure, white balance and focus).

Media API A set of userspace APIs used to control the media hardware. It is composed by:
• CEC API;

• Digital TV API;

• MC API;

• RC API; and

• V4L2 API.

See Documentation/userspace-api/media/index.rst.

MC API Media Controller API
An API designed to expose and control the relationships between multimedia devices and
sub-devices.

See Part IV - Media Controller API.

MC-centric V4L2 Hardware device driver that requires MC API.

Such drivers have V4L2_CAP_IO_MC device_caps field set (see ioctl VIDIOC_QUERYCAP).

See Controlling a hardware peripheral via V4L2 for more details.

Media Hardware Subset of the hardware that is supported by the Linux Media API.
This includes audio and video capture and playback hardware, digital and analog TV, cam-
era sensors, ISPs, remote controllers, codecs, HDMI Consumer Electronics Control, HDMI
capture, etc.

Microprocessor Electronic circuitry that carries out the instructions of a computer program
by performing the basic arithmetic, logical, control and input/output (I/O) operations spec-
ified by the instructions on a single integrated circuit.

Peripheral The same as Hardware Peripheral.

RC API Remote Controller API
An API designed to receive and transmit data from remote controllers.

3.8. Glossary 1609

https://en.wikipedia.org/wiki/Semiconductor_intellectual_property_core

Linux Media Documentation

See Part III - Remote Controller API.

SMBus A subset of I2C, which defines a stricter usage of the bus.
SPI Serial Peripheral Interface Bus

Synchronous serial communication interface specification used for short distance commu-
nication, primarily in embedded systems.

SoC System on a Chip
An integrated circuit that integrates all components of a computer or other electronic
systems.

V4L2 API V4L2 userspace API
The userspace API defined in Part I - Video for Linux API, which is used to control a V4L2
hardware.

V4L2 Device Node A Device Node that is associated to a V4L driver.

The V4L2 device node naming is specified at V4L2 Device Node Naming.

V4L2 Hardware Part of the media hardware which is supported by the V4L2 API.

V4L2 Sub-device V4L2 hardware components that aren’t controlled by a Bridge Driver. See
Sub-device Interface.

Video-node-centric V4L2 device driver that doesn’t require a media controller to be used.
Such drivers have the V4L2_CAP_IO_MC device_caps field unset (see ioctl VID-
IOC_QUERYCAP).

V4L2 Sub-device API Part of the V4L2 API which control V4L2 sub-devices, like sensors,
HDMI receivers, scalers, deinterlacers.

See Controlling a hardware peripheral via V4L2 for more details.

3.9 GNU Free Documentation License

3.9.1 0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document “free” in
the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1610 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

3.9.2 1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The “Document”, below,
refers to any such manual or work. Any member of the public is a licensee, and is addressed as
“you”.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of theDocument that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, whose contents can be viewed and
edited directly and straightforwardly with generic text editors or (for images composed of pix-
els) generic paint programs or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to a variety of formats suit-
able for input to text formatters. A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent modification by readers is not
Transparent. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only by proprietary word pro-
cessors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning of the body of the text.

3.9. GNU Free Documentation License 1611

Linux Media Documentation

3.9.3 2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3.9.4 3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a publicly-accessible computer-network location containing a
complete Transparent copy of the Document, free of addedmaterial, which the general network-
using public has access to download anonymously at no charge using public-standard network
protocols. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

3.9.5 4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sec-
tions 2 and 3 above, provided that you release theModified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and mod-
ification of the Modified Version to whoever possesses a copy of it. In addition, you must do
these things in the Modified Version:

• A.Use in the Title Page (and on the covers, if any) a title distinct from that of theDocument,
and from those of previous versions (which should, if there were any, be listed in theHistory

1612 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for au-
thorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has less than five).

• C. State on the Title Page the name of the publisher of the Modified Version, as the pub-
lisher.

• D. Preserve all the copyright notices of the Document.

• E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

• F. Include, immediately after the copyright notices, a license notice giving the public per-
mission to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

• H. Include an unaltered copy of this License.
• I. Preserve the section entitled “History”, and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section entitled “History” in the Document, create one stating the
title, year, authors, and publisher of the Document as given on its Title Page, then add an
item describing the Modified Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

• K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

• M. Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

• N. Do not retitle any existing section as “Endorsements” or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties–for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

3.9. GNU Free Documentation License 1613

Linux Media Documentation

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

3.9.6 5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combi-
nation all of the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original
documents, forming one section entitled “History”; likewise combine any sections entitled “Ac-
knowledgements”, and any sections entitled “Dedications”. Youmust delete all sections entitled
“Endorsements.”

3.9.7 6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

3.9.8 7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, does not as a whole
count as aModified Version of the Document, provided no compilation copyright is claimed for
the compilation. Such a compilation is called an “aggregate”, and this License does not apply
to the other self-contained works thus compiled with the Document , on account of their being
thus compiled, if they are not themselves derivative works of the Document. If the Cover Text
requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one quarter of the entire aggregate, the Document’s Cover Texts may be placed on

1614 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

covers that surround only the Document within the aggregate. Otherwise they must appear on
covers around the whole aggregate.

3.9.9 8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Doc-
ument under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License provided that you also include the original English version
of this License. In case of a disagreement between the translation and the original English
version of this License, the original English version will prevail.

3.9.10 9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Docu-
ment is void, and will automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

3.9.11 10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documenta-
tion License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

3.9.12 Addendum

To use this License in a document you have written, include a copy of the License in the docu-
ment and put the following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by
the Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES,
with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled “GNU Free Documentation
License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which
ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

3.9. GNU Free Documentation License 1615

http://www.gnu.org/fsf/fsf.html
http://www.gnu.org/copyleft

Linux Media Documentation

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

3.10 Video4Linux (V4L) driver-specific documentation

Copyright © 1999-2016 : LinuxTV Developers

This documentation is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation version 2 of
the License.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

For more details see the file COPYING in the source distribution of Linux.

3.10.1 MIPI CCS camera sensor driver

The MIPI CCS camera sensor driver is a generic driver for MIPI CCS compliant camera sensors.
It exposes three sub-devices representing the pixel array, the binner and the scaler.

As the capabilities of individual devices vary, the driver exposes interfaces based on the capa-
bilities that exist in hardware.

3.10.1.1 Pixel Array sub-device

The pixel array sub-device represents the camera sensor’s pixel matrix, as well as analogue
crop functionality present in many compliant devices. The analogue crop is configured using
the V4L2_SEL_TGT_CROP on the source pad (0) of the entity. The size of the pixel matrix can be
obtained by getting the V4L2_SEL_TGT_NATIVE_SIZE target.

3.10.1.2 Binner

The binner sub-device represents the binning functionality on the sensor. For that purpose,
selection target V4L2_SEL_TGT_COMPOSE is supported on the sink pad (0).

Additionally, if a device has no scaler or digital crop functionality, the source pad (1) expses
another digital crop selection rectangle that can only crop at the end of the lines and frames.

1616 Chapter 3. Linux Media Infrastructure userspace API

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
https://www.mipi.org/specifications/camera-command-set

Linux Media Documentation

3.10.1.3 Scaler

The scaler sub-device represents the digital crop and scaling functionality of the sensor.
The V4L2 selection target V4L2_SEL_TGT_CROP is used to configure the digital crop on the
sink pad (0) when digital crop is supported. Scaling is configured using selection target
V4L2_SEL_TGT_COMPOSE on the sink pad (0) as well.

Additionally, if the scaler sub-device exists, its source pad (1) exposes another digital crop
selection rectangle that can only crop at the end of the lines and frames.

3.10.1.4 Digital and analogue crop

Digital crop functionality is referred to as cropping that effectively works by dropping some
data on the floor. Analogue crop, on the other hand, means that the cropped information is
never retrieved. In case of camera sensors, the analogue data is never read from the pixel
matrix that are outside the configured selection rectangle that designates crop. The difference
has an effect in device timing and likely also in power consumption.

3.10.1.5 Private controls

The MIPI CCS driver implements a number of private controls under V4L2_CID_USER_BASE_CCS
to control the MIPI CCS compliant camera sensors.

Analogue gain model

The CCS defines an analogue gain model where the gain can be calculated using the following
formula:

gain = m0 * x + c0 / (m1 * x + c1)

Either m0 or c0 will be zero. The constants that are device specific, can be obtained from the
following controls:

V4L2_CID_CCS_ANALOGUE_GAIN_M0 V4L2_CID_CCS_ANALOGUE_GAIN_M1
V4L2_CID_CCS_ANALOGUE_GAIN_C0 V4L2_CID_CCS_ANALOGUE_GAIN_C1

The analogue gain (x in the formula) is controlled through V4L2_CID_ANALOGUE_GAIN in this
case.

Alternate analogue gain model

The CCS defines another analogue gain model called alternate analogue gain. In this case, the
formula to calculate actual gain consists of linear and exponential parts:

gain = linear * 2 ^ exponent

The linear and exponent factors can be set using the V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN
and V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN controls, respectively

3.10. Video4Linux (V4L) driver-specific documentation 1617

Linux Media Documentation

Shading correction

The CCS standard supports lens shading correction. The feature can be controlled us-
ing V4L2_CID_CCS_SHADING_CORRECTION. Additionally, the luminance correction level may be
changed using V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL, where value 0 indicates no cor-
rection and 128 indicates correcting the luminance in corners to 10 % less than in the centre.

Shading correction needs to be enabled for luminance correction level to have an effect.

Copyright © 2020 Intel Corporation

3.10.2 The cx2341x driver

3.10.2.1 Non-compressed file format

The cx23416 can produce (and the cx23415 can also read) raw YUV output. The format of a
YUV frame is 16x16 linear tiled NV12 (V4L2_PIX_FMT_NV12_16L16).

The format is YUV 4:2:0 which uses 1 Y byte per pixel and 1 U and V byte per four pixels.

The data is encoded as two macroblock planes, the first containing the Y values, the second
containing UV macroblocks.

The Y plane is divided into blocks of 16x16 pixels from left to right and from top to bottom.
Each block is transmitted in turn, line-by-line.

So the first 16 bytes are the first line of the top-left block, the second 16 bytes are the second
line of the top-left block, etc. After transmitting this block the first line of the block on the right
to the first block is transmitted, etc.

The UV plane is divided into blocks of 16x8 UV values going from left to right, top to bottom.
Each block is transmitted in turn, line-by-line.

So the first 16 bytes are the first line of the top-left block and contain 8 UV value pairs (16 bytes
in total). The second 16 bytes are the second line of 8 UV pairs of the top-left block, etc. After
transmitting this block the first line of the block on the right to the first block is transmitted,
etc.

The code below is given as an example on how to convert V4L2_PIX_FMT_NV12_16L16 to sep-
arate Y, U and V planes. This code assumes frames of 720x576 (PAL) pixels.

The width of a frame is always 720 pixels, regardless of the actual specified width.

If the height is not a multiple of 32 lines, then the captured video is missing macroblocks at the
end and is unusable. So the height must be a multiple of 32.

1618 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

Raw format c example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static unsigned char frame[576*720*3/2];
static unsigned char framey[576*720];
static unsigned char frameu[576*720 / 4];
static unsigned char framev[576*720 / 4];

static void de_macro_y(unsigned char* dst, unsigned char *src, int dstride, int w, int␣
↪→h)
{
unsigned int y, x, i;

// descramble Y plane
// dstride = 720 = w
// The Y plane is divided into blocks of 16x16 pixels
// Each block in transmitted in turn, line-by-line.
for (y = 0; y < h; y += 16) {

for (x = 0; x < w; x += 16) {
for (i = 0; i < 16; i++) {

memcpy(dst + x + (y + i) * dstride, src, 16);
src += 16;

}
}

}
}

static void de_macro_uv(unsigned char *dstu, unsigned char *dstv, unsigned char *src,␣
↪→int dstride, int w, int h)
{
unsigned int y, x, i;

// descramble U/V plane
// dstride = 720 / 2 = w
// The U/V values are interlaced (UVUV...).
// Again, the UV plane is divided into blocks of 16x16 UV values.
// Each block in transmitted in turn, line-by-line.
for (y = 0; y < h; y += 16) {

for (x = 0; x < w; x += 8) {
for (i = 0; i < 16; i++) {

int idx = x + (y + i) * dstride;

dstu[idx+0] = src[0]; dstv[idx+0] = src[1];
dstu[idx+1] = src[2]; dstv[idx+1] = src[3];
dstu[idx+2] = src[4]; dstv[idx+2] = src[5];
dstu[idx+3] = src[6]; dstv[idx+3] = src[7];
dstu[idx+4] = src[8]; dstv[idx+4] = src[9];
dstu[idx+5] = src[10]; dstv[idx+5] = src[11];
dstu[idx+6] = src[12]; dstv[idx+6] = src[13];
dstu[idx+7] = src[14]; dstv[idx+7] = src[15];
src += 16;

}
}

}

3.10. Video4Linux (V4L) driver-specific documentation 1619

Linux Media Documentation

}

/***/
int main(int argc, char **argv)
{
FILE *fin;
int i;

if (argc == 1) fin = stdin;
else fin = fopen(argv[1], "r");

if (fin == NULL) {
fprintf(stderr, "cannot open input\n");
exit(-1);

}
while (fread(frame, sizeof(frame), 1, fin) == 1) {

de_macro_y(framey, frame, 720, 720, 576);
de_macro_uv(frameu, framev, frame + 720 * 576, 720 / 2, 720 / 2, 576 / 2);
fwrite(framey, sizeof(framey), 1, stdout);
fwrite(framev, sizeof(framev), 1, stdout);
fwrite(frameu, sizeof(frameu), 1, stdout);

}
fclose(fin);
return 0;
}

3.10.2.2 Format of embedded V4L2_MPEG_STREAM_VBI_FMT_IVTV VBI data

Author: Hans Verkuil <hverkuil@xs4all.nl>

This section describes the V4L2_MPEG_STREAM_VBI_FMT_IVTV format of the VBI data embed-
ded in anMPEG-2 program stream. This format is in part dictated by some hardware limitations
of the ivtv driver (the driver for the Conexant cx23415/6 chips), in particular a maximum size
for the VBI data. Anything longer is cut off when the MPEG stream is played back through the
cx23415.

The advantage of this format is it is very compact and that all VBI data for all lines can be stored
while still fitting within the maximum allowed size.

The stream ID of the VBI data is 0xBD. The maximum size of the embedded data is 4 +
43 * 36, which is 4 bytes for a header and 2 * 18 VBI lines with a 1 byte header and a
42 bytes payload each. Anything beyond this limit is cut off by the cx23415/6 firmware.
Besides the data for the VBI lines we also need 36 bits for a bitmask determining which
lines are captured and 4 bytes for a magic cookie, signifying that this data package contains
V4L2_MPEG_STREAM_VBI_FMT_IVTV VBI data. If all lines are used, then there is no longer
room for the bitmask. To solve this two different magic numbers were introduced:

‘itv0’: After this magic number two unsigned longs follow. Bits 0-17 of the first unsigned long
denote which lines of the first field are captured. Bits 18-31 of the first unsigned long and bits
0-3 of the second unsigned long are used for the second field.

‘ITV0’: This magic number assumes all VBI lines are captured, i.e. it implicitly implies that the
bitmasks are 0xffffffff and 0xf.

After these magic cookies (and the 8 byte bitmask in case of cookie ‘itv0’) the captured VBI
lines start:

1620 Chapter 3. Linux Media Infrastructure userspace API

mailto:hverkuil@xs4all.nl

Linux Media Documentation

For each line the least significant 4 bits of the first byte contain the data type. Possible values
are shown in the table below. The payload is in the following 42 bytes.

Here is the list of possible data types:

#define IVTV_SLICED_TYPE_TELETEXT 0x1 // Teletext (uses lines 6-22 for PAL)
#define IVTV_SLICED_TYPE_CC 0x4 // Closed Captions (line 21 NTSC)
#define IVTV_SLICED_TYPE_WSS 0x5 // Wide Screen Signal (line 23 PAL)
#define IVTV_SLICED_TYPE_VPS 0x7 // Video Programming System (PAL)␣
↪→(line 16)

3.10.3 Hantro video decoder driver

The Hantro video decoder driver implements the following driver-specific controls:

V4L2_CID_HANTRO_HEVC_SLICE_HEADER_SKIP (integer) Specifies to Hantro HEVC video de-
coder driver the number of data (in bits) to skip in the slice segment header. If non-IDR,
the bits to be skipped go from syntax element “pic_output_flag” to before syntax element
“slice_temporal_mvp_enabled_flag”. If IDR, the skipped bits are just “pic_output_flag”
(separate_colour_plane_flag is not supported).

Note: This control is not yet part of the public kernel API and it is expected to change.

3.10.4 i.MX Video Capture Driver

3.10.4.1 Events

ipuX_csiY

This subdev can generate the following event when enabling the second IDMAC source pad:

• V4L2_EVENT_IMX_FRAME_INTERVAL_ERROR

The user application can subscribe to this event from the ipuX_csiY subdev node. This event is
generated by the Frame Interval Monitor (see below for more on the FIM).

