~ Future of the
- videobuf framework

Pawel Osciak
p.-osciak(@samsung.com

Samsung Electronics

Video for Linux 2 summit
Helsinki, June 2010

Videobuf advantages

1. Queue management and V4L2 API helpers
- to make it easier for drivers to implement V4L2 API, assure compliance...
- to ease high-level buffer management, prevent code duplication, bugs...

- get for free: streaming and read/write support...

2. Video memory management, standard solutions for most typical situations
- physically contiguous memory
- scatter-gather

- contiguous in virtual memory

® But... it is not as widely used as one would expect...

© Samsung Electronics Co., LTD 2

Vldeobuf problems

———

® Laurent already mentioned many of them

V4L2 violations(!)
Not enough flexibility, all or nothing approach for memory handling code

Not ready for new, emerging requirements

non-coherent cache architectures

different memory allocation strategies
IOMMU

® Difficult to maintain; drivers use it in obscure ways

- introducing changes to videobuf requires full knowledge of all drivers
Code duplication, obscure code, bad practices, inconsistencies
Very little in-code documentation

dma-sg is scary

© Samsung Electronics Co., LTD 3

It is high time to do something

® More and more new drivers coming out with their own code for common tasks

® We are losing
- time —reinventing the wheel in each driver
- the opportunity to have less code to maintain
- the advantage of having drivers that are smaller and easier to understand for others

- the benefit of having our code maintained by others

® Developers are frustrated that they cannot use videobuf, even if they would like to

© Samsung Electronics Co., LTD 4

Why not just refactor videobuf?

® A major rewrite of drivers required

® Moving allocation to REQBUFS is a huge change,
changing free/cancel, streamoff/streamon behaviors is no small task either

® Videobufis V4L1 compatible (or at least DMA-SG claims to be)

® Too much deadweight; maintaining compatibility would be very difficult

® |t may sound like a (too) easy way out, but...

© Samsung Electronics Co., LTD 5

What should stay

———

® Videobuf queue — overall, generic concepts, frame management
® VA4L2 ioctl and file operations handling support
® Driver callbacks and memory type helpers — the overall concept

® Memory-independent buffer (frame) management — including:
- handling cancels, unexpected closes...
- memory leaks prevention

- APl compliance

© Samsung Electronics Co., LTD =

What should be improved/added

———

Clear separation between queue management and memory handling
V4L2 API compliance

Memory allocation and mapping

Streamoff/streamon handling

iolock() — redesign

Cache synchronization support

Multi-plane video frames

Waiting for buffers to be processed, out-of-order dequeuing

© Samsung Electronics Co., LTD 7

Clear roles

® Videobuf queue
- manage buffers on a higher, memory-independent level i
- provide V4L2 API helper functions

- should not be aware of memory handling at all

® Videobuf memtype
- functions for video memory allocation, synchronization, mapping...

- modular; pluggable/reusable parts

® Driver
- actas ago-between
- choose the tools it wants to use from a provided, standard pool

- override everything else

© Samsung Electronics Co., LTD 8

V4LZ API compliance

® Buffer allocation
- has to be performed on REQBUFS, not mmap
- support freeing with REQBUFS =0

® streamoff/streamon

- do not free buffers on streamoff

® Proper support for other than CAPTURE types

- videobuf has originally been written for capture devices only

© Samsung Electronics Co., LTD 9

Memory allocation and mapping

® Allocation should be performed on REQBUFS instead of mmap()
® |t should be possible to free buffers with REQBUFS(0)
® An ability to plug-in custom allocation mechanisms is required

® Memory mapping functions could be pluggable as well

® DMA-SG module is a real mess — Laurent provided a new, clean implementation
which could not be integrated into videobuf1

© Samsung Electronics Co., LTD 10

Memory allocators

® Video data memory management in videobuf
- memory is allocated on mmap (or even on VM fault sometimes)

- fixed methods are used for allocation and management
(e.g.: dma_alloc_coherent() for physically contiguous memory)

- drivers cannot utilize/plug-in their own methods

® ,Memory types” in videobuf are ,take all or nothing”

- no way to override, no ,,0ps”

® The result

- drivers using parts of videobuf memory code only
- code duplication, (big) chunks of videobuf code get copied

- drivers not using videobuf at all

© Samsung Electronics Co., LTD 11

Requirements and considerations

® Device requirements
- buffer contiguity
- own memory pools
- allocation from specific memory banks

- allocation in a specific arrangement

® Mapping
- specific CPU flags
- problems with remapping and cache coherency, different flags
- VM_PFNMAP memory

® Other requirements

- reference counting

® Solutions
- bootmem allocators
- _memory pools...

© Samsung Electronics Co., LTD 12

Rethinking memory types

———

® Have a general pool of functions
- provide existing methods as standard solutions

- let drivers choose from among them or provide their own

® Uncouple videobuf queue code from memory type code

- let drivers stand between them and choose what to do

® Provide new callbacks for drivers
- buffer_alloc() — called on REQBUFS
- buffer free() — called on REQBUFS(0) and on cleanup

© Samsung Electronics Co., LTD 13

Memory allocation TODO

® Move memory allocation out of memory type mmap functions
- obvious problem: existing drivers depend on this

Allow drivers to plug-in their own memory allocation functions

Store per-buffer private data related to allocation

Could be done for videobufl, or at least parts of it

To work around the mmap allocation problem:
- allow drivers to initialize memory type code with their own allocation routines
- do not allocate on mmap if a driver provided its own implementation

- make core aware of that and make it call the provided allocation routines on reqbufs

© Samsung Electronics Co., LTD

Streamoff/streamon

———

® streamoff() currently frees buffers (!)
® Soitis not possible to resume with streamon after “pausing” using streamoff
® New memory handling would fix this

® Again - big change for drivers

© Samsung Electronics Co., LTD 15

iolock() (and sync())

® jolock() is a callback implemented by memory handling modules

“do anything required to prepare a buffer for use by hardware”

® jolock() is used for too many things
- buffer validation
- bounce buffer allocation
- page pinning
- physical contiguity verification
- scatter-gather list creation
- cache synchronization (not currently)

- IOMMU management (not currently)

® jolock() is called on QBUF — might be too late

- verification, preparation, sync (...) of large buffers (e.g. 10 Mpix pictures) takes time

© Samsung Electronics Co., LTD 16

Rethmkmg iolock() and sync()

———

® Preparing buffers for hardware
- actions performed once per buffer (on streamon/after allocation?)

