Extending V4L2

Hans Verkull



Until kernel 2.6 the v4l subsystem
was small: 1-2% of all drivers.

2.6 added dvb and lots of new v4l
drivers and it has grown from 5% to
almost 10%.

Third-largest subsystem after scsi
and net.

Latest count: 9.15 MB for v4l and
2.59 MB for dvb = 11.74 MB for

both.

Statistics

Kernel v4l-dvb tree (bytes) % of all drivers
2.0 287953 1.00%
2.2.26 643187 1.30%
2.4.0 829547 1.50%
2.4.10 1076039 1.70%
2.4.20 1309846 1.70%
2.4.30 1477293 1.70%
2.4.36 1477303 1.70%
2.6.0 4634875 5.80%
2.6.10 4232200 4.60%
2.6.16 5569219 5.40%
2.6.17 7189484 7.00%
2.6.18 7910318 7.70%
2.6.19 8081530 7.60%
2.6.20 8419446 7.80%
2.6.21 8556067 7.80%
2.6.22 9121077 8.10%
2.6.23 9334386 8.20%
2.6.24 9667264 8.10%
2.6.25 10121497 8.10%
2.6.26 11244052 8.90%
2.6.27-rc4 12312140 9.60%




Statistics

 However, of the 9.15 MB of v4l code only 0.15 MB (1.65%)
provides core v4l| services. Half of that 0.15 MB is the videobuf
services, the other half is video_device support.

 Compare with 0.66 MB of core services for scsi (4.9%).



Current state of V4L.2

V4L2 public API: pretty good. Proven to be reasonably future
proof.

V4L drivers: anything from plain broken to excellent. Too many
are in poor condition, though.

Drivers suffer from reinventing the wheel due to severe lack of
v4| core services.

Often drivers are clearly copied from earlier drivers and so
feature the same bugs.

Lack of driver compliance tests makes it hard to verify whether
a driver works correctly.



Current state of V4L.2

Modern video hardware devices are ever more complicated.
Some create up to 10 devices.

Modern v4l drivers often also support framebuffer, alsa, i2c, lirc
and/or dvb devices, so have to combine various subsystem
APIs.

Upcoming devices have to be able to reroute the internal
videostreams.

Increasingly difficult for both user and applications to pull
everything together.



Conclusion

« Some unifying API is needed to keep track of and reroute (if
supported) all the devices created by a driver.

 The V4L core services need to be improved.

 Combine the two into one project.



Proposal

Create a struct v412_device for basic device-global data.
Register each struct in a global list for easy lookup (e.g. an alsa
driver can look for the main driver device data).

Create a struct v412_client to communicate with client (usually
12¢) devices. Register them with v412_device. When
v4l2_device is removed, release the v4l2_clients automatically.

Create a struct v4l2_fh to store per-filehandle data. Includes
priority handling, keeping track of active captures, etc.

Add standard functions for open/release/read/write/poll similar
to the video_ioctl2 call to take care of some of the standard
boilerplate code.



Proposal

* Improve control handling support: drivers should not need to
care about QUERYCTRL, QUERYMENU and control value

checking.

* Always using v4l2_client for client drivers allows the
iIntroduction of utilities that safely load and lock client modules.
Almost all drivers do this wrong. Lots of other v412_client
services can be created to make life easier for the driver
programmer.

* Introduce a v4l2_driver object as well? Mostly useful for
standardized module option handling.



V4L Core Objects

devices

list<v412_device *>

v4l2_device

list<v412_client *>
list<video device *>

video device v4|2_client
v4l2 device * v41l2 client ops *
v412 fh

Video_device *




Proposal

Create a struct v4l12_mc and a /dev/controllerO media controller
device.

Media controller is a new device that can be used to enumerate
all v4l/dvb/alsa/fb devices that a given driver created ('Discover
the topology").

Applications only need to find all controller devices and open
them to learn what all the capabities are and what other devices

to open.

A media controller can also be used to reroute devices if this is
supported.



V4L Core Objects

devices

list<v41l2 device *>

v4|2_device

v412_mc *
list<v412_client *>

v4l2_mc v412_client

v4l2 device *

| *
list<video_device *> TeLA_ LI OpE

video device

V412_mc *

v4l|2_fh

Video_device *




Proposal

* Make it easier to add new types of device nodes, rather than
just video, radio, vbi and vtx (rarely seen). With a media
controller it is much easier to give some more meaningful

names, e.g. encoder0 or decoderO for MPEG encoder/decoder
streams.

* Think about media processor devices: can be used to tell

hardware how to process media. Use for compositors, video
effects, etc. Must be very flexible.



Proposal

New objects can be introduced step-by-step.

Converting drivers to use these objects should improve
consistency and quality.

All drivers create their own variations of these structs. It makes
a lot of sense to move that code to a v4l core framework so that
drivers can concentrate on getting the hardware to work.

Applications should see much more uniform behavior by
drivers.



va4l2_device

struct v412 device {
struct list head list;
struct list head clients;
struct mutex lock;

/* id + num must be unique */
enum v412 driver id id;

ulé num;

/* name must be unique */

char name] V4L2_DEVICE_NAME_S IZE];
struct v412 prio state prio;



v4l2 mc

struct v41l2 dev node {
struct list head list;
char name[V4L2 NODENAME SZ7];
enum v41l2 dev node type type;
union {
struct video device *vdev;
struct fb info *fb;
struct alsa ??? *alsa;
struct dvb adapter *dvb;
}i
b7

struct v41l2 mc {
struct list head dev_nodes;
struct mutex lock;
struct video device *mc_dev;
struct v412 dev *dev;

}i



v4l2_client

struct v412 client ops {
const struct v412 client core ops *core;
const struct v412 client tuner ops *tuner;
const struct v41l2 client audio ops *audio;
const struct v41l2 client video ops *video;

b7

struct v412 client {
struct list head list;
struct module *owner;
struct v41l2 device *dev;
const struct v412 client ops *ops;
void *priv;



val2 fh

enum v41l2 fh mode {
V4L2 FH PASSIVE = 0,
V4L2 FH ACTIVE = 1,
}i

struct v412 fh {

struct video device *vdev;
enum v412 fh mode mode;
enum v412 priority prio;

/* v412 vdev */

/* priority */



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