3.10.4.2 Controls

Frame Interval Monitor in ipuX_csiY

The adv718x decoders can occasionally send corrupt fields during NTSC/PAL signal re-sync
(too little or too many video lines). When this happens, the IPU triggers a mechanism to re-
establish vertical sync by adding 1 dummy line every frame, which causes a rolling effect from
image to image, and can last a long time before a stable image is recovered. Or sometimes the
mechanism doesn’t work at all, causing a permanent split image (one frame contains lines from
two consecutive captured images).

From experiment it was found that during image rolling, the frame intervals (elapsed time
between two EOF’s) drop below the nominal value for the current standard, by about one frame
time (60 usec), and remain at that value until rolling stops.

3.10. Video4Linux (V4L) driver-specific documentation 1621

Linux Media Documentation

While the reason for this observation isn’t known (the IPU dummy line mechanism should show
an increase in the intervals by 1 line time every frame, not a fixed value), we can use it to detect
the corrupt fields using a frame interval monitor. If the FIM detects a bad frame interval, the
ipuX_csiY subdev will send the event V4L2_EVENT_IMX_FRAME_INTERVAL_ERROR. Userland
can register with the FIM event notification on the ipuX_csiY subdev device node. Userland can
issue a streaming restart when this event is received to correct the rolling/split image.

The ipuX_csiY subdev includes custom controls to tweak some dials for FIM. If one of these con-
trols is changed during streaming, the FIM will be reset and will continue at the new settings.

• V4L2_CID_IMX_FIM_ENABLE

Enable/disable the FIM.

• V4L2_CID_IMX_FIM_NUM

How many frame interval measurements to average before comparing against the nominal
frame interval reported by the sensor. This can reduce noise caused by interrupt latency.

• V4L2_CID_IMX_FIM_TOLERANCE_MIN

If the averaged intervals fall outside nominal by this amount, in microseconds, the
V4L2_EVENT_IMX_FRAME_INTERVAL_ERROR event is sent.

• V4L2_CID_IMX_FIM_TOLERANCE_MAX

If any intervals are higher than this value, those samples are discarded and do not enter into the
average. This can be used to discard really high interval errors that might be due to interrupt
latency from high system load.

• V4L2_CID_IMX_FIM_NUM_SKIP

How many frames to skip after a FIM reset or stream restart before FIM begins to average
intervals.

• V4L2_CID_IMX_FIM_ICAP_CHANNEL / V4L2_CID_IMX_FIM_ICAP_EDGE

These controls will configure an input capture channel as the method for measuring frame
intervals. This is superior to the default method of measuring frame intervals via EOF interrupt,
since it is not subject to uncertainty errors introduced by interrupt latency.

Input capture requires hardware support. A VSYNC signal must be routed to one of the i.MX6
input capture channel pads.

V4L2_CID_IMX_FIM_ICAP_CHANNEL configures which i.MX6 input capture channel to use.
This must be 0 or 1.

V4L2_CID_IMX_FIM_ICAP_EDGE configures which signal edge will trigger input cap-
ture events. By default the input capture method is disabled with a value of
IRQ_TYPE_NONE. Set this control to IRQ_TYPE_EDGE_RISING, IRQ_TYPE_EDGE_FALLING,
or IRQ_TYPE_EDGE_BOTH to enable input capture, triggered on the given signal edge(s).

When input capture is disabled, frame intervals will be measured via EOF interrupt.

1622 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

File list

drivers/staging/media/imx/ include/media/imx.h include/linux/imx-media.h

Authors

• Steve Longerbeam <steve_longerbeam@mentor.com>

• Philipp Zabel <kernel@pengutronix.de>

• Russell King <linux@armlinux.org.uk>

Copyright (C) 2012-2017 Mentor Graphics Inc.

3.10.5 Maxim Integrated MAX2175 RF to bits tuner driver

The MAX2175 driver implements the following driver-specific controls:

3.10.5.1 V4L2_CID_MAX2175_I2S_ENABLE

Enable/Disable I2S output of the tuner. This is a private control that can be accessed
only using the subdev interface. Refer to Documentation/driver-api/media/v4l2-
controls.rst for more details.

(0) I2S output is disabled.
(1) I2S output is enabled.

3.10.5.2 V4L2_CID_MAX2175_HSLS

The high-side/low-side (HSLS) control of the tuner for a given band.

(0) The LO frequency position is below the desired frequency.
(1) The LO frequency position is above the desired frequency.

3.10.5.3 V4L2_CID_MAX2175_RX_MODE (menu)

The Rx mode controls a number of preset parameters of the tuner like sample clock
(sck), sampling rate etc. These multiple settings are provided under one single label
called Rx mode in the datasheet. The list below shows the supported modes with a
brief description.

3.10. Video4Linux (V4L) driver-specific documentation 1623

mailto:steve_longerbeam@mentor.com
mailto:kernel@pengutronix.de
mailto:linux@armlinux.org.uk

Linux Media Documentation

"Europe modes"
"FM 1.2" (0) This configures FM band with a sample rate of 0.512 million samples/sec with

a 10.24 MHz sck.
"DAB 1.2" (1) This configures VHF band with a sample rate of 2.048 million samples/sec with

a 32.768 MHz sck.
"North America modes"
"FM 1.0" (0) This configures FM band with a sample rate of 0.7441875 million samples/sec

with a 14.88375 MHz sck.
"DAB 1.2" (1) This configures FM band with a sample rate of 0.372 million samples/sec with

a 7.441875 MHz sck.

3.10.6 Vaio Picturebook Motion Eye Camera Driver

Copyright © 2001-2004 Stelian Pop <stelian@popies.net>

Copyright © 2001-2002 Alcôve <www.alcove.com>

Copyright © 2000 Andrew Tridgell <tridge@samba.org>

3.10.6.1 Private API

The driver supports frame grabbing with the video4linux API, so all video4linux tools (like
xawtv) should work with this driver.

Besides the video4linux interface, the driver has a private interface for accessing theMotion Eye
extended parameters (camera sharpness, agc, video framerate), the snapshot and the MJPEG
capture facilities.

This interface consists of several ioctls (prototypes and structures can be found in in-
clude/linux/meye.h):

MEYEIOC_G_PARAMS and MEYEIOC_S_PARAMS Get and set the extended parameters of
the motion eye camera. The user should always query the current parameters with
MEYEIOC_G_PARAMS, change what he likes and then issue the MEYEIOC_S_PARAMS
call (checking for -EINVAL). The extended parameters are described by the meye_params
structure.

MEYEIOC_QBUF_CAPT Queue a buffer for capture (the buffers must have been obtained
with a VIDIOCGMBUF call and mmap’ed by the application). The argument to
MEYEIOC_QBUF_CAPT is the buffer number to queue (or -1 to end capture). The first
call to MEYEIOC_QBUF_CAPT starts the streaming capture.

MEYEIOC_SYNC Takes as an argument the buffer number you want to sync. This ioctl blocks
until the buffer is filled and ready for the application to use. It returns the buffer size.

MEYEIOC_STILLCAPT and MEYEIOC_STILLJCAPT Takes a snapshot in an uncompressed
or compressed jpeg format. This ioctl blocks until the snapshot is done and returns (for
jpeg snapshot) the size of the image. The image data is available from the first mmap’ed
buffer.

Look at the ‘motioneye’ application code for an actual example.

1624 Chapter 3. Linux Media Infrastructure userspace API

mailto:stelian@popies.net
mailto:tridge@samba.org

Linux Media Documentation

3.10.7 OMAP 3 Image Signal Processor (ISP) driver

Copyright © 2010 Nokia Corporation

Copyright © 2009 Texas Instruments, Inc.

Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>, Sakari Ailus
<sakari.ailus@iki.fi>, David Cohen <dacohen@gmail.com>

3.10.7.1 Events

The OMAP 3 ISP driver does support the V4L2 event interface on CCDC and statistics (AEWB,
AF and histogram) subdevs.

The CCDC subdev produces V4L2_EVENT_FRAME_SYNC type event on HS_VS inter-
rupt which is used to signal frame start. Earlier version of this driver used
V4L2_EVENT_OMAP3ISP_HS_VS for this purpose. The event is triggered exactly when the
reception of the first line of the frame starts in the CCDC module. The event can be subscribed
on the CCDC subdev.

(When using parallel interface one must pay account to correct configuration of the VS signal
polarity. This is automatically correct when using the serial receivers.)

Each of the statistics subdevs is able to produce events. An event is generated when-
ever a statistics buffer can be dequeued by a user space application using the VID-
IOC_OMAP3ISP_STAT_REQ IOCTL. The events available are:

• V4L2_EVENT_OMAP3ISP_AEWB

• V4L2_EVENT_OMAP3ISP_AF

• V4L2_EVENT_OMAP3ISP_HIST

The type of the event data is struct omap3isp_stat_event_status for these ioctls. If there is an
error calculating the statistics, there will be an event as usual, but no related statistics buffer.
In this case omap3isp_stat_event_status.buf_err is set to non-zero.

3.10.7.2 Private IOCTLs

The OMAP 3 ISP driver supports standard V4L2 IOCTLs and controls where possible and prac-
tical. Much of the functions provided by the ISP, however, does not fall under the standard
IOCTLs — gamma tables and configuration of statistics collection are examples of such.

In general, there is a private ioctl for configuring each of the blocks containing hardware-
dependent functions.

The following private IOCTLs are supported:

• VIDIOC_OMAP3ISP_CCDC_CFG

• VIDIOC_OMAP3ISP_PRV_CFG

• VIDIOC_OMAP3ISP_AEWB_CFG

• VIDIOC_OMAP3ISP_HIST_CFG

• VIDIOC_OMAP3ISP_AF_CFG

3.10. Video4Linux (V4L) driver-specific documentation 1625

mailto:laurent.pinchart@ideasonboard.com
mailto:sakari.ailus@iki.fi
mailto:dacohen@gmail.com

Linux Media Documentation

• VIDIOC_OMAP3ISP_STAT_REQ

• VIDIOC_OMAP3ISP_STAT_EN

The parameter structures used by these ioctls are described in include/linux/omap3isp.h. The
detailed functions of the ISP itself related to a given ISP block is described in the Technical
Reference Manuals (TRMs) — see the end of the document for those.

While it is possible to use the ISP driver without any use of these private IOCTLs it is not possible
to obtain optimal image quality this way. The AEWB, AF and histogram modules cannot be used
without configuring them using the appropriate private IOCTLs.

3.10.7.3 CCDC and preview block IOCTLs

The VIDIOC_OMAP3ISP_CCDC_CFG and VIDIOC_OMAP3ISP_PRV_CFG IOCTLs are used to
configure, enable and disable functions in the CCDC and preview blocks, respectively. Both
IOCTLs control several functions in the blocks they control. VIDIOC_OMAP3ISP_CCDC_CFG
IOCTL accepts a pointer to struct omap3isp_ccdc_update_config as its argument. Similarly
VIDIOC_OMAP3ISP_PRV_CFG accepts a pointer to struct omap3isp_prev_update_config. The
definition of both structures is available in1.

The update field in the structures tells whether to update the configuration for the specific
function and the flag tells whether to enable or disable the function.

The update and flag bit masks accept the following values. Each separate functions in the CCDC
and preview blocks is associated with a flag (either disable or enable; part of the flag field in
the structure) and a pointer to configuration data for the function.

Valid values for the update and flag fields are listed here for VIDIOC_OMAP3ISP_CCDC_CFG.
Values may be or’ed to configure more than one function in the same IOCTL call.

• OMAP3ISP_CCDC_ALAW

• OMAP3ISP_CCDC_LPF

• OMAP3ISP_CCDC_BLCLAMP

• OMAP3ISP_CCDC_BCOMP

• OMAP3ISP_CCDC_FPC

• OMAP3ISP_CCDC_CULL

• OMAP3ISP_CCDC_CONFIG_LSC

• OMAP3ISP_CCDC_TBL_LSC

The corresponding values for the VIDIOC_OMAP3ISP_PRV_CFG are here:

• OMAP3ISP_PREV_LUMAENH

• OMAP3ISP_PREV_INVALAW

• OMAP3ISP_PREV_HRZ_MED

• OMAP3ISP_PREV_CFA

• OMAP3ISP_PREV_CHROMA_SUPP

• OMAP3ISP_PREV_WB
1 include/linux/omap3isp.h

1626 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

• OMAP3ISP_PREV_BLKADJ

• OMAP3ISP_PREV_RGB2RGB

• OMAP3ISP_PREV_COLOR_CONV

• OMAP3ISP_PREV_YC_LIMIT

• OMAP3ISP_PREV_DEFECT_COR

• OMAP3ISP_PREV_GAMMABYPASS

• OMAP3ISP_PREV_DRK_FRM_CAPTURE

• OMAP3ISP_PREV_DRK_FRM_SUBTRACT

• OMAP3ISP_PREV_LENS_SHADING

• OMAP3ISP_PREV_NF

• OMAP3ISP_PREV_GAMMA

The associated configuration pointer for the function may not be NULL when enabling the
function. When disabling a function the configuration pointer is ignored.

3.10.7.4 Statistic blocks IOCTLs

The statistics subdevs do offer more dynamic configuration options than the other subdevs.
They can be enabled, disable and reconfigured when the pipeline is in streaming state.

The statistics blocks always get the input image data from the CCDC (as the histogram memory
read isn’t implemented). The statistics are dequeueable by the user from the statistics subdev
nodes using private IOCTLs.

The private IOCTLs offered by the AEWB, AF and histogram subdevs are heavily reflected by
the register level interface offered by the ISP hardware. There are aspects that are purely
related to the driver implementation and these are discussed next.

3.10.7.5 VIDIOC_OMAP3ISP_STAT_EN

This private IOCTL enables/disables a statistic module. If this request is done before streaming,
it will take effect as soon as the pipeline starts to stream. If the pipeline is already streaming,
it will take effect as soon as the CCDC becomes idle.

3.10.7.6 VIDIOC_OMAP3ISP_AEWB_CFG, VIDIOC_OMAP3ISP_HIST_CFG and VID-
IOC_OMAP3ISP_AF_CFG

Those IOCTLs are used to configure the modules. They require user applications to have an
in-depth knowledge of the hardware. Most of the fields explanation can be found on OMAP’s
TRMs. The two following fields common to all the above configure private IOCTLs require
explanation for better understanding as they are not part of the TRM.

omap3isp_[h3a_af/h3a_aewb/hist]_config.buf_size:

The modules handle their buffers internally. The necessary buffer size for the module’s data
output depends on the requested configuration. Although the driver supports reconfiguration
while streaming, it does not support a reconfiguration which requires bigger buffer size than

3.10. Video4Linux (V4L) driver-specific documentation 1627

Linux Media Documentation

what is already internally allocated if the module is enabled. It will return -EBUSY on this case.
In order to avoid such condition, either disable/reconfigure/enable the module or request the
necessary buffer size during the first configuration while the module is disabled.

The internal buffer size allocation considers the requested configuration’s minimum buffer size
and the value set on buf_size field. If buf_size field is out of [minimum, maximum] buffer size
range, it’s clamped to fit in there. The driver then selects the biggest value. The corrected
buf_size value is written back to user application.

omap3isp_[h3a_af/h3a_aewb/hist]_config.config_counter:

As the configuration doesn’t take effect synchronously to the request, the driver must provide a
way to track this information to provide more accurate data. After a configuration is requested,
the config_counter returned to user space application will be an unique value associated to that
request. When user application receives an event for buffer availability or when a new buffer
is requested, this config_counter is used to match a buffer data and a configuration.

3.10.7.7 VIDIOC_OMAP3ISP_STAT_REQ

Send to user space the oldest data available in the internal buffer queue and discards such
buffer afterwards. The field omap3isp_stat_data.frame_number matches with the video buffer’s
field_count.

3.10.7.8 References

3.10.8 The Linux USB Video Class (UVC) driver

This file documents some driver-specific aspects of the UVC driver, such as driver-specific ioctls
and implementation notes.

Questions and remarks can be sent to the Linux UVC development mailing list at linux-uvc-
devel@lists.berlios.de.

3.10.8.1 Extension Unit (XU) support

Introduction

The UVC specification allows for vendor-specific extensions through extension units (XUs). The
Linux UVC driver supports extension unit controls (XU controls) through two separate mecha-
nisms:

• through mappings of XU controls to V4L2 controls

• through a driver-specific ioctl interface

The first one allows generic V4L2 applications to use XU controls by mapping certain XU con-
trols onto V4L2 controls, which then show up during ordinary control enumeration.

The second mechanism requires uvcvideo-specific knowledge for the application to access XU
controls but exposes the entire UVC XU concept to user space for maximum flexibility.

Both mechanisms complement each other and are described in more detail below.

1628 Chapter 3. Linux Media Infrastructure userspace API

mailto:linux-uvc-devel@lists.berlios.de
mailto:linux-uvc-devel@lists.berlios.de

Linux Media Documentation

Control mappings

The UVC driver provides an API for user space applications to define so-called control mappings
at runtime. These allow for individual XU controls or byte ranges thereof to be mapped to new
V4L2 controls. Such controls appear and function exactly like normal V4L2 controls (i.e. the
stock controls, such as brightness, contrast, etc.). However, reading or writing of such a V4L2
controls triggers a read or write of the associated XU control.

