
© Samsung Electronics Co., LTD

Video for Linux 2 summit
Helsinki, June 2010

Pawel Osciak
p.osciak@samsung.com

Samsung Electronics

2© Samsung Electronics Co., LTD

Videobuf advantages

1. Queue management and V4L2 API helpers

- to make it easier for drivers to implement V4L2 API, assure compliance...

- to ease high-level buffer management, prevent code duplication, bugs...

- get for free: streaming and read/write support…

2. Video memory management, standard solutions for most typical situations

- physically contiguous memory

- scatter-gather

- contiguous in virtual memory

But... it is not as widely used as one would expect...

3© Samsung Electronics Co., LTD

Videobuf problems

Laurent already mentioned many of them

V4L2 violations(!)

Not enough flexibility, all or nothing approach for memory handling code

Not ready for new, emerging requirements

- non-coherent cache architectures

- different memory allocation strategies

- IOMMU

- ...

Difficult to maintain; drivers use it in obscure ways

- introducing changes to videobuf requires full knowledge of all drivers

Code duplication, obscure code, bad practices, inconsistencies

Very little in-code documentation

dma-sg is scary

4© Samsung Electronics Co., LTD

It is high time to do something

More and more new drivers coming out with their own code for common tasks

We are losing

- time – reinventing the wheel in each driver

- the opportunity to have less code to maintain

- the advantage of having drivers that are smaller and easier to understand for others

- the benefit of having our code maintained by others

Developers are frustrated that they cannot use videobuf, even if they would like to

5© Samsung Electronics Co., LTD

Why not just refactor videobuf?

A major rewrite of drivers required

Moving allocation to REQBUFS is a huge change,
changing free/cancel, streamoff/streamon behaviors is no small task either

Videobuf is V4L1 compatible (or at least DMA-SG claims to be)

Too much deadweight; maintaining compatibility would be very difficult

It may sound like a (too) easy way out, but…

6© Samsung Electronics Co., LTD

What should stay

Videobuf queue – overall, generic concepts, frame management

V4L2 ioctl and file operations handling support

Driver callbacks and memory type helpers – the overall concept

Memory-independent buffer (frame) management – including:

- handling cancels, unexpected closes…

- memory leaks prevention

- API compliance

- ...

7© Samsung Electronics Co., LTD

What should be improved/added

Clear separation between queue management and memory handling

V4L2 API compliance

Memory allocation and mapping

Streamoff/streamon handling

iolock() – redesign

Cache synchronization support

Multi-plane video frames

Waiting for buffers to be processed, out-of-order dequeuing

8© Samsung Electronics Co., LTD

Clear roles

Videobuf queue

- manage buffers on a higher, memory-independent level

- provide V4L2 API helper functions

- should not be aware of memory handling at all

Videobuf memtype

- functions for video memory allocation, synchronization, mapping...

- modular; pluggable/reusable parts

Driver

- act as a go-between

- choose the tools it wants to use from a provided, standard pool

- override everything else

9© Samsung Electronics Co., LTD

V4L2 API compliance

Buffer allocation

- has to be performed on REQBUFS, not mmap

- support freeing with REQBUFS = 0

streamoff/streamon

- do not free buffers on streamoff

Proper support for other than CAPTURE types

- videobuf has originally been written for capture devices only

...

10© Samsung Electronics Co., LTD

Memory allocation and mapping

Allocation should be performed on REQBUFS instead of mmap()

It should be possible to free buffers with REQBUFS(0)

An ability to plug-in custom allocation mechanisms is required

Memory mapping functions could be pluggable as well

DMA-SG module is a real mess – Laurent provided a new, clean implementation
which could not be integrated into videobuf1

11© Samsung Electronics Co., LTD

Memory allocators

Video data memory management in videobuf

- memory is allocated on mmap (or even on VM fault sometimes)

- fixed methods are used for allocation and management
(e.g.: dma_alloc_coherent() for physically contiguous memory)

- drivers cannot utilize/plug-in their own methods

„Memory types” in videobuf are „take all or nothing”

- no way to override, no „ops”

The result

- drivers using parts of videobuf memory code only

- code duplication, (big) chunks of videobuf code get copied

- drivers not using videobuf at all

12© Samsung Electronics Co., LTD

Requirements and considerations

Device requirements

- buffer contiguity

- own memory pools

- allocation from specific memory banks

- allocation in a specific arrangement

Mapping

- specific CPU flags

- problems with remapping and cache coherency, different flags

- VM_PFNMAP memory

Other requirements

- reference counting

Solutions

- bootmem allocators

- memory pools…

13© Samsung Electronics Co., LTD

Rethinking memory types

Have a general pool of functions

- provide existing methods as standard solutions

- let drivers choose from among them or provide their own

Uncouple videobuf queue code from memory type code

- let drivers stand between them and choose what to do

Provide new callbacks for drivers

- buffer_alloc() – called on REQBUFS

- buffer_free() – called on REQBUFS(0) and on cleanup

14© Samsung Electronics Co., LTD

Memory allocation TODO

Move memory allocation out of memory type mmap functions

- obvious problem: existing drivers depend on this

Allow drivers to plug-in their own memory allocation functions

Store per-buffer private data related to allocation

Could be done for videobuf1, or at least parts of it

To work around the mmap allocation problem:

- allow drivers to initialize memory type code with their own allocation routines

- do not allocate on mmap if a driver provided its own implementation

- make core aware of that and make it call the provided allocation routines on reqbufs

15© Samsung Electronics Co., LTD

Streamoff/streamon

streamoff() currently frees buffers (!)

