

Extending V4L2

Hans Verkuil

Statistics
Kernel % of all drivers
2.0 287953 1.00%
2.2.26 643187 1.30%
2.4.0 829547 1.50%
2.4.10 1076039 1.70%
2.4.20 1309846 1.70%
2.4.30 1477293 1.70%
2.4.36 1477303 1.70%
2.6.0 4634875 5.80%
2.6.10 4232200 4.60%
2.6.16 5569219 5.40%
2.6.17 7189484 7.00%
2.6.18 7910318 7.70%
2.6.19 8081530 7.60%
2.6.20 8419446 7.80%
2.6.21 8556067 7.80%
2.6.22 9121077 8.10%
2.6.23 9334386 8.20%
2.6.24 9667264 8.10%
2.6.25 10121497 8.10%
2.6.26 11244052 8.90%
2.6.27­rc4 12312140 9.60%

v4l­dvb tree (bytes)
● Until kernel 2.6 the v4l subsystem

was small: 1-2% of all drivers.

● 2.6 added dvb and lots of new v4l
drivers and it has grown from 5% to
almost 10%.

● Third-largest subsystem after scsi
and net.

● Latest count: 9.15 MB for v4l and
2.59 MB for dvb = 11.74 MB for
both.

Statistics

● However, of the 9.15 MB of v4l code only 0.15 MB (1.65%)
provides core v4l services. Half of that 0.15 MB is the videobuf
services, the other half is video_device support.

● Compare with 0.66 MB of core services for scsi (4.9%).

Current state of V4L2

● V4L2 public API: pretty good. Proven to be reasonably future
proof.

● V4L drivers: anything from plain broken to excellent. Too many
are in poor condition, though.

● Drivers suffer from reinventing the wheel due to severe lack of
v4l core services.

● Often drivers are clearly copied from earlier drivers and so
feature the same bugs.

● Lack of driver compliance tests makes it hard to verify whether
a driver works correctly.

Current state of V4L2

● Modern video hardware devices are ever more complicated.
Some create up to 10 devices.

● Modern v4l drivers often also support framebuffer, alsa, i2c, lirc
and/or dvb devices, so have to combine various subsystem
APIs.

● Upcoming devices have to be able to reroute the internal
videostreams.

● Increasingly difficult for both user and applications to pull
everything together.

Conclusion

● Some unifying API is needed to keep track of and reroute (if
supported) all the devices created by a driver.

● The V4L core services need to be improved.

● Combine the two into one project.

Proposal

● Create a struct v4l2_device for basic device-global data.
Register each struct in a global list for easy lookup (e.g. an alsa
driver can look for the main driver device data).

● Create a struct v4l2_client to communicate with client (usually
i2c) devices. Register them with v4l2_device. When
v4l2_device is removed, release the v4l2_clients automatically.

● Create a struct v4l2_fh to store per-filehandle data. Includes
priority handling, keeping track of active captures, etc.

● Add standard functions for open/release/read/write/poll similar
to the video_ioctl2 call to take care of some of the standard
boilerplate code.

Proposal

● Improve control handling support: drivers should not need to
care about QUERYCTRL, QUERYMENU and control value
checking.

● Always using v4l2_client for client drivers allows the
introduction of utilities that safely load and lock client modules.
Almost all drivers do this wrong. Lots of other v4l2_client
services can be created to make life easier for the driver
programmer.

● Introduce a v4l2_driver object as well? Mostly useful for
standardized module option handling.

V4L Core Objects

list<v4l2_device *>

devices

list<v4l2_client *>
list<video_device *>

v4l2_device

v4l2_device *

video_device

video_device *

v4l2_fh

v4l2_client_ops *

v4l2_client

Proposal

● Create a struct v4l2_mc and a /dev/controller0 media controller
device.

● Media controller is a new device that can be used to enumerate
all v4l/dvb/alsa/fb devices that a given driver created ('Discover
the topology').

● Applications only need to find all controller devices and open
them to learn what all the capabities are and what other devices
to open.

● A media controller can also be used to reroute devices if this is
supported.

V4L Core Objects

list<v4l2_device *>

v4l2_device *
list<video_device *>

devices

v4l2_mc *
list<v4l2_client *>

v4l2_device

v4l2_mc

v4l2_mc *

video_device

video_device *

v4l2_fh

v4l2_client_ops *

v4l2_client

Proposal

● Make it easier to add new types of device nodes, rather than
just video, radio, vbi and vtx (rarely seen). With a media
controller it is much easier to give some more meaningful
names, e.g. encoder0 or decoder0 for MPEG encoder/decoder
streams.

● Think about media processor devices: can be used to tell
hardware how to process media. Use for compositors, video
effects, etc. Must be very flexible.

Proposal

● New objects can be introduced step-by-step.

● Converting drivers to use these objects should improve
consistency and quality.

● All drivers create their own variations of these structs. It makes
a lot of sense to move that code to a v4l core framework so that
drivers can concentrate on getting the hardware to work.

● Applications should see much more uniform behavior by
drivers.

v4l2_device

struct v4l2_device {
 struct list_head list;
 struct list_head clients;
 struct mutex lock;

 /* id + num must be unique */
 enum v4l2_driver_id id;
 u16 num;
 /* name must be unique */
 char name[V4L2_DEVICE_NAME_SIZE];
 struct v4l2_prio_state prio;
};

v4l2_mc
struct v4l2_dev_node {

struct list_head list;
char name[V4L2_NODENAME_SZ];
enum v4l2_dev_node_type type;
union {

struct video_device *vdev;
struct fb_info *fb;
struct alsa_??? *alsa;
struct dvb_adapter *dvb;

};
};

struct v4l2_mc {
 struct list_head dev_nodes;
 struct mutex lock;

struct video_device *mc_dev;
struct v4l2_dev *dev;

};

v4l2_client

struct v4l2_client_ops {
 const struct v4l2_client_core_ops *core;
 const struct v4l2_client_tuner_ops *tuner;
 const struct v4l2_client_audio_ops *audio;
 const struct v4l2_client_video_ops *video;
};

struct v4l2_client {
 struct list_head list;
 struct module *owner;
 struct v4l2_device *dev;
 const struct v4l2_client_ops *ops;
 void *priv;
};

v4l2_fh

enum v4l2_fh_mode {
 V4L2_FH_PASSIVE = 0,
 V4L2_FH_ACTIVE = 1,
};

struct v4l2_fh {
 struct video_device *vdev; /* v4l2_vdev */
 enum v4l2_fh_mode mode;
 enum v4l2_priority prio; /* priority */
};

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