The ioctl used to create these control mappings is called UVCIOC_CTRL_MAP. Previous driver
versions (before 0.2.0) required another ioctl to be used beforehand (UVCIOC_CTRL_ADD) to
pass XU control information to the UVC driver. This is no longer necessary as newer uvcvideo
versions query the information directly from the device.

For details on the UVCIOC_CTRL_MAP ioctl please refer to the section titled “IOCTL reference”
below.

3. Driver specific XU control interface

For applications that need to access XU controls directly, e.g. for testing purposes, firmware
upload, or accessing binary controls, a second mechanism to access XU controls is provided in
the form of a driver-specific ioctl, namely UVCIOC_CTRL_QUERY.

A call to this ioctl allows applications to send queries to the UVC driver that directly map to the
low-level UVC control requests.

In order to make such a request the UVC unit ID of the control’s extension unit and the control
selector need to be known. This information either needs to be hardcoded in the application
or queried using other ways such as by parsing the UVC descriptor or, if available, using the
media controller API to enumerate a device’s entities.

Unless the control size is already known it is necessary to first make a UVC_GET_LEN requests
in order to be able to allocate a sufficiently large buffer and set the buffer size to the correct
value. Similarly, to find out whether UVC_GET_CUR or UVC_SET_CUR are valid requests for
a given control, a UVC_GET_INFO request should be made. The bits 0 (GET supported) and 1
(SET supported) of the resulting byte indicate which requests are valid.

With the addition of the UVCIOC_CTRL_QUERY ioctl the UVCIOC_CTRL_GET and
UVCIOC_CTRL_SET ioctls have become obsolete since their functionality is a subset of
the former ioctl. For the time being they are still supported but application developers are
encouraged to use UVCIOC_CTRL_QUERY instead.

For details on the UVCIOC_CTRL_QUERY ioctl please refer to the section titled “IOCTL refer-
ence” below.

Security

The API doesn’t currently provide a fine-grained access control facility. The
UVCIOC_CTRL_ADD and UVCIOC_CTRL_MAP ioctls require super user permissions.

Suggestions on how to improve this are welcome.

3.10. Video4Linux (V4L) driver-specific documentation 1629

Linux Media Documentation

Debugging

In order to debug problems related to XU controls or controls in general it is recommended
to enable the UVC_TRACE_CONTROL bit in the module parameter ‘trace’. This causes extra
output to be written into the system log.

IOCTL reference

UVCIOC_CTRL_MAP - Map a UVC control to a V4L2 control

Argument: struct uvc_xu_control_mapping

Description:
This ioctl creates a mapping between a UVC control or part of a UVC control and a
V4L2 control. Once mappings are defined, userspace applications can access vendor-
defined UVC control through the V4L2 control API.

To create a mapping, applications fill the uvc_xu_control_mapping structure with in-
formation about an existing UVC control defined with UVCIOC_CTRL_ADD and a new
V4L2 control.

A UVC control can be mapped to several V4L2 controls. For instance, a UVC pan/tilt
control could be mapped to separate pan and tilt V4L2 controls. The UVC control
is divided into non overlapping fields using the ‘size’ and ‘offset’ fields and are then
independently mapped to V4L2 control.

For signed integer V4L2 controls the data_type field should be set to
UVC_CTRL_DATA_TYPE_SIGNED. Other values are currently ignored.

Return value:
On success 0 is returned. On error -1 is returned and errno is set appropriately.

ENOMEM Not enough memory to perform the operation.

EPERM Insufficient privileges (super user privileges are required).

EINVAL No such UVC control.
EOVERFLOW The requested offset and size would overflow the UVC control.

EEXIST Mapping already exists.
Data types:

* struct uvc_xu_control_mapping

__u32 id V4L2 control identifier
__u8 name[32] V4L2 control name
__u8 entity[16] UVC extension unit GUID
__u8 selector UVC control selector
__u8 size V4L2 control size (in bits)
__u8 offset V4L2 control offset (in bits)
enum v4l2_ctrl_type

v4l2_type V4L2 control type
enum uvc_control_data_type

data_type UVC control data type

1630 Chapter 3. Linux Media Infrastructure userspace API

Linux Media Documentation

struct uvc_menu_info
*menu_info Array of menu entries (for menu controls only)

__u32 menu_count Number of menu entries (for menu controls only)

* struct uvc_menu_info

__u32 value Menu entry value used by the device
__u8 name[32] Menu entry name

* enum uvc_control_data_type

UVC_CTRL_DATA_TYPE_RAW Raw control (byte array)
UVC_CTRL_DATA_TYPE_SIGNED Signed integer
UVC_CTRL_DATA_TYPE_UNSIGNED Unsigned integer
UVC_CTRL_DATA_TYPE_BOOLEAN Boolean
UVC_CTRL_DATA_TYPE_ENUM Enumeration
UVC_CTRL_DATA_TYPE_BITMASK Bitmask

UVCIOC_CTRL_QUERY - Query a UVC XU control

Argument: struct uvc_xu_control_query

Description:
This ioctl queries a UVC XU control identified by its extension unit ID and control
selector.

There are a number of different queries available that closely correspond to the low-
level control requests described in the UVC specification. These requests are:

UVC_GET_CUR Obtain the current value of the control.

UVC_GET_MIN Obtain the minimum value of the control.

UVC_GET_MAX Obtain the maximum value of the control.

UVC_GET_DEF Obtain the default value of the control.
UVC_GET_RES Query the resolution of the control, i.e. the step size of the allowed

control values.

UVC_GET_LEN Query the size of the control in bytes.

UVC_GET_INFO Query the control information bitmap, which indicates whether
get/set requests are supported.

UVC_SET_CUR Update the value of the control.

Applications must set the ‘size’ field to the correct length for the control. Exceptions
are the UVC_GET_LEN and UVC_GET_INFO queries, for which the size must be set to
2 and 1, respectively. The ‘data’ field must point to a valid writable buffer big enough
to hold the indicated number of data bytes.

Data is copied directly from the device without any driver-side processing. Appli-
cations are responsible for data buffer formatting, including little-endian/big-endian
conversion. This is particularly important for the result of the UVC_GET_LEN re-
quests, which is always returned as a little-endian 16-bit integer by the device.

3.10. Video4Linux (V4L) driver-specific documentation 1631

Linux Media Documentation

Return value:
On success 0 is returned. On error -1 is returned and errno is set appropriately.

ENOENT The device does not support the given control or the specified extension
unit could not be found.

ENOBUFS The specified buffer size is incorrect (too big or too small).
EINVAL An invalid request code was passed.
EBADRQC The given request is not supported by the given control.

EFAULT The data pointer references an inaccessible memory area.
Data types:

* struct uvc_xu_control_query

__u8 unit Extension unit ID
__u8 selector Control selector
__u8 query Request code to send to the device
__u16 size Control data size (in bytes)
__u8 *data Control value

Copyright © 2009-2020 : LinuxTV Developers

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1 or
any later version published by the Free Software Foundation, with no
Invariant Sections. A copy of the license is included in the chapter
entitled "GNU Free Documentation License".

Please notice that some documents inside the media userspace API, when explicitly mentioned
on its source code, are dual-licensed with GNU Free Documentation License Version 1.1 and
with the GNU General Public License:

This documentation is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

For more details see the file COPYING in the source distribution of Linux.

1632 Chapter 3. Linux Media Infrastructure userspace API

INDEX

Symbols
__media_device_register (C function), 503
__media_device_usb_init (C function), 506
__media_entity_enum_init (C function), 516
__media_entity_setup_link (C function),

521
__media_pipeline_start (C function), 524
__media_pipeline_stop (C function), 524
__media_remove_intf_link (C function), 526
__media_remove_intf_links (C function),

526
__v4l2_async_nf_add_subdev (C function),

394
__v4l2_ctrl_grab (C function), 327
__v4l2_ctrl_handler_setup (C function),

322
__v4l2_ctrl_modify_range (C function), 327
__v4l2_ctrl_s_ctrl (C function), 329
__v4l2_ctrl_s_ctrl_compound (C function),

331
__v4l2_ctrl_s_ctrl_int64 (C function), 330
__v4l2_ctrl_s_ctrl_string (C function),

331
__v4l2_device_call_subdevs (C function),

260
__v4l2_device_call_subdevs_p (C function),

259
__v4l2_device_call_subdevs_until_err (C

function), 261
__v4l2_device_call_subdevs_until_err_p

(C function), 260
__v4l2_device_register_subdev_nodes (C

function), 258
__video_register_device (C function), 250

A
a8293_platform_data (C type), 664
af9013_platform_data (C type), 664
analog_demod_info (C type), 458
analog_demod_ops (C type), 458
analog_parameters (C type), 455

ascot2e_attach (C function), 666
ascot2e_config (C type), 665

B
Bridge Driver, 1608

C
can_reduce_fps (C function), 371
ccs_pll (C type), 655
ccs_pll_branch_bk (C type), 654
ccs_pll_branch_fr (C type), 654
ccs_pll_branch_limits_bk (C type), 657
ccs_pll_branch_limits_fr (C type), 656
ccs_pll_calculate (C function), 658
ccs_pll_limits (C type), 657
CEC API, 1608
CEC.CEC_ADAP_G_CAPS (C macro), 1553
CEC.CEC_ADAP_G_CONNECTOR_INFO (C macro),

1562
CEC.CEC_ADAP_G_LOG_ADDRS (C macro), 1556
CEC.CEC_ADAP_G_PHYS_ADDR (C macro), 1561
CEC.CEC_ADAP_S_LOG_ADDRS (C macro), 1556
CEC.CEC_ADAP_S_PHYS_ADDR (C macro), 1561
CEC.cec_caps (C type), 1554
CEC.cec_connector_info (C type), 1563
CEC.CEC_DQEVENT (C macro), 1564
CEC.cec_drm_connector_info (C type), 1563
CEC.cec_event (C type), 1565
CEC.cec_event_lost_msgs (C type), 1564
CEC.cec_event_state_change (C type), 1564
CEC.CEC_G_MODE (C macro), 1568
CEC.cec_log_addrs (C type), 1556
CEC.cec_msg (C type), 1574
CEC.CEC_RECEIVE (C macro), 1573
CEC.CEC_S_MODE (C macro), 1568
CEC.CEC_TRANSMIT (C macro), 1573
CEC.close (C function), 1551
CEC.open (C function), 1550
CEC.poll (C function), 1552
cec_adap_ops (C type), 534

1633

Linux Media Documentation

cec_notifier_cec_adap_register (C func-
tion), 541

cec_notifier_cec_adap_unregister (C func-
tion), 541

cec_notifier_conn_register (C function),
541

cec_notifier_conn_unregister (C function),
541

cec_notifier_parse_hdmi_phandle (C func-
tion), 542

cec_notifier_phys_addr_invalidate (C
function), 542

cec_notifier_set_phys_addr (C function),
542

cec_notifier_set_phys_addr_from_edid (C
function), 542

cec_pin_allocate_adapter (C function), 540
cec_pin_changed (C function), 540
cec_pin_ops (C type), 539
crc32_write_args (C type), 697
cxd2820r_attach (C function), 667
cxd2820r_config (C type), 666
cxd2820r_platform_data (C type), 666

D
desc_write_args (C type), 696
Device Driver, 1608
Device Node, 1608
devm_rc_allocate_device (C function), 493
devm_rc_register_device (C function), 493
Digital TV API, 1608
dmx_buffer (C type), 1395
dmx_buffer_flags (C type), 1394
dmx_demux (C type), 482
dmx_demux_caps (C type), 482
dmx_exportbuffer (C type), 1396
DMX_FE_ENTRY (C function), 482
dmx_filter (C type), 1393
dmx_frontend (C type), 481
dmx_frontend_source (C type), 481
dmx_input (C type), 1392
dmx_output (C type), 1392
dmx_pes_filter_params (C type), 1394
dmx_requestbuffers (C type), 1395
dmx_sct_filter_params (C type), 1393
dmx_section_cb (C type), 480
dmx_section_feed (C type), 479
dmx_section_filter (C type), 478
dmx_stc (C type), 1394
dmx_ts_cb (C type), 479
dmx_ts_feed (C type), 477

dmx_ts_pes (C type), 1392
dmxdev (C type), 471
dmxdev_feed (C type), 469
dmxdev_filter (C type), 470
dmxdev_state (C type), 469
dmxdev_type (C type), 469
drxk_attach (C function), 668
drxk_config (C type), 667
DSP, 1608
DTV.ca.ca_caps (C type), 1416
DTV.ca.ca_descr (C type), 1417
DTV.ca.ca_descr_info (C type), 1416
DTV.ca.CA_GET_CAP (C macro), 1420
DTV.ca.CA_GET_DESCR_INFO (C macro), 1422
DTV.ca.CA_GET_MSG (C macro), 1422
DTV.ca.CA_GET_SLOT_INFO (C macro), 1421
DTV.ca.ca_msg (C type), 1417
DTV.ca.CA_RESET (C macro), 1419
DTV.ca.CA_SEND_MSG (C macro), 1423
DTV.ca.CA_SET_DESCR (C macro), 1424
DTV.ca.ca_slot_info (C type), 1415
DTV.ca.close (C function), 1419
DTV.ca.open (C function), 1418
DTV.dmx.close (C function), 1398
DTV.dmx.DMX_ADD_PID (C macro), 1409
DTV.dmx.DMX_DQBUF (C macro), 1414
DTV.dmx.DMX_EXPBUF (C macro), 1413
DTV.dmx.DMX_GET_PES_PIDS (C macro), 1408
DTV.dmx.DMX_GET_STC (C macro), 1407
DTV.dmx.DMX_QBUF (C macro), 1414
DTV.dmx.DMX_QUERYBUF (C macro), 1412
DTV.dmx.DMX_REMOVE_PID (C macro), 1409
DTV.dmx.DMX_REQBUFS (C macro), 1410
DTV.dmx.DMX_SET_BUFFER_SIZE (C macro),

1406
DTV.dmx.DMX_SET_FILTER (C macro), 1404
DTV.dmx.DMX_SET_PES_FILTER (C macro),

1405
DTV.dmx.DMX_START (C macro), 1403
DTV.dmx.DMX_STOP (C macro), 1404
DTV.dmx.mmap (C function), 1401
DTV.dmx.munmap (C function), 1402
DTV.dmx.open (C function), 1397
DTV.dmx.read (C function), 1398
DTV.dmx.write (C function), 1400
DTV.fe.atscmh_rs_code_mode (C type), 1377
DTV.fe.atscmh_rs_frame_ensemble (C type),

1376
DTV.fe.atscmh_rs_frame_mode (C type), 1376
DTV.fe.atscmh_sccc_block_mode (C type),

1376

1634 Index

Linux Media Documentation

DTV.fe.atscmh_sccc_code_mode (C type),
1376

DTV.fe.close (C function), 1381
DTV.fe.dtv_fe_stats (C type), 1378
DTV.fe.dtv_properties (C type), 1379
DTV.fe.dtv_property (C type), 1378
DTV.fe.dtv_stats (C type), 1377
DTV.fe.dvb_diseqc_master_cmd (C type),

1369
DTV.fe.dvb_diseqc_slave_reply (C type),

1370
DTV.fe.dvb_frontend_info (C type), 1369
DTV.fe.fe_caps (C type), 1368
DTV.fe.fe_code_rate (C type), 1371
DTV.fe.fe_delivery_system (C type), 1374
DTV.fe.FE_DISEQC_RECV_SLAVE_REPLY (C

macro), 1386
DTV.fe.FE_DISEQC_RESET_OVERLOAD (C

macro), 1385
DTV.fe.FE_DISEQC_SEND_BURST (C macro),

1387
DTV.fe.FE_DISEQC_SEND_MASTER_CMD (C

macro), 1386
DTV.fe.FE_DISHNETWORK_SEND_LEGACY_CMD

(C macro), 1440
DTV.fe.FE_ENABLE_HIGH_LNB_VOLTAGE (C

macro), 1390
DTV.fe.FE_GET_EVENT (C macro), 1440
DTV.fe.FE_GET_FRONTEND (C macro), 1439
DTV.fe.FE_GET_INFO (C macro), 1382
DTV.fe.FE_GET_PROPERTY (C macro), 1384
DTV.fe.fe_guard_interval (C type), 1373
DTV.fe.fe_hierarchy (C type), 1373
DTV.fe.fe_interleaving (C type), 1374
DTV.fe.fe_modulation (C type), 1372
DTV.fe.fe_pilot (C type), 1374
DTV.fe.FE_READ_BER (C macro), 1434
DTV.fe.FE_READ_SIGNAL_STRENGTH (C

macro), 1436
DTV.fe.FE_READ_SNR (C macro), 1435
DTV.fe.FE_READ_STATUS (C macro), 1383
DTV.fe.FE_READ_UNCORRECTED_BLOCKS (C

macro), 1437
DTV.fe.fe_rolloff (C type), 1374
DTV.fe.fe_sec_mini_cmd (C type), 1371
DTV.fe.fe_sec_tone_mode (C type), 1370
DTV.fe.fe_sec_voltage (C type), 1370
DTV.fe.FE_SET_FRONTEND (C macro), 1438
DTV.fe.FE_SET_FRONTEND_TUNE_MODE (C

macro), 1391
DTV.fe.FE_SET_PROPERTY (C macro), 1384

DTV.fe.FE_SET_TONE (C macro), 1388
DTV.fe.FE_SET_VOLTAGE (C macro), 1389
DTV.fe.fe_spectral_inversion (C type),