So it is not possible to resume with streamon after “pausing” using streamoff

New memory handling would fix this

Again – big change for drivers

16© Samsung Electronics Co., LTD

iolock() (and sync())

iolock() is a callback implemented by memory handling modules

- “do anything required to prepare a buffer for use by hardware”

iolock() is used for too many things

- buffer validation

- bounce buffer allocation

- page pinning

- physical contiguity verification

- scatter-gather list creation

- cache synchronization (not currently)

- IOMMU management (not currently)

iolock() is called on QBUF – might be too late

- verification, preparation, sync (...) of large buffers (e.g. 10 Mpix pictures) takes time

17© Samsung Electronics Co., LTD

Rethinking iolock() and sync()

Preparing buffers for hardware

- actions performed once per buffer (on streamon/after allocation?)

- actions performed before each HW operation (on each qbuf)

Returning buffers back to userspace

- actions performed after each HW operation (on dequeue)

- actions performed before releasing memory

Extend the current API for drivers into:

- buffer_init() – once per buffer (e.g.: pin pages, verify contiguity, IOMMU mapping...)

- buffer_prepare() – on every queue (e.g.: sync cache, copy to bounce buffer...)

- buffer_finish() – on every dequeue (e.g.: sync cache, copy back...)

- buffer_cleanup() – before releasing memory (e.g.: unmap...)

Get rid of iolock and sync from videobuf,
let drivers do what they need and call helpers (if required) from the above
functions

18© Samsung Electronics Co., LTD

Cache synchronization

Non-cache coherent architectures require cache synchronization before and after a
hardware operation

Currently we have a sync() call, but called after an operation only

- for cache sync

- for copying data back from bounce buffers

But is called after a HW operation only

Userspace sometimes knows that sync is not required

We need:

- sync calls before an operation

- add (a) flag(s) for userspace to indicate that a buffer does not have to be cache-synced

Can be performed with the new API in buffer_prepare() and buffer_finish()

19© Samsung Electronics Co., LTD

Multi-plane frames

Currently it is assumed that all video data of one frame is kept in one, contiguous
memory buffer

The idea is to have multiple memory buffers per frame – planes

Some hardware requires several, physically discontiguous memory buffers

Userspace might also want to pass video data in separate buffers

- e.g. Y, Cb and Cr planes in 3 separate buffers

Can be used for non-video data/metadata as well

Some planes (video data) can be of MMAP-type (i.e. provided by drivers), while
others can be USERPTR (i.e. provided by userspace)

Generally doable with the current videobuf, although with some difficulties

- DMA-SG V4L1, mmap compatibility

20© Samsung Electronics Co., LTD

Plane struct

struct v4l2_plane {

__u32 bytesused;

union {

__u32 offset;

unsigned long userptr;

} m;

__u32 length;

__u32 hdr_size;

__u32 reserved[12];

};

21© Samsung Electronics Co., LTD

Buffer struct

struct v4l2_buffer {
__u32 index;
enum v4l2_buf_type type;
__u32 bytesused;
__u32 flags;
enum v4l2_field field;
struct timeval timestamp;
struct v4l2_timecode timecode;
__u32 sequence;

/* memory location */
enum v4l2_memory memory;
union {

__u32 offset;
unsigned long userptr;
struct v4l2_plane *planes;

} m;
__u32 length;
__u32 input;
__u32 reserved;

};

22© Samsung Electronics Co., LTD

New: buffer dequeuing/waiting mechanisms

V4L2 API – DQBUF

- return a buffer (any); can be identified by index

- no particular order enforced

Currently in videobuf

- buffers are stored in the same order as queued (FIFO)

- passed to drivers in FIFO order

- dqbuf and poll only consider the buffer that was queued first

Why change this?

- some devices require this – if they return buffers in a non-FIFO order, e.g. video codecs

- operations on some buffers may be finished faster than on others
(parallel in-device processing (?))

23© Samsung Electronics Co., LTD

New: buffer dequeuing/waiting mechanisms

Current videobuf implementation

- each videobuf_buffer includes a waitqueue

- dqbuf/poll take the first buffer and sleep on its waitqueue

- drivers wake_up() those waitqueues

Proposed changes

- add a list of buffers that have finished being processed (done_list)

- have a general per-videobuf_queue waitqueue (done_wait)

New mechanism

- drivers mark buffers as done with videobuf_finish()

- videobuf_finish() adds buffers to the done list and wakes up done queue sleepers

- dqbuf() and poll() sleep on the done_wait waitqueue

Old behavior, including the ability to wait for particular buffers, is preserved

Or maybe get rid of per-buffer waitqueues after all? Do we really need this?

24© Samsung Electronics Co., LTD

Smaller stuff

Ensure full support for other queue types (other than CAPTURE)

Drop V4L1 support

Remove unused/unneeded variables

- videobuf_buffer: width, height, bytesperline... (format is managed by drivers)

Improve naming, reduce code duplication...

- videobuf_buffer -> videobuf_frame

- videobuf_frame contains 1..n videobuf_planes

25© Samsung Electronics Co., LTD

Converting existing drivers to videobuf2

Memory allocation – moved to reqbufs, with all implications

Adapt to the new freeing/cleanup/cancel behavior

Make sure streamoff works as expected

Add implementation for new driver API functions

Adapt to multi-planes

- quite simple, current buffers become multiplane buffers with one plane

© Samsung Electronics Co., LTD

