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Videobuf advantages

1. Queue management and V4L2 API helpers

- to make it easier for drivers to implement V4L2 API, assure compliance...

- to ease high-level buffer management, prevent code duplication, bugs...

- get for free: streaming and read/write support…

2. Video memory management, standard solutions for most typical situations

- physically contiguous memory

- scatter-gather

- contiguous in virtual memory

But... it is not as widely used as one would expect...
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Videobuf problems

Laurent already mentioned many of them

V4L2 violations(!)

Not enough flexibility, all or nothing approach for memory handling code

Not ready for new, emerging requirements

- non-coherent cache architectures

- different memory allocation strategies

- IOMMU

- ...

Difficult to maintain; drivers use it in obscure ways

- introducing changes to videobuf requires full knowledge of all drivers

Code duplication, obscure code, bad practices, inconsistencies

Very little in-code documentation

dma-sg is scary
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It is high time to do something

More and more new drivers coming out with their own code for common tasks

We are losing

- time – reinventing the wheel in each driver

- the opportunity to have less code to maintain

- the advantage of having drivers that are smaller and easier to understand for others

- the benefit of having our code maintained by others

Developers are frustrated that they cannot use videobuf, even if they would like to
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Why not just refactor videobuf?

A major rewrite of drivers required

Moving allocation to REQBUFS is a huge change,
changing free/cancel, streamoff/streamon behaviors is no small task either

Videobuf is V4L1 compatible (or at least DMA-SG claims to be)

Too much deadweight; maintaining compatibility would be very difficult

It may sound like a (too) easy way out, but…
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What should stay

Videobuf queue – overall, generic concepts, frame management

V4L2 ioctl and file operations handling support

Driver callbacks and memory type helpers – the overall concept

Memory-independent buffer (frame) management – including:

- handling cancels, unexpected closes…

- memory leaks prevention

- API compliance

- ...
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What should be improved/added

Clear  separation between queue management and memory handling

V4L2 API compliance

Memory allocation and mapping

Streamoff/streamon handling

iolock() – redesign

Cache synchronization support

Multi-plane video frames

Waiting for buffers to be processed, out-of-order dequeuing
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Clear roles

Videobuf queue

- manage buffers on a higher, memory-independent level

- provide V4L2 API helper functions

- should not be aware of memory handling at all

Videobuf memtype

- functions for video memory allocation, synchronization, mapping...

- modular; pluggable/reusable parts

Driver

- act as a go-between

- choose the tools it wants to use from a provided, standard pool

- override everything else



9© Samsung Electronics Co., LTD

V4L2 API compliance

Buffer allocation

- has to be performed on REQBUFS, not mmap

- support freeing with REQBUFS = 0

streamoff/streamon

- do not free buffers on streamoff

Proper support for other than CAPTURE types

- videobuf has originally been written for capture devices only

...
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Memory allocation and mapping

Allocation should be performed on REQBUFS instead of mmap()

It should be possible to free buffers with REQBUFS(0)

An ability to plug-in custom allocation mechanisms is required

Memory mapping functions could be pluggable as well

DMA-SG module is a real mess – Laurent provided a new, clean implementation 
which could not be integrated into videobuf1
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Memory allocators

Video data memory management in videobuf

- memory is allocated on mmap (or even on VM fault sometimes)

- fixed methods are used for allocation and management
(e.g.: dma_alloc_coherent() for physically contiguous memory)

- drivers cannot utilize/plug-in their own methods

„Memory types” in videobuf are „take all or nothing”

- no way to override, no „ops”

The result

- drivers using parts of videobuf memory code only

- code duplication, (big) chunks of videobuf code get copied

- drivers not using videobuf at all
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Requirements and considerations

Device requirements

- buffer contiguity

- own memory pools

- allocation from specific memory banks

- allocation in a specific arrangement

Mapping

- specific CPU flags

- problems with remapping and cache coherency, different flags

- VM_PFNMAP memory

Other requirements

- reference counting

Solutions

- bootmem allocators

- memory pools…
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Rethinking memory types

Have a general pool of functions

- provide existing methods as standard solutions

- let drivers choose from among them or provide their own

Uncouple videobuf queue code from memory type code

- let drivers stand between them and choose what to do

Provide new callbacks for drivers

- buffer_alloc() – called on REQBUFS

- buffer_free() – called on REQBUFS(0) and on cleanup
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Memory allocation TODO

Move memory allocation out of memory type mmap functions

- obvious problem: existing drivers depend on this

Allow drivers to plug-in their own memory allocation functions

Store per-buffer private data related to allocation

Could be done for videobuf1, or at least parts of it

To work around the mmap allocation problem:

- allow drivers to initialize memory type code with their own allocation routines

- do not allocate on mmap if a driver provided its own implementation

- make core aware of that and make it call the provided allocation routines on reqbufs
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Streamoff/streamon

streamoff() currently frees buffers (!)