1371
DTV.fe.fe_status (C type), 1371
DTV.fe.fe_transmit_mode (C type), 1372
DTV.fe.fe_type (C type), 1431
DTV.fe.fecap_scale_params (C type), 1377
DTV.fe.isdbt_layer_interleaving_table

(C type), 1352
DTV.fe.open (C function), 1380
DTV.net.dvb_net_if (C type), 1428
DTV.net.NET_ADD_IF (C macro), 1428
DTV.net.NET_GET_IF (C macro), 1430
DTV.net.NET_REMOVE_IF (C macro), 1429
dtv_frontend_properties (C type), 462
dvb_adapter (C type), 431
dvb_attach (C function), 437
dvb_buf_type (C type), 443
dvb_buffer (C type), 443
dvb_ca_en50221 (C type), 485
dvb_ca_en50221_camchange_irq (C function),

486
dvb_ca_en50221_camready_irq (C function),

486
dvb_ca_en50221_frda_irq (C function), 486
dvb_ca_en50221_init (C function), 486
dvb_ca_en50221_release (C function), 486
dvb_create_media_graph (C function), 435
dvb_demux (C type), 474
dvb_demux_feed (C type), 473
dvb_demux_filter (C type), 472
dvb_detach (C function), 437
dvb_device (C type), 432
dvb_device_type (C type), 431
dvb_dmx_filter_type (C type), 472
dvb_dmx_init (C function), 475
dvb_dmx_release (C function), 476
dvb_dmx_state (C type), 472
dvb_dmx_swfilter (C function), 476
dvb_dmx_swfilter_204 (C function), 477
dvb_dmx_swfilter_packets (C function), 476
dvb_dmx_swfilter_raw (C function), 477
dvb_dmxdev_init (C function), 472
dvb_dmxdev_release (C function), 472
dvb_free_device (C function), 434
dvb_frontend (C type), 465
dvb_frontend_detach (C function), 466
dvb_frontend_event (C type), 1434
dvb_frontend_internal_info (C type), 459
dvb_frontend_ops (C type), 460

Index 1635

Linux Media Documentation

dvb_frontend_parameters (C type), 1432
dvb_frontend_reinitialise (C function),

467
dvb_frontend_resume (C function), 467
dvb_frontend_sleep_until (C function), 467
dvb_frontend_suspend (C function), 466
dvb_frontend_tune_settings (C type), 455
dvb_generic_ioctl (C function), 436
dvb_generic_open (C function), 435
dvb_generic_release (C function), 435
dvb_get_media_controller (C function), 435
dvb_module_probe (C function), 436
dvb_module_release (C function), 437
dvb_net (C type), 487
dvb_net_init (C function), 487
dvb_net_release (C function), 487
dvb_ofdm_parameters (C type), 1433
dvb_pll_attach (C function), 668
dvb_qam_parameters (C type), 1433
dvb_qpsk_parameters (C type), 1433
dvb_register_adapter (C function), 433
dvb_register_device (C function), 434
dvb_register_frontend (C function), 466
dvb_register_media_controller (C func-

tion), 435
dvb_remove_device (C function), 434
dvb_ringbuffer (C type), 438
dvb_ringbuffer_avail (C function), 439
dvb_ringbuffer_empty (C function), 439
dvb_ringbuffer_flush (C function), 439
dvb_ringbuffer_flush_spinlock_wakeup (C

function), 440
dvb_ringbuffer_free (C function), 439
dvb_ringbuffer_init (C function), 439
DVB_RINGBUFFER_PEEK (C function), 440
dvb_ringbuffer_pkt_dispose (C function),

442
dvb_ringbuffer_pkt_next (C function), 442
dvb_ringbuffer_pkt_read (C function), 442
dvb_ringbuffer_pkt_read_user (C function),

442
dvb_ringbuffer_pkt_write (C function), 441
dvb_ringbuffer_read (C function), 440
dvb_ringbuffer_read_user (C function), 440
dvb_ringbuffer_reset (C function), 439
DVB_RINGBUFFER_SKIP (C function), 440
dvb_ringbuffer_write (C function), 441
DVB_RINGBUFFER_WRITE_BYTE (C function),

441
dvb_ringbuffer_write_user (C function),

441

dvb_tuner_info (C type), 455
dvb_tuner_ops (C type), 457
dvb_unregister_adapter (C function), 434
dvb_unregister_device (C function), 434
dvb_unregister_frontend (C function), 466
dvb_usercopy (C function), 436
dvb_vb2_ctx (C type), 444
dvb_vb2_dqbuf (C function), 447
dvb_vb2_expbuf (C function), 446
dvb_vb2_fill_buffer (C function), 445
dvb_vb2_init (C function), 444
dvb_vb2_is_streaming (C function), 445
dvb_vb2_mmap (C function), 447
dvb_vb2_poll (C function), 445
dvb_vb2_qbuf (C function), 446
dvb_vb2_querybuf (C function), 446
dvb_vb2_release (C function), 445
dvb_vb2_reqbufs (C function), 446
dvb_vb2_states (C type), 443
dvb_vb2_stream_off (C function), 446
dvb_vb2_stream_on (C function), 445
dvb_vsb_parameters (C type), 1433
dvbfe_algo (C type), 456
dvbfe_search (C type), 456

F
fe_bandwidth (C type), 1432
FPGA, 1608

G
gobj_to_entity (C function), 517
gobj_to_intf (C function), 518
gobj_to_link (C function), 518
gobj_to_pad (C function), 517

H
Hardware Component, 1608
Hardware Peripheral, 1608
header_write_args (C type), 697
helene_attach (C function), 669
helene_attach_s (C function), 669
helene_config (C type), 668
horus3a_attach (C function), 670
horus3a_config (C type), 669

I
I2C, 1608
IC, 1609
intf_to_devnode (C function), 518
intlog10 (C function), 430
intlog2 (C function), 430
IP Block, 1609

1636 Index

Linux Media Documentation

ipu3_uapi_4a_config (C type), 874
ipu3_uapi_acc_param (C type), 915
ipu3_uapi_ae_ccm (C type), 869
ipu3_uapi_ae_config (C type), 870
ipu3_uapi_ae_grid_config (C type), 868
ipu3_uapi_ae_raw_buffer (C type), 867
ipu3_uapi_ae_raw_buffer_aligned (C type),

868
ipu3_uapi_ae_weight_elem (C type), 869
ipu3_uapi_af_config_s (C type), 873
ipu3_uapi_af_filter_config (C type), 870
ipu3_uapi_af_raw_buffer (C type), 873
ipu3_uapi_anr_config (C type), 915
ipu3_uapi_anr_stitch_config (C type), 914
ipu3_uapi_anr_stitch_pyramid (C type), 914
ipu3_uapi_anr_transform_config (C type),

913
ipu3_uapi_awb_config (C type), 867
ipu3_uapi_awb_config_s (C type), 867
ipu3_uapi_awb_fr_config_s (C type), 874
ipu3_uapi_awb_fr_raw_buffer (C type), 873
ipu3_uapi_awb_raw_buffer (C type), 866
ipu3_uapi_bnr_static_config (C type), 881
ipu3_uapi_bnr_static_config_bp_ctrl_config

(C type), 879
ipu3_uapi_bnr_static_config_dn_detect_ctrl_config

(C type), 879
ipu3_uapi_bnr_static_config_green_disparity

(C type), 881
ipu3_uapi_bnr_static_config_lut_config

(C type), 878
ipu3_uapi_bnr_static_config_opt_center_config

(C type), 878
ipu3_uapi_bnr_static_config_opt_center_sqr_config

(C type), 880
ipu3_uapi_bnr_static_config_thr_coeffs_config

(C type), 877
ipu3_uapi_bnr_static_config_thr_ctrl_shd_config

(C type), 878
ipu3_uapi_bnr_static_config_wb_gains_config

(C type), 876
ipu3_uapi_bnr_static_config_wb_gains_thr_config

(C type), 877
ipu3_uapi_bubble_info (C type), 874
ipu3_uapi_ccm_mat_config (C type), 883
ipu3_uapi_cds_params (C type), 886
ipu3_uapi_csc_mat_config (C type), 885
ipu3_uapi_cu_cfg0 (C type), 900
ipu3_uapi_cu_cfg1 (C type), 901
ipu3_uapi_dm_config (C type), 882
ipu3_uapi_far_w (C type), 896

ipu3_uapi_ff_status (C type), 875
ipu3_uapi_flags (C type), 920
ipu3_uapi_gamma_config (C type), 885
ipu3_uapi_gamma_corr_ctrl (C type), 884
ipu3_uapi_gamma_corr_lut (C type), 885
ipu3_uapi_grid_config (C type), 866
ipu3_uapi_iefd_cux2 (C type), 890
ipu3_uapi_iefd_cux2_1 (C type), 892
ipu3_uapi_iefd_cux4 (C type), 892
ipu3_uapi_iefd_cux6_ed (C type), 890
ipu3_uapi_iefd_cux6_rad (C type), 893
ipu3_uapi_isp_lin_vmem_params (C type),

916
ipu3_uapi_isp_tnr3_params (C type), 917
ipu3_uapi_isp_tnr3_vmem_params (C type),

917
ipu3_uapi_isp_xnr3_params (C type), 919
ipu3_uapi_isp_xnr3_vmem_params (C type),

918
ipu3_uapi_obgrid_param (C type), 919
ipu3_uapi_params (C type), 922
ipu3_uapi_rad_far_w (C type), 900
ipu3_uapi_radial_cfg (C type), 899
ipu3_uapi_radial_reset_x2 (C type), 899
ipu3_uapi_radial_reset_xy (C type), 898
ipu3_uapi_radial_reset_y2 (C type), 899
ipu3_uapi_sharp_cfg (C type), 896
ipu3_uapi_shd_black_level_config (C

type), 888
ipu3_uapi_shd_config (C type), 889
ipu3_uapi_shd_config_static (C type), 888
ipu3_uapi_shd_general_config (C type), 888
ipu3_uapi_shd_grid_config (C type), 887
ipu3_uapi_shd_lut (C type), 889
ipu3_uapi_stats_3a (C type), 876
ipu3_uapi_unsharp_cfg (C type), 897
ipu3_uapi_unsharp_coef0 (C type), 897
ipu3_uapi_unsharp_coef1 (C type), 898
ipu3_uapi_vss_lut_x (C type), 901
ipu3_uapi_vss_lut_y (C type), 902
ipu3_uapi_xnr3_alpha_params (C type), 918
ipu3_uapi_xnr3_blending_params (C type),

919
ipu3_uapi_xnr3_coring_params (C type), 918
ipu3_uapi_yuvp1_chnr_config (C type), 906
ipu3_uapi_yuvp1_chnr_coring_config (C

type), 904
ipu3_uapi_yuvp1_chnr_enable_config (C

type), 904
ipu3_uapi_yuvp1_chnr_iir_fir_config (C

type), 905

Index 1637

Linux Media Documentation

ipu3_uapi_yuvp1_chnr_sense_gain_config
(C type), 905

ipu3_uapi_yuvp1_iefd_cfg_units (C type),
894

ipu3_uapi_yuvp1_iefd_config (C type), 902
ipu3_uapi_yuvp1_iefd_config_s (C type),

895
ipu3_uapi_yuvp1_iefd_control (C type), 895
ipu3_uapi_yuvp1_iefd_rad_cfg (C type), 901
ipu3_uapi_yuvp1_iefd_shrp_cfg (C type),

897
ipu3_uapi_yuvp1_iefd_unshrp_cfg (C type),

898
ipu3_uapi_yuvp1_iefd_vssnlm_cfg (C type),

902
ipu3_uapi_yuvp1_y_ee_nr_clip_config (C

type), 908
ipu3_uapi_yuvp1_y_ee_nr_config (C type),

910
ipu3_uapi_yuvp1_y_ee_nr_diag_config (C

type), 909
ipu3_uapi_yuvp1_y_ee_nr_fc_coring_config

(C type), 909
ipu3_uapi_yuvp1_y_ee_nr_frng_config (C

type), 908
ipu3_uapi_yuvp1_y_ee_nr_gain_config (C

type), 907
ipu3_uapi_yuvp1_y_ee_nr_lpf_config (C

type), 906
ipu3_uapi_yuvp1_y_ee_nr_sense_config (C

type), 906
ipu3_uapi_yuvp1_yds_config (C type), 903
ipu3_uapi_yuvp2_tcc_gain_pcwl_lut_static_config

(C type), 912
ipu3_uapi_yuvp2_tcc_gen_control_static_config

(C type), 910
ipu3_uapi_yuvp2_tcc_inv_y_lut_static_config

(C type), 912
ipu3_uapi_yuvp2_tcc_macc_elem_static_config

(C type), 911
ipu3_uapi_yuvp2_tcc_macc_table_static_config

(C type), 912
ipu3_uapi_yuvp2_tcc_r_sqr_lut_static_config

(C type), 912
ipu3_uapi_yuvp2_tcc_static_config (C

type), 912
is_media_entity_v4l2_subdev (C function),

516
is_media_entity_v4l2_video_device (C

function), 515
ISP, 1609

ix2505v_attach (C function), 670
ix2505v_config (C type), 670

L
lirc_fh (C type), 489

M
m88ds3103_attach (C function), 673
m88ds3103_clock_out (C type), 671
m88ds3103_config (C type), 672
m88ds3103_platform_data (C type), 671
m88ds3103_ts_mode (C type), 671
mb86a20s_attach (C function), 673
mb86a20s_config (C type), 673
MC API, 1609
MC.close (C function), 1522
MC.lirc_scancode (C type), 1489
MC.media_device_info (C type), 1524
MC.media_entity_desc (C type), 1529
MC.MEDIA_IOC_DEVICE_INFO (C macro), 1524
MC.MEDIA_IOC_ENUM_ENTITIES (C macro),

1529
MC.MEDIA_IOC_ENUM_LINKS (C macro), 1531
MC.MEDIA_IOC_G_TOPOLOGY (C macro), 1526
MC.MEDIA_IOC_REQUEST_ALLOC (C macro),

1534
MC.MEDIA_IOC_SETUP_LINK (C macro), 1533
MC.media_link_desc (C type), 1532
MC.media_links_enum (C type), 1531
MC.media_pad_desc (C type), 1532
MC.MEDIA_REQUEST_IOC_QUEUE (C macro),

1537
MC.MEDIA_REQUEST_IOC_REINIT (C macro),

1539
MC.media_v2_entity (C type), 1527
MC.media_v2_interface (C type), 1527
MC.media_v2_intf_devnode (C type), 1528
MC.media_v2_link (C type), 1528
MC.media_v2_pad (C type), 1528
MC.media_v2_topology (C type), 1526
MC.open (C function), 1521
MC.poll (C function), 1536
MC.rc_proto (C type), 1490
MC.request.close (C function), 1535
MC-centric, 1609
Media API, 1609
Media Hardware, 1609
media_create_intf_link (C function), 525
media_create_pad_link (C function), 519
media_create_pad_links (C function), 520
media_device (C type), 501
media_device_cleanup (C function), 503

1638 Index

Linux Media Documentation

media_device_delete (C function), 532
media_device_init (C function), 503
media_device_ops (C type), 500
media_device_pci_init (C function), 506
media_device_register (C function), 504
media_device_register_entity (C function),

504
media_device_register_entity_notify (C

function), 505
media_device_unregister (C function), 504
media_device_unregister_entity (C func-

tion), 505
media_device_unregister_entity_notify

(C function), 505
media_device_usb_allocate (C function),

532
media_device_usb_init (C function), 506
media_devnode (C type), 507
media_devnode_create (C function), 525
media_devnode_data (C function), 508
media_devnode_is_registered (C function),

509
media_devnode_register (C function), 508
media_devnode_remove (C function), 525
media_devnode_unregister (C function), 508
media_devnode_unregister_prepare (C func-

tion), 508
media_entity (C type), 513
media_entity_call (C function), 527
media_entity_cleanup (C function), 519
media_entity_enum (C type), 509
media_entity_enum_cleanup (C function),

516
media_entity_enum_clear (C function), 516
media_entity_enum_empty (C function), 517
media_entity_enum_init (C function), 502
media_entity_enum_intersects (C function),

517
media_entity_enum_set (C function), 516
media_entity_enum_test (C function), 516
media_entity_enum_test_and_set (C func-

tion), 517
media_entity_enum_zero (C function), 516
media_entity_find_link (C function), 522
media_entity_get_fwnode_pad (C function),