- actions performed before each HW operation (on each gbuf)

® Returning buffers back to userspace
- actions performed after each HW operation (on dequeue)

- actions performed before releasing memory

® Extend the current API for drivers into:
- buffer_init() — once per buffer (e.g.: pin pages, verify contiguity, OMMU mapping...)
- buffer _prepare() — on every queue (e.g.: sync cache, copy to bounce buffer...)
- buffer_finish() — on every dequeue (e.g.: sync cache, copy back...)

- buffer_cleanup() — before releasing memory (e.g.: unmap...)

® Getrid of iolock and sync from videobuf,
let drivers do what they need and call helpers (if required) from the above
functions

© Samsung Electronics Co., LTD 17

Cache synchronization

———

® Non-cache coherent architectures require cache synchronization before and after a
hardware operation

® Currently we have a sync() call, but called after an operation only
- for cache sync

- for copying data back from bounce buffers

® But is called after a HW operation only
® Userspace sometimes knows that sync is not required

® We need:

- sync calls before an operation

- add (a) flag(s) for userspace to indicate that a buffer does not have to be cache-synced

® Can be performed with the new API in buffer_prepare() and buffer_finish()

© Samsung Electronics Co., LTD 18

Multi-plane frames

———

® Currently it is assumed that all video data of one frame is kept in one, contiguous
memory buffer

® The ideais to have multiple memory buffers per frame — planes

® Some hardware requires several, physically discontiguous memory buffers
® Userspace might also want to pass video data in separate buffers

- e.g.Y,CbandCr planes in 3 separate buffers
® Can be used for non-video data/metadata as well

® Some planes (video data) can be of MMAP-type (i.e. provided by drivers), while
others can be USERPTR (i.e. provided by userspace)

® Generally doable with the current videobuf, although with some difficulties
- DMA-SG V4L1, mmap compatibility

© Samsung Electronics Co., LTD 19

Plane struct

struct v412 plane {

__u32 bytesused;
union {
__u32 offset;
unsigned long userptr;
}om;
_u32 length;
__u32 hdr_size;
_u32 reserved[12];

R

© Samsung Electronics Co., LTD 20

Buffer struct

———

E struct v412 buffer {

__u32 index;
enum v412 buf type type;
~u32 bytesused;
~u32 flags;
enum v412 field field;
struct timeval timestamp;
struct v412 timecode timecode;
_u32 sequence;

/* memory location */

enum v412 memory memory;

union {
__u32 offset;
unsigned long userptr;
struct v412 plane *planes;

} om;

__u32 length;

__u32 input;

~u32 reserved;

© Samsung Electronics Co., LTD 21

New: buffer dequeuing/waiting mechanisms

® VA4L2 APl - DQBUF

- return a buffer (any); can be identified by index

- no particular order enforced

® Currently in videobuf
- buffers are stored in the same order as queued (FIFO)
- passed to drivers in FIFO order

- dqgbuf and poll only consider the buffer that was queued first

® Why change this?
- some devices require this — if they return buffers in a non-FIFO order, e.g. video codecs

- operations on some buffers may be finished faster than on others
(parallel in-device processing (?))

© Samsung Electronics Co., LTD 22

New: buffer dequeuing/waiting mechanisms

———

® Current videobuf implementation
- each videobuf buffer includes a waitqueue
- dgbuf/poll take the first buffer and sleep on its waitqueue

- drivers wake_up() those waitqueues

® Proposed changes
- add a list of buffers that have finished being processed (done_list)

- have a general per-videobuf queue waitqueue (done_wait)

® New mechanism
- drivers mark buffers as done with videobuf_finish()
- videobuf_finish() adds buffers to the done list and wakes up done queue sleepers

- dqbuf() and poll() sleep on the done_wait waitqueue

Old behavior, including the ability to wait for particular buffers, is preserved

Or maybe get rid of per-buffer waitqueues after all? Do we really need this?

© Samsung Electronics Co., LTD 23

Smaller stuff

® Ensure full support for other queue types (other than CAPTURE)
® Drop V4L1 support

® Remove unused/unneeded variables
- videobuf buffer: width, height, bytesperline... (format is managed by drivers)

® Improve naming, reduce code duplication...
- videobuf buffer -> videobuf frame

- videobuf frame contains 1..n videobuf_planes

© Samsung Electronics Co., LTD 24

Converting existing drivers to videobuf2

———

® Memory allocation — moved to reqbufs, with all implications
® Adapt to the new freeing/cleanup/cancel behavior

® Make sure streamoff works as expected

® Add implementation for new driver API functions

® Adapt to multi-planes

- quite simple, current buffers become multiplane buffers with one plane

© Samsung Electronics Co., LTD 25

. - . - .e . >
» g
A el 9 ‘o T
3 -t .
i g e "
] e o . - .1y LU ’
- ’v. v 5l
. v
A ! el
.
. »*

~Thank you!

’_" -
o\

2 A1

Questions, suggestions,
comments please?