So it is not possible to resume with streamon after “pausing” using streamoff

New memory handling would fix this

Again – big change for drivers



16© Samsung Electronics Co., LTD

iolock() (and sync())

iolock() is a callback implemented by memory handling modules

- “do anything required to prepare a buffer for use by hardware”

iolock() is used for too many things

- buffer validation

- bounce buffer allocation

- page pinning

- physical contiguity verification

- scatter-gather list creation

- cache synchronization (not currently)

- IOMMU management (not currently)

iolock() is called on QBUF – might be too late

- verification, preparation, sync (...) of large buffers (e.g. 10 Mpix pictures) takes time
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Rethinking iolock() and sync()

Preparing buffers for hardware

- actions performed once per buffer (on streamon/after allocation?)

- actions performed before each HW operation (on each qbuf)

Returning buffers back to userspace

- actions performed after each HW operation (on dequeue)

- actions performed before releasing memory

Extend the current API for drivers into:

- buffer_init() – once per buffer (e.g.: pin pages, verify contiguity, IOMMU mapping...)

- buffer_prepare() – on every queue (e.g.: sync cache, copy to bounce buffer...)

- buffer_finish() – on every dequeue (e.g.: sync cache, copy back...)

- buffer_cleanup() – before releasing memory (e.g.: unmap...)

Get rid of iolock and sync from videobuf,
let drivers do what they need and call helpers (if required) from the above 
functions
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Cache synchronization

Non-cache coherent architectures require cache synchronization before and after a 
hardware operation

Currently we have a sync() call, but called after an operation only

- for cache sync

- for copying data back from bounce buffers

But is called after a HW operation only

Userspace sometimes knows that sync is not required

We need:

- sync calls before an operation

- add (a) flag(s) for userspace to indicate that a buffer does not have to be cache-synced

Can be performed with the new API in buffer_prepare() and buffer_finish()
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Multi-plane frames

Currently it is assumed that all video data of one frame is kept in one, contiguous 
memory buffer

The idea is to have multiple memory buffers per frame – planes

Some hardware requires several, physically discontiguous memory buffers

Userspace might also want to pass video data in separate buffers

- e.g. Y, Cb and Cr planes in 3 separate buffers

Can be used for non-video data/metadata as well

Some planes (video data) can be of MMAP-type (i.e. provided by drivers), while 
others can be USERPTR (i.e. provided by userspace)

Generally doable with the current videobuf, although with some difficulties

- DMA-SG V4L1, mmap compatibility



20© Samsung Electronics Co., LTD

Plane struct

struct v4l2_plane {

__u32                   bytesused;

union {

__u32           offset;

unsigned long   userptr;

} m;

__u32                   length;

__u32                   hdr_size;

__u32                   reserved[12];

};
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Buffer struct

struct v4l2_buffer {
__u32                   index;
enum v4l2_buf_type      type;
__u32                   bytesused;
__u32                   flags;
enum v4l2_field         field;
struct timeval timestamp;
struct v4l2_timecode    timecode;
__u32                   sequence;

/* memory location */
enum v4l2_memory        memory;
union {

__u32                   offset;
unsigned long           userptr;
struct v4l2_plane       *planes;

} m;
__u32                   length;
__u32                   input;
__u32                   reserved;

};
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New: buffer dequeuing/waiting mechanisms

V4L2 API – DQBUF

- return a buffer (any); can be identified by index

- no particular order enforced

Currently in videobuf

- buffers are stored in the same order as queued (FIFO)

- passed to drivers in FIFO order

- dqbuf and poll only consider the buffer that was queued first

Why change this?

- some devices require this – if they return buffers in a non-FIFO order, e.g. video codecs

- operations on some buffers may be finished faster than on others
(parallel in-device processing (?))
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New: buffer dequeuing/waiting mechanisms

Current videobuf implementation

- each videobuf_buffer includes a waitqueue

- dqbuf/poll take the first buffer and sleep on its waitqueue

- drivers wake_up() those waitqueues

Proposed changes

- add a list of buffers that have finished being processed (done_list)

- have a general per-videobuf_queue waitqueue (done_wait)

New mechanism

- drivers mark buffers as done with videobuf_finish()

- videobuf_finish() adds buffers to the done list and wakes up done queue sleepers

- dqbuf() and poll() sleep on the done_wait waitqueue

Old behavior, including the ability to wait for particular buffers, is preserved

Or maybe get rid of per-buffer waitqueues after all? Do we really need this?
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Smaller stuff

Ensure full support for other queue types (other than CAPTURE)

Drop V4L1 support

Remove unused/unneeded variables

- videobuf_buffer: width, height, bytesperline... (format is managed by drivers)

Improve naming, reduce code duplication...

- videobuf_buffer -> videobuf_frame

- videobuf_frame contains 1..n videobuf_planes
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Converting existing drivers to videobuf2

Memory allocation – moved to reqbufs, with all implications

Adapt to the new freeing/cleanup/cancel behavior

Make sure streamoff works as expected

Add implementation for new driver API functions

Adapt to multi-planes

- quite simple, current buffers become multiplane buffers with one plane



© Samsung Electronics Co., LTD