522
media_entity_id (C function), 515
media_entity_notify (C type), 500
media_entity_operations (C type), 512
media_entity_pads_init (C function), 518
media_entity_remote_pad (C function), 522

media_entity_remove_links (C function),
521

media_entity_setup_link (C function), 521
media_entity_to_v4l2_subdev (C function),

290
media_entity_to_video_device (C function),

250
media_entity_type (C type), 512
media_file_operations (C type), 506
media_get_pad_index (C function), 519
media_gobj (C type), 509
media_gobj_create (C function), 518
media_gobj_destroy (C function), 518
media_gobj_gen_id (C function), 515
media_gobj_type (C type), 509
media_graph (C type), 510
media_graph_walk_cleanup (C function), 523
media_graph_walk_init (C function), 523
media_graph_walk_next (C function), 523
media_graph_walk_start (C function), 523
media_id (C function), 515
media_interface (C type), 514
media_intf_devnode (C type), 515
media_link (C type), 510
media_pad (C type), 512
media_pad_signal_type (C type), 511
media_pipeline (C type), 510
media_pipeline_start (C function), 524
media_pipeline_stop (C function), 524
media_remove_intf_link (C function), 526
media_remove_intf_links (C function), 526
media_request (C type), 527
media_request_alloc (C function), 529
media_request_get (C function), 529
media_request_get_by_fd (C function), 529
media_request_lock_for_access (C func-

tion), 528
media_request_lock_for_update (C func-

tion), 528
media_request_object (C type), 530
media_request_object_bind (C function),

531
media_request_object_complete (C func-

tion), 532
media_request_object_find (C function),

531
media_request_object_get (C function), 530
media_request_object_init (C function),

531
media_request_object_ops (C type), 529
media_request_object_put (C function), 530

Index 1639

Linux Media Documentation

media_request_object_unbind (C function),
532

media_request_put (C function), 529
media_request_state (C type), 527
media_request_unlock_for_access (C func-

tion), 528
media_request_unlock_for_update (C func-

tion), 528
media_type (C function), 515
Microprocessor, 1609
mn88472_config (C type), 674

N
null_packet_write_args (C type), 706

P
param_type (C type), 409
parse_endpoint_func (C type), 405
pcr_write_args (C type), 706
Peripheral, 1609
pes_header_write_args (C type), 693
pes_ts_header_write_args (C type), 694
pes_write_args (C type), 694
psi_write_args (C type), 695

R
RC API, 1609
RC.LIRC_GET_FEATURES (C macro), 1494
RC.LIRC_GET_MAX_TIMEOUT (C macro), 1499
RC.LIRC_GET_MIN_TIMEOUT (C macro), 1499
RC.LIRC_GET_REC_MODE (C macro), 1497
RC.LIRC_GET_REC_RESOLUTION (C macro),

1498
RC.LIRC_GET_REC_TIMEOUT (C macro), 1500
RC.LIRC_GET_SEND_MODE (C macro), 1496
RC.LIRC_SET_MEASURE_CARRIER_MODE (C

macro), 1505
RC.LIRC_SET_REC_CARRIER (C macro), 1501
RC.LIRC_SET_REC_CARRIER_RANGE (C macro),

1502
RC.LIRC_SET_REC_MODE (C macro), 1497
RC.LIRC_SET_REC_TIMEOUT (C macro), 1500
RC.LIRC_SET_REC_TIMEOUT_REPORTS (C

macro), 1504
RC.LIRC_SET_SEND_CARRIER (C macro), 1502
RC.LIRC_SET_SEND_DUTY_CYCLE (C macro),

1498
RC.LIRC_SET_SEND_MODE (C macro), 1496
RC.LIRC_SET_TRANSMITTER_MASK (C macro),

1503
RC.LIRC_SET_WIDEBAND_RECEIVER (C macro),

1505

RC.read (C function), 1491
RC.write (C function), 1492
rc_allocate_device (C function), 493
rc_dev (C type), 490
rc_driver_type (C type), 489
rc_filter_type (C type), 489
rc_free_device (C function), 493
rc_map (C type), 494
rc_map_get (C function), 495
rc_map_list (C type), 494
rc_map_register (C function), 495
rc_map_table (C type), 494
rc_map_unregister (C function), 495
rc_register_device (C function), 493
rc_scancode_filter (C type), 489
rc_unregister_device (C function), 494
rkisp1_cif_isp_ae_stat (C type), 938
rkisp1_cif_isp_aec_config (C type), 932
rkisp1_cif_isp_af_meas_val (C type), 938
rkisp1_cif_isp_af_stat (C type), 939
rkisp1_cif_isp_afc_config (C type), 932
rkisp1_cif_isp_awb_gain_config (C type),

929
rkisp1_cif_isp_awb_meas (C type), 937
rkisp1_cif_isp_awb_meas_config (C type),

929
rkisp1_cif_isp_awb_stat (C type), 937
rkisp1_cif_isp_bdm_config (C type), 931
rkisp1_cif_isp_bls_config (C type), 924
rkisp1_cif_isp_bls_fixed_val (C type), 924
rkisp1_cif_isp_bls_meas_val (C type), 938
rkisp1_cif_isp_cproc_config (C type), 928
rkisp1_cif_isp_ctk_config (C type), 931
rkisp1_cif_isp_dpcc_config (C type), 925
rkisp1_cif_isp_dpcc_methods_config (C

type), 925
rkisp1_cif_isp_dpf_config (C type), 935
rkisp1_cif_isp_dpf_g_flt (C type), 934
rkisp1_cif_isp_dpf_gain (C type), 934
rkisp1_cif_isp_dpf_gain_usage (C type),

933
rkisp1_cif_isp_dpf_nll (C type), 933
rkisp1_cif_isp_dpf_nll_scale_mode (C

type), 933
rkisp1_cif_isp_dpf_rb_filtersize (C

type), 933
rkisp1_cif_isp_dpf_rb_flt (C type), 934
rkisp1_cif_isp_dpf_strength_config (C

type), 935
rkisp1_cif_isp_exp_ctrl_autostop (C

type), 923

1640 Index

Linux Media Documentation

rkisp1_cif_isp_exp_meas_mode (C type), 923
rkisp1_cif_isp_flt_config (C type), 930
rkisp1_cif_isp_gamma_corr_curve (C type),

926
rkisp1_cif_isp_gamma_curve_x_axis_pnts

(C type), 926
rkisp1_cif_isp_goc_config (C type), 931
rkisp1_cif_isp_hist_stat (C type), 939
rkisp1_cif_isp_hst_config (C type), 932
rkisp1_cif_isp_ie_config (C type), 928
rkisp1_cif_isp_isp_meas_cfg (C type), 936
rkisp1_cif_isp_isp_other_cfg (C type), 935
rkisp1_cif_isp_lsc_config (C type), 927
rkisp1_cif_isp_sdg_config (C type), 927
rkisp1_cif_isp_stat (C type), 940
rkisp1_cif_isp_version (C type), 923
rkisp1_cif_isp_window (C type), 924
rkisp1_params_cfg (C type), 937
rkisp1_stat_buffer (C type), 940
rtl2830_platform_data (C type), 674
rtl2832_platform_data (C type), 675
rtl2832_sdr_platform_data (C type), 675

S
SMBus, 1610
SoC, 1610
SPI, 1610
stb6000_attach (C function), 676

T
tda10071_platform_data (C type), 676
tda826x_attach (C function), 677
to_v4l2_subdev_fh (C function), 290
to_video_device (C function), 250
ts_filter_type (C type), 477
tuner_mode (C type), 408
tuner_params (C type), 410
tuner_range (C type), 409
tuner_setup (C type), 408
tunertype (C type), 412
tveeprom (C type), 428
tveeprom_audio_processor (C type), 428
tveeprom_hauppauge_analog (C function),

429
tveeprom_read (C function), 429

V
V4L.close (C function), 1095
V4L.mmap (C function), 1246
V4L.munmap (C function), 1247
V4L.open (C function), 1248
V4L.poll (C function), 1249

V4L.read (C function), 1251
V4L.select (C function), 1252
V4L.v4l2_audio (C type), 1147
V4L.v4l2_audioout (C type), 1148
V4L.v4l2_bt_timings (C type), 1153
V4L.v4l2_bt_timings_cap (C type), 1114
V4L.v4l2_buf_type (C type), 976
V4L.v4l2_buffer (C type), 972
V4L.v4l2_capability (C type), 1209
V4L.v4l2_captureparm (C type), 1185
V4L.v4l2_clip (C type), 989
V4L.v4l2_close (C function), 1065
V4L.v4l2_control (C type), 1151
V4L.v4l2_create_buffers (C type), 1097
V4L.v4l2_crop (C type), 1150
V4L.v4l2_cropcap (C type), 1099
V4L.v4l2_ctrl_hdr10_cll_info (C type), 806
V4L.v4l2_ctrl_hdr10_mastering_display

(C type), 806
V4L.v4l2_ctrl_hevc_decode_params (C

type), 779
V4L.v4l2_ctrl_hevc_pps (C type), 774
V4L.v4l2_ctrl_hevc_scaling_matrix (C

type), 776
V4L.v4l2_ctrl_hevc_slice_params (C type),

775
V4L.v4l2_ctrl_hevc_sps (C type), 774
V4L.v4l2_ctrl_type (C type), 1217
V4L.v4l2_dbg_chip_info (C type), 1102
V4L.v4l2_dbg_match (C type), 1104
V4L.v4l2_dbg_register (C type), 1104
V4L.v4l2_decoder_cmd (C type), 1106
V4L.v4l2_dup (C function), 1065
V4L.v4l2_dv_timings (C type), 1154
V4L.v4l2_dv_timings_cap (C type), 1114
V4L.v4l2_edid (C type), 1158
V4L.v4l2_enc_idx (C type), 1159
V4L.v4l2_enc_idx_entry (C type), 1160
V4L.v4l2_encoder_cmd (C type), 1116
V4L.v4l2_enum_dv_timings (C type), 1121
V4L.v4l2_event (C type), 1109
V4L.v4l2_event_ctrl (C type), 1111
V4L.v4l2_event_frame_sync (C type), 1112
V4L.v4l2_event_motion_det (C type), 1112
V4L.v4l2_event_src_change (C type), 1112
V4L.v4l2_event_subscription (C type), 1244
V4L.v4l2_event_vsync (C type), 1111
V4L.v4l2_exportbuffer (C type), 1145
V4L.v4l2_ext_control (C type), 1162
V4L.v4l2_ext_controls (C type), 1164
V4L.v4l2_fd_open (C function), 1065

Index 1641

Linux Media Documentation

V4L.v4l2_fmtdesc (C type), 1122
V4L.v4l2_format (C type), 1174
V4L.v4l2_fract (C type), 1140
V4L.v4l2_framebuffer (C type), 1168
V4L.v4l2_frequency (C type), 1176
V4L.v4l2_frequency_band (C type), 1132
V4L.v4l2_frmival_stepwise (C type), 1130
V4L.v4l2_frmivalenum (C type), 1130
V4L.v4l2_frmivaltypes (C type), 1131
V4L.v4l2_frmsize_discrete (C type), 1128
V4L.v4l2_frmsize_stepwise (C type), 1128
V4L.v4l2_frmsizeenum (C type), 1128
V4L.v4l2_frmsizetypes (C type), 1128
V4L.v4l2_get_control (C function), 1065
V4L.v4l2_hevc_dpb_entry (C type), 777
V4L.v4l2_hevc_pred_weight_table (C type),

777
V4L.v4l2_hw_freq_seek (C type), 1227
V4L.v4l2_input (C type), 1134
V4L.v4l2_ioctl (C function), 1065
V4L.v4l2_jpegcompression (C type), 1179
V4L.v4l2_mbus_framefmt (C type), 1052
V4L.v4l2_meta_format (C type), 1063
V4L.v4l2_modulator (C type), 1181
V4L.v4l2_mpeg_vbi_fmt_ivtv (C type), 1037
V4L.v4l2_mpeg_vbi_ITV0 (C type), 1037
V4L.v4l2_mpeg_vbi_itv0 (C type), 1037
V4L.v4l2_mpeg_vbi_itv0_line (C type), 1038
V4L.v4l2_mpeg_video_hevc_decode_mode (C

type), 778
V4L.v4l2_mpeg_video_hevc_start_code (C

type), 778
V4L.v4l2_open (C function), 1065
V4L.v4l2_output (C type), 1137
V4L.v4l2_outputparm (C type), 1185
V4L.v4l2_plane (C type), 975
V4L.v4l2_priority (C type), 1188
V4L.v4l2_rds_data (C type), 1041
V4L.v4l2_read (C function), 1065
V4L.v4l2_rect (C type), 990
V4L.v4l2_requestbuffers (C type), 1224
V4L.v4l2_sdr_format (C type), 1042
V4L.v4l2_selection (C type), 1191
V4L.v4l2_set_control (C function), 1065
V4L.v4l2_sliced_vbi_cap (C type), 1193
V4L.v4l2_sliced_vbi_data (C type), 1035
V4L.v4l2_sliced_vbi_format (C type), 1033
V4L.v4l2_standard (C type), 1140
V4L.v4l2_streamparm (C type), 1184
V4L.v4l2_subdev_capability (C type), 1242
V4L.v4l2_subdev_crop (C type), 1236

V4L.v4l2_subdev_format (C type), 1237
V4L.v4l2_subdev_frame_interval (C type),

1239
V4L.v4l2_subdev_frame_interval_enum (C

type), 1230
V4L.v4l2_subdev_frame_size_enum (C type),

1232
V4L.v4l2_subdev_mbus_code_enum (C type),

1233
V4L.v4l2_subdev_selection (C type), 1241
V4L.v4l2_timecode (C type), 980
V4L.v4l2_tuner (C type), 1196
V4L.v4l2_tuner_type (C type), 1198
V4L.v4l2_vbi_format (C type), 1029
V4L.v4l2_window (C type), 988
V4L.VIDIOC_CREATE_BUFS (C macro), 1096
V4L.VIDIOC_CROPCAP (C macro), 1099
V4L.VIDIOC_DBG_G_CHIP_INFO (C macro),

1101
V4L.VIDIOC_DBG_G_REGISTER (C macro), 1103
V4L.VIDIOC_DBG_S_REGISTER (C macro), 1103
V4L.VIDIOC_DECODER_CMD (C macro), 1105
V4L.VIDIOC_DQBUF (C macro), 1205
V4L.VIDIOC_DQEVENT (C macro), 1108
V4L.VIDIOC_DV_TIMINGS_CAP (C macro), 1113
V4L.VIDIOC_ENCODER_CMD (C macro), 1116
V4L.VIDIOC_ENUM_DV_TIMINGS (C macro),

1120
V4L.VIDIOC_ENUM_FMT (C macro), 1121
V4L.VIDIOC_ENUM_FRAMEINTERVALS (C

macro), 1129
V4L.VIDIOC_ENUM_FRAMESIZES (C macro),

1127
V4L.VIDIOC_ENUM_FREQ_BANDS (C macro),

1132
V4L.VIDIOC_ENUMAUDIO (C macro), 1118
V4L.VIDIOC_ENUMAUDOUT (C macro), 1119
V4L.VIDIOC_ENUMINPUT (C macro), 1134
V4L.VIDIOC_ENUMOUTPUT (C macro), 1137
V4L.VIDIOC_ENUMSTD (C macro), 1139
V4L.VIDIOC_EXPBUF (C macro), 1144
V4L.VIDIOC_G_AUDIO (C macro), 1146
V4L.VIDIOC_G_AUDOUT (C macro), 1148
V4L.VIDIOC_G_CROP (C macro), 1149
V4L.VIDIOC_G_CTRL (C macro), 1151
V4L.VIDIOC_G_DV_TIMINGS (C macro), 1152
V4L.VIDIOC_G_EDID (C macro), 1157
V4L.VIDIOC_G_ENC_INDEX (C macro), 1159
V4L.VIDIOC_G_EXT_CTRLS (C macro), 1161
V4L.VIDIOC_G_FBUF (C macro), 1167
V4L.VIDIOC_G_FMT (C macro), 1173

1642 Index

Linux Media Documentation

V4L.VIDIOC_G_FREQUENCY (C macro), 1176
V4L.VIDIOC_G_INPUT (C macro), 1178
V4L.VIDIOC_G_JPEGCOMP (C macro), 1179
V4L.VIDIOC_G_MODULATOR (C macro), 1180
V4L.VIDIOC_G_OUTPUT (C macro), 1183
V4L.VIDIOC_G_PARM (C macro), 1184
V4L.VIDIOC_G_PRIORITY (C macro), 1188
V4L.VIDIOC_G_SELECTION (C macro), 1189
V4L.VIDIOC_G_SLICED_VBI_CAP (C macro),

1192
V4L.VIDIOC_G_STD (C macro), 1194
V4L.VIDIOC_G_TUNER (C macro), 1196
V4L.VIDIOC_LOG_STATUS (C macro), 1202
V4L.VIDIOC_OVERLAY (C macro), 1203
V4L.VIDIOC_PREPARE_BUF (C macro), 1204
V4L.VIDIOC_QBUF (C macro), 1205
V4L.VIDIOC_QUERY_DV_TIMINGS (C macro),

1221
V4L.VIDIOC_QUERY_EXT_CTRL (C macro), 1213
V4L.VIDIOC_QUERYBUF (C macro), 1207
V4L.VIDIOC_QUERYCAP (C macro), 1209
V4L.VIDIOC_QUERYMENU (C macro), 1213
V4L.VIDIOC_QUERYSTD (C macro), 1223
V4L.VIDIOC_REQBUFS (C macro), 1224
V4L.VIDIOC_S_AUDIO (C macro), 1146
V4L.VIDIOC_S_AUDOUT (C macro), 1148
V4L.VIDIOC_S_CROP (C macro), 1149
V4L.VIDIOC_S_CTRL (C macro), 1151
V4L.VIDIOC_S_DV_TIMINGS (C macro), 1152
V4L.VIDIOC_S_EDID (C macro), 1157
V4L.VIDIOC_S_EXT_CTRLS (C macro), 1161
V4L.VIDIOC_S_FBUF (C macro), 1167
V4L.VIDIOC_S_FMT (C macro), 1173
V4L.VIDIOC_S_FREQUENCY (C macro), 1176
V4L.VIDIOC_S_HW_FREQ_SEEK (C macro), 1226
V4L.VIDIOC_S_INPUT (C macro), 1178
V4L.VIDIOC_S_JPEGCOMP (C macro), 1179
V4L.VIDIOC_S_MODULATOR (C macro), 1180
V4L.VIDIOC_S_OUTPUT (C macro), 1183
V4L.VIDIOC_S_PARM (C macro), 1184
V4L.VIDIOC_S_PRIORITY (C macro), 1188
V4L.VIDIOC_S_SELECTION (C macro), 1189
V4L.VIDIOC_S_STD (C macro), 1194
V4L.VIDIOC_S_TUNER (C macro), 1196
V4L.VIDIOC_STREAMOFF (C macro), 1228
V4L.VIDIOC_STREAMON (C macro), 1228
V4L.VIDIOC_SUBDEV_DV_TIMINGS_CAP (C

macro), 1113
V4L.VIDIOC_SUBDEV_ENUM_DV_TIMINGS (C

macro), 1120
V4L.VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL

(C macro), 1230
V4L.VIDIOC_SUBDEV_ENUM_FRAME_SIZE (C

macro), 1231
V4L.VIDIOC_SUBDEV_ENUM_MBUS_CODE (C

macro), 1233
V4L.VIDIOC_SUBDEV_ENUMSTD (C macro), 1139
V4L.VIDIOC_SUBDEV_G_CROP (C macro), 1235
V4L.VIDIOC_SUBDEV_G_DV_TIMINGS (C

macro), 1152
V4L.VIDIOC_SUBDEV_G_EDID (C macro), 1157
V4L.VIDIOC_SUBDEV_G_FMT (C macro), 1237
V4L.VIDIOC_SUBDEV_G_FRAME_INTERVAL (C

macro), 1239
V4L.VIDIOC_SUBDEV_G_SELECTION (C macro),

1240
V4L.VIDIOC_SUBDEV_G_STD (C macro), 1194
V4L.VIDIOC_SUBDEV_QUERY_DV_TIMINGS (C

macro), 1221
V4L.VIDIOC_SUBDEV_QUERYCAP (C macro),

1242
V4L.VIDIOC_SUBDEV_QUERYSTD (C macro),

1223
V4L.VIDIOC_SUBDEV_S_CROP (C macro), 1235
V4L.VIDIOC_SUBDEV_S_DV_TIMINGS (C

macro), 1152
V4L.VIDIOC_SUBDEV_S_EDID (C macro), 1157
V4L.VIDIOC_SUBDEV_S_FMT (C macro), 1237
V4L.VIDIOC_SUBDEV_S_FRAME_INTERVAL (C

macro), 1239
V4L.VIDIOC_SUBDEV_S_SELECTION (C macro),

1240
V4L.VIDIOC_SUBDEV_S_STD (C macro), 1194
V4L.VIDIOC_SUBSCRIBE_EVENT (C macro),

1244
V4L.VIDIOC_TRY_DECODER_CMD (C macro),

1105
V4L.VIDIOC_TRY_ENCODER_CMD (C macro),

1116
V4L.VIDIOC_TRY_EXT_CTRLS (C macro), 1161
V4L.VIDIOC_TRY_FMT (C macro), 1173
V4L.VIDIOC_UNSUBSCRIBE_EVENT (C macro),

1244
V4L.write (C function), 1254
V4L2 API, 1610
V4L2 Device Node, 1610
V4L2 Hardware, 1610
V4L2 Sub-device, 1610
V4L2 Sub-device API, 1610
v4l2_area (C type), 747
v4l2_async_debug_init (C function), 394
v4l2_async_match_type (C type), 392

Index 1643

Linux Media Documentation

v4l2_async_nf_add_fwnode (C function), 394
v4l2_async_nf_add_fwnode_remote (C func-

tion), 395
v4l2_async_nf_add_i2c (C function), 395
v4l2_async_nf_cleanup (C function), 396
v4l2_async_nf_init (C function), 394
v4l2_async_nf_parse_fwnode_endpoints (C

function), 405
v4l2_async_nf_register (C function), 395
v4l2_async_nf_unregister (C function), 396
v4l2_async_notifier (C type), 393
v4l2_async_notifier_operations (C type),

393
v4l2_async_register_subdev (C function),

396
v4l2_async_register_subdev_sensor (C

function), 396
v4l2_async_subdev (C type), 392
v4l2_async_subdev_nf_register (C func-

tion), 395
v4l2_async_unregister_subdev (C function),

396
v4l2_calc_aspect_ratio (C function), 371
v4l2_calc_timeperframe (C function), 368
v4l2_check_dv_timings_fnc (C type), 368
v4l2_colorspace (C type), 949
v4l2_compat_ioctl32 (C function), 427
v4l2_connector_link (C type), 399
v4l2_connector_type (C type), 399
v4l2_create_fwnode_links (C function), 376
v4l2_create_fwnode_links_to_pad (C func-

tion), 376
v4l2_ctrl (C type), 315
v4l2_ctrl_activate (C function), 327
v4l2_ctrl_add_handler (C function), 325
v4l2_ctrl_auto_cluster (C function), 326
v4l2_ctrl_cluster (C function), 326
v4l2_ctrl_config (C type), 319
v4l2_ctrl_fill (C function), 320
v4l2_ctrl_filter (C type), 325
v4l2_ctrl_find (C function), 326
v4l2_ctrl_fwht_params (C type), 785
v4l2_ctrl_g_ctrl (C function), 329
v4l2_ctrl_g_ctrl_int64 (C function), 330
v4l2_ctrl_get_int_menu (C function), 329
v4l2_ctrl_get_menu (C function), 329
v4l2_ctrl_get_name (C function), 329
v4l2_ctrl_grab (C function), 327
v4l2_ctrl_h264_decode_params (C type), 783
v4l2_ctrl_h264_pps (C type), 781
v4l2_ctrl_h264_pred_weights (C type), 782

v4l2_ctrl_h264_scaling_matrix (C type),
781

v4l2_ctrl_h264_slice_params (C type), 782
v4l2_ctrl_h264_sps (C type), 780
v4l2_ctrl_handler (C type), 318
v4l2_ctrl_handler_free (C function), 322
v4l2_ctrl_handler_init (C function), 321
v4l2_ctrl_handler_init_class (C function),

321
v4l2_ctrl_handler_log_status (C function),

322
v4l2_ctrl_handler_setup (C function), 322
v4l2_ctrl_lock (C function), 322
v4l2_ctrl_log_status (C function), 332
v4l2_ctrl_merge (C function), 332
v4l2_ctrl_modify_range (C function), 328
v4l2_ctrl_mpeg2_picture (C type), 790
v4l2_ctrl_mpeg2_quantisation (C type), 791
v4l2_ctrl_mpeg2_sequence (C type), 790
v4l2_ctrl_new_custom (C function), 323
v4l2_ctrl_new_fwnode_properties (C func-

tion), 336
v4l2_ctrl_new_int_menu (C function), 325
v4l2_ctrl_new_std (C function), 323
v4l2_ctrl_new_std_compound (C function),

324
v4l2_ctrl_new_std_menu (C function), 323
v4l2_ctrl_new_std_menu_items (C function),

324
v4l2_ctrl_notify (C function), 328
v4l2_ctrl_notify_fnc (C type), 314
v4l2_ctrl_ops (C type), 314
v4l2_ctrl_poll (C function), 332
v4l2_ctrl_ptr (C type), 312
v4l2_ctrl_ptr_create (C function), 313
v4l2_ctrl_query_fill (C function), 412
v4l2_ctrl_radio_filter (C function), 326
v4l2_ctrl_ref (C type), 317
v4l2_ctrl_replace (C function), 332
v4l2_ctrl_request_complete (C function),

333
v4l2_ctrl_request_hdl_ctrl_find (C func-

tion), 334
v4l2_ctrl_request_hdl_find (C function),

333
v4l2_ctrl_request_hdl_put (C function),

334
v4l2_ctrl_request_setup (C function), 333
v4l2_ctrl_s_ctrl (C function), 330
v4l2_ctrl_s_ctrl_compound (C function),

331

1644 Index

Linux Media Documentation

v4l2_ctrl_s_ctrl_int64 (C function), 330
v4l2_ctrl_s_ctrl_string (C function), 331
v4l2_ctrl_subdev_log_status (C function),

336
v4l2_ctrl_subdev_subscribe_event (C func-

tion), 336
v4l2_ctrl_subscribe_event (C function),

332
v4l2_ctrl_to_v4l2_flash (C function), 373
v4l2_ctrl_type_ops (C type), 314
v4l2_ctrl_unlock (C function), 322
v4l2_ctrl_vp8_frame (C type), 786
v4l2_ctrl_vp9_compressed_hdr (C type), 791
v4l2_ctrl_vp9_frame (C type), 792
v4l2_decode_vbi_line (C type), 276
v4l2_detect_cvt (C function), 370
v4l2_detect_gtf (C function), 370
v4l2_device (C type), 256
v4l2_device_call_all (C function), 261
v4l2_device_call_until_err (C function),

262
v4l2_device_disconnect (C function), 258
v4l2_device_for_each_subdev (C function),

259
v4l2_device_get (C function), 256
v4l2_device_has_op (C function), 263
v4l2_device_mask_call_all (C function),

262
v4l2_device_mask_call_until_err (C func-

tion), 262
v4l2_device_mask_has_op (C function), 263
v4l2_device_put (C function), 257
v4l2_device_register (C function), 257
v4l2_device_register_ro_subdev_nodes (C

function), 259
v4l2_device_register_subdev (C function),

258
v4l2_device_register_subdev_nodes (C

function), 259
v4l2_device_set_name (C function), 257
v4l2_device_supports_requests (C func-

tion), 259
v4l2_device_unregister (C function), 258
v4l2_device_unregister_subdev (C func-

tion), 258
v4l2_disable_ioctl (C function), 252
v4l2_dv_timings_aspect_ratio (C function),

371
v4l2_enum_dv_timings_cap (C function), 368
v4l2_event_dequeue (C function), 298
v4l2_event_pending (C function), 299

v4l2_event_queue (C function), 298
v4l2_event_queue_fh (C function), 298
v4l2_event_subdev_unsubscribe (C func-

tion), 299
v4l2_event_subscribe (C function), 299
v4l2_event_unsubscribe (C function), 299
v4l2_event_unsubscribe_all (C function),

299
v4l2_event_wake_all (C function), 298
v4l2_fh (C type), 266
v4l2_fh_add (C function), 266
v4l2_fh_del (C function), 267
v4l2_fh_exit (C function), 267
v4l2_fh_init (C function), 266
v4l2_fh_is_singular (C function), 268
v4l2_fh_is_singular_file (C function), 268
v4l2_fh_open (C function), 267
v4l2_fh_release (C function), 267
v4l2_field (C type), 981
v4l2_file_operations (C type), 247
v4l2_fill_mbus_format (C function), 378
v4l2_fill_mbus_format_mplane (C function),

379
v4l2_fill_pix_format (C function), 378
v4l2_fill_pix_format_mplane (C function),

379
v4l2_find_dv_timings_cap (C function), 369
v4l2_find_dv_timings_cea861_vic (C func-

tion), 369
v4l2_find_nearest_size (C function), 416
v4l2_flash (C type), 373
v4l2_flash_config (C type), 373
v4l2_flash_ctrl_data (C type), 372
v4l2_flash_indicator_init (C function),

374
v4l2_flash_init (C function), 374
v4l2_flash_ops (C type), 372
v4l2_flash_release (C function), 374
v4l2_format_info (C type), 417
v4l2_fwnode_bus_mipi_csi1 (C type), 397
v4l2_fwnode_bus_mipi_csi2 (C type), 397
v4l2_fwnode_bus_parallel (C type), 397
v4l2_fwnode_bus_type (C type), 400
v4l2_fwnode_connector (C type), 400
v4l2_fwnode_connector_add_link (C func-

tion), 404
v4l2_fwnode_connector_analog (C type), 400
v4l2_fwnode_connector_free (C function),

403
v4l2_fwnode_connector_parse (C function),

403

Index 1645

Linux Media Documentation

v4l2_fwnode_device_parse (C function), 404
v4l2_fwnode_device_properties (C type),

399
v4l2_fwnode_endpoint (C type), 398
v4l2_fwnode_endpoint_alloc_parse (C func-

tion), 402
v4l2_fwnode_endpoint_free (C function),

401
v4l2_fwnode_endpoint_parse (C function),

401
v4l2_fwnode_link (C type), 399
v4l2_fwnode_orientation (C type), 398
v4l2_fwnode_parse_link (C function), 402
V4L2_FWNODE_PROPERTY_UNSET (C function),

398
v4l2_fwnode_put_link (C function), 403
v4l2_g_ctrl (C function), 335
v4l2_g_ext_ctrls (C function), 335
v4l2_g_parm_cap (C function), 416
v4l2_get_link_freq (C function), 418
v4l2_get_subdev_hostdata (C function), 292
v4l2_get_subdevdata (C function), 291
v4l2_h264_dpb_entry (C type), 784
v4l2_h264_reference (C type), 783
v4l2_h264_weight_factors (C type), 782
v4l2_hdmi_colorimetry (C type), 372
v4l2_hsv_encoding (C type), 951
v4l2_i2c_new_subdev (C function), 413
v4l2_i2c_new_subdev_board (C function),

413
v4l2_i2c_subdev_addr (C function), 414
v4l2_i2c_subdev_init (C function), 414
v4l2_i2c_subdev_set_name (C function), 414
v4l2_i2c_subdev_unregister (C function),

414
v4l2_i2c_tuner_addrs (C function), 414
v4l2_i2c_tuner_type (C type), 413
v4l2_ioctl_ops (C type), 418
v4l2_kevent (C type), 296
v4l2_kioctl (C type), 427
v4l2_m2m_buf_copy_metadata (C function),

391
v4l2_m2m_buf_done_and_job_finish (C func-

tion), 382
v4l2_m2m_buf_queue (C function), 388
v4l2_m2m_buf_remove (C function), 390
v4l2_m2m_buf_remove_by_buf (C function),

391
v4l2_m2m_buffer (C type), 381
v4l2_m2m_clear_state (C function), 383
v4l2_m2m_create_bufs (C function), 385

v4l2_m2m_ctx (C type), 380
v4l2_m2m_ctx_init (C function), 388
v4l2_m2m_ctx_release (C function), 388
v4l2_m2m_decoder_cmd (C function), 387
v4l2_m2m_dqbuf (C function), 385
v4l2_m2m_dst_buf_is_last (C function), 383
v4l2_m2m_dst_buf_remove (C function), 391
v4l2_m2m_dst_buf_remove_by_buf (C func-

tion), 391
v4l2_m2m_encoder_cmd (C function), 386
v4l2_m2m_expbuf (C function), 385
v4l2_m2m_for_each_dst_buf (C function),

390
v4l2_m2m_for_each_dst_buf_safe (C func-

tion), 390
v4l2_m2m_for_each_src_buf (C function),

390
v4l2_m2m_for_each_src_buf_safe (C func-

tion), 390
v4l2_m2m_get_curr_priv (C function), 381
v4l2_m2m_get_dst_vq (C function), 390
v4l2_m2m_get_src_vq (C function), 390
v4l2_m2m_get_vq (C function), 381
v4l2_m2m_has_stopped (C function), 383
v4l2_m2m_init (C function), 387
v4l2_m2m_is_last_draining_src_buf (C

function), 383
v4l2_m2m_job_finish (C function), 382
v4l2_m2m_last_buf (C function), 389
v4l2_m2m_last_buffer_done (C function),

384
v4l2_m2m_last_dst_buf (C function), 389
v4l2_m2m_last_src_buf (C function), 389
v4l2_m2m_mark_stopped (C function), 383
v4l2_m2m_mmap (C function), 387
v4l2_m2m_next_buf (C function), 389
v4l2_m2m_next_dst_buf (C function), 389
v4l2_m2m_next_src_buf (C function), 389
v4l2_m2m_num_dst_bufs_ready (C function),

389
v4l2_m2m_num_src_bufs_ready (C function),

389
v4l2_m2m_ops (C type), 379
v4l2_m2m_poll (C function), 387
v4l2_m2m_prepare_buf (C function), 385
v4l2_m2m_qbuf (C function), 385
v4l2_m2m_querybuf (C function), 384
v4l2_m2m_queue_ctx (C type), 380
v4l2_m2m_release (C function), 388
v4l2_m2m_reqbufs (C function), 384
v4l2_m2m_resume (C function), 384

1646 Index

Linux Media Documentation

v4l2_m2m_src_buf_remove (C function), 390
v4l2_m2m_src_buf_remove_by_buf (C func-

tion), 391
v4l2_m2m_streamoff (C function), 386
v4l2_m2m_streamon (C function), 386
v4l2_m2m_suspend (C function), 384
v4l2_m2m_try_schedule (C function), 381
v4l2_m2m_update_start_streaming_state

(C function), 386
v4l2_m2m_update_stop_streaming_state (C

function), 386
v4l2_match_dv_timings (C function), 369
v4l2_mbus_config (C type), 378
v4l2_mbus_frame_desc (C type), 280
v4l2_mbus_frame_desc_entry (C type), 280
v4l2_mbus_frame_desc_flags (C type), 280
v4l2_mbus_type (C type), 378
v4l2_mc_create_media_graph (C function),

375
v4l2_norm_to_name (C function), 426
v4l2_pipeline_link_notify (C function),

377
v4l2_pipeline_pm_get (C function), 376
v4l2_pipeline_pm_put (C function), 377
v4l2_pix_format (C type), 820
v4l2_pix_format_mplane (C type), 825
v4l2_pixel_encoding (C type), 417
v4l2_plane_pix_format (C type), 825
v4l2_print_dv_timings (C function), 370
v4l2_prio_change (C function), 246
v4l2_prio_check (C function), 247
v4l2_prio_close (C function), 247
v4l2_prio_init (C function), 246
v4l2_prio_max (C function), 247
v4l2_prio_open (C function), 246
v4l2_prio_state (C type), 246
v4l2_quantization (C type), 951
v4l2_query_ext_ctrl (C function), 334
v4l2_queryctrl (C function), 334
v4l2_querymenu (C function), 334
v4l2_rect_enclosed (C function), 408
v4l2_rect_equal (C function), 407
v4l2_rect_intersect (C function), 407
v4l2_rect_map_inside (C function), 406
v4l2_rect_overlap (C function), 407
v4l2_rect_same_position (C function), 407
v4l2_rect_same_size (C function), 406
v4l2_rect_scale (C function), 407
v4l2_rect_set_max_size (C function), 406
v4l2_rect_set_min_size (C function), 406
v4l2_rect_set_size_to (C function), 406

v4l2_s_ctrl (C function), 335
v4l2_s_ext_ctrls (C function), 336
v4l2_s_parm_cap (C function), 417
v4l2_set_subdev_hostdata (C function), 291
v4l2_set_subdevdata (C function), 291
v4l2_spi_new_subdev (C function), 415
v4l2_spi_subdev_init (C function), 415
v4l2_spi_subdev_unregister (C function),

415
v4l2_src_change_event_subdev_subscribe

(C function), 300
v4l2_src_change_event_subscribe (C func-

tion), 300
v4l2_stateless_h264_decode_mode (C type),

785
v4l2_stateless_h264_start_code (C type),

785
v4l2_subdev (C type), 288
v4l2_subdev_alloc_state (C function), 293
v4l2_subdev_audio_ops (C type), 279
v4l2_subdev_call (C function), 293
v4l2_subdev_core_ops (C type), 277
v4l2_subdev_fh (C type), 290
v4l2_subdev_free_state (C function), 293
v4l2_subdev_get_fwnode_pad_1_to_1 (C

function), 292
v4l2_subdev_get_try_compose (C function),

291
v4l2_subdev_get_try_crop (C function), 291
v4l2_subdev_get_try_format (C function),

291
v4l2_subdev_has_op (C function), 293
v4l2_subdev_init (C function), 293
v4l2_subdev_internal_ops (C type), 287
v4l2_subdev_io_pin_bits (C type), 276
v4l2_subdev_io_pin_config (C type), 276
v4l2_subdev_ir_mode (C type), 283
v4l2_subdev_ir_ops (C type), 284
v4l2_subdev_ir_parameters (C type), 283
v4l2_subdev_link_validate (C function),

292
v4l2_subdev_link_validate_default (C

function), 292
v4l2_subdev_notify (C function), 259
v4l2_subdev_notify_event (C function), 293
v4l2_subdev_ops (C type), 287
v4l2_subdev_pad_config (C type), 285
v4l2_subdev_pad_ops (C type), 285
v4l2_subdev_platform_data (C type), 288
v4l2_subdev_pre_streamon_flags (C type),

280

Index 1647

Linux Media Documentation

v4l2_subdev_sensor_ops (C type), 283
v4l2_subdev_state (C type), 285
v4l2_subdev_to_v4l2_flash (C function),

373
v4l2_subdev_tuner_ops (C type), 278
v4l2_subdev_vbi_ops (C type), 282
v4l2_subdev_video_ops (C type), 280
v4l2_subscribed_event (C type), 297
v4l2_subscribed_event_ops (C type), 297
v4l2_try_ext_ctrls (C function), 335
v4l2_valid_dv_timings (C function), 368
v4l2_video_device_flags (C type), 245
v4l2_video_std_construct (C function), 426
v4l2_video_std_frame_period (C function),

426
v4l2_vp8_entropy (C type), 789
v4l2_vp8_entropy_coder_state (C type), 788
v4l2_vp8_loop_filter (C type), 789
v4l2_vp8_quantization (C type), 789
v4l2_vp8_segment (C type), 788
v4l2_vp9_loop_filter (C type), 796
v4l2_vp9_quantization (C type), 796
v4l2_vp9_segmentation (C type), 795
v4l2_xfer_func (C type), 950
v4l2_ycbcr_encoding (C type), 950
v4l_bound_align_image (C function), 415
v4l_disable_media_source (C function), 375
v4l_enable_media_source (C function), 375
v4l_printk_ioctl (C function), 427
v4l_video_std_enumstd (C function), 427
vb2_buf_ops (C type), 348
vb2_buffer (C type), 346
vb2_buffer_done (C function), 351
vb2_buffer_in_use (C function), 361
vb2_buffer_state (C type), 346
vb2_clear_last_buffer_dequeued (C func-

tion), 361
vb2_core_create_bufs (C function), 353
vb2_core_dqbuf (C function), 355
vb2_core_expbuf (C function), 356
vb2_core_poll (C function), 358
vb2_core_prepare_buf (C function), 354
vb2_core_qbuf (C function), 354
vb2_core_querybuf (C function), 352
vb2_core_queue_init (C function), 356
vb2_core_queue_release (C function), 357
vb2_core_reqbufs (C function), 352
vb2_core_streamoff (C function), 356
vb2_core_streamon (C function), 355
vb2_create_bufs (C function), 363
vb2_discard_done (C function), 352

vb2_dqbuf (C function), 364
vb2_expbuf (C function), 364
vb2_fileio_is_active (C function), 360
vb2_find_timestamp (C function), 362
vb2_get_buffer (C function), 361
vb2_get_drv_priv (C function), 360
vb2_get_plane_payload (C function), 360
vb2_get_unmapped_area (C function), 357
vb2_io_modes (C type), 345
vb2_is_busy (C function), 360
vb2_is_streaming (C function), 359
vb2_mem_ops (C type), 343
vb2_memory (C type), 343
vb2_mmap (C function), 357
vb2_ops (C type), 347
vb2_ops_wait_finish (C function), 367
vb2_ops_wait_prepare (C function), 367
vb2_plane (C type), 345
vb2_plane_cookie (C function), 351
vb2_plane_size (C function), 360
vb2_plane_vaddr (C function), 351
vb2_poll (C function), 366
vb2_prepare_buf (C function), 363
vb2_qbuf (C function), 363
vb2_queue (C type), 349
vb2_queue_allows_cache_hints (C function),

351
vb2_queue_change_type (C function), 366
vb2_queue_error (C function), 357
vb2_queue_init (C function), 365
vb2_queue_init_name (C function), 366
vb2_queue_release (C function), 366
vb2_read (C function), 358
vb2_reqbufs (C function), 363
vb2_request_buffer_cnt (C function), 362
vb2_request_object_is_buffer (C function),

361
vb2_set_plane_payload (C function), 360
vb2_start_streaming_called (C function),

361
vb2_streamoff (C function), 365
vb2_streamon (C function), 365
vb2_thread_fnc (C type), 359
vb2_thread_start (C function), 359
vb2_thread_stop (C function), 359
vb2_v4l2_buffer (C type), 362
vb2_verify_memory_type (C function), 361
vb2_video_unregister_device (C function),

367
vb2_vmarea_handler (C type), 367
vb2_wait_for_all_buffers (C function), 352

1648 Index

Linux Media Documentation

vb2_write (C function), 358
vdev_to_v4l2_subdev (C function), 290
vfl_devnode_direction (C type), 245
vfl_devnode_type (C type), 245
video_devdata (C function), 253
video_device (C type), 248
video_device_alloc (C function), 252
video_device_node_name (C function), 253
video_device_release (C function), 252
video_device_release_empty (C function),

252
video_drvdata (C function), 253
video_get_drvdata (C function), 253
video_ioctl2 (C function), 428
video_is_registered (C function), 253
video_register_device (C function), 251
video_register_device_no_warn (C func-

tion), 251
video_set_drvdata (C function), 253
video_unregister_device (C function), 251
video_usercopy (C function), 427
Video-node-centric, 1610
vidtv_channel (C type), 686
vidtv_channel_si_init (C function), 687
vidtv_channels_init (C function), 687
vidtv_demod_cnr_to_qual_s (C type), 687
vidtv_demod_config (C type), 688
vidtv_demod_state (C type), 688
vidtv_dvb (C type), 686
vidtv_encoder (C type), 689
vidtv_memcpy (C function), 708
vidtv_memset (C function), 708
vidtv_mux (C type), 691
vidtv_mux_init_args (C type), 692
vidtv_mux_pid_ctx (C type), 691
vidtv_mux_si (C type), 690
vidtv_mux_timing (C type), 690
vidtv_pes_write_into (C function), 695
vidtv_pmt_desc_assign (C function), 698
vidtv_psi_desc_assign (C function), 698
vidtv_psi_eit_event_assign (C function),

705
vidtv_psi_eit_table_update_sec_len (C

function), 705
vidtv_psi_eit_write_args (C type), 704
vidtv_psi_eit_write_into (C function), 704
vidtv_psi_find_pmt_sec (C function), 702
vidtv_psi_nit_write_args (C type), 703
vidtv_psi_nit_write_into (C function), 704
vidtv_psi_pat_program_assign (C function),

698

vidtv_psi_pat_table_update_sec_len (C
function), 699

vidtv_psi_pat_write_args (C type), 700
vidtv_psi_pat_write_into (C function), 700
vidtv_psi_pmt_create_sec_for_each_pat_entry

(C function), 699
vidtv_psi_pmt_get_pid (C function), 699
vidtv_psi_pmt_stream_assign (C function),

699
vidtv_psi_pmt_table_update_sec_len (C

function), 700
vidtv_psi_pmt_write_args (C type), 701
vidtv_psi_pmt_write_into (C function), 702
vidtv_psi_sdt_service_assign (C function),

697
vidtv_psi_sdt_table_update_sec_len (C

function), 700
vidtv_psi_sdt_write_args (C type), 701
vidtv_psi_sdt_write_into (C function), 701
vidtv_psi_table_nit (C type), 703
vidtv_psi_table_transport (C type), 702
vidtv_s302m_ctx (C type), 705
vidtv_s302m_encoder_init_args (C type),

706
vidtv_sdt_desc_assign (C function), 698
vidtv_ts_null_write_into (C function), 707
vidtv_ts_pcr_write_into (C function), 707
vidtv_tuner_config (C type), 707
vidtv_tuner_dev (C type), 709
vidtv_tuner_hardware_state (C type), 709
vimc_get_source_entity (C function), 641
vimc_stream (C type), 640
vimc_streamer_pipeline_init (C function),

641
vimc_streamer_pipeline_terminate (C func-

tion), 641
vimc_streamer_s_stream (C function), 642
vimc_streamer_thread (C function), 641

Z
zd1301_demod_get_dvb_frontend (C func-

tion), 677
zd1301_demod_get_i2c_adapter (C function),

677
zd1301_demod_platform_data (C type), 677
zl10036_attach (C function), 678

Index 1649

	Media subsystem admin and user guide
	The media subsystem
	Introduction
	Building support for a media device
	Configuring the Linux Kernel
	Building and installing a new Kernel
	Building just the new media drivers and core

	Infrared remote control support in video4linux drivers
	Basics
	How it works

	Digital TV
	Using the Digital TV Framework
	Digital TV Conditional Access Interface
	FAQ
	References

	Cards List
	USB drivers
	PCI drivers
	Platform drivers
	Radio drivers
	I2C drivers
	Firewire driver
	Test drivers

	Video4Linux (V4L) driver-specific documentation
	The bttv driver
	The cafe_ccic driver
	The cpia2 driver
	The cx88 driver
	The VPBE V4L2 driver design
	The Samsung S5P/Exynos4 FIMC driver
	i.MX Video Capture Driver
	i.MX7 Video Capture Driver
	Intel Image Processing Unit 3 (IPU3) Imaging Unit (ImgU) driver
	The ivtv driver
	Vaio Picturebook Motion Eye Camera Driver
	OMAP 3 Image Signal Processor (ISP) driver
	OMAP4 ISS Driver
	Philips webcams (pwc driver)
	Qualcomm Camera Subsystem driver
	Renesas R-Car Fine Display Processor (FDP1) Driver
	Rockchip Image Signal Processor (rkisp1)
	The saa7134 driver
	The Silicon Labs Si470x FM Radio Receivers driver
	The Silicon Labs Si4713 FM Radio Transmitter Driver
	The SI476x Driver
	The Virtual Media Controller Driver (vimc)
	The Virtual Video Test Driver (vivid)

	Digital TV driver-specific documentation
	Avermedia DVB-T on BT878 Release Notes
	How to get the bt8xx cards working
	Firmware files for lmedm04 cards
	Opera firmware
	How to set up the Technisat/B2C2 Flexcop devices
	TechnoTrend/Hauppauge DEC USB Driver
	Zoran 364xx based USB webcam module

	CEC driver-specific documentation
	Pulse-Eight CEC Adapter driver

	Media subsystem kernel internal API
	Media Subsystem Profile
	Overview
	Media maintainers

	Submit Checklist Addendum
	Style Cleanup Patches
	Coding Style Addendum

	Key Cycle Dates
	Review Cadence

	Video4Linux devices
	Introduction
	Structure of a V4L driver
	Structure of the V4L2 framework
	Video device’ s internal representation
	ioctls and locking
	Video device registration
	video device debugging
	Video device cleanup
	helper functions
	video_device functions and data structures

	V4L2 device instance
	v4l2_device functions and data structures

	V4L2 File handlers
	V4L2 fh functions and data structures

	V4L2 sub-devices
	Subdev registration
	Calling subdev operations

	V4L2 sub-device userspace API
	Read-only sub-device userspace API
	I2C sub-device drivers
	V4L2 sub-device functions and data structures
	V4L2 events
	Event subscription
	Unsubscribing an event
	Check if there’s a pending event
	How events work

	V4L2 Controls
	Introduction
	Objects in the framework
	Basic usage for V4L2 and sub-device drivers
	Inheriting Sub-device Controls
	Accessing Control Values
	Menu Controls
	Custom Controls
	Active and Grabbed Controls
	Control Clusters
	Handling autogain/gain-type Controls with Auto Clusters
	VIDIOC_LOG_STATUS Support
	Different Handlers for Different Video Nodes
	Finding Controls
	Preventing Controls inheritance
	V4L2_CTRL_TYPE_CTRL_CLASS Controls
	Adding Notify Callbacks
	v4l2_ctrl functions and data structures

	Videobuf Framework
	Introduction
	Buffer types
	Data structures, callbacks, and initialization
	File operations
	ioctl() operations
	Buffer allocation
	Filling the buffers

	V4L2 videobuf2 functions and data structures
	V4L2 DV Timings functions
	V4L2 flash functions and data structures
	V4L2 Media Controller functions and data structures
	V4L2 Media Bus functions and data structures
	V4L2 Memory to Memory functions and data structures
	V4L2 async kAPI
	V4L2 fwnode kAPI
	V4L2 rect helper functions
	Tuner functions and data structures
	V4L2 common functions and data structures
	Hauppauge TV EEPROM functions and data structures

	Digital TV (DVB) devices
	Digital TV Common functions
	Math functions
	DVB devices
	Digital TV Ring buffer
	Digital TV VB2 handler

	Digital TV Frontend kABI
	Digital TV Frontend
	Digital TV Frontend statistics
	Digital TV Frontend functions and types

	Digital TV Demux kABI
	Digital TV Demux
	Demux Callback API
	Digital TV Demux device registration functions and data structures
	High-level Digital TV demux interface
	Driver-internal low-level hardware specific driver demux interface

	Digital TV Conditional Access kABI
	Digital TV Network kABI

	Remote Controller devices
	Remote Controller core
	Remote controller data structures and functions

	Media Controller devices
	Media Controller
	Abstract media device model
	Media device
	Entities
	Interfaces
	Pads
	Links
	Graph traversal
	Use count and power handling
	Links setup
	Pipelines and media streams
	Link validation
	Media Controller Device Allocator API
	API Definitions

	CEC Kernel Support
	The CEC Protocol
	CEC Adapter Interface
	Implementing the Low-Level CEC Adapter
	Implementing the interrupt handler
	Optional: Implementing Error Injection Support
	Implementing the High-Level CEC Adapter
	CEC framework functions
	CEC Pin framework
	CEC Notifier framework

	Pixel data transmitter and receiver drivers
	Bus types
	MIPI CSI-2
	Parallel

	Transmitter drivers
	Media bus pixel code
	Link frequency
	.s_stream() callback

	CSI-2 transmitter drivers
	Pixel rate
	LP-11 and LP-111 modes
	Stopping the transmitter

	Writing camera sensor drivers
	CSI-2 and parallel (BT.601 and BT.656) busses
	Handling clocks
	ACPI
	Devicetree

	Frame size
	Freely configurable camera sensor drivers
	Register list based drivers

	Frame interval configuration
	Raw camera sensors
	USB cameras etc. devices

	Power management
	Control framework

	Media driver-specific documentation
	Video4Linux (V4L) drivers
	The bttv driver
	The cpia2 driver
	The cx2341x driver
	The cx88 driver
	The VPBE V4L2 driver design
	The Samsung S5P/EXYNOS4 FIMC driver
	The pvrusb2 driver
	PXA-Camera Host Driver
	The Radiotrack radio driver
	The Rockchip Image Signal Processor Driver (rkisp1)
	The saa7134 driver
	Cropping and Scaling algorithm, used in the sh_mobile_ceu_camera driver
	Tuner drivers
	The Virtual Media Controller Driver (vimc)
	The Zoran driver
	MIPI CCS camera sensor driver
	CCS PLL calculator

	Digital TV drivers
	Idea behind the dvb-usb-framework
	Frontend drivers
	vidtv: Virtual Digital TV driver
	Contributors

	Linux Media Infrastructure userspace API
	Introduction
	Part I - Video for Linux API
	Common API Elements
	Opening and Closing Devices
	Querying Capabilities
	Application Priority
	Video Inputs and Outputs
	Audio Inputs and Outputs
	Tuners and Modulators
	Video Standards
	Digital Video (DV) Timings
	User Controls
	Extended Controls API
	Camera Control Reference
	Flash Control Reference
	Image Source Control Reference
	Image Process Control Reference
	Codec Control Reference
	Stateless Codec Control Reference
	JPEG Control Reference
	Digital Video Control Reference
	RF Tuner Control Reference
	FM Transmitter Control Reference
	FM Receiver Control Reference
	Detect Control Reference
	Colorimetry Control Reference
	Guidelines for Video4Linux pixel format 4CCs
	Data Formats
	Single- and multi-planar APIs
	Cropping, composing and scaling – the SELECTION API
	Image Cropping, Insertion and Scaling – the CROP API
	Streaming Parameters

	Image Formats
	Single-planar format structure
	Multi-planar format structures
	Standard Image Formats
	Indexed Format
	RGB Formats
	Raw Bayer Formats
	YUV Formats
	HSV Formats
	Depth Formats
	Compressed Formats
	SDR Formats
	Touch Formats
	Metadata Formats
	Reserved Format Identifiers
	Colorspaces
	Defining Colorspaces in V4L2
	Detailed Colorspace Descriptions
	Detailed Transfer Function Descriptions

	Input/Output
	Read/Write
	Streaming I/O (Memory Mapping)
	Streaming I/O (User Pointers)
	Streaming I/O (DMA buffer importing)
	Asynchronous I/O
	Buffers
	Field Order

	Interfaces
	Video Capture Interface
	Video Overlay Interface
	Video Output Interface
	Video Output Overlay Interface
	Video Memory-To-Memory Interface
	Raw VBI Data Interface
	Sliced VBI Data Interface
	Radio Interface
	RDS Interface
	Software Defined Radio Interface (SDR)
	Touch Devices
	Event Interface
	Sub-device Interface
	Metadata Interface

	Libv4l Userspace Library
	Introduction

	Changes
	Differences between V4L and V4L2
	Changes of the V4L2 API

	Function Reference
	V4L2 close()
	V4L2 ioctl()
	ioctl VIDIOC_CREATE_BUFS
	ioctl VIDIOC_CROPCAP
	ioctl VIDIOC_DBG_G_CHIP_INFO
	ioctl VIDIOC_DBG_G_REGISTER, VIDIOC_DBG_S_REGISTER
	ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD
	ioctl VIDIOC_DQEVENT
	ioctl VIDIOC_DV_TIMINGS_CAP, VIDIOC_SUBDEV_DV_TIMINGS_CAP
	ioctl VIDIOC_ENCODER_CMD, VIDIOC_TRY_ENCODER_CMD
	ioctl VIDIOC_ENUMAUDIO
	ioctl VIDIOC_ENUMAUDOUT
	ioctl VIDIOC_ENUM_DV_TIMINGS, VIDIOC_SUBDEV_ENUM_DV_TIMINGS
	ioctl VIDIOC_ENUM_FMT
	ioctl VIDIOC_ENUM_FRAMESIZES
	ioctl VIDIOC_ENUM_FRAMEINTERVALS
	ioctl VIDIOC_ENUM_FREQ_BANDS
	ioctl VIDIOC_ENUMINPUT
	ioctl VIDIOC_ENUMOUTPUT
	ioctl VIDIOC_ENUMSTD, VIDIOC_SUBDEV_ENUMSTD
	ioctl VIDIOC_EXPBUF
	ioctl VIDIOC_G_AUDIO, VIDIOC_S_AUDIO
	ioctl VIDIOC_G_AUDOUT, VIDIOC_S_AUDOUT
	ioctl VIDIOC_G_CROP, VIDIOC_S_CROP
	ioctl VIDIOC_G_CTRL, VIDIOC_S_CTRL
	ioctl VIDIOC_G_DV_TIMINGS, VIDIOC_S_DV_TIMINGS
	ioctl VIDIOC_G_EDID, VIDIOC_S_EDID, VIDIOC_SUBDEV_G_EDID, VIDIOC_SUBDEV_S_EDID
	ioctl VIDIOC_G_ENC_INDEX
	ioctl VIDIOC_G_EXT_CTRLS, VIDIOC_S_EXT_CTRLS, VIDIOC_TRY_EXT_CTRLS
	ioctl VIDIOC_G_FBUF, VIDIOC_S_FBUF
	ioctl VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT
	ioctl VIDIOC_G_FREQUENCY, VIDIOC_S_FREQUENCY
	ioctl VIDIOC_G_INPUT, VIDIOC_S_INPUT
	ioctl VIDIOC_G_JPEGCOMP, VIDIOC_S_JPEGCOMP
	ioctl VIDIOC_G_MODULATOR, VIDIOC_S_MODULATOR
	ioctl VIDIOC_G_OUTPUT, VIDIOC_S_OUTPUT
	ioctl VIDIOC_G_PARM, VIDIOC_S_PARM
	ioctl VIDIOC_G_PRIORITY, VIDIOC_S_PRIORITY
	ioctl VIDIOC_G_SELECTION, VIDIOC_S_SELECTION
	ioctl VIDIOC_G_SLICED_VBI_CAP
	ioctl VIDIOC_G_STD, VIDIOC_S_STD, VIDIOC_SUBDEV_G_STD, VIDIOC_SUBDEV_S_STD
	ioctl VIDIOC_G_TUNER, VIDIOC_S_TUNER
	ioctl VIDIOC_LOG_STATUS
	ioctl VIDIOC_OVERLAY
	ioctl VIDIOC_PREPARE_BUF
	ioctl VIDIOC_QBUF, VIDIOC_DQBUF
	ioctl VIDIOC_QUERYBUF
	ioctl VIDIOC_QUERYCAP
	ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU
	ioctl VIDIOC_QUERY_DV_TIMINGS
	ioctl VIDIOC_QUERYSTD, VIDIOC_SUBDEV_QUERYSTD
	ioctl VIDIOC_REQBUFS
	ioctl VIDIOC_S_HW_FREQ_SEEK
	ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF
	ioctl VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL
	ioctl VIDIOC_SUBDEV_ENUM_FRAME_SIZE
	ioctl VIDIOC_SUBDEV_ENUM_MBUS_CODE
	ioctl VIDIOC_SUBDEV_G_CROP, VIDIOC_SUBDEV_S_CROP
	ioctl VIDIOC_SUBDEV_G_FMT, VIDIOC_SUBDEV_S_FMT
	ioctl VIDIOC_SUBDEV_G_FRAME_INTERVAL, VIDIOC_SUBDEV_S_FRAME_INTERVAL
	ioctl VIDIOC_SUBDEV_G_SELECTION, VIDIOC_SUBDEV_S_SELECTION
	ioctl VIDIOC_SUBDEV_QUERYCAP
	ioctl VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT
	V4L2 mmap()
	V4L2 munmap()
	V4L2 open()
	V4L2 poll()
	V4L2 read()
	V4L2 select()
	V4L2 write()

	Common definitions for V4L2 and V4L2 subdev interfaces
	Common selection definitions

	Video For Linux Two Header File
	videodev2.h

	Video Capture Example
	file: media/v4l/capture.c

	Video Grabber example using libv4l
	file: media/v4l/v4l2grab.c

	References
	CEA 608-E
	EN 300 294
	ETS 300 231
	ETS 300 706
	ISO 13818-1
	ISO 13818-2
	ITU BT.470
	ITU BT.601
	ITU BT.653
	ITU BT.709
	ITU BT.1119
	ITU-T Rec. H.264 Specification (04/2017 Edition)
	ITU H.265/HEVC
	JFIF
	ITU-T.81
	W3C JPEG JFIF
	SMPTE 12M
	SMPTE 170M
	SMPTE 240M
	SMPTE RP 431-2
	SMPTE ST 2084
	sRGB
	sYCC
	xvYCC
	opRGB
	ITU BT.2020
	EBU Tech 3213
	EBU Tech 3321
	IEC 62106
	NRSC-4-B
	ISO 12232:2006
	CEA-861-E
	VESA DMT
	EDID
	HDCP
	HDMI
	HDMI2
	DP
	poynton
	colimg
	VP8
	VP9

	Revision and Copyright
	Revision History

	Part II - Digital TV API
	Introduction
	What you need to know
	History
	Overview
	Linux Digital TV Devices
	API include files

	Digital TV Frontend API
	Querying frontend information
	Querying frontend status and statistics
	Property types
	Frontend Function Calls

	Digital TV Demux Device
	Demux Data Types
	Demux Function Calls

	Digital TV CA Device
	CA Data Types
	CA Function Calls
	The High level CI API

	Digital TV Network API
	Digital TV net Function Calls

	Digital TV Deprecated APIs
	Digital TV Frontend legacy API (a. k. a. DVBv3)

	Examples
	Digital TV uAPI header files
	Digital TV uAPI headers

	Revision and Copyright
	Revision History

	Part III - Remote Controller API
	Introduction
	Remote Controller’s sysfs nodes
	/sys/class/rc/
	/sys/class/rc/rcN/
	/sys/class/rc/rcN/protocols
	/sys/class/rc/rcN/filter
	/sys/class/rc/rcN/filter_mask
	/sys/class/rc/rcN/wakeup_protocols
	/sys/class/rc/rcN/wakeup_filter
	/sys/class/rc/rcN/wakeup_filter_mask

	Remote Controller Protocols and Scancodes
	rc-5 (RC_PROTO_RC5)
	rc-5-sz (RC_PROTO_RC5_SZ)
	rc-5x-20 (RC_PROTO_RC5X_20)
	jvc (RC_PROTO_JVC)
	sony-12 (RC_PROTO_SONY12)
	sony-15 (RC_PROTO_SONY15)
	sony-20 (RC_PROTO_SONY20)
	nec (RC_PROTO_NEC)
	nec-x (RC_PROTO_NECX)
	nec-32 (RC_PROTO_NEC32)
	sanyo (RC_PROTO_SANYO)
	mcir2-kbd (RC_PROTO_MCIR2_KBD)
	mcir2-mse (RC_PROTO_MCIR2_MSE)
	rc-6-0 (RC_PROTO_RC6_0)
	rc-6-6a-20 (RC_PROTO_RC6_6A_20)
	rc-6-6a-24 (RC_PROTO_RC6_6A_24)
	rc-6-6a-32 (RC_PROTO_RC6_6A_32)
	rc-6-mce (RC_PROTO_RC6_MCE)
	sharp (RC_PROTO_SHARP)
	xmp (RC_PROTO_XMP)
	cec (RC_PROTO_CEC)
	imon (RC_PROTO_IMON)
	rc-mm-12 (RC_PROTO_RCMM12)
	rc-mm-24 (RC_PROTO_RCMM24)
	rc-mm-32 (RC_PROTO_RCMM32)
	xbox-dvd (RC_PROTO_XBOX_DVD)

	Remote controller tables
	Changing default Remote Controller mappings
	file: uapi/v4l/keytable.c

	LIRC Device Interface
	Introduction
	LIRC modes
	Data types used by LIRC_MODE_SCANCODE
	BPF based IR decoder
	LIRC Function Reference
	LIRC Header File

	Revision and Copyright
	Revision History

	Part IV - Media Controller API
	Introduction
	Media device model
	Types and flags used to represent the media graph elements
	Request API
	General Usage
	Request Allocation
	Request Preparation
	Request Submission
	Recycling and Destruction
	Example for a Codec Device
	Example for a Simple Capture Device

	Function Reference
	media open()
	media close()
	media ioctl()
	ioctl MEDIA_IOC_DEVICE_INFO
	ioctl MEDIA_IOC_G_TOPOLOGY
	ioctl MEDIA_IOC_ENUM_ENTITIES
	ioctl MEDIA_IOC_ENUM_LINKS
	ioctl MEDIA_IOC_SETUP_LINK
	ioctl MEDIA_IOC_REQUEST_ALLOC
	request close()
	request ioctl()
	request poll()
	ioctl MEDIA_REQUEST_IOC_QUEUE
	ioctl MEDIA_REQUEST_IOC_REINIT

	Media Controller Header File
	media.h

	Revision and Copyright
	Revision History

	Part V - Consumer Electronics Control API
	Introduction
	Function Reference
	cec open()
	cec close()
	cec ioctl()
	cec poll()
	ioctl CEC_ADAP_G_CAPS
	ioctls CEC_ADAP_G_LOG_ADDRS and CEC_ADAP_S_LOG_ADDRS
	ioctls CEC_ADAP_G_PHYS_ADDR and CEC_ADAP_S_PHYS_ADDR
	ioctl CEC_ADAP_G_CONNECTOR_INFO
	ioctl CEC_DQEVENT
	ioctls CEC_G_MODE and CEC_S_MODE
	ioctls CEC_RECEIVE and CEC_TRANSMIT

	CEC Pin Framework Error Injection
	Basic Syntax
	Clear Error Injections
	Receive Messages
	Transmit Messages
	Custom Pulses

	CEC Header File
	cec.h

	Revision and Copyright
	Revision History

	Generic Error Codes
	Glossary
	GNU Free Documentation License
	0. PREAMBLE
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	Addendum

	Video4Linux (V4L) driver-specific documentation
	MIPI CCS camera sensor driver
	Pixel Array sub-device
	Binner
	Scaler
	Digital and analogue crop
	Private controls

	The cx2341x driver
	Non-compressed file format
	Format of embedded V4L2_MPEG_STREAM_VBI_FMT_IVTV VBI data

	Hantro video decoder driver
	i.MX Video Capture Driver
	Events
	Controls

	Maxim Integrated MAX2175 RF to bits tuner driver
	V4L2_CID_MAX2175_I2S_ENABLE
	V4L2_CID_MAX2175_HSLS
	V4L2_CID_MAX2175_RX_MODE (menu)

	Vaio Picturebook Motion Eye Camera Driver
	Private API

	OMAP 3 Image Signal Processor (ISP) driver
	Events
	Private IOCTLs
	CCDC and preview block IOCTLs
	Statistic blocks IOCTLs
	VIDIOC_OMAP3ISP_STAT_EN
	VIDIOC_OMAP3ISP_AEWB_CFG, VIDIOC_OMAP3ISP_HIST_CFG and VIDIOC_OMAP3ISP_AF_CFG
	VIDIOC_OMAP3ISP_STAT_REQ
	References

	The Linux USB Video Class (UVC) driver
	Extension Unit (XU) support

	Index

